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The medial temporal lobe (MTL) has been studied extensively at all levels of analysis, yet its
function remains unclear. Theory regarding the cognitive function of the MTL has centered

along 3 themes. Different authors have emphasized the role of the MTL in episodic recall, spa-
tial navigation, or relational memory. Starting with the temporal context model (M. W. Howard
and M. J. Kahana, 2002), a distributed memory model that has been applied to benchmark data

from episodic recall tasks, the authors propose that the entorhinal cortex supports a gradually
changing representation of temporal context and the hippocampus proper enables retrieval of
these contextual states. Simulation studies show this hypothesis explains the firing of place
cells in the entorhinal cortex and the behavioral effects of hippocampal lesion in relational

memory tasks. These results constitute a first step towards a unified computational theory of
MTL function that integrates neurophysiological, neuropsychological and cognitive findings.

The medial temporal lobe (MTL) is a region that includes
the hippocampus proper, the subicular complex and parahip-
pocampal cortical regions, including entorhinal, perirhinal,
and parahippocampal/postrhinal cortices. A great deal of
data from neuropsychology (e.g. Eichenbaum & Cohen,
2001; Scoville & Milner, 1957; Squire, 1992) and functional
imaging (e.g. Fernandez, Effern, Grunwald, et al., 1999;
Stern, Corkin, Gonzalez, et al., 1996; Wagner et al., 1998)
has converged on the idea that the MTL is important in learn-
ing and memory. In order to bridge the gap between cogni-
tion and cellular-level physiology, we need a mechanistic,
mesoscopic description of MTL computational function. We
already have several successful verbally-formulated theories
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of the cognitive function of the MTL. These are described
in turn in the following subsections. This paper will attempt
to draw these multiple verbal theories together into a single
computational framework that is consistent with known neu-
rophysiological and neuroanatomical data.

Episodic recall

All of the diverse skills and facts that differentiate an adult
from an infant must be some form of memory—we say that
one learns to ride a bike, or remembers the alphabet. In the
early part of this century, memory theory strove to describe
general laws that would presumably apply to all these dif-
ferent types of learning (e.g. Estes, 1950; Osgood, 1949).
Recent decades have seen this unitary approach to memory
fragment into the categorization of multiple types of mem-
ory, typically with separable neural substrates for each (e.g.
Eichenbaum & Cohen, 2001; Nadel & Moscovitch, 1997;
Tulving & Schacter, 1991). One of the most fruitful of these
distinctions has been that of episodic memory.

Episodic memory refers to the ability to remember spe-
cific events from one’s personal experience (Tulving, 1983,
2002). For instance, one might have an episodic memory
of having eaten a banana at breakfast. The memory for this
episode, perhaps with details about the other objects and peo-
ple present at breakfast, with the taste of the banana, the
sounds and smells that were present in the room, is in prin-
ciple quite distinct from other types of memory one might
have for bananas. For instance, one could remember many
things about bananas—that they are yellow, that they are
good to eat, that people like to eat them at breakfast—without
memory for any specific experience with a banana. Recent

1



2 HOWARD, FOTEDAR, DATEY, AND HASSELMO

work has argued that episodic memory relies on the MTL,
in particular the hippocampus (Nadel & Moscovitch, 1997;
O’Keefe & Nadel, 1978; Tulving & Markowitsch, 1998).

A number of behavioral tasks test episodic memory. For
example, in the free recall task, the subject is presented with
a list of stimuli, typically words. The task is to recall as
many words as possible from the list, with the subject free
to determine the order of recall. Free recall is an episodic
task in that performance requires that the subject recall the
words presented in a particular episodic setting. Free recall
is sufficiently sensitive to MTL damage that it can be used as
a diagnostic tool for MTL damage in clinical settings (Graf,
Squire, & Mandler, 1984).

Spatial navigation

O’Keefe and Nadel (1978) proposed that the primary
function of the hippocampus is to construct and read out
“cognitive maps.” In the following years, however, this theo-
retical approach has focused on the role of the hippocampus
and related structures in learning and navigating through spa-
tial environments. The most remarkable piece of evidence
supporting this view is the existence of place cells (O’Keefe
& Dostrovsky, 1971). Pyramidal cells within the hippocam-
pus, recorded from rats moving throughout an environment,
fire selectively when the animal is in one particular region
of the environment. In open environments, this doesn’t de-
pend on the direction the animal is facing (Muller, Bostock,
Taube, & Kubie, 1994), and firing persists in the dark (Quirk,
Muller, & Kubie, 1990), ruling out an explanation based on
simple visual stimuli correlated with place.

There is an extensive literature describing characteristics
of place cells in dorsal CA1 (e.g. Muller & Kubie, 1987;
O’Keefe & Burgess, 1996; O’Keefe & Dostrovsky, 1971;
Wilson & McNaughton, 1993). Less is known about the
place code in other MTL structures. It is known that there
are place cells in the entorhinal cortex (EC, Barnes, Mc-
Naughton, Mizumori, Leonard, & Lin, 1990; Frank, Brown,
& Wilson, 2000; Quirk, Muller, Kubie, & Ranck, 1992), a re-
gion of cortex that provides input to the hippocampus proper.
The place response in EC differs in some respects from the
place code observed in CA1, indicating that the hippocam-
pus performs significant computations on the incoming place
representation. Nonetheless, it is clear that we can’t have a
meaningful understanding of the function of the hippocam-
pus performs until we have a correct understanding of the
nature of the entorhinal place code.

Transitive associations and relational memory

Data from olfactory learning in the rat (Bunsey & Eichen-
baum, 1996; Dusek & Eichenbaum, 1997) has been used
to argue that the hippocampus, the central structure of the
MTL, enables transitive associations, a function believed to
be important in relational memory. In these experiments, rats
learned associations or relationships between arbitrary stim-
uli. For instance, in the study of Bunsey and Eichenbaum
(1996), rats with hippocampal lesions were able to learn as-
sociations between odors A and B, and between B and C.

Unlike normal rats, however, lesioned rats did not show a
transitive generalization for the association A

�
C. Although

the lesioned animals were able to learn simple associations
between the stimuli, Bunsey and Eichenbaum (1996) argued
that they did not learn the relationships among stimuli that
weren’t presented together (see also Dusek & Eichenbaum,
1997).

The mnemonic deficit exhibited by hippocampal-lesioned
animals cannot apparently be described as a deficit in the de-
velopment of simple stimulus-response associations. How-
ever, when complex relationships between stimuli must be
learned, the MTL, and the hippocampus in particular, ap-
pear to be critically involved. This emphasis on relational
memory is not at all contradictory to a role for the MTL in
episodic memory. After all, memory for an episode involves
drawing together the many different stimuli present within
the episode, in a unique configuration.

Toward a unified framework

These three theoretical approaches to MTL function,
episodic recall, spatial navigation and relational memory, are
not mutually contradictory. As mentioned previously, mem-
ory for an episode should include memory for the configu-
ration of stimuli present in that episode. Similarly, O’Keefe
and Nadel (1978) pointed out that a cognitive map could be
used to encode the relationships between non-spatial sets of
stimuli, resulting in binding items to a temporal-spatial con-
text, supporting episodic memory (ch 14 O’Keefe & Nadel,
1978). Because the neurobiology of the MTL is such an in-
tensely studied subject, there is a tremendous incentive to
construct a model that can address questions from all three
domains.

The goal of the present paper is to present the begin-
nings of a theoretical framework that begins to draw together
these three disparate approaches. This will be accomplished
within the structure provided by the Temporal Context Model
(TCM, Howard & Kahana, 2002a), developed to explain ex-
perimental findings from free recall, an episodic recall task.
TCM describes a set of rules that govern the behavior of a
distributed representation of temporal context. We will show
that the equation governing contextual drift, taken as a model
of temporal-spatial context, can explain the primary features
of the entorhinal place code, a phenomenon central to the
MTL’s support for spatial function. We will then demon-
strate that the equation governing retrieved temporal con-
text, a kind of plasticity postulated to explain properties of
episodic association, can support a more general function in
extracting the temporal structure of experience. This pro-
vides a framework for modeling the dissociation between re-
lational learning and simple pairwise association.

Recency and Contiguity: TCM
and Fundamental Properties of

Episodic Recall

TCM was developed to describe two fundamental proper-
ties of episodic memory. The recency effect (Bjork & Whit-
ten, 1974; Howard & Kahana, 1999; Murdock, 1963b; Rat-
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cliff & Murdock, 1976) is the tendency for more recent items
to be recalled better than less recent items. Associative ef-
fects (Howard & Kahana, 1999, 2002b; Kahana, 1996) de-
scribe the development of episodically-formed connections
between items. This section will first review prior work
on TCM, describing the structure and reasoning behind the
model. Following this, we will describe a linking hypothesis
between TCM and the brain, with a special emphasis on the
medial temporal lobe.

An episodic representation

Context, in one form or another, has long been an impor-
tant component of models of episodic memory performance
(e.g. Anderson & Bower, 1972; Raaijmakers & Shiffrin,
1980; Mensink & Raaijmakers, 1988; Yntema & Trask,
1963). The basic approach of TCM has been to take a partic-
ular formulation of context, referred to as temporal context
and use it as the sole cue for recall of item representations.
Because context changes gradually over time TCM can pre-
dict forgetting over long time scales. Unlike some prior for-
mulations (e.g. Mensink & Raaijmakers, 1988), however,
TCM also explicitly models context that changes gradually
within a list of items. This assumption enables a description
of recency effects within lists, an effect which has often been
attributed to short-term memory (e.g. Atkinson & Shiffrin,
1968; Raaijmakers & Shiffrin, 1980). The most radical point
of departure of TCM from prior models of episodic recall,
however, is the assumption that context serves as the sole
cue for episodic recall. In TCM, observed episodic associa-
tions between items are a consequence of effects items have
on context, eliminating the need for direct item-to-item asso-
ciations in describing episodically-formed associations. We
will describe TCM in more detail in the following subsec-
tions. This treatment reviews prior work (Howard & Kahana,
2002a; Howard, Wingfield, & Kahana, In revision; Howard,
2004). Readers already familiar with TCM as a model of
episodic recall may wish to advance to the subsection enti-
tled “A mapping between TCM and the MTL.”

Temporal context and items. The central assumption of
TCM is that there is a distinction between temporal context
and to-be-recalled items. The current state of temporal con-
text at time step i is referred to as ti. We assume that ti is
a vector in a high-dimensional space; typically an infinite-
dimensional space for simplicity. The item presented at time
step i is referred to as fi. We assume that the item repre-
sentations f are vectors in a separate high-dimensional space,
typically infinite for simplicity. We assume that item repre-
sentations do not change over the course of a typical recall
experiment and that they are orthonormal. That is, we as-
sume that there is no overlap between item representations
and that the length of each item vector is one.

Activation of an item representation corresponds to per-
ception. The current state of the item vector corresponds to
the item currently being experienced. For instance, an item
representation may be activated on the basis of external stim-
uli during presentation of a list of items. Similarly, an item

representation may be activated by means of an “internal
stimulus” during the recall process. No matter the source,
the consequence of activating an item representation is the
perception of the corresponding item. Howard and Kahana
(2002a) assumed that only one item representation could be
activated at any one time. Although not a fundamental as-
sumption of TCM, we will also assume that at most one item
representation is active at a time throughout the current ms.

Context cues items. In TCM, the current state of context,
ti, is used to cue recall of items in semantic memory. Each
item in semantic memory is activated by a state of context
to the extent that that state of context resembles the contexts
in which it was presented. This can be implemented using a
Hebbian outer product matrix connecting states of context t
with patterns in semantic memory, fi

MT F
i � MT F

i ✁ 1
✂

fit ✄i ☎ (1)

where the prime denotes the transpose. When MT F is multi-
plied from the right with a context vector, t, this results in a
superposition of patterns in semantic memory, each weighted
by their similarity between their context and the cue context.
That is

MT F t j � ∑
i

✆
fi ✝ t ✄it j ✞✠✟ ☎ (2)

which follows immediately from the definition of MT F

(Eq. 1) and basic properties of vector arithmetic. The key
here is the t ✄it j term. The transpose of a vector multiplied by
another vector is a scalar referred to as the inner product. For
the present purposes, this is the same as the dot product and
can also be written ti ✡ t j.

1 We can see that when the item
layer is cued by a state of context, the result is a combination
of item representations. A particular item enters this combi-
nation in a way that is proportional to the similarity (quanti-
fied by the dot product) of the contexts it has been presented
in to the cue state of context.

Mapping activations onto probability of recall. Howard
and Kahana (2002a) assumed that this combination of item
representations was unstable. Due to attractor dynamics, the
superposition of item representations that results from cuing
with a state of context would collapse into one particular item
representation (or perhaps a null state in which all elements
of the vector went to zero). Let us define the activation of a
particular item i by a particular state of context t as

ai : � f ✄iMT F t ☛ (3)

1 For the present purposes, we can define the inner, or dot product
as

v ☞ w ✌ ∑
i

✍
v ✎ i ✍ w ✎ i ✏

where the
✍ ☞ ✎ i operator refers to the ith element of the vector taken

as its argument. The dot product is positive if the two vectors point
in similar directions (if they are correlated). It is negative if they
point in opposite direction. Importantly, the dot product is zero if

the two vectors are orthogonal.
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Using this definition (and the assumption that the item repre-
sentations are orthonormal), then the scalar ai just measures
the extent to which the superposition points in the direction
of the word corresponding to fi. The probability of recalling
item i given t can be given by the Luce choice rule:

P � fi ✁ t ✂ �
exp ✄ 2ai

τ ☎
∑ j exp ✄ 2a j

τ ☎ ☛ (4)

This can be conceived of as the probability of the superpo-
sition collapsing to a particular state. Howard and Kahana
(2002a) took the sum in the denominator of Eq. 4 to be over
potential recalls in the list. This equation is not a fundamen-
tal part of TCM. The important properties of this equation
are simply that it provides a non-linear mapping between ac-
tivations and recall, and that it is a competitive recall rule.
That is, the probability of recalling item i depends not only
on the activation ai, but also the activation of the other items
a j. This makes it a useful equation for describing situations
in which we are interested in the relative probability of re-
calling an item.

Items retrieve context. In much the same way that tempo-
ral context can be used to provide an input to the item-space,
items provide the input to the context-space. Howard and
Kahana (2002a) proposed that a matrix MFT provides a con-
nection such that the input to the context layer at time step i,
tIN
i , is a consequence of the item presented at time step i:

tIN
i � MFT

i ✁ 1fi ☛ (5)

The vector tIN
i will sometimes be referred to as the “context

retrieved by item i” to emphasize the effect of item represen-
tations on contextual states. The form of MFT was derived in
such a way to implement a functional rule that will be intro-
duced later (Eq. 9 below). The form of MFT is rather compli-
cated and probably does not correspond simply to any single
structure in the brain. For this reason we will not discuss it
further here, but rather treat the functional rule as the basic
description of retrieved context for the present ms. However,
we strongly assert the central point of retrieved context that
items cause contextual input patterns.

Recency across time scales

At each time step, the state of context at time step i, ti

is formed from the prior state of context ti ✁ 1 and an input
vector tIN

i according to:

ti � ρiti ✁ 1
✂ βtIN

i ☎ ρi : ✁✆✁ ti ✁✆✁ � 1 (6)

When applied to list-learning applications, we have previ-
ously assumed that the time-steps correspond to the times at
which list items are presented. We will assume (for conve-
nience) that the input vectors, tIN

i , are always of unit length

( ✁✆✁ tIN
i ✁✆✁ � 1 ☎ for all i). The vector tIN

i is weighted by the scalar
β. This parameter is generally estimated from the data and is
constrained such that 0 ✝ β ✝ 1. We can see that Eq. 6 adds

input vectors to the state of t. To ensure that the length of ti

does not grow without bound, we assume that the scalar ρi is
chosen to ensure that the length of ti remains unity: ✁✞✁ ti ✁✆✁ � 1.
This constraint means that ti changes as a function of input
to the system, rather than the passage of time per se (Waugh
& Norman, 1965). This can be seen clearly if one assumes
that at some time step i, the input vector is empty, ✁✞✁ tIN

i ✁✞✁ � 0.
In this case

ti � ρiti ✁ 1
✂ β0 (7)

requires that ρi � 1. This is consistent with the findings of
Baddeley and Hitch (1977), who argued that the recency ef-
fect was unaffected by addition of an unfilled delay at the end
of the list.

If the system is presented with an infinitely long series
of orthonormal tIN ’s, then the value of ρi will stabilize at

ρ : �✠✟ 1 ✡ β2.2 Under these circumstances, it becomes pos-
sible to concisely describe the similarity relationships be-
tween ti and the state of context at some other time, j, t j:

ti ✡ t j � ρ ☛ i ✁ j ☛ ☛ (8)

From this it is clear that t changes gradually over time. Any
particular component of ti decays exponentially as long as
orthonormal inputs are presented.

In sum, contextual evolution in TCM is characterized by
several important properties:

1. For a given value of β, when given a series of orthogo-
nal inputs, the similarity of the current state to an initial state
decays exponentially.

2. The change in context depends on the input.
3. When no input is given, the state of context does not

change.

Because ti is the functional cue for recall, and ti is an ef-
fective cue for recall of item j to the extent that ti over-
laps with t j, the property that ti decays gradually naturally
provides a basis for the the principle of recency (Howard
& Kahana, 2002a), which is observed in all of the major
episodic memory paradigms (Howard & Kahana, 1999; Mur-
dock, 1962, 1963b; Neath, 1993; Ratcliff & Murdock, 1976).
Appendix A illustrates this principle with a worked example
that demonstrates the recency effect.

Long-term Recency and Buffer Models of Short-term
Memory. For many years, the conventional wisdom was that
the recency effect in free recall reflected the operation of a

2 Under these circumstance, tIN
i ☞ ti ☞ 1 ✌ 0 and✌✍✌

ti

✌✍✌ 2 ✌ ρ2
i

✌✍✌
ti ☞ 1

✌✍✌ 2 ✎ β2 ✌✍✌ tIN
i

✌✍✌ 2 ✏
Because

✌✍✌
tIN
i

✌✍✌ ✌ 1 by assumption and
✌✍✌
ti ☞ 1

✌✍✌ ✌ 1 because of the

condition on ρi ☞ 1, we find that the condition that
✌✍✌
ti

✌✍✌ ✌ 1 implies
that

1 ✌ ρ2
i
✎ β2 ✏

which implies that ρi ✌✒✑ 1 ✓ β2 . More generally, when tIN
i ☞ ti ☞ 1 ✔✌

0, a quadratic equation in ρi is obtained, which can be solved by

elementary methods.
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short-term memory buffer (Atkinson & Shiffrin, 1968; Raai-
jmakers & Shiffrin, 1980). Indeed, detailed search models
based on a short-term memory buffer can describe standard
free recall in considerable detail (Kahana, 1996; Raaijmak-
ers & Shiffrin, 1980, 1981; Sirotin, Kimball, & Kahana,
submitted). The recency effect in immediate free recall is
eliminated by a distractor at the end of the list (Glanzer &
Cunitz, 1966; Postman & Phillips, 1965), presumably be-
cause the distractor removes items from the end of the list
from STS. However, when a distractor is also presented be-
tween each list item, this results in an increased recency ef-
fect over delayed free recall (Bjork & Whitten, 1974; Glen-
berg et al., 1980; Glenberg, Bradley, Kraus, & Renzaglia,
1983; Howard & Kahana, 1999; Nairne, Neath, Serra, &
Byun, 1997; Thapar & Greene, 1993; Watkins, Neath, &
Sechler, 1989). This presentation schedule is referred to as
continuous-distractor free recall; the recency effect observed
in continuous-distractor free recall is referred to as the long-
term recency effect. Howard and Kahana (2002a) fit TCM
to the probability of first recall, a sensitive measure of the
recency effect (Howard & Kahana, 1999; Laming, 1999), to
data from immediate, delayed and continuous-distractor free
recall (see Figure 1).3 TCM accurately predicts the existence
of a recency effect in immediate free recall, the disruption of
recency in delayed free recall and the recovery of recency in
continuous-distractor free recall.

Although contextual drift in TCM can account for much
of the function of STS in free recall, there is of course much
more to the concept of short-term memory than a rehearsal
buffer. Atkinson and Shiffrin (1968) emphasized the im-
portance of control processes in strategically manipulating
the information in the buffer. This theme has persisted not
only in the emphasis of the working memory framework in-
troduced by Baddeley and Hitch (1974) on executive func-
tion, but also in more recent models of executive functioning
in prefrontal cortex (e.g Rougier & O’Reilly, 2002; Braver
et al., 2001, for an integrative review, see Miller & Cohen,
2001). Although we argue that ti captures the critical storage
processes of short-term memory essential for generation of
the recency effect, we make no claim whatever that it de-
scribes control processes or executive function—these func-
tions clearly require something external to TCM.

Retrieved temporal context and episodic associa-
tion

In free recall, the canonical episodic memory task, sub-
jects recall multiple words from a list without concern to
word order. A great deal of evidence indicates that the order
in which the items are recalled reflects the associative struc-
ture of memory. For instance, when a list of words from dif-
ferent natural categories is presented, words from the same
category will tend to be recalled together, even if presenta-
tion order is randomized (e.g. Bousfeld, 1953; Pollio, Kass-
chau, & DeNise, 1968). This tendency for adjacent recalls
to come from the same category can be taken as a measure
of stronger associations between words from the same cate-
gory than between words from different semantic categories.

In this case, output order in free recall presumably reveals
something about the structure of semantic memory. In ad-
dition to semantic, or structural sources of association, asso-
ciations can also be formed rapidly among items presented
in temporal proximity. If free recall is indeed a consequence
of an episodic representation, then temporally-defined out-
put order relationships should reveal the properties of this
episodic representation.

We can define the association between two items func-
tionally as the tendency of one item to cause production
of the other. To measure associations in episodic memory
Kahana (1996) developed conditional response probability
(CRP) curves. CRP curves measure the probability of mak-
ing a transition from one item to another in free recall as a
function of the distance between them in the list. CRPs have
now been computed for data collected under a wide variety of
situations (Howard & Kahana, 1999; Kahana, 1996; Kahana
& Caplan, 2002; Kahana, Howard, Zaromb, & Wingfield,
2002; Klein, Addis, & Kahana, In press; Ward, Woodward,
Stevens, & Stinson, 2003). Consideration of these data con-
firm two very general properties of episodically-formed as-
sociations among items in a series:

1. Contiguity. Stronger associations are formed between
stimuli that occur near each other in time than between those
that are separated by a greater interval.

2. Asymmetry. Forward associations are stronger than
backward associations.
Both of these properties have been observed in immediate
(Howard & Kahana, 1999; Kahana, 1996; Ward et al., 2003),
delayed (Howard & Kahana, 1999; Kahana et al., 2002) and
continuous-distractor free recall (Howard & Kahana, 1999),
as well as serial recall (Kahana & Caplan, 2002; Raskin &
Cook, 1937).

Because the current state of context is always the cue for
episodic recall, associative effects in TCM are mediated by
the effects items have on the state of context. This is possi-
ble because a central postulate of TCM is that the input to
Eq. 6 is caused by the presentation of items.4 In TCM items
cause an input, tIN

i , that is part of ti. Because t is the cue for
episodic recall, associative effects between items are medi-
ated by the effect they have on t—by the contextual inputs
those items evoke, and the similarity of those inputs to states
of t in which other items were encoded. TCM produces con-
tiguity effects because items retrieve contextual elements that
were present when the items were initially presented. Be-
cause context changes gradually (Eq. 6), these contextual el-

3 Details of the procedure can be found in Howard and Kahana
(2002a).

4 Although this might not seem such a radical assumption, sev-
eral memory models have included mechanisms of contextual drift

in which the change in contextual elements is assumed to be a con-
sequence of stochastic fluctuations that are not under experimen-
tal control (Estes, 1955; Mensink & Raaijmakers, 1988; Murdock,
Smith, & Bai, 2001). Another set of models developed to explain

performance in short-term serial recall tasks have explicitly decou-
pled contextual representations from item recall, while not neces-
sarily assuming that context fluctuates randomly (Brown, Preece, &

Hulme, 2000; Burgess & Hitch, 1992, 1999; Henson, 1998).
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Figure 1. TCM describes the recency effect in immediate, delayed and continuous-distractor free recall. Experimental and predicted
values of the probability of first recall, a sensitive measure of the recency effect across delay schedules. a. In immediate free recall, the recall

test follows immediately after the presentation of the last item. b. In the delayed condition, sixteen seconds of a distractor task intervened
between presentation of the last list item and the recall test. Accordingly, the recency effect, the advantage for recall of the last items in the
list, was greatly reduced. c. In continuous-distractor free recall, sixteen seconds of distractor intervened between the last item of the list and

the recall test, but also in between each item of the list, effectively “stretching out” the list while preserving the relative temporal spacing
of the list. Under these circumstances, the recency effect was much larger than that observed in delayed recall. Because information that
enters ti decays gradually, TCM, when coupled with a competitive retrieval rule, can describe the persistence of the recency effect across

time scales. Model results are from Howard and Kahana (2002a). The experimental data is taken from Howard and Kahana (1999).

ements will tend to overlap with “nearby” states of context.
Because a state of context cues a given item for recall to the
extent that it overlaps with the context(s) in which the item
was presented (Eqs. 1, 3), these retrieved contextual elements
will favor recall of nearby items. TCM predicts asymmetry
because of the detailed assumptions about the nature of these
retrieved contextual elements.

Two components of contextual retrieval. Because re-
trieved context provides the basis for associations between
items, the form of MFT is clearly very important. Howard
and Kahana (2002a) hypothesized that retrieved context
should be a combination of prior contextual states and the
context initially retrieved by an item. Let us refer to the ith
time step at which stimulus A is presented as Ai. The input
caused by stimulus A changes from presentation to presenta-
tion according to

tIN
Ai � 1 � αOtIN

Ai

✂ αNtAi
(9)

where αO determines the level of retrieval of old contextual
associations and αN determines the level of new item-to-
context associations.5 This is a critical further assumption
beyond Eq. 5 that allowed the specification of a learning rule
for MFT (Howard & Kahana, 2002a).6 The values of αO

and αN are calculated on each learning trial such that the
length of the retrieved context vector on subsequent presen-
tations of A will be one (see Appendix B for details). Howard
and Kahana (2002a) derived a learning rule for MFT to allow
the model to simultaneously satisfy Eqs. 5 and 9. The ma-
trix MFT probably does not correspond simply to a single
brain structure, so here we will simply take the functional
description of contextual retrieval, Eq. 9, as the basic level
of description for changes in contextual retrieval. Equation 9
states that when item A, initially presented at time Ai is re-
peated later on at time Ai ✁ 1, the input to Eq. 6, tIN

Ai � 1
will be a

combination of two components:

1. The input from the original presentation, tIN
Ai

, weighted

by αO.
2. The context, tAi

, that was present when the item was
initially presented, weighted by αN .

The ratio of these two components is controlled by a free
parameter γ : � αN

✂
αO. These two components give rise to

qualitatively different associative effects.

Two components describe episodic association. TCM de-
scribes asymmetric associations between stimuli in episodic
recall (Howard & Kahana, 1999; Kahana, 1996; Kahana &
Caplan, 2002) as a consequence of the combined effects of
the two components of Eq. 9. One component, tIN

Ai
, is the

same input pattern that was evoked by A when it was ini-
tially presented. Because tIN

Ai
does not contribute to contex-

tual states that preceded Ai, but does contribute to subsequent
states of context (see Eq. 6), tIN

Ai
provides an asymmetric cue

that favors forward recalls. The other retrieved context com-
ponent, tAi

, is the context that was present when A was pre-
sented previously. Because each state of context in a list of
non-repeated items is as similar to its predecessor as it is to
the states that follow, tAi

provides a symmetric retrieval cue
that favors nearby list items in both the forward and back-
ward directions (see Eq. 8). In concert, these two retrieval
cues provide an asymmetric retrieval cue that favors recall of

5 The notation used here is slightly different from that used in

Howard and Kahana (2002a). There αO was referred to as Ai and
αN was referred to as Bi. The notation used here is consistent with
that used in Howard et al. (In revision).

6 In treating the effect of normal aging on episodic association,
Howard et al. (In revision) introduced a third component, a noise
vector weighted by a parameter η to Eq. 9. The function of this

term was to provide an ineffectual retrieval cue that could trade off
with the other two components to model the age-related deficit in
associative processes. The interested reader should be aware that

the version of Eq. 9 used here is not the most general case.
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Figure 2. TCM provides a natural explanation of asymmetric association in free recall. a. In TCM there are two sources of associative
effects. One source relies on the ability to retrieve contextual elements consistently from presentation to presentation of an item. The cue
strength derived from these “old” item-to-context associations provides an asymmetric cue that only helps recall items forward in the list.
The other source is the ability of an item to retrieve contextual elements that were already present when the item is presented. The cue

strength derived from these “new” item-to-context associations provides a symmetric cue that helps both forward and backward recalls. The
combination of these two cues leads to the characteristic shape of the CRP. After Howard and Kahana (2002a). b. The combination of an
asymmetric retrieval cue and a symmetric retrieval cue is an asymmetric retrieval cue. This results in good quantitative fits to observed CRP

curves. The left panel shows data from a delayed free recall study of younger adults along with predicted data from TCM. The right panel
shows analogous curves from older adults. The decrease in associative tendencies for older adults was modeled as a result of including a
noise term in Eq. 9. This data was originally presented in Kahana, et al (2002). The modeling of the older adults’ data is explained in greater
detail in Howard et al (in revision).

nearby items.

Figure 2a shows a plot of the cue strength from the two
components of context retrieved by an item at the center of
the curve to its neighbors. The curve labeled “Old” shows
the cue strength of the old context tIN

Ai
to the neighbors of

A. The cue strength is large for items that immediately fol-
lowed A, and falls off with temporal distance. The old cue
strength is zero for items that preceded A. This, combined
with the non-zero cue strength to items that followed A leads
to an associative asymmetry. The curve labeled “New” in
Figure 2a shows the cue strength from the new context com-
ponent tAi

. This component provides a cue strength that con-
tributes to both forward and backward recalls. Combining
these two components in an appropriate ratio shows a strong
correspondence to the shape of observed CRPs, a measure of
temporally-defined associations observed in free recall (see
Figure 2b). Appendix C shows a worked example of a sim-
ple calculation of episodically-formed associations that may
help to illustrate in more detail why these properties arise
from the model.

By varying the relative contributions of αO and αN to tIN ,
we can modulate the directionality of association. When
γ � 0, tIN does not change from presentation to presentation.
Under these circumstances, αO � 1 and αN � 0 at each time
step. There is a strong forward association and no backward
association. Of particular interest here is the fact that the
backward association is completely dependent on the value
of αN . If we were somehow able to selectively disrupt new
item-to-context learning so that αN � 0, we would observe
temporally-defined associations with a form like the curve
labeled “Old” in Figure 2a. This ability to dissociate forward
from backward associations is consistent with neuropsycho-
logical results. Bunsey and Eichenbaum (1996) found that

rats with hippocampal damage were able to learn forward
associations as well as control rats, but did not generalize to
a backward association.

We saw in the previous subsection that TCM can describe
the long-term recency effect. This is a consequence of a grad-
ually decaying strength provided by a contextual cue and a
competitive retrieval process. If recency effects and associa-
tive effects came from a common source, this would predict
that associative effects, like recency effects, should persist
across time scales. In a continuous-distractor experiment
with great care taken to avoid inter-item rehearsal, Howard
and Kahana (1999) observed no reliable change in the shape
or magnitude of the CRP functions used to describe associ-
ations in free recall with inter-item distractor intervals up to
16 s. Howard and Kahana (2002a) showed that TCM pre-
dicts the persistence of both contiguity and asymmetry as
the length of the inter-item distractor interval is increased.
Howard (2004) provides a more complete set of quantitative
predictions for the behavior of TCM coupled with Eq. 4 for
calculating probability of recall as the time scale is increased.

A mapping between TCM and the MTL

TCM has been shown to describe fundamental properties
of episodic recall performance. MTL damage is known to
affect episodic recall (Graf et al., 1984). If TCM provides
a realistic description of episodic recall performance, then it
ought to be possible to make a mapping of TCM onto the
anatomy of the MTL. In this subsection we present a coarse
picture of such a mapping. The remainder of this paper eval-
uates this mapping by examining the ability of TCM with this
linking hypothesis to explain the entorhinal place code and
consequences of hippocampal lesions on relational memory
performance in rats. It should be noted that the results in
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these later sections provide much of the justification for the
particular mapping proposed here.

Three stages of processing relevant to the functioning of
the MTL. Here we briefly summarize the large-scale orga-
nization of the MTL and related structures. This presenta-
tion draws heavily on reviews by Burwell (2000) and Suzuki
and Eichenbaum (2000). The hippocampus proper consists
of the CA sub-fields and the dentate gyrus. The hippocam-
pus receives subcortical input from the medial septum via the
fornix. This input from the septum is essential for the nor-
mal operation of theta oscillations, which has an extremely
important effect on the normal functioning of the hippocam-
pus (e.g. Hölscher, Anwyl, & Rowan, 1997; Huerta & Lis-
man, 1993; Wyble, Linster, & Hasselmo, 2000). We will
not explicitly model theta here, although theta is almost cer-
tainly essential for a detailed physiological description of
many of the phenomena discussed here (Hasselmo, Bodelón,
& Wyble, 2002; Hasselmo, Hay, Ilyn, & Gorchetchnikov,
2002). However, the septo-hippocampal pathway is not be-
lieved to carry detailed information about to-be-remembered
stimuli. Detailed stimulus representations are believed to be
conveyed to the hippocampus via the perforant path from
EC, which provides the primary informational input to the
hippocampus proper.

The entorhinal cortex is reciprocally connected to perirhi-
nal and postrhinal/parahippocampal cortex.7 These three re-
gions, collectively referred to as the parahippocampal region,
provide the cortical inputs to the hippocampus proper, and
are, in turn, reciprocally connected to a wide variety of neo-
cortical association areas. These neocortical association ar-
eas draw on every sensory system of the brain as well as
higher-order multimodal association areas.

In summary, there are three stages of information process-
ing relevant to the large-scale structure of the MTL. Corti-
cal association areas gather higher-order information from
the cortex and provide input to the MTL via parahippocam-
pal regions. Parahippocampal regions, including entorhi-
nal, perirhinal and postrhinal (parahippocampal) cortices are
reciprocally connected and provide input to the hippocam-
pus proper, primarily through EC. The hippocampus proper,
then, receives input from essentially the entire brain in a
small number of synapses.

Mapping TCM onto the three stages. We will argue that
the three large-scale stages described above correspond to
structures and functions within TCM. We will argue that item
representations, f, correspond to cortical association areas,
that the context vector, ti, resides in parahippocampal re-
gions, including in particular EC, and that a function of the
hippocampus proper is to affect new item-to-context learn-
ing, corresponding to a nonzero value of αN in Eq. 9. This
corresponds to a reconstruction of patterns of activity in EC
that were present when an item was initially presented.

Item representations are activated when an item is per-
ceived, whether as a result of external stimulation or recall
of an item by means of connections from the context layer.
General perception and cognition is generally not affected by

even extensive MTL lesions (see Corkin, 2002, for a recent
review). This leads us to hypothesize that the item repre-
sentations, the f vectors, reside outside of the MTL, in the
cortical association areas that project to the parahippocampal
region.

In this ms we advance the hypothesis that ti resides in
parahippocampal regions. Before laying our the reasoning
for this hypothesis, we first consider the evidence for the al-
ternative hypothesis that ti resides in the prefrontal cortex.
Changes in the context vector ti are associated with the re-
cency effect, the recency effect is associated with short-term
memory (e.g Atkinson & Shiffrin, 1968). Short-term mem-
ory is associated with working memory (Baddeley, 1986;
Baddeley & Hitch, 1974) and working memory is associ-
ated with prefrontal cortex (PFC). There is indeed ample evi-
dence that the PFC is involved in working memory tasks (e.g
Goldman-Rakic, 1996; Rypma & D’Esposito, 1999; Smith
& Jonides, 1999). Working memory involves a great many
cognitive functions beyond those necessary to support a re-
cency effect, notably executive and attentional functions. Al-
though frontal regions participate in encoding and retrieval
into episodic memory (for recent reviews see Rugg, Otten, &
Henson, 2002; Simons & Spiers, 2003), this does not imply
that the locus of ti is in PFC, even if one grants that TCM is
an accurate description of episodic recall. For instance, en-
coding and retrieval related activations in PFC may reflect
a gating function allowing selective access to ti. Indeed,
a number of computational models have emphasized the
executive and organizational properties of PFC in working
memory tasks (Becker & Lim, in press; Botvinick, Braver,
Barch, Carter, & Cohen, 2001; Dehaene & Changeux, 1997;
Rougier & O’Reilly, 2002).

There is good evidence (beyond the simulations of en-
torhinal place cells that will be reported in the following
section) to support the hypothesis that ti resides in parahip-
pocampal regions, including EC. As discussed above, ti

functions very much like a short-term memory store in
non-spatial tasks. There is strong evidence that extra-
hippocampal MTL structures, including EC, have properties
consistent with a role in non-spatial memory over the scale
of tens of seconds. Given that animals cannot do free recall
of words, the best analogue of the recency effect in free re-
call is the forgetting observed with recognition of non-spatial
stimuli over tens of seconds.

There is evidence for a role of parahippocampal regions
in such tasks from both single-unit and lesion studies. In
a delayed match to sample (DMS) task using odor stim-
uli in the rat, Young, Otto, Fox, and Eichenbaum (1997)
showed that responses of parahippocampal neurons, includ-
ing those in the lateral EC, exhibited stimulus-specific fir-
ing that persisted into the delay interval. Suzuki, Miller, and
Desimone (1997) extended this result to demonstrate that this
stimulus-specific firing persisted across multiple intervening
stimuli. Buffalo, Reber, and Squire (1998) showed that peo-

7 The nomenclature postrhinal cortex is used in rats, whereas
the homologous region is referred to as parahippocampal cortex in

monkeys.
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ple with lesions to the perirhinal cortex showed deficits of
recognition memory over delays as short as 6 s. Mumby
and Pinel (1994) showed that rats with damage to entorhinal
and perirhinal cortex were impaired on delayed non-match
to sample (DNMS) of trial-unique object at delays as short
as 15 s. Otto and Eichenbaum (1992) showed no deficit in a
continuous delayed non-match task from fornix transection,
but showed a deficit from combined perirhinal/entorhinal le-
sions at delays of 30 s. This not only points to a role for
the parahippocampal regions in memory on the time scale
of the recency effect in free recall, but argues against a role
of the hippocampus in such processes. Murray and Mishkin
(1998), showed that lesions to the amygdala and hippocam-
pus that spared rhinal cortex did not have an effect on DNMS
performance, whereas a comparable study showed a severe
impairment from rhinal cortex lesions at delays as short as
tens of seconds (Meunier, Bachevalier, Mishkin, & Murray,
1993).

States of context ti also include contextual input patterns
tIN
i (see Eq. 6). The hypothesis that ti resides in parahip-

pocampal regions brings with it the corollary that tIN
i also

resides in parahippocampal regions. As we have seen, tIN
i

is caused by the particular item presented to the network at
time i (Eq. 5). In this way, we can think of tIN

i as a higher-
order stimulus representation driven by item presentation.
The newly-activated contextual elements tIN

i would depend
on the item presented and its prior history. These elements
would be present in a background of activity ti ✁ 1 that in turn
depends on the prior items presented and their history.

If ti resides in parahippocampal regions, then what is the
function of the hippocampus proper? The first suggestion
comes from the finding that hippocampal damage is associ-
ated with a disruption of memory for items from the early
part of the serial position curve. Studies of epileptic pa-
tients who received anterior temporal lobectomies that in-
cluded hippocampal resection show a deficit in memory that
is largest for items from early and middle serial positions
(Hermann, Seidenberg, Wyler, et al., 1996; Jones-Gotman,
1986). These studies both suggested that damage to the
hippocampus itself was responsible for the deficit. Jones-
Gotman (1986) showed that performance was related to the
extent of the damage to the right hippocampus in memory for
visual materials. Hermann et al. (1996) showed that memory
for verbal materials was more affected by the lobectomy in
patients who did not have hippocampal sclerosis in the left
hippocampus, suggesting that the non-sclerotic hippocam-
pus was contributing to recall of pre-recency items prior to
the operation. Lesion studies in rats also support the view
that memory for the early and middle items in a list depends
on an intact hippocampus (Kesner, Crutcher, & Beers, 1988;
Kesner & Novak, 1982). Although it is not as clear that the
hippocampus in particular is implicated, studies of human
amnesics have also argued for a dissociation between the re-
cency portion and pre-recency portions of the serial position
curve (Baddeley & Warrington, 1970; Carlesimo, Marfia,
Loasses, & Caltagirone, 1996).

In TCM, recall of items from the end of the list is predom-

inantly a result of the recency effect caused by using end-of-
list context as a cue. In contrast, recall of non-recency items
is predominantly a consequence of contextual retrieval giv-
ing rise to temporally-defined associations. Indeed Kahana
et al. (2002) showed that the mnemonic deficit in normal ag-
ing, which may be associated with MTL dysfunction (Grady
et al., 1995) results in normal recency effects, accompanied
by reduced temporally-defined associations, which can be
explained within TCM as a disruption of the process of con-
textual retrieval (Howard et al., In revision).

If damage to the hippocampus proper resulted in a disrup-
tion of contextual retrieval, this would manifest as a deficit
for pre-recency items. However, a complete disruption of
contextual retrieval, with say tIN

i � 0, would result in a dis-
ruption of the recency effect as well, because the rate of con-
textual drift depends on the amount of input provided. In
any event, the state of temporal context ti in parahippocam-
pal regions should be able to be affected by input from item
representations in neocortical association areas. These con-
siderations lead us to hypothesize that the hippocampus is re-
sponsible for a more subtle aspect of contextual retrieval. In
this manuscript we explore the hypothesis that the hippocam-
pus is responsible for learning new item-to-context associa-
tions. Hippocampal lesions will be modeled by setting αN to
zero. More concretely, we hypothesize that the hippocampus
functions to recover the state active in EC when an item was
previously presented (Figure 3).

The hypothesis that the hippocampus affects associative
memory by recovering states of activity in EC is consistent
with the finding that hippocampal damage results in a deficit
for backward associations. In the Bunsey and Eichenbaum
(1996) experiment, rats learned something like a paired as-
sociate task. In a cue phase, the animals were presented with
an odor. In a choice phase, they had to select which of two
scented cups contained a food reward. The odor presented
in the cue phase of the trial predicted which of the scents
contained the reward. Correct performance depended on the
formation of some sort of association between each cue odor
and the correct choice odor. Animals with hippocampal dam-
age were able to perform the choice as well as unlesioned
animals. In a second phase of the experiment, animals were
tested on their generalization to the backward association. In
this phase, the odors from the choice phase were presented as
cues to select among. Control-lesioned rats selected the odor
consistent with the presence of a backward association. That
is, after learning to choose B when cued with A, control rats
chose A when cued with B. Despite their ability to learn the
forward association as well as control rats, the hippocampal-
lesioned rats showed no development of a backward associa-
tion. In TCM, this finding of impaired backward associations
and intact forward associations is what one would expect if
the hippocampus was necessary to make αN � 0. If αN � 0,
then this “lesioned” model would be able to make forward
associations, but would not support backward association;
the lesioned model would show associations like the curve
labeled “old” in Figure 2a.

The mapping between TCM and the MTL describes a pro-
cess of memory encoding and retrieval. Item presentation
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Figure 3. A linking hypothesis between TCM and the MTL a. “Items” are patterns of activity in semantic memory (SM), which is

presumed to reside in cortical association areas. These areas project to parahippocampal (PH) regions, including at least EC, which support
a state of context ti which serves as the cue for episodic recall. Presentation of an item in semantic memory calls up a set of elements tIN

i
in PH. The state of context also includes patterns activated by previous item presentations (the red and green patterns). The set of elements
activated by the item causes a set of elements in the hippocampus (H) to be activated, perhaps biased by the other contextual elements active

in EC and/or the prior state of activation in H. Hebbian association (indicated by the thin solid lines) takes place between the state of context
in PH and the state in semantic memory to allow contextual states to cue the item in semantic memory. b. Repetition of the item in semantic
memory reactivates the stimulus-specific elements in PH. Because the stimulus-specific elements remained active in PH following the initial

presentation of the stimulus, their reactivation serves as a cue for items that followed the initial presentation. c. The proposed function of the
hippocampus is to allow retrieval of contextual states upon re-presentation of an item. In this case, when the item is re-presented in semantic
memory, it again activates the set of stimulus-selective elements in PH, as in b. However, H functions to reinstate the entire contextual state

that obtained when the stimulus was originally presented. Because this state includes elements derived from items presented prior to the
original item presentation, this “retrieved context” functions as a symmetric cue for recall of other stimuli.

corresponds to activation of an appropriate pattern in cortical
association areas. These provide an input to EC and other
parahippocampal regions. These newly-active patterns of ac-
tivity decay over time as new items are presented, activat-
ing other patterns of input. At any time, the state of activity
in parahippocampal regions is the cue for episodic retrieval.
Repeating an item representation has an effect on the pattern
of activity in parahippocampal regions. If the hippocampus
is functioning properly, it enables repetition to result in the
recovery of other patterns of activity that were present when
the item was initially presented. Disruption of hippocam-
pal function does not prevent an item from activating a pat-
tern in parahippocampal regions. However, it does prevent
item presentation from reconstructing other patterns of ac-
tivity in parahippocampal regions. Figure 3 attempts to illus-
trate these properties. In this view, the hippocampus does not
“contain” memories per se. Rather, it operates to change the
pattern of activity in EC, which cues cortical regions. Suc-
cessfully activation of cortical regions corresponds to the act
of remembering. Insofar as the function of the hippocam-
pus and MTL is to draw together different transiently active
cortical representations it bears a strong resemblance to hip-
pocampal indexing theory (Teyler & DiScenna, 1985, 1986).

Preview. In the remainder of this ms, we will explore the
value of the linking hypothesis described above by arguing
that TCM describes location-specific firing characteristics of
cells in EC and by showing that disrupting contextual learn-
ing can describe characteristic effects from relational learn-

Table 1
Parameters used in simulations. The parameters β and γ
are intrinsic to TCM. β controls the rate of contextual drift
(Eq. 6). γ controls the ratio of new to old retrieved context
(the ratio αN

✂
αO, Eq. 9). In the relational memory simu-

lations, β was set to ✟ 1 ✡ ρ2, with ρ � 0 ☛ 9. The large dif-
ference between β in the spatial applications and the non-
spatial applications is appropriate given the different time
scale of contextual evolution (see text for details). σ is spe-
cific to the spatial applications and determines the width of
the tuning curves for the head direction inputs to the place
cells. The value of π

✂
6 was taken to be coarsely consistent

with experimental findings for the head direction system. τ is
used in the transitivity simulations and determines the sensi-
tivity of the recall rule (Eq. 4).

Parameter
Intrinsic Application-specific

Simulation β γ σ τ
Open field 0.01 0 π

✂
6

W-maze 0.01 0 π
✂
6

Transitivity 0.435 0/1 1
Memory space 0.435 0/1

ing experiments. Table 1 summarizes the values of the pa-
rameters used in the simulations. TCM itself contributes
two parameters. The value of β, from Eq. 6, determines
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how rapidly context changes given a particular set of inputs.
Larger values of β mean that context changes rapidly; smaller
values mean a more slowly-changing ti. The difference be-
tween the values of β across applications should not be too
troubling given the difference in the time-steps. That is, β de-
termines the change between time step i ✡ 1 and time step i.
In the spatial applications, the time steps come at 50 Hz (for
the open field) and 30 Hz (for the W-maze data). In contrast,
the time difference between ti and ti ✁ 1 in the relational mem-
ory applications is much slower, corresponding to the time
between sampling of odors, on the scale of seconds.8 The
value of γ is just the ratio αN

✂
αO; this determines the rate of

change of tIN across different presentations of the same item.
The value of γ is different in the spatial compared to the non-
spatial applications. This reasons for this are rather subtle
and are discussed extensively in the General Discussion. The
other two parameters are specific to the subject areas covered
in this ms. The spatial applications include a parameter σ that
controls the width of the tuning curves of simulated head di-
rection cells. The value of this parameter was taken to be
roughly consistent with published properties of actual cells
(Taube, 1998). The parameter τ (Eq. 4) is necessary to map
activity onto probability of recall. This was used previously
in modeling free recall (Howard & Kahana, 2002a) and is
used here in the simulation of transitive associations.

The Entorhinal Place Code and
Contextual Drift

The most striking piece of data implicating the MTL in
spatial navigation is the finding that cells in the hippocam-
pus fire in response to the animal’s location within an envi-
ronment. This phenomenon was first reported by O’Keefe
and Dostrovsky (1971) and has subsequently been explored
extensively by numerous researchers. This research has cen-
tered on the responses of cells within subfield CA1 of the
dorsal hippocampus (e.g. Muller & Kubie, 1987; O’Keefe
& Burgess, 1996; Shapiro, Tanila, & Eichenbaum, 1997;
Thompson & Best, 1989; Wilson & McNaughton, 1993),
although other subfields and MTL regions have also been
explored (Barnes et al., 1990; Frank et al., 2000; Gothard,
Hoffman, Battaglia, & McNaughton, 2001; Jung, Wiener,
& McNaughton, 1994; Phillips & Eichenbaum, 1998; Quirk
et al., 1992; Sharp & Green, 1994; Skaggs, McNaughton,
Wilson, & Barnes, 1996). Given the importance of the hip-
pocampus in learning and memory and the replicability of
the place cell phenomena, there have been several attempts
to model the computational origin of the place code (e.g.
Burgess & O’Keefe, 1996; Doboli, Minai, & Best, 2000;
Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000; Het-
herington & Shapiro, 1993; Kali & Dayan, 2000; O’Keefe,
1991; Redish, 1999; Samsonovich & McNaughton, 1997;
Sharp, 1991; Sharp, Blair, & Brown, 1996; Touretzky & Re-
dish, 1996; Zipser, 1985, 1986). One obvious reason, how-
ever, that there is a place code in the hippocampus is that it
receives input from the EC, which itself shows place-specific
firing. The computational/cognitive origin of the hippocam-
pal place code is apparently not in the hippocampus. If we

find a satisfactory explanation of the activity of EC cells, we
will be one step closer to understanding the origin of the hip-
pocampal place code.

EC place-specific activity in the open field. Cells in EC
exhibit several properties that are not shared with hippocam-
pal place cells. Hippocampal place cells typically show very
compact, distinct place fields. Cells that fire robustly ( � 10
Hz) in one location within the open field will typically be
completely silent when the animal is outside the place field
(Thompson & Best, 1989). In contrast, EC place cells typ-
ically fire throughout open environments. Firing for these
entorhinal cells is reliably modulated by the animal’s posi-
tion (Quirk et al., 1992), but in a much more noisy way than
hippocampal cells. In addition to this quantitative difference,
qualitative differences are observed in the firing properties
of entorhinal vs hippocampal place cells. After repeated
exposure to multiple environments (Lever, Wills, Cacucci,
Burgess, & O’Keefe, 2002), the hippocampal place code
“remaps” from one environment to another. If an animal is
observed after extensive experience in two distinct spatial en-
vironments, say, a cylindrical enclosure and a square enclo-
sure, the place fields observed in the one environment will
be uncorrelated with the place fields observed in the other
environment. That is, if a particular hippocampal place cell
shows a place field in the Northwest corner of the square en-
closure, this does not predict its responsiveness in the cylin-
drical enclosure; in the cylindrical enclosure it may have a
place field in a completely different location or stop firing
altogether (Muller & Kubie, 1987). During the initial ex-
posures to unfamiliar environments, the hippocampal place
code, like the entorhinal place code, shows similar firing in
both environments. In contrast, EC place cells show corre-
lated firing across environments that persists even after ex-
tensive training (Quirk et al., 1992). That is, an EC place
cell that is more likely to fire in the Northwest quadrant of
the square enclosure will also be more likely to fire in the
Northwest quadrant of the cylindrical enclosure.

EC place-specific activity on the linear track. A key fea-
ture of Eq. 6 is that ti is sensitive to the history of inputs
leading up to time step i. To make this point more concretely,
it is clear from Eq. 6 that ti includes tIN

i and ti ✁ 1. However,

because ti ✁ 1 contains tIN
i ✁ 1, this means that ti also contains

tIN
i ✁ 1. We can continuing this process of “unwinding” indefi-

nitely. In this way we find that the context vector ti depends
on the history of stimulus presentations leading up to time
step i. Recent evidence from place cell studies indicates that
the entorhinal place code also exhibits history-dependence.
Frank et al. (2000) recorded from place cells in EC and CA1
while animals traversed a W-shaped maze. The animals’ task
was to repeatedly visit the arms of the maze in sequence (see
Figure 4a). Of particular interest here is a phenomenon called
retrospective coding.

8 Given the definition of β, it is also reasonable to assume that
some classes of inputs, like odors, might produce a stronger re-

sponse in EC cells than others.
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Figure 4. Retrospective encoding requires an imperfect spatial representation. a. Simple schematic model of the paths taken by the
animal in the W-maze. The animal repeatedly traveled the path 1-2-3-4-. . . -10-11-12-1-2-3. . . . Initially the animal traveled from the center

arm to the left arm, a center-left trip (steps labeled 1-3), followed by a left-center trip (4-6), followed by a center-right trip (7-9) and a
right-center trip (10-12). A different representation on step 6 compared to step 12 is evidence for retrospective coding. b. A simplified
version of the TCM context evolution equation was presented with velocity vectors corresponding to the series of movements to generate a

positional representation p. We defined retrospective encoding as 1 ✓✁� p6 ☞ p12 ✂ . This reflects the degree to which p6 and p12 are different
from each other. Retrospective coding is plotted as a function of ρ in a general integration scheme, where pi ✌ ρpi ☞ 1

✎ vi. When ρ ✌ 0,
p is just the most recent movement and the model provides a “pure head direction” representation. When ρ ✌ 1, p reflects the sequence of
all prior movements and the model provides a perfect place representation. At both of these extremes, the model fails to show evidence for

retrospective coding. In contrast, for intermediate values of ρ, the model shows retrospective coding, as seen in EC and the hippocampus
(Frank, et al, 2000). Although this is an imperfect representation of Euclidean space, it is in some sense superior to a perfect representation,
in that it discriminates different episodes that happen in the same location (Wood et al, 2000).

In the W-maze, the animal visits the middle arm following
visits to either the left arm or the right arm (steps 6 and 12
in Figure 4a). In these situations, the animal’s location, and
heading, as well as all available visual cues are presumably
identical. These visits differ, however, in the history of move-
ments leading up to them. This provides us an opportunity to
distinguish between a “pure place code,” which would pre-
dict that cells should not distinguish between 6 and 12 and a
“history-dependent pseudo-place code,” which would. Frank
et al. (2000) found that some cells in EC reliably differenti-
ated these visits, a phenomenon they referred to as retrospec-
tive coding. Wood, Dudchenko, Robitsek, and Eichenbaum
(2000) observed a similar phenomenon. In their task, the an-
imal repeatedly ran in a figure-8 pattern around an elevated
track. As the animal ran up the central stem of the maze, the
firing of some hippocampal cells depended on whether the
animal was about to turn onto the left or the right arm. This
finding provides clear evidence that “place cells” respond to
variables other than physical location in the environment.
In particular, this result shows that the hippocampal place
code distinguishes among separable episodes occurring at the
same location—a property that would certainly serve it well
in memory more generally (Eichenbaum, 2001; Wood et al.,
2000). However, because the animal always alternated be-
tween “loops” of the 8, it was unclear from the task whether
the cells were coding for the sequence of prior movements
or the sequence of future movements in that experiment. In-
terestingly, Frank et al. (2000) observed retrospective coding
in cells in superficial EC, which provides input to, but does
not receive output from the hippocampus. This suggests that
this history-dependence in the entorhinal place code does not
depend on the functioning of the hippocampus proper.9 In

contrast, cells showing prospective coding that showed dif-
ferential activity based on where the animal was going to
go on trips up the center arm (see Figure 4a) were most
robustly observed in deep layers of EC, that receive input
from the hippocampus. Retrospective and prospective cells
were further differentiated by the spatial distribution of dif-
ferential firing. Retrospective cells were found that distin-
guished the prior history of movements along the length of
the center arm. In contrast, prospective coding was most fre-
quently seen close to the choice point where the paths di-
verged (Frank et al., 2000). This suggests that perhaps some
sort of postural realignment in preparation of a turn con-
tributes to prospective coding. Recent studies have further
illustrated the somewhat controversial relationship between
retrospective and prospective coding (Lenck-Santini, Save,
& Poucet, 2001; Ferbinteanu & Shapiro, 2003).

In this section we demonstrate that Eq. 6 is sufficient to de-
scribe key features of the entorhinal place code, given strictly
a velocity, i.e. speed plus allocentric head direction, as in-
put. In this section we will demonstrate that in the open field
Eq. 6, when provided with velocity vectors as input, gives
rise to simulated cells with noisy place fields that are con-
sistent from environment to environment, in correspondence
with available data (Quirk et al., 1992). We will also demon-
strate that this minimal model is sufficient to describe key
features of the entorhinal place code in the W-maze, includ-
ing the history-dependence illustrated by the phenomenon of
retrospective coding. We start with some broad theoretical
considerations before presenting a cellular simulation imple-

9 It is of course possible that superficial layers of EC acquire
these properties as a consequence of indirect connections from the

hippocampus.
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menting the important properties of Eq. 6.

An imperfect integrator and retrospective coding. How do
we keep track of our location as we move around our environ-
ment? One way might be to continuously update our position
by orienting ourselves relative to salient landmarks. This is
undoubtedly one way in which we, and other animals, know
our position. But what about when no suitable landmarks are
available. What if we are at sea on a cloudy night? Under
these circumstances, we might, as ancient sailors did, adopt
a strategy of dead reckoning.

Dead reckoning refers to the strategy of figuring out where
we are based on the movements we have made. If we start
out in a specific location and then make some movement we
can figure out where we are after the movement if we add
the movement to our initial location using vector addition.
For instance, if we start out at some location p0, and move
due East along some vector v1, defined in allocentric space,
then our location after the movement is just p1 � p0

✂
v1.

If we make another movement along some other vector v2,
then our new location is p2 � p1

✂
v2. In general, denoting

the movement taken at time i as vi, and the position at the
conclusion of that movement as pi, we can keep track of our
position using

pi � pi ✁ 1
✂

vi ☛ (10)

In this way, we can always keep track of our location relative
to our starting point p0. Although the precise form of our
place representation will depend on the choice of starting lo-
cation, the key feature is that the spatial relationships among
the p’s is perfectly preserved.10

Comparing the contextual evolution equation (Eq. 6) with
the dead reckoning equation (Eq. 10), we see that the con-
textual evolution equation is also integrating its inputs, tIN

i ;
the evolution equation, however, is performing an imperfect,
leaky, integration. Because ρi is typically less than one, the
contextual evolution equation gradually “forgets” inputs as
more information is presented. For the sake of the follow-
ing illustration, let us write an integrator equation similar to
Eq. 6:

pi � ρpi ✁ 1
✂

vi ☛ (11)

This is similar to the context evolution equation (Eq. 6) ex-
cept that ρ does not change from time-step to time-step to
enable normalization and there is no β to parameterize the
magnitude of the input. Let’s consider the behavior of this
model with various values of ρ. If ρ � 1, this model gives
rise to the perfect path integrator described above. If ρ � 0,
on the other hand, then the representation p is identical to
the current velocity vector: pi � vi. In this case, p is more
like a representation of head direction, if one ignores vari-
ation in the speed of movement. As ρ increases from zero,
not only the current velocity vector contributes to pi, but pre-
vious velocity vectors contribute as well. That is, when ρ
is intermediate between zero and one, p is not the result of
path integration, nor is it a representation of head direction.
It lies somewhere in between, a weighted sum over recent
movements, something more like a trajectory. These trajec-
tories should be sensitive to the head direction of the current

movement, as well as to the direction at preceding time steps.
A weighted sum over recent movements is ideal for de-

scribing the phenomena of trajectory coding and retrospec-
tive coding, whereas neither a perfect path integrator (ρ � 1)
nor a representation of head direction (ρ � 0) can accom-
plish this. To demonstrate this property Figure 4b shows the
result of a simple calculation. Equation 11 was repeatedly
presented with velocity vectors corresponding to the appro-
priate stage of the path through the W-maze. For instance, v1

was the same as v4 and reflected a movement to the North.
We assumed that the velocity vectors were orthogonal to each
other. To get an intuition as to what this means, we assumed
that “South” is not the opposite of “North,” but rather an en-
tirely different direction. The same holds true for East and
West. After presenting many circuits around the maze, v1,
v2, . . . v12, the similarity matrix of the p vectors correspond-
ing to the different stages of the path was constructed. We
then took 1 ✡✒� p6 ✡ p12 ✂ as a measure of retrospective coding.
This reflects the degree to which p6 and p12 are different
from each other. Figure 4b shows this quantity as a func-
tion of ρ. Although there is no retrospective coding for the
extremes where ρ � 0 or ρ � 1, there is retrospective coding
for intermediate values of ρ.11 We conclude from this that
that a leaky, or “pseudo”-integrator is more appropriate for
describing the phenomenon of retrospective coding than is a
perfect integrator.

In spatial navigation tasks, we will assume that the dom-
inant source of input to Eq. 6 is provided by information re-
lated to movement. Specifically, we will assume that the in-
put to Eq. 6 consists exclusively of velocity vectors derived
from the head direction system, modulated by the animal’s
speed

tIN
i � vi (12)

where vi is the velocity vector at time step i. We implement
this model using a cellular-level simulation that we will now
describe.

Mechanisms of contextual evolution in EC

Anatomical and electrophysiological data indicate that EC
has everything it would need to implement the source of the
entorhinal place code postulated here. Three major compo-
nents are necessary to accomplish this; access to a represen-
tation of velocity, the means to add vectors using vector ad-
dition, and a mechanism to normalize the context vector.

10 Actually, an additional necessity for “perfect” path integration
is the presence of an additive inverse on the v’s. Let’s suppose
you start at position pstart. You make an easterly movement of one
unit followed by a westerly movement. You end up in the same

position. Now, what would a perfect path integrator model predict?
Well, your position after the movements is pend ✌ pstart

✎ vE
✎ vW .

The integration is only successful if vE ✌ ✓ vW . This need not be

the case, as, for instance, in the simulations below.
11 The values of ρ plotted in Figure 4b should not be directly com-

pared to values of ✑ 1 ✓ β2 taken from the value of β used in the
cellular simulation, later. The difference between the time steps of
the cellular simulation is several orders of magnitude smaller than

the time step between steps on the W-maze as defined by Figure 4a.
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Head direction system. The MTL has access to a repre-
sentation of heading from the head direction system (Taube,
1998). Cells in the head direction system respond preferen-
tially when the animal’s head is pointed in a particular direc-
tion in allocentric space. For instance, one head direction cell
might respond best when the animal is pointed toward the
North end of the room, independent of the animal’s location.
Another head direction cell might respond best when the ani-
mal is pointed toward the Southeast. A large number of such
cells would provide very precise information about the ani-
mal’s heading. If the inputs of these cells to the MTL were
gated by information about running speed12 this would pro-
vide the necessary velocity signal as input for Eq. 6. There
is ample evidence to suggest that the head direction system
contributes to the maintenance of the place code. Perhaps
most compellingly, disruption of the vestibular sense disrupts
the head direction system and also has a profound effect on
the hippocampal place code (Russell, Horii, Smith, Darling-
ton, & Bilkey, 2003; Stackman, Clark, & Taube, 2002).

Integrator cells. Cells in EC have precisely the elec-
trophysiological properties necessary to implement Eq. 6.
Egorov, Hamam, Fransén, Hasselmo, and Alonso (2002) ob-
served cells in EC layer V that performed an integration on
their inputs. These cells were able to adopt a stable firing rate
in the absence of external inputs. In the absence of external
inputs (tIN

i � 0), t remains constant. In this case, ρi � 1
and ti � ti ✁ 1. The existence of a stable firing rate in the
absence of input observed by Egorov et al. (2002) provides
the capability to implement this property. Further, Egorov
et al. (2002) observed that these cells respond to subsequent
suprathreshold inputs by adopting a new stable firing rate
(see Figure 5). Depolarizing (positive) inputs resulted in a
higher stable firing rate. Hyperpolarizing (negative) inputs
resulted in a lower stable firing rate. This would enable the
cells to perform the vector addition necessary to implement
Eq. 6 when tIN

i is of non-zero length. It is worth noting
that neuroanatomical studies have demonstrated that the pre-
subiculum, which contains head-direction cells, projects to
EC layer V cells (Haeften, Wouterlood, & Witter, 2000).

Normalizing gain modulation. The other main property of
Eq. 6, is an exponential decay in the presence of additional
inputs. This would require that the firing rate of a decay-
ing cell be multiplied by a scalar less than one at each time
step. This amounts to a gain control on the internal current
that allows integrator cells to sustain firing in the slice. Gain
modulation has been widely observed in diverse cortical sys-
tems (for a review, see Salinas & Thier, 2000). This in itself,
however is not sufficient to enable us to implement the im-
portant properties of Eq. 6. A constant gain would cause ti to
decay even when there was no input provided, in contrast to
one of the main properties of Eq. 6. To implement Eq. 6, the
gain should be inversely related to the total network activity.
That is, when the network is more active, the gain should
be lower; when the network is less active, the gain should
be higher. Chance, Abbott, and Reyes (2002) measured the
gain of cultured somatosensory cells. They injected a con-

Figure 5. Cells in layer V EC integrate their inputs. Recordings
were made from slices bathed in a solution including low concen-

trations of the cholinergic agonist muscarine. a. Cells from layer V,
when presented with a depolarizing input, began firing at a stable
rate (epoch 1). As subsequent depolarizing inputs were presented,

the cell adopted a new, higher, stable firing rate. c. Analogously,
when the cell is at a high firing rate, hyperpolarizing inputs cause
the cell to adopt a lower, stable firing rate. b. Shows power spectra

for the epochs labeled in a (left) and b (right). From Egorov, et al

(2002).

stant amount of current and measured the cell’s firing rate.
They took the slope of output firing rate to input current as
a measure of the cell’s gain. In addition to the driving cur-
rent Chance et al. (2002) also injected a current designed to
mimic synaptic currents from some number of other cells.
These inputs balanced excitatory and inhibitory input, so that
the net current was zero. As the number of simulated synap-
tic inputs was increased, simulating a higher level of overall
network activity, the target cells’ gain factor was reduced.

12 One candidate for this “movement gating signal” is the hip-

pocampal theta rhythm. The presence or absence of type I theta
during navigation is closely yoked to the animal’s movement. The
signal formed from movement direction information derived from

the head direction system, coupled with theta-derived speed infor-
mation would provide a representation of velocity. In fact, Vertes,
Albo, and Viana Di Prisco (2001) have pointed out that the regions
with head direction cells are always adjacent to regions which con-

tain theta firing cells. Vertes et al. (2001) note further that these
populations don’t appear to have reciprocal connections, as if their
function was to cooperatively represent velocity to downstream re-

gions.
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With a population of integrator cells, gain modulation of this
type could cause the network to maintain a stable level of
activity, implementing something like normalization.13 In
addition to providing new insight into a basic principle of
cortical information processing, the result of Chance et al.
(2002) provides evidence for a process that should enable us
to implement the key properties of Eq. 6.

Cellular Simulation Methods

Here we will introduce methods for the cellular simula-
tion, which will be applied to the open field and the W-maze.
Thus far we have used subscripts to refer to the time step.
For instance, we have used ti to refer to the temporal context
vector at time step i. It is necessary to introduce some new
notation in order to talk about individual cells, analogous to
the elements of a vector. In these settings, we will denote the
time step s as an argument and use the subscript to refer to
the cell number. Using this notation, the firing rate of each
simulated cell at time step s was calculated as

ti � s ✂ � ρ � s ✂ ✆
ti � s ✡ 1 ✂ ✂ βtIN

i � s ✂ ✟ ☎ (13)

where t IN
i � s ✂ is the input to cell i at time s. The form of the

input will be discussed below. The quantity ρ � s ✂ is here a
gain modulation factor. We have assumed that ρ � s ✂ is a func-
tion of the total network activity, not too dissimilar to the in
vitro results of Chance et al. (2002). At each time step ρ � s ✂
was calculated according to

ρ � s ✂ �
�
∑

i ✁ ti � s ✡ 1 ✂✄✂ 2 ☎ ✁ 1 ✆ 2
☛ (14)

Inclusion of the factor ρ � s ✂ constitutes a form of divisive in-
hibition (e.g. Chance & Abbott, 2000). Equations 13 and 14
bear more than a passing resemblance to Eq. 6. As in Eq. 6,
ρ � s ✂ functions to keep the length of ti (nearly) constant.

The cellular-level simulation captures key properties of
Eq. 6. This can be seen in Figure 6. Figure 6a shows the
firing rate of one cell as a function of time step. After time 0,
each of the other cells in the network was turned on one at a
time with an input of β for one time step each. The activity
of the cell decays exponentially as a function of time. The
time constant of this decay depends on β. Figure 6b shows
explicitly that the amount of decay depends on the input to
the network. When no input is given to the network, there is
no decay (time-steps 50-100 and after time-step 200).

In the simulations reported here, we used 220 integrator
cells. Each cell received an input given by a Gaussian func-
tion representing a head direction cell with a preferred di-
rection φi and standard deviation σ, weighted by β. To do
this we first took the minimum absolute difference between
the actual head direction at time s, φ � s ✂ , and the preferred
direction of cell i, φi:

φdiff
i � s ✂ : �✞✝ ✁ φ � s ✂ ✡ φi ✁ ☎ ✁ φ � s ✂ ✡ φi ✁✠✟ π

2π ✡ ✁ φ � s ✂ ✡ φi ✁ ☎ ✁ φ � s ✂ ✡ φi ✁✠✡ π ☛ (15)

This defines the minimum angular distance between the ac-
tual head direction and the cell’s preferred direction. Pre-
ferred directions for the different cells were evenly spaced
each 2π

✂
220 radians. We can write an expression for the

input to cell i at time s:

tIN
i � s ✂ � ✁✞✁ p � s ✂

1 ✂ ✡ p � s ✂ ✁✆✁ 1

σ ☛ 2π
exp

✡ ✆
φdiff

i � s ✂ ✟ 2

2σ2 ☎ (16)

where p � s ✂ is the rat’s observed position at time s and✁✞✁ p � s ✂
1 ✂ ✡ p � s ✂ ✁✞✁ is just the distance the rat moved between

successive observations. The value of σ was set to π
✂
6 for

each cell. This value was chosen to be roughly consistent
with observed head direction cells, which have been shown to
have a tuning curve that falls to baseline levels with a width
of about 100 ☞ (Taube, 1998). The Gaussian expression gen-
erates a tuning curve for each cell as a function of that cell’s
preferred direction φi. This direct input from head direction
cells predicts that entorhinal place cells should show selec-
tivity in the open field. Across cells this input is sensitive to
speed and head direction in such a way that it can be referred
to as a velocity vector. In this way, the cellular simulation can
be said to implement Eq. 6 with velocity vectors provided as
input (Eq. 12).

In the following two subsections, we will use the cellular
simulation to demonstrate that Eq. 6, coupled with a veloc-
ity vector as input (Eq. 12), is able to describe characteristic
properties of the entorhinal place code observed in two broad
domains of experiments. First we will treat the properties of
entorhinal place cells in the open field. After that, we will
treat phenomena observed on the W-maze.

Applications: The open field

Entorhinal cells exhibit several key properties while ani-
mals move through the open field. First, EC cells do show
place-specific firing, although the place-modulation is con-
siderably weaker than hippocampal cells in comparable tasks
(Quirk et al., 1992). The place-modulated firing of cells in
EC is also comparable across similar environments. This
means that if an entorhinal cell tends to fire in, say, the North-
west corner of a square enclosure, it will also tend to fire in
the Northwest quadrant of a circular enclosure (Quirk et al.,
1992). 14

Equation 6 with Eq. 12 predicts both of these properties.
The existence of a place code is a consequence of the fact
that the set of paths the animal takes to get to a given place
should depend on where the animal is within an enclosure.

13 Gain control like that described in Chance et al (2002) operat-
ing on a set of integrator cells should keep some measure of network
activity nearly constant over time. However, precise Euclidean nor-
malization would require a very specific relationship between gain

and inputs.
14 This property is also observed for hippocampal cells early in

the animal’s experience with different environments (Lever et al.,
2002), although with a sufficient amount of experience firing be-
comes uncorrelated across enclosures of different type (Muller &

Kubie, 1987).
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Figure 6. The cellular simulation implements key properties of Eq. 6. A network of 300 integrator cells was prepared. These figures

show the firing rate of cell 1 as a function of time. a. At time 0, an input of β was provided sequentially to each of the other cells in the
network, one at each time step. The solid line was calculated with β ✌ 0 ✏ 2. The dashed line was calculated with β ✌ 0 ✏ 1. The firing rate
of cell 1 decays exponentially, with a time constant that depends on the value of β. b. At time steps 0-50 and 100-200, input was provided
sequentially to each cell in the network, one at each time step. At the other times (time steps 50-100 and � 200), no input was provided.

As in a, cell 1’s firing rate decays exponentially when the other cells are being driven (note the logarithmic scale which makes exponential
decay appear linear). However, the decay of cell 1’s firing rate stopped when no input was provided.

Figure 7. A weighted sum over recent movements predicts place-
specific coding as a consequence of the kinematic constraints of the

enclosure. The set of paths that lead to a position on the Western
wall of the enclosure is different from the set of paths that lead to a
point on the Eastern wall of the enclosure.

The similarity of the place representations across different
environments follows if the set of paths leading to analogous
positions in analogous enclosures are similar (see Figure 7).

Open Field Methods. The cellular simulation was pre-
sented separately with a series of positions and head direc-
tions collected by Lever et al. (2002) in a cylindrical envi-
ronment and in a square environment.15 Position and head
direction were sampled at 50 Hz for ten minutes. Place field
maps were then calculated for the cylindrical and square en-
closures using the simulated firing rates.

Simulated cells showed location-specific firing. Figure 8
shows place maps for four representative simulated cells in
both the circular and square environments. These figures rep-
resent firing rate as a function of position averaged over the
times the rat spent exploring the environment. Darker areas
indicate higher average firing rates. Simulated cells showed
regions of place-specific firing that extended over large sec-
tions of the environment. These regions were irregularly
defined and apparently considerably more noisy than hip-
pocampal place fields. This finding of noisy place-specific

firing is consistent with findings regarding place cells in EC
in the open field (Quirk et al., 1992).

Topologically similar place fields across enclosures. The
other primary finding of the simulation was that cells showed
place fields in similar locations of topologically similar en-
vironments. That is, if a cell showed elevated firing in
the Northwest quadrant of the circular environment, it also
showed elevated firing in the Northwest quadrant of the
square environment. This property has also been reported
for cells in EC (Quirk et al., 1992). Topologically similar
place fields across environments have also been observed in
the hippocampus early in training (Lever et al., 2002). After a
sufficient amount of experience, however, hippocampal cells
will show place fields that are uncorrelated across enclosures
(Lever et al., 2002; Muller & Kubie, 1987; Quirk et al.,
1992). The reasons for this are not clear, but entorhinal cells
with topologically similar place fields have been observed
under conditions that also produce remapped hippocampal
cells (Quirk et al., 1992), suggesting that remapping does not
take place in EC.

The simulated cells showed place fields in a wide variety
of locations. The only difference between cells was the pre-
ferred direction of their input. In all cases the preferred di-
rection of the cell pointed in the direction of the cell’s place
field. For instance simulated cell 170 shown in Figure 8a has
a place field along the Eastern edge of the circular and square
environments, and a preferred direction that points toward
the East. This is a consequence of the kinematic constraints
of the environment. The Western wall of the environment
cannot be reached using Easterly movements—this would
require the animal to walk through the wall of the enclosure.
This property depends to some extent on the value of β. If

15 As a check on the recorded head directions, we redid the sim-
ulations with head direction calculated from sequential movements

and obtained the same pattern of results.
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Figure 8. The cellular simulation shows place fields that are topologically similar in similar environments. Four representative
cells from the simulation of motion in the open field. Paths were generated using positions and head directions from an experimental
session presented in Lever et al (2002). The vast majority of cells showed apparent location-specific firing in both the circular and square

enclosures. Like cells in EC described by Quirk et al (1992), the simulated cells showed large irregular place fields with a definite spatial
correlate. Further, the simulated cells, like entorhinal cells observed by Quirk et al (1992), showed a high correlation between the place
fields observed in the circular environment and in the square environment. The location of the place field is determined by the preferred

direction of the input to the cell and the movements taken within the environment. a. Simulated cell 170 (preferred direction East). This cell
fires preferentially in the East of the circular and square environments. b. Simulated cell 48 (W) fired preferentially in the Western edge in
both environments. c. Simulated cell 20 (SW) fired in the southwest of both environments. d. Simulated cell 75 (NW) fired in the northwest

of both environments.

β goes to one, the model should behave like a set of head
direction cells. In this case the cells would fire preferentially
in whatever location the animal assumed a particular head di-
rection. Presumably, the animal would be less likely to point
toward the East when positioned along the Eastern wall.

Applications: The W-maze

In the previous subsection, we saw that a representation
of temporal context (Eq. 6), if driven by self-motion infor-
mation as inputs, can capture key properties of the entorhinal
place code in the open field. The “place code” derived from
Eq. 6 did not directly represent place, per se, but rather re-
flected a sensitivity to the sequence of movements leading
up to the current position. This treatment of the open field
leads to strong predictions when the sequence of movements
leading to a particular position is carefully controlled. These
predictions can be readily tested within the maze paradigm
used by Frank et al. (2000).

The W-maze (see Figure 4a) enables one to examine sit-
uations where location (and heading) are controlled but the
sequence of movements leading up to that position are var-
ied. Under these circumstances, a large proportion of en-
torhinal cells show retrospective coding, differentiating these
two cases. It is also possible to compare situations in which
a similar series of movements occur in different spatial lo-
cations. A sizable proportion of entorhinal cells exhibit tra-

jectory coding, showing similar firing in response to similar
sequences of movements. Both of these effects are consis-
tent with an entorhinal representation that responds to the
sequence of movements leading up to the present location,
rather than place, per se. Here we make explicit that these
experimentally observed phenomena are indeed predictions
of Eq. 6.

W-maze Methods. The cellular simulation was driven
with positions and head directions from a segment of data
lasting a little over twenty minutes, sampled at 30 Hz.16 This
data was included as part of the study of Frank et al. (2000).
After the simulation was completed, we calculated the fir-
ing rate maps separately for four types of trips named on the
basis of the arm of the W-maze the trip started and finished
on: center-left, left-center, right-center and center-right. Trip
identity was provided at each time step, so that the values
were identical to those used in Frank et al. (2000). Three trips
in which the animal started on the center arm and crossed
over to the wrong arm before reversing were eliminated from
the path analyses (although not from the simulation itself).
Two center-left trips and one center-right trip were excluded

16 This sampling rate is different than that used in the open field

data. Although we might have down-sampled the open field data to
equalize the sampling rate across simulations, this is not a concern
because the change in the context (place) vector is driven by the

animal’s movements, rather than time per se.
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Figure 9. Trajectory coding in the cellular simulation. Average firing rate as a function of position for different trips in the W-maze.
The trip each map corresponded to is indicated at the top of each column. Positions the animal did not visit on a particular trip are colored

grey. a-d. Simulated cell 64 (preferred direction east) fired preferentially on left-center and center-right trips. The scale bar for this cell is
shown to the right of d. e-h. Simulated cell 155 (preferred direction Northwest) fired preferentially on right-center and center-left trips. The
scale bar for this cell is shown to the right of h.

in this way. In addition, there were some small gaps (typi-
cally one or two samples) in the position record. These were
filled in with linear extrapolation of both position and head
direction.

Trajectory coding. Numerous simulated cells showed ev-
idence for trajectory coding. Figure 9 shows two examples.
The figure shows firing rate maps separately for four dif-
ferent trips. The cell in the top row (a-d) had a preferred
direction close to due East, such that it fired on left-center
and center-right trips. The cell on the bottom (e-h) had a
preferred direction toward the Southwest and fired on right-
center and center-left trips. In general, almost all the cells
observed showed some type of trajectory coding. Cells with
preferred directions toward the North or South showed place
fields that extended along the length of the arms on appro-
priate paths. This finding is consistent with the observa-
tion that place fields observed in EC are longer than those
in the hippocampus (Frank et al., 2000), and that elongated
fields tended to be observed on the long arms of the W-maze
(L. Frank, personal communication).

Retrospective/prospective coding. To determine if the
model showed retrospective and prospective coding in a way
that is comparable to the available data, we also undertook

an analysis closely analogous to that used by Frank et al.
(2000) in classifying cells as retrospective or prospective. In
addition to actual position, we were provided with position
projected onto a linear path along the track. We first made a
firing rate map with bins of 6 cm as a function of linear po-
sition, using the firing rates from the actual navigation data.
We then plotted each mean firing rate as a function of dis-
tance from the start of the trip. In accordance with methods
used in Frank et al. (2000), we constructed an analogue of the
Frank et al. (2000) study’s Figure 4. That study used a Gaus-
sian kernel with a standard deviation of one bin to smooth
the curves. We smoothed using a moving window of 4 bins.
Figure 10 shows representative retrospective and prospective
cells from this analysis. All of the cells that showed retro-
spective or prospective coding also showed evidence for tra-
jectory coding.

Many cells showed retrospective coding. Many of these
cells only showed a difference in firing in regions of the cen-
ter arm near the choice point. Figure 10a shows an exam-
ple of such a cell. This cell had a tuning curve with a pre-
ferred direction that pointed toward the South East. The ani-
mal’s head frequently pointed in this direction just before the
choice point on the left-center path (top). This elevated fir-
ing persists along the center arm because of the exponential
decay of activity. The tuning curve of this cell was such that
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Figure 10. The cellular simulation showed retrospective and prospective cells. Firing rate is shown as a function of distance from

the end of the center arm for different trips in the W-maze. The label “CP” indicates the location of the choice point defined by Frank et

al (2000). Panels a and c show retrospective cells. Panels b andd show prospective cells. a. Simulated cell 30 (preferred direction E) showed
a peak in firing just after the choice point for left-center trips. This cell showed differential firing after the choice point, but comparable

firing toward the end of the center arm. b. Simulated cell 130 (NNW) showed elevated firing along most of the length of the center arm on
both journeys to the right arm and journeys to the left arm. On center-left trips the cell showed elevated firing that began shortly before the
choice point. In contrast, the cell showed depressed firing just before the choice point on center-right trips. The curves diverge about 10 cm
before the choice point. c. Simulated cell 50 (ESE) showed a peak firing rate shortly before the choice point for left-center paths. Elevated

firing lasted most of the length of the center arm. d. Simulated cell 83 (NNE) showed a pattern comparable to cell 130, except the elevation
in firing came on center-right trips.

it overlapped slightly with the head direction associated with
“Southward” travel down the center arm. This resulted in a
gradual buildup of firing rate on the right-center path (bot-
tom). As a consequence, the firing rate was similar across
paths toward the food end of the center arm (toward the right
end of the figure). The cell in Figure 10b shows a cell that
also showed retrospective coding, but with a somewhat dif-
ferent profile. The preferred direction of this cell was typi-
cally obtained slightly further from the choice point than the
cell in Figure 10a. As a consequence, there was much less
overlap with the head directions typically obtained on the
center arm, so that there was no visible elevation in firing on
the right-center paths. As a consequence, this cell showed a
higher firing rate for left-center paths than right-center paths
over most of the length of the center arm. A smaller number
of cells showed this type of retrospective coding compared
to the pattern illustrated in Figure 10a. We observed compa-
rable numbers of retrospective cells that preferred left-center
trips and right-center trips. This was predictable given the
even spacing of preferred directions across cells.

A small number of cells also showed some evidence for
prospective coding. The cells shown in Figure 10c-d are par-
ticularly strong examples of these cells. These cells show

a peak in firing along one of the two arms after the choice
point. However, the increase in firing leading to the peak
starts reliably before the choice point when approaching the
area of the peak, and decreases reliably when approach-
ing the arm without the peak in firing. We only observed
prospective coding immediately prior to the choice point.

Prospective coding is something of a misnomer for this
model. The TCM evolution equation (Eq. 6) contains no in-
formation about future events. It is somewhat paradoxical
that these cells can show firing that diverges based on what is
about to happen. These simulated cells are actually respond-
ing to small variations in head direction that happen shortly
before the choice point. These simulated cells have preferred
directions that point along the “curve” in the path between
arms. This is why the peak of firing is observed on one arm.
As can be seen in these cells, there is also firing on the center
arm for both paths. This is so because the tuning curve over-
laps somewhat with the “due north” direction associated with
moving up the center arm. Relatively small changes in head
direction prior to the choice point come in a part of the tun-
ing curve that is relatively steep, resulting in relatively large
changes in simulated cellular activity from small changes in
head direction.
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Trajectory coding and retrospective coding were robustly
observed in the simulation. In contrast, the prospective cod-
ing we observed was considerably more fragile and even
the best prospective cells we found (Figure 10c-d) were not
nearly as impressive as the striking prospective coding shown
by the deep EC cell shown in Figure 4 of the Frank et al.
(2000) paper. A larger β resulted in more cells showing
prospective coding, as β controls the time constant for the
rise in firing as well as the decay. Also, cells with more
robust prospective coding were observed when the tuning
curves were made more narrow. This was not adopted to
keep with experimental findings about the width of the tuning
curves in head direction cells (Taube, 1998). However, some
sort of lateral inhibition process could result in a sharper ef-
fective tuning curve for entorhinal cells. If so, this would
amplify the “prospective” coding generated by this purely
retrospective model.

Discussion

We showed that the same equations that govern the evolu-
tion of temporal context in a model of human episodic mem-
ory performance also describe the activity of cells in EC dur-
ing spatial navigation. We showed a consistency between
the simulated cells and entorhinal cells during navigation
through the open field and in the W-maze. In the open field,
simulated cells had large, noisy place fields that were con-
sistent across topologically similar environments (Figure 8).
This is consistent with what is known about entorhinal cells
in the open field (Quirk et al., 1992). In the W-maze, simu-
lated cells showed evidence for trajectory coding (Figure 9),
as well as retrospective and prospective coding (Figure 10).
These are consistent with observations of entorhinal cells in
the W-maze (Frank et al., 2000).

This theoretical connection between human memory and
the place cell literature is especially timely in light of recent
findings that suggest place cells exist in humans. Ekstrom
et al. (2003) examined the activity of single units at various
locations in patients being treated for pharmacologically re-
sistant epilepsy during performance of a virtual navigation
task. A number of cells showed virtual-place-specific firing.
Notably, these cells were clustered in the hippocampus and
the rhinal cortex. These findings support the view that there
is more than a computational similarity between the EC func-
tion of rats and humans.

Ways in which the simulation could be more realistic. The
cellular simulation is remarkably simple—it only includes
enough detail to implement the important properties of Eq. 6
given velocity vectors as input. Nonetheless, it is apparently
sufficiently rich to robustly describe the major phenomena
demonstrated for entorhinal cells during navigation through
spatial environments. Here we discuss some straightforward
additions that would make the simulation more realistic.

Our implementation of integrator cells was limited in at
least two respects. First, Egorov et al. (2002) showed that
their integrator cells did not initiate sustained firing with a
sufficiently small input. Similarly, if sufficiently hyperpolar-
ized, integrator cells shut off and remained off. The simu-

lated integrator cells used here did not include this type of
thresholding behavior. If thresholding were included in the
simulations it would add to the realism of the model by pre-
venting situations where a long-lasting period of low acti-
vation was produced (e.g. the firing on the center arm in
Figure 10c-d). Another aspect of the Egorov et al. (2002)
study that we neglected was the rate of change of firing rate
in response to an input. Here we assumed that the response of
the integrator cells to an input was essentially instantaneous.
While this probably would not have had a negative effect on
the open field results, or on the phenomena of trajectory or
retrospective coding, this could have had a negative effect on
the ability of the model to generate prospective coding.

Prospective coding could be a consequence of hippocam-
pal inputs to EC, which were completely neglected in the
current treatment. Consistent with this view, Frank et al.
(2000) suggested that prospective coding was more frequent
in EC layer V (which receives hippocampal input) than in
superficial layers (which do not). Indeed, Muller and Kubie
(1989) argued that the hippocampus does not actually code
for the animal’s current position, but rather its position ap-
proximately 120 ms in the future (but see Breese, Hampson,
& Deadwyler, 1989). Prospective coding could have been
easily and robustly implemented if the inputs to the simulated
entorhinal cells included information from cortical areas that
contained information about future movements.

Another simplification in the current simulation was the
lack of any inputs other than velocity information. It is
clearly within the framework of the current model that non-
spatial stimuli should contribute to firing in EC. For instance,
we assume that ti is driven by non-spatial inputs tIN

i in both
episodic applications (Howard & Kahana, 2002a; Howard
et al., In revision; Howard, 2004) and in the relational mem-
ory simulations presented in the next section of this ms. Al-
though the fact that the current, highly simplified, treatment
of the EC did remarkably well in describing the basic phe-
nomena of the entorhinal place code, there are several situa-
tions where including other types of stimuli could have im-
proved the model’s performance. For instance, the simulated
trajectory coding cells occasionally showed elevated firing
near the food wells (e.g. Figure 9). Although not explicitly
addressed in Frank et al. (2000), none of the representative
place field maps presented in that study showed such an ef-
fect. In the model, firing near the food well is a consequence
of the wide range of directions the animal assumes as it turns
around. This elevated firing rate would have been attenuated
if we had included cells tuned for proximity to food reward.
These “chocolate milk cells” would have been strongly ac-
tivated and inhibited (divisively) other cells receiving head
direction input when near the food wells. Along these lines,
Gothard, Skaggs, and McNaughton (1996) reported “goal
box cells” in the hippocampus that fired as the rat approached
a movable goal location on a linear track.

Another, extremely important aspect of the functioning
that we have ignored here is the basis of the head direc-
tion system. The model’s description of topologically sim-
ilar place fields in circular and square environments is only
valid insofar as cells in the head direction system maintain
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the same preferred direction across enclosures. The empiri-
cal situation with regards to this is somewhat unclear. Taube,
Muller, and Ranck (1990) reported that 3/8 head direction
cells studied in both the cylinder and the square enclosures
showed a change in their preferred direction of more than
48 ☞ across enclosures. Golob and Taube (1997) reported that
only 2/11 cells (in animals with lesions to the hippocampus)
reported a change of greater than 18 ☞ , and concluded that
in general minimal changes take place across cylindrical and
square enclosures, a conclusion that they regarded as consis-
tent with the Taube et al. (1990) results. In any event, the
present treatment of the place code predicts that the entorhi-
nal place code should rotate in register with the head direc-
tion cells that provide its input.

For the present model to make any predictions at all, it
is necessary to first specify the activity of the head direction
system. This requires that the head direction system accu-
rately integrates from moment to moment within an environ-
ment, a process believed to rely on attractor dynamics (Re-
dish, Elga, & Touretzky, 1996; Zhang, 1996). This is in sharp
contrast to the “pseudo” integrator proposed here to support
the entorhinal place code. Further, the head direction system
is reoriented by manipulations of visual stimuli (Taube et al.,
1990), a process believed to result from a sufficiently diver-
gent visual input causing a reset of the attractor network into
a state distant from its predecessor (Skaggs, Knierim, Kudri-
moti, & McNaughton, 1995, see chapter 5 of Redish, 1999,
for a review and discussion).

Deep vs superficial cortical layers. We implemented the
cellular simulation of Eq. 6 using known properties of cells
in EC layer V (Egorov et al., 2002), the deep cortical layer.
These cells receive input from, but do not project to, the hip-
pocampus proper. In addition to layer V cells, EC also con-
tains principal cells in layers II/III, the superficial layers of
EC. Layer II cells project directly to the hippocampus. Al-
though they do not receive input from the hippocampus di-
rectly, they do receive input from layer V cells in EC, so they
are indirectly connected to hippocampus.

The cells reported in the open field by Quirk et al. (1992)
were identified as being from superficial layers of EC. In that
study, a small number of layer V cells from deep layers of
EC were observed, but the spatial firing characteristics of
these cells were not described. There are several issues that
have bearing on the validity of “mixing layers” across exper-
iments. There is no published data on EC layer V cells in
the open field. However, Frank et al. (2000) showed similar
qualitative properties for deep and superficial layers of EC,
although superficial cells showed less positional information
(were noisier) and may have shown less prospective coding
than deep cells. This qualitative similarity suggests that per-
haps similar properties would obtain for deep and superficial
cells in the open field as well.

Similarities in the firing properties of deep and superfi-
cial cells could reflect a direct physiological connection or a
parallel computational function. As pointed out earlier, EC
layers II/III receive input from layer V, so perhaps this is the
origin of the spatial properties of superficial EC. Although

cells in the superficial layers of EC do not show the striking
integrator cell behavior observed in layer V in vitro, cells in
superficial EC do show plateau potentials in response to in-
puts that persist for a relatively long time (Klink & Alonso,
1997). These plateau potentials have been argued to sup-
port cellular responses observed in DNMS tasks (Fransén,
Alonso, & Hasselmo, 2002) and could be sufficient to sup-
port something sufficiently similar to Eq. 6 to result in similar
place-specific activity. There are may also be other mecha-
nisms by which a leaky integrator could be implemented in
superficial EC.

Can Eq. 6 support the hippocampal place code?. The hip-
pocampus is said to support a representation of place insofar
as cells in the hippocampus correlate with the animal’s lo-
cation. If the activity of these cells correlated perfectly with
the animal’s location in allocentric space, then this represen-
tation could be said to be a perfect representation of place.
The representational scheme pursued here is not a “perfect”
representation of place, but then again neither is the hip-
pocampal place code. Directional firing of cells on the linear
track (McNaughton, Barnes, & O’Keefe, 1983) are a clear
example of a situation in which place cells’ responses are
different despite the animal being in the same place. Path-
dependence (Frank et al., 2000; Wood et al., 2000), including
retrospective coding, is another such example of a situation
where position is not sufficient to predict the firing of “place
cells.” Similarly, the finding that the responses of place cells
depend on the behavioral context (Markus, Qin, Leonard,
et al., 1995) and the finding that similar responses take place
in different environments (Lever et al., 2002) argue against a
perfectly accurate hippocampal place code.

Having said that, the hippocampus can show remarkable
spatial precision. The location of the animal in a famil-
iar open environment can be reconstructed from examining
place cell activity to a precision comparable to the error
in recording the animal’s position (Wilson & McNaughton,
1993). Exceptionally good positional reconstruction can
be found when recording from cells during navigation on
the linear track (Jensen & Lisman, 2000). Can the pre-
cision of the hippocampal place code be derived from the
systematically-imperfect representation of place that results
from Eq. 6? A definitive answer must await further exper-
imental and theoretical investigation. However, the present
treatment of the entorhinal place code predicts that it should
be possible to reconstruct position to sufficient precision us-
ing the history-dependent firing scheme presented here. On
a linear track where movements are relatively constrained, it
should be possible to get very good precision. In the open
field, very good reconstruction is theoretically possible if the
decay of velocity information is sufficiently slow.

Although position is a correlate of the cells in the simula-
tion presented here, it would be fair to say that Eq. 6 doesn’t
really support a positional representation at all. The weighted
sum over recent movements of Eq. 6 should retain sensitivity
to head direction specifically, and trajectory more generally
in the open field. To be explicit, the present model predicts
that the firing of entorhinal place cells should be modulated
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by not only the head direction, but preceding head directions
as well. At the values of β used here, we also observed
that cells’ preferred directions point in the direction of their
place fields. This would be a marker of a history-dependent
pseudo-place code like the one we have hypothesized resides
in entorhinal cortex.

A number of models of hippocampal function assume that
entorhinal place cells should be directional in the open field
(e.g. Brunel & Trullier, 1998; Kali & Dayan, 2000). These
properties for entorhinal place cells would need to be recon-
ciled with the lack of a strong directionally selective signal
in hippocampal place cells in the open field. Although hip-
pocampal place cells show directional selectivity (e.g. Sk-
aggs, McNaughton, Gothard, & Markus, 1993), this can be
accounted for by taking into account the different amount of
time the animal spends in different locations with different
head directions (Muller et al., 1994). One possibility is that
the hippocampus transforms directional inputs in such a way
that it shows omnidirectional place fields in the open field.
Mechanisms for this have been proposed by other authors
(Brunel & Trullier, 1998; Kali & Dayan, 2000; Sharp, 1991).

An intriguing possibility is that the hippocampal place
code really is dependent on head direction, but that it is not
reflected in firing rate. Directionality could be retained at the
ensemble level if theta phase is taken into account. Theta
phase precession (O’Keefe & Recce, 1993) has been ob-
served in the open field (Skaggs et al., 1996). Phase preces-
sion refers to the finding that when the animal initially enters
a cell’s place field, it fires at a later phase relative to the hip-
pocampal theta rhythm than it does as it moves through the
place field. This can, in principle at least, be used to recon-
struct velocity as well as position, as the following thought
experiment will illustrate.

Imagine two hippocampal cells with place fields in an
open enclosure. Cell A and cell B have symmetric overlap-
ping place fields. The center of field A is due west of field B.
Burgess, Recce, and O’Keefe (1994) showed that place cells
in the open field fire at a late theta phase when the cells’
field center is in front of the rat, and at early phases when
the cells’ field center is behind the rat. Let’s assume that the
animal moves West to East on a path that crosses through the
center of field A and then the center of field B. Consider the
theta phase of A and B at the halfway point. Cell A should
fire at an early phase, because the center of its place field is
behind the animal. On the other hand, cell B should fire at a
late phase because its field is in front of the animal. What if
the animal makes the trip in the opposite direction? Now, the
moves from East to West, passing first through the center of
field B and then the center of field A. In this case the phase of
the cells at the midpoint will be reversed. Now, cell A should
fire at a late phase because the center of field A is in front of
the animal, whereas B should fire at an early phase because
the center of its field is behind the animal. The phase of firing
of these cells is reversed relative to the situation in which the
animal moved West to East, despite the fact that the animal
is in the exact same position. What differs in these two cases
is the animal’s velocity. We conclude that theta phase could
in principle be used to reconstruct velocity in the open field.

It should be pointed out, however, that the mechanism by
which integrated head direction inputs in entorhinal cortex
could give rise to theta phase coding of movement direction
is not at all clear at this time.

We mentioned previously that the model presented here
predicts that firing of entorhinal place cells should depend on
the recent history of movements in the open field. An anal-
ogous prediction can be made regarding non-spatial stimuli.
In a homogeneous list of to-be-remembered non-spatial stim-
uli, firing of entorhinal cells should depend not only on the
current stimulus, but also on prior stimuli as well. In fact,
Suzuki et al. (1997) showed that stimulus-specific entorhi-
nal cells fired across several intervening stimuli in a work-
ing memory task, supporting at least the general thrust of the
prediction. The predictions of the model, however, can be
quantified and extend to experimental situations in which the
stimulus in question would not be expected to be actively
maintained in working memory.

The role of the hippocampus in
relational memory

The previous section argued that a component of TCM,
Eq. 6, describes a key computational function of the en-
torhinal cortex, and perhaps other extra-hippocampal MTL
structures as well. In this section we argue that new item-to-
context learning is supported by the hippocampus. As men-
tioned earlier, this process results in reinstatement of patterns
in parahippocampal regions in response to the item being re-
peated (Figure 3). We will see that disrupting new item-to-
context learning predicts neuropsychological dissociations
observed with hippocampal damage. In the model, new item-
to-context learning also causes representational changes that
have been directly observed in extrahippocampal MTL areas
and that may result from hippocampal function. We will dis-
cuss the utility of representations that result from new item-
to-context learning in capturing relationships between tem-
porally disparate stimuli. This corresponds to the develop-
ment of a higher-order stimulus representation in parahip-
pocampal regions.

Modeling transitive association using TCM

Eichenbaum and colleagues have argued that the hip-
pocampus supports relational memory (Cohen et al., 1997;
Eichenbaum, 2001). In contrast to extrahippocampal areas
that are said to be capable of forming simple pairwise as-
sociations, the hippocampus supports the ability to discover
and encode higher-order relationships among stimuli. The
canonical example of this proposed hippocampal function is
the formation of transitive associations between items that
were never paired during training (Bunsey & Eichenbaum,
1996).

Bunsey and Eichenbaum (1996) examined the effect of
hippocampal damage on transitive associations. In their task,
animals were first presented with a cue odor. The identity
of the cue odor predicted which of two choice odors would
be paired with reward. There were two cue odors, each of
which predicted reward for one of the two choice odors (see
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Figure 11. Schematic of the transitive association experiment used
by Bunsey and Eichenbaum (1996). In an initial learning phase, an-

imals learned to choose between choice odors (B and Y) depending
on which cue odor was presented. The effect of this training was
to form an association within each of the pairs, indicated by the

arrows. In a second learning phase, the choice odors from the first
learning phase became cues used to discriminate between another
pair of odors. In a third phase, the animals were tested for their

generalization across learning phases. In this transfer phase, ani-
mals were given cues from the first stage and choices from the sec-
ond stage. Animals were tested, in the absence of reward, for their
preference of the choice that would result if they formed a transitive

association across phases (arrow with question mark). Although an-
imals with hippocampal damage learned as well as controls on each
of the learning phases, they were impaired at the transfer stage.

Figure 11). Two associations, A
�

B and X
�

Y were thus
simultaneously established during the first stage of learning.
Following the first stage of learning, the choice odors be-
came cue odors for a second pair of associations. In this
second stage, associations B

�
C and Y

�
Z were trained.

In a final stage, transitive association was probed; the an-
imals were presented with a cue from the first stage, and
tested for their preference for the choices from the second
phase. This probe phase tested for the existence of an asso-
ciation that “bridged” across B from A to C. Although rats
with hippocampal damage learned each of the premise pairs,
A

�
B and B

�
C, they showed no evidence for a transi-

tive association from A
�

C. This is consistent with the hy-
pothesis that the hippocampus, while not required for simple
pairwise associations, is required for higher-order transitive
associations. The hippocampus was apparently important in
learning the relationship between A and C, which were never
actually presented together, but were presented in the same
temporal context, B.

Here we will show that using the theoretical framework
offered by TCM, transitive associations can be selectively
impaired, while leaving the ability to learn pairwise associa-
tions intact. This is accomplished by disrupting the ability of
the model to bind items to their temporal context; by setting

αN to 0.

Of key interest is the effect of the relative contribution of
old and new context to Eq. 9. We will examine two extreme
values for the ratio γ : � αN

✂
αO. In the “intact” case, γ � 1.

For the intact case, old and new retrieved contextual compo-
nents contribute equally to tIN . This is in the range of values
that have been used in the past to describe human episodic
recall data.17 In the “lesioned” case, representing the hy-
pothesized effect of hippocampal lesions, γ � 0. Although
the magnitude of tIN is the same in both cases, they differ
in that the intact case allows new item-to-context learning
(αN � 0), whereas the impaired case does not (αN � 0).

Previously we argued that simulating a hippocampal le-
sion by setting αN � 0 would selectively impair backward
associations (see Fig. 2a). In fact Bunsey and Eichenbaum
(1996) found that hippocampal lesions do selectively impair
backward associations. In this section, we are interested in
the ability of the model to develop and utilize transitive as-
sociations. To ensure that neither recency effects nor across-
pair temporal associations enter into these analyses and sim-
ulations, we will assume that an infinitely long delay inter-
venes between pairs, and between study and test, effectively
isolating the pairs from the rest of experience.

Consider the case in which a pair of stimuli A ☎ B is pre-
sented, then a pair B ☎ C is presented. If αN is greater than
zero, then when B is presented the second time, it will re-
trieve elements of the context retrieved by A. As a conse-
quence, when learning B ☎ C, the model is also in effect learn-
ing A ☎ C as well. If αN � 0, however, tIN

A can still be associ-

ated to B, and tIN
B can be associated to C. However, there will

be no transitive association between A and C. Appendix D
explicitly derives the cue strength between A and C when
A is presented during a recall test after presentation of A ☎ B
and B ☎ C. From Appendix D we find that after both stages of
learning the cue strength to item C given A is given by:

aC � αNρ2β � αOβ ✂ αN ✂ ☛ (17)

We can see from this expression that the cue strength is zero
if αN is zero. The transitive association from A to C, items
that were never presented together, depends on a non-zero
value of αN , which we hypothesize corresponds to an intact
hippocampus. In contrast, as derived in Appendix D, we find
that the cue strengths from A to B and from B to C do not
depend on a non-zero value of αN . This is possible because
forward associations do not depend on new item-to-context
learning (see the curve labeled “old” in Figure 2a).

As a complement to the derivation presented in Ap-
pendix D, we also carried out a simulation. The goals of
the simulation are to demonstrate the ability of this theoreti-
cal framework to describe the dissociation between learning
of pair-wise associations from transitive associations more
detail and under more realistic conditions.

17 In some cases, γ has been fixed at one (Howard & Kahana,
2002a), whereas in other cases, γ has been allowed to vary as a free

parameter (Howard et al., In revision).
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Transitivity Simulation Methods.
The equations for ti and tIN

i are typically assumed to de-
scribe infinite-dimensional vectors. How should we go about
implementing an infinite-dimensional vector space? On the
one hand, we might have chosen some large number to
represent the dimensionality of the space and chosen ran-
dom vectors to describe the tIN

i ’s when items are first pre-
sented. These vectors would have been asymptotically or-
thogonal if the number of dimensions had been much larger
than the number of vectors. To eliminate any concerns that
might arise from random variability in choosing patterns, we
adopted an alternative approach that has been used in pre-
vious simulations applying TCM to human data (Howard &
Kahana, 2002a; Howard et al., In revision). The true dimen-
sionality of the space is the dimensionality of the actual input
vectors, which can be infinite. However, if the initial input
vectors tIN

i are orthogonal, then they can be used as basis
vectors to span the relevant parts of the space. In the simu-
lations, we express ti and tIN

i as vectors of coefficients of the
basis vectors. This greatly reduces the dimensionality of the
simulations. It also makes it particularly easy to introduce an
infinite delay. To introduce an infinite delay, all that needs to
be done is set ti to one times a basis vector that has not yet
been used.

Matrices corresponding to MT F and MFT were main-

tained. The matrix MT F was updated when a particular item
was presented simply by adding the current state of ti to the

appropriate column of MT F . The matrix MFT was some-
what more complicated. First αN and αO were calculated
according to the procedure in Appendix B. Then, after ti was

calculated MFT was updated according to

for ( i = 0 ; i < currentdim ; i++){

MFT[item][i] = aold * MFT[item][i] + anew * t[i];

}

where “item” is the index of the stimulus presented, “cur-
rentdim” is the number of basis vectors that have been pre-
sented up to that time and “anew” and “aold” are calculated
according to the assumptions of the simulation and the con-
straint that the Euclidean length of “MFT[item]” should be
one after the updating. This enables MFT to implement
Eq. 9. Note that “synapses” that do not connect to the current
item are unaffected.

Learning. The model was presented with two phases of
learning. During the first phase, A or X were presented ran-
domly, and the model had to choose either B or Y as a re-
sponse. If A was the cue stimulus, then B was considered
the correct response. Similarly, if X was the cue stimulus,
then Y was considered the correct response. Although only
one cup was baited with a food reward, Bunsey and Eichen-
baum (1996) allowed the animal to dig in the other cup if
it initially dug in the incorrect cup (although the first cup
was counted as the response for that trial). Using a similar
procedure, if the model made the correct choice, then the
stimulus corresponding to the correct choice was presented
to the model and the trial ended. If the model made an incor-
rect choice, then the stimulus corresponding to that choice

was presented to the model. Before the trial ended, however,
the correct choice stimulus was presented to the model. This
simulates the experimental method that allowed the animal
to dig in the correct cup after choosing incorrectly (Bunsey
& Eichenbaum, 1996). For A trials, there are therefore two
possibilities. If the animal chose correctly, A was presented,
followed by B. If the animal chose incorrectly, A was pre-
sented, followed by Y and then B. In both cases, there is an
increment to the cue strength from A to B, but only when
there is an incorrect response is there an increment to the cue
strength from A to Y . As a consequence, as long as the animal
chooses more or less randomly during the initial of learning
trials, A

�
B develops more strongly than A

�
Y . Similar

reasoning describes the development of X
�

Y over X
�

B,
and also applies to the second stage of learning.

Choice situations. The model was presented with choices
during each trial of learning and during probe trials. At each
choice, the probability of recalling the choice stimuli was
calculated using Eq. 4. The sum in the denominator went
over the two choice stimuli. The two choices were B and Y
in the first stage of learning and C and Z in the second phase
and in the probe trials.

Probe trials. After each ten learning trials in phase two,
ten probe trials were presented. In these probe trials, tIN

was calculated given either A or X as a stimulus. That is,
t was reset with an infinite delay and then updated with tIN

set to MFT fA or MFT fX , as appropriate. A choice was then
made between C and Z. However, neither of the associative
matrices, MT F nor MFT , were updated either when the cue
stimulus was presented, nor when the response was selected.
In this way, a probe trial would not affect either subsequent
learning of the premise pairs, nor subsequent probe trials.
Nonetheless, we could observe the process of learning in this
situation, rather than just recording a single value at the end
of each simulation run.

Results.

For each set of parameters, we repeated the simulation for
1000 random presentation orders. There was no systematic
search of the parameter space. Rather, an informal search
was undertaken to find a set of values that showed reasonable
learning curves for A

�
B and B

�
C. When this condition

was met, the intact model always outperformed the lesioned
model on A

�
C and the lesioned model never deviated sig-

nificantly from chance. If τ was set too low, the model re-
membered whatever choice it happened to make on the first
trial, even if it was incorrect. The parameter values used the
simulation were listed in Table 1. Figure 12 shows results
of the simulation. Figure 12a-b shows performance for the
intact and lesioned model on first and second stage learn-
ing. Both the intact and the impaired model showed good
learning on the premise pairs, A

�
B and B

�
C, with re-

sponses tending toward perfect performance for both stages
and both models. Figure 12c shows performance in the probe
trials. Whereas the intact model showed generalization to
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Figure 12. Impairment of new item-to-context learning specifically affects development of transitive associations. Performance as

a function of learning is shown for the different stages of the Bunsey and Eichenbaum (1996) study. In all three panels, the intact model,
with γ ✌ 1 is shown with solid symbols; the lesioned model, with γ ✌ 0 to simulate hippocampal damage, is shown with open symbols. a.

Probability of a correct response during the first phase of learning. Both the intact and lesioned models learned the A � B and X � Y pairs.

b. Probability of a correct response during the second phase of training. Both the intact and lesioned model learned B � C and Y � Z.
c. Performance on the probe trials, A � C and X � Z. Probe trials were performed at each stage of learning, but in a way that neither
subsequent second phase trials nor subsequent probe trials were affected. While the intact model develops a transitive A � C association,
the lesioned model does not. This is consistent with the effects of hippocampal lesion observed by Bunsey and Eichenbaum (1996).

A
�

C, the lesioned model did not. Whereas the intact model
showed a dramatic improvement in the transitive association,
the impaired model did not deviate significantly from chance,
even with enough learning trials to acquire near-perfect per-
formance on the premise pairs. From this we conclude that
TCM provides a means to dissociate simple pairwise learning
from relational learning, as evidenced by the phenomenon of
transitive associations. This result also supports our hypothe-
sis that the function of the hippocampus is to allow repetition
of an item to allow the recovery of entorhinal activity patterns
that were present when the item was previously presented.

Rapid development of an intermediate representa-
tion

Eichenbaum (2001, 2000) hypothesized that the hip-
pocampus could accomplish many of the functions ascribed
to it by forming a “memory space.” If the hippocampus
could support the rapid development of a stimulus repre-
sentation that captures the temporal and contextual relation-
ships among stimuli, this representation would presumably
be extremely useful in the “flexible re-expression” of mem-
ory (Eichenbaum, Otto, & Cohen, 1994; Cohen & Eichen-
baum, 1993). Here we show that binding item representa-
tions to their temporal context, shown in the previous sub-
section to subserve backward associations and transitive as-
sociations, results in the rapid development of an interme-
diate representation that captures higher-order relationships
among the stimuli. The mapping between TCM and the MTL
argues that this intermediate representation should be located
in parahippocampal regions.

Recovery of contextual states in parahippocampal regions
results in a compressed stimulus representation.

In TCM, the inputs to Eq. 6, tIN
i , are caused by the particu-

lar item presented at time step i. We can think of tIN
i as an in-

termediate representation of the nominal stimulus presented
at time step i (e.g. the word ABSENCE). We will explore the
development of this representation in capturing higher-order
relationships among stimuli. As before, we will consider two
extreme cases. In the lesioned case, we will let αO � 1 and
αN � 0. In the intact case, as in the previous subsection,
αO � αN .

In the lesioned model,

tIN
Ai � 1 � tIN

Ai
; (18)

the input evoked by an item never changes. In the lesioned
case, tIN is like a mirror that simply reflects the item currently
being presented, fi. In the intact case, however, tIN

Ai � 1
is com-

posed of both tIN
Ai

and tAi
; rather than simply mirroring the

stimulus being presented, tIN
Ai

changes over time to reflect the

temporal contexts in which item A is presented. This results
in a “mixing” of the representations of the study items with
learning.

The binding of items to the temporal contexts in which
they were presented enables tIN to become a representation
that can capture higher-order relationships among stimuli.
To demonstrate this, we calculated stimulus similarities, e.g.
tIN
A ✡ tIN

B after the model was presented with a set of stimuli
that included chains of transitive associations, e.g. A

�
B,

B
�

C, . . . E
�

F . This list structure, referred to as a dou-
ble function list, because items serve as both cues and re-
sponses, was first introduced to the study of memory by Pri-
moff (1938). Performance on double function lists is worse
than on regular lists of paired associates. Slamecka (1976)
argued that this is due to backward and remote associations
among the items. TCM shares this prediction, which has
been directly observed in final free recall of double function
lists (Howard & Jing, 2003).

Despite the random order of presentation of the pairs, dou-
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Figure 13. Rapid development of a “memory space” in TCM with an intact hippocampus. The network was presented with the
double function pairs A � B, B � C etc in 1,000 different random orders, intermixed with a parallel series of X � Y , Y � Z, etc, pairs.

Each panel shows the similarity matrix among tIN
A , tIN

B , etc., at various stages of learning. For instance, the color of cell D ✏ F indicates the

value of tIN
D ☞ tIN

F . Black indicates a value of one, white indicates a value of zero. The top row of matrices is for the “intact” model. The
bottom row is for the lesioned model. Parameter values are the same used in Figure 12. The intact and impaired model both start with an
orthonormal representation of the tIN ’s. This can be seen by the value of one for all the cells along the diagonal and zeros for all off-diagonal
cells on the left-most panels. With learning, however, the intact model develops a similarity structure that comes to reflect the “distance”

within the double function list. This can be seen by the development of non-zero off-diagonal cells whose magnitude falls off with distance
from the diagonal. This is what enables the intact model to “generalize” associations to pairs that were never presented together. In contrast,
the lesioned model always evokes the same tIN in response to each stimulus. This prevents the lesioned model from generalizing, although

the orthonormal tIN representation may be associated to any presented stimulus to support a forward association.

ble function lists induce a higher-order structure:

A
�

B
�

C
�

D
�

E
�

F ☛ (19)

In this structure, B is closer to D than it is to E . If the tINs
have come to capture this higher order structure, then after
learning we should observe that

tIN
B ✡ tIN

D � tIN
B ✡ tIN

E ☛ (20)

In general, if tIN is a representation that reflects higher-order
relationships among the stimuli, then the similarity between
the tIN s evoked by any two stimuli ought to be inversely
proportional to their distance in the structure illustrated by
Eq. 19.

Memory space simulation methods. We examined the ef-
fect of learning on the similarity relationships among 5 pairs
structured according to Eq. 19. The pairs were presented
in a random order, with presentation of another parallel se-
ries of pairs (i.e. an X

�
Y series) interspersed randomly.

For each level of learning, 1000 replications with a differ-
ent random presentation order were averaged. The value of
β was the same as those used previously in the simulation
shown in Figure 12. Both the lesioned model and the intact
model were run for 1-5 trials. In both cases, we assumed
that initially the tINs were orthonormal prior to learning:
tIN
A0

✡ tIN
B0 � δAB.

Results. The stimulus similarities for the intact and le-
sioned model at various stages of learning are illustrated in

Figure 13. On the left, we can see that before learning both
the lesioned model and the intact model start with an or-
thonormal stimulus representation. This is just an expression
of our assumptions about the initial conditions used in the
simulation. With repeated presentations of the linked lists,
the lesioned model does not change its stimulus representa-
tion. This is a consequence of Eq. 18; the similarity relation-
ships among the tINs do not change for the lesioned model
because tIN

Ai � tIN
Ai � 1

. The intact model, however shows a more

interesting pattern of results. First, we note that the stimulus
representation of members of the same pair become similar
to each other; although tIN

C and tIN
D are initially completely

dissimilar, they quickly come to have some similarity. Com-
paring the rightmost panel with the middle panel, we see that
this similarity increases with subsequent learning for the in-
tact model.

Moreover, the intact model develops a stimulus represen-
tation that reflects the higher order structure of the linked
list. Looking at the right of the figure, we see that after five
learning trials the similarity of tIN

B to tIN
D is higher than it

was at the start of learning. Stimuli B and D were never
presented together, but were both presented with C. The
model shows stimulus generalization among arbitrary stim-
uli as a function of the similarity of the temporal contexts in
which they were presented. This stimulus generalization is
the property that allows the development of transitive associ-
ations seen in the simulations of the Bunsey and Eichenbaum
(1996) experiment (Figure 12). In addition to allowing asso-
ciations between stimuli that were never presented together,
this stimulus generalization also comes to reflect the higher-
order structure of the list. For example tIN

B and tIN
D are more
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similar to each other than are tIN
B and tIN

E . Similarly, tIN
B and

tIN
E are more similar to each other than are tIN

B and tIN
F . The

similarity between any two input patterns comes to reflect
their “distance” in the linked-list structure.

Discussion

Transitive associations link items that were not actually
paired together during study, but rather are associated by
means of having been presented in the context of some other,
common element. We showed that one component of re-
trieved context, weighted by αN , is responsible for backward
and transitive association, hallmarks of relational learning
(Figure 12). We also showed that in TCM this ability is a
consequence of the development of an intermediate stimulus
representation that comes to reflect the temporal context in
which items were presented.

TCM developed a two-component account of associations
to describe the characteristic shape of CRP curves (Figure 2).
It is striking that this two-component account also turns out
to provide an account of the dissociations between transi-
tive and pairwise associations that result from hippocampal
damage (Bunsey & Eichenbaum, 1996). The two-component
account also predicts that hippocampal function is important
in proper development of intermediate representations nec-
essary for relational learning.

TCM and “transitive inference”.

If you tell a school age child that Alexander is taller than
Betsy, and Betsy is taller than Catherine, that child should be
able to tell you, without being explicitly instructed so, that
Alexander is also taller than Catherine. In this example of
transitive inference, the child is able to infer from her ex-
perience with the world that the property of height obeys a
transitive relationship; if A � B and B � C, then A � C. The
cognitive process that enables one to reach the conclusion
that A � C is referred to as a transitive inference.

In the animal cognition and neuropsychology literature
there has been considerable attention paid to a related task,
in which animals learn preference relations between arbitrary
stimuli. This has become an issue in describing hippocam-
pal function because of the finding that MTL damage selec-
tively disrupts “transitive inference.” Dusek and Eichenbaum
(1997) trained rats on a series of conditional discriminations.
When presented with a pair of odors A and B, one of the
odors, A, was always paired with reward and the other was
not. To receive a food reward, the animal would choose A
when presented with the pair A ☎ B. Several such pairs, e.g.
B ☎ C and so on, up to D ☎ E were presented with the stim-
ulus with the label appearing earlier in the alphabet paired
with reward. After learning all of these premise pairs, the
animals were tested on novel stimulus pairings. The novel
end-anchored pairing A ☎ E should be relatively easy; A was
always rewarded and E never was rewarded. However, the
pairing of B ☎ D cannot be solved simply on the basis of re-
ward valence. Control animals preferred B when presented
with the B ☎ D pairing, as if they had learned relationships
like A � B, B � C and so on from the premise pairs and

performed a transitive inference when presented with B ☎ D.
Interestingly, Dusek and Eichenbaum (1997) found that an-
imals with lesions intended to disrupt hippocampal function
(either fornix lesions or entorhinal lesions intended to deaf-
ferent the hippocampus) learned the pairwise discriminations
as well as intact animals. Lesioned animals also selected A
as often as control animals when presented with the end-
anchored pairs. However, unlike the control animals, they
selected B and D equally often when presented with B ☎ D.
Hippocampal lesions specifically disrupted performance on
the novel stimulus pairings that were presumably solved by
means of transitive inference.

Referring to performance on the B ☎ D pair as an inference
may be something of a misnomer; it is not necessary to as-
sume that the animal has actually performed a logical infer-
ence to explain this behavior as the task can be performed on
a purely associative basis. Recently Van Elzakker, O’Reilly,
and Rudy (2003) did an experiment that they argued contra-
dicted an inferential explanation of the transitive inference
findings of Dusek and Eichenbaum (1997). Rather than pre-
senting four pairs, as in the study of Dusek and Eichenbaum
(1997), they presented five pairs, referring to the additional
pair as E ☎ F . This enabled them to compare transitive choices
when the animal was presented with novel pair combinations
of differing lags. For instance, only one item intervenes be-
tween B and D, whereas two items intervene between B and
E . The logic of their experiment was that if the choice on
novel pairs was made on the basis of a logical inference,
then B ☎ D should be easier than B ☎ E , because fewer premises
must be combined to make the judgment. In fact, Van Elza-
kker et al. (2003) found that performance was better on B ☎ E
than on B ☎ D. This finding is consistent with an associative
account. In the experiment of Van Elzakker et al. (2003),
stimulus A was always rewarded, whereas F never was. If a
stimulus similarity gradient is established (as in Figure 13),
then stimuli closer in the chain to A would be more strongly
associated to food than items further away in the chain.

The finding that hippocampal damage selectively disrupts
performance on novel stimulus pairings that could be solved
on the basis of a transitive inference has been extensively
covered recently by models of hippocampal function (Frank,
Rudy, & O’Reilly, 2003; O’Reilly & Rudy, 2001; Levy,
1996; Wu & Levy, 1998, 2001). For the most part, models of
the role of the hippocampus in transitive inference hypothe-
size that the hippocampus supports overlapping stimulus rep-
resentations that can be used to perform the task.18 This is a
role that is wholly consistent with the role for the hippocam-
pus proposed here. Frank et al. (2003) hypothesized that
there were two stages in making a response when presented
with a pair of stimuli in a choice situation. In a first stage, the
animal selected which of the two odors to approach based on
an associative gradient from reward to each of the stimuli.
After selecting a stimulus to approach, the animal then ei-

18 Although it has not been directly applied to the transitive in-
ference task, this property is also shared by the Gluck and Myers
(1993) model of hippocampal associative learning (see Gluck &

Myers, 1997, for a review).
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ther selected that odor on the basis of a recall-like process
or it switched to the other odor. Transitive inferences were
a consequence of an associative gradient across the stimuli
to the “dig” response. The Complementary Learning Sys-
tems model (O’Reilly & Rudy, 2001) postulates that transi-
tive performance is a consequence of overlapping hippocam-
pal stimulus representations. In that model, however, correct
responding depends on network dynamics to affect pattern
completion. As a consequence, transitive performance is sen-
sitive to the detailed structure of the learning episode. Sim-
ilarly, in the Wu and Levy (1998, 2001) model of transitive
inference performance, the extent to which the hippocampal
representation evoked by the B ☎ D probe overlaps with the
representation evoked by C corresponds with network per-
formance on the transitive inference problem (Wu & Levy,
1998). This apparently supports a representation that cap-
tures the “distance” between the stimuli in the higher order
structure, resulting in the network showing a symbolic dis-
tance effect (Wu & Levy, 2001).

An intermediate stimulus representation like that de-
scribed here could be used to construct an associative gra-
dient to perform the transitive inference task, in much the
same way that the Frank et al. (2003) model did. However,
the intermediate stimulus representation does not necessarily
imply a purely associative account of the transitive inference
task. Quite the contrary, if an intermediate stimulus represen-
tation is developed that places the stimuli in order along a rel-
evant, albeit abstract, dimension, then this information could
be used to inform a logical inference, in much the same way
that an inference about a physical dimension, like location
or height, can be performed. For instance, a different levels
of association between stimuli and a food reward could be
used to generate an abstract dimension like “foodliness.” It
is clear from Figure 13 that the similarity of items nearby in
the higher-order structure is higher than for items far apart in
the higher-order structure. From this it is clear that this repre-
sentation has extracted a dimension analogous to “position”
from the higher-order list structure. This could, in principle
at least, be used as the basis for a non-associative, logical
decision.

The hippocampus and semantic learning.

In contrast to episodic memory, semantic memory refers
to general knowledge about the world without reference for
specific events. For instance our knowledge about bananas
must have been learned as a result of some instruction or
experience, but it is not necessary to remember any one of
those learning events to remember that bananas are yellow,
or that they are good to eat. The default hypothesis, until
quite recently, has been that semantic memory depends on
episodic memory. The idea is that we experience a number
of specific episodes pertaining to the same subject (bananas
in this case). Perhaps the brain manages to gradually build
up a representation that extracts the commonalities of these
experiences so that it no longer requires any of the individ-
ual episodes (e.g. Marr, 1971; McClelland, McNaughton, &
O’Reilly, 1995).

The belief that learning of semantic memory depends

on episodic memory is consistent with findings showing
that some MTL amnesics have not learned the meanings of
words that entered the lexicon after the incident that caused
their amnesia (Ostergaard, 1987; Gabrieli, Cohen, & Corkin,
1988). More recently, the dependence of semantic memory
on episodic memory has been cast into doubt by the find-
ing that patients with substantial hippocampal damage ac-
quired at a very early age show no evidence for any episodic
memory, but nonetheless have acquired enough semantic
memory to perform at a normal level in school (Vargha-
Khadem et al., 1997). Subsequent studies have purported to
show some acquisition of post-morbid vocabulary in adult
amnesics (Kitchener, Hodges, & McCarthy, 1998; Linden
et al., 2001; Schmolck, Kensinger, Corkin, & Squire, 2002).
These findings have led some to propose alternative relation-
ships between episodic and semantic memory (Tulving &
Markowitsch, 1998; Vargha-Khadem, Gadian, & Mishkin,
2001). Others have argued that, even if the data is to be taken
at face value, the observed semantic knowledge of these pa-
tients is a consequence of some preserved episodic memory,
or is perhaps the result of some reorganization available to
the developing brain that does not reflect normal adult func-
tion (e.g. Squire & Zola, 1998). This position is supported
by evidence that severe damage limited to the hippocampus
results in measurable deficits in post-morbid vocabulary ac-
quisition (Cipolotti et al., 2001; Nadel & Moscovitch, 2001;
Spiers, Maguire, & Burgess, 2001; Verfaellie, Koseff, &
Alexander, 2000). Others note that while MTL amnesics can
acquire familiarity for new words, and even learn to recite
their definitions, their semantic knowledge for these materi-
als lacks the inter-related richness of normal subjects (West-
macott & Moscovitch, 2001).

Vocabulary acquisition can be seen as a special case of
semantic learning. A dictionary describes the meaning of
each word simply in terms of other words. Learning the
meaning of a word can in some sense be described as a pro-
cess of placing the word in the proper relationship to the
other words in the lexicon. TCM describes episodic associa-
tion and transitive associations on the basis of retrieved con-
text. Recent models of vocabulary acquisition using realistic
databases of naturally occurring text describe semantic rela-
tionships among words by extracting information about the
words’ contextual relationships (Griffiths & Steyvers, 2002;
Landauer & Dumais, 1997). In much the way that associ-
ations in TCM can be seen as a retrieved context model of
episodic association, these models can be seen as retrieved
context models of semantic association.

Latent Semantic Analysis (LSA Landauer & Dumais,
1997) is a well-studied computational model that has been
shown to describe something of human vocabulary acquisi-
tion. It expresses a representation of the semantic structure of
the language by extracting useful information from the tem-
poral co-occurrence properties of the language, as measured
by large bodies of naturally-occurring text (for instance, an
encyclopedia). This is possible because of regularities in the
use of language. Words that are similar to each other tend
to occur in the same context. For instance, words that refer
to similar objects, like “table” and “chair,” will tend to occur
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together in discussions of, say, seating arrangements or fur-
niture. It is easy to extract this type of information—it can
be accessed using a simple co-occurrence matrix. This infor-
mation is analogous to pairwise associations between words
in a transitive association experiment. But LSA goes further.
Words that refer to the same object are not necessarily likely
to occur in the same context, but will tend to appear in similar
contexts. This is often the case with synonyms. If “sofa” and
“couch” mean very nearly the same thing, an author is likely
to choose one or the other, but not both, for a given passage.
LSA is able to extract the similarity that can be inferred in
this way by means of dimensional reduction. This process is
analogous to the transitive associations described here. The
end result of these computations is that the representation of
the words in the corpus comes to reflect with some fidelity
the semantic structure of English. As evidence for this claim,
LSA can achieve a passing score on the Test of English as a
Foreign Language (TOEFL Landauer & Dumais, 1997).

To summarize, LSA provides a description of semantic
relationships that relies on two processes: one process that
associates items based on their temporal co-occurrence and a
second process that discovers transitive associations between
items based on the contexts in which they occur. These are
analogous to the two components giving rise to associations
in TCM. One process can support associations between items
that actually co-occur, like A ☎ B in the Bunsey and Eichen-
baum (1996) experiment. The other can support transitive
associations between items that never occurred together, but
that occurred in similar contexts, like A and C in the Bunsey
and Eichenbaum (1996) experiment. If TCM can provide
a description of semantic learning, and if the mapping be-
tween hippocampal function and TCM is the way we have
hypothesized here, then this suggests a way to reconcile the
conflicting data regarding hippocampal involvement in new
semantic learning. Perhaps the preserved semantic learning
with hippocampal damage can be described largely by a se-
ries of pairwise relationships.

Physiological evidence for a stimulus representation that
reflects temporal context.

In this ms we have argued that the hippocampus functions
to reconstruct the state of activity in entorhinal cortex when
an item is repeated (Figure 3). We have shown that this abil-
ity to make new item-to-context associations leads to an in-
termediate stimulus representation that reflects the temporal
contexts in which an item is presented (Figure 13) and ar-
gued that this representation can support transitive associa-
tions (Figure 12). We have argued that this representation
should result from hippocampal function and should be lo-
cated in parahippocampal regions. There is strong physio-
logical evidence that the MTL in fact does in fact support the
development of an intermediate stimulus representation that
comes to reflect temporal context with learning.

Miyashita (1988) used abstract visual patterns as stimuli
in a delayed match to sample (DMS) experiment. In his ex-
periment, monkeys were presented with many learning ses-
sions. In each session, the order of sample stimuli remained
constant. The sample stimuli evoked sustained firing in some
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Figure 14. The stimulus representation of arbitrary stimuli

comes to reflect temporal context in the inferior temporal cortex

of monkeys. Single units were recorded from area TE of the infe-
rior temporal cortex of macaque monkeys while they performed a
delayed match to sample (DMS) task using abstract visual stimuli.

The y-axis shows the correlation coefficient calculated for pairs of
stimuli. High values of the correlation coefficient mean that neurons
tended to fire selectively in response to both stimuli. The correla-
tion coefficient, then, provides a measure of the overlap between

the patterns of neural activity corresponding to different stimuli.
The cues constituting the DMS task were presented in a fixed or-
der. The filled symbols show the correlation coefficients for stimuli

as a function of their distance within a “list” of DMS trials that was
presented many times. The open symbols are for an unfamiliar list.
The correlation coefficient falls off with distance for the familiar

list such that remote pairs are no more correlated than by chance,
or for pairs from the new list. For stimuli that were presented many
times, the representation of stimuli that were presented in similar
temporal contexts becomes more similar. Graph based on data from

Miyashita (1988).

subset of the neurons in area TE, an inferotemporal area re-
ciprocally connected to the perirhinal cortex, an extrahip-
pocampal MTL region. According to the mapping between
TCM and the MTL set out at the beginning of this ms, TE
could be part of an item representation. Miyashita (1988)
found that after many sessions of learning, but not after a
single session, neurons that responded to the ith sample in
the session also tended to respond to respond to samples that
were presented at nearby positions in the session (see Fig-
ure 14). Subsequent experimental work extended this find-
ing to show “pair-selective” neurons that responded to both
members of a pair of stimuli that were repeatedly presented
together in an analogue of a paired-associate task (Sakai &
Miyashita, 1991).

There is good evidence that this effect, first observed in
TE, is in fact a consequence of MTL functioning. Pair-
coding neurons are observed in perirhinal cortex (Erick-
son & Desimone, 1999; Messinger, Squire, Zola, & Al-
bright, 2001), which, like the entorhinal cortex is an extra-
hippocampal MTL area. Further, the time course of activity
following an individual stimulus presentation shows associa-
tive effects in perirhinal cortex about 100 ms earlier than in
TE (Naya, Yoshida, & Miyashita, 2001). Naya, Yoshida, and
Miyashita (2003) showed that pair-coding neurons are more
prevalent in perirhinal cortex. These data suggest that the
temporal stimulus generalization effect observed in TE is ac-
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tually a consequence of MTL functioning.

The finding of pair-selective cells is perfectly consistent
with the results for the intact model (αN � 0) shown in Fig-
ure 13 (top). Similarly the lesioned model would not show
such an effect (Figure 13, bottom). Higuchi and Miyashita
(1996) trained monkeys on a set of paired associates to a cri-
terion. The pairs were each presented several hundred times.
After training, the monkeys received ibotenic lesions to the
entorhinal and perirhinal cortices, disconnecting TE from the
backward signal from the MTL. After the lesion the mon-
keys were trained on a new set of stimuli. Pair coding was
abolished in TE for both the old and new stimuli after the
lesion, while general firing properties of the neurons were
unchanged. Similar results have been found in another study
(Miyashita, Kameyama, Hasegawa, & Fukushima, 1998).
This result, in conjunction with the data reviewed above, ar-
gues strongly that the pair-coding phenomenon depends on
input from MTL. The fact that pair-coding was abolished
by lesion, even after several hundred trials suggests that the
pair-coding phenomenon does not result from a change in
the item representation per se, but rather from direct inputs
from an activated MTL representation. That is, the observed
pair coding in TE could result from input analogous to the
mixture of item representations that results from MT F t. This
mapping predicts that pair-coding should be dependent on
hippocampal lesions, and the pair-coding should be observed
in parahippocampal MTL regions after relatively little train-
ing compared to extra-MTL regions.

General Discussion

TCM describes a distributed representation of temporal
context that was argued to mediate performance in free re-
call, an episodic memory task. By demonstrating that the
same equation used for contextual drift, Eq. 6, can be used
to describe the entorhinal place code when provided with ap-
propriate inputs, the model becomes one of a joint temporal-
spatial context. Indeed, if episodic memory is defined to be
memory that refers to a specific event in time and place, it
is reasonable to hypothesize that a joint representation of
temporal-spatial context contributes to this cognitive func-
tion.

A key component of TCM (Howard & Kahana, 2002a) is
a form of short-term memory, ti, that varies according to a
simple equation (Eq. 6). We implemented the key features of
Eq. 6 (Figure 6) using a model intended to represent EC. The
simulation was populated of integrator cells modeled after
those in EC layer V (Egorov et al., 2002) and provided with
input from the head direction system (Taube, 1998), which
are known to synapse on EC layer V (Haeften et al., 2000).
Normalization of the integrator cell population was accom-
plished by means of a gain modulation where the gain var-
ied inversely with the activity in the network (Chance et al.,
2002).

This cellular simulation was essentially just Eq. 6 with in-
put from velocity movements. This simple model described
much of the place code observed in EC. In the open field,
these features include a representation that correlated with

spatial position and was consistent across different environ-
ments (Figure 8). In the W-maze, we showed that this repre-
sentation naturally accounts for history-dependent phenom-
ena, including retrospective (Figure 10) and trajectory coding
(Figure 8), observed in entorhinal place cells. This close cor-
respondence between the predictions of Eq. 6 and the activity
of entorhinal cells during spatial navigation is consistent with
the hypothesis that ti resides in parahippocampal regions, in-
cluding EC.

We explored the ability of TCM to organically explain
neuropsychological dissociations associated with hippocam-
pal damage. We hypothesized that a primary function of the
hippocampus was to allow repetition of an item to reconstruct
the state of ti in EC that was present when that item was ini-
tially presented (Figure 3). In TCM, a parameter, αN , de-
scribes this ability. We showed that setting αN to zero, corre-
sponding to no reconstruction, prevents transitive and back-
ward associations while pair-wise associations remain intact
(Figure 12). These dissociations have been reported with hip-
pocampal damage (Bunsey & Eichenbaum, 1996), and have
been taken to be hallmarks of relational memory. We then
illustrated that the ability to reconstruct states of ti in EC
allows the development of an intermediate stimulus repre-
sentation that captures the higher-order structure of the stim-
uli, consistent with the “memory space” idea advanced by
Eichenbaum (2000, 2001) (Figure 13). We also argued that
a memory space could be useful in describing performance
in so-called transitive inference tasks in a way broadly con-
sistent with existing models of the hippocampus and transi-
tive inference performance. Neurophysiological results from
primate studies have shown direct evidence for a stimulus
representation that comes to reflect the temporal context in
which items were presented (Erickson & Desimone, 1999;
Messinger et al., 2001; Miyashita, 1988; Sakai & Miyashita,
1991). The development of this intermediate stimulus repre-
sentation is also known to be a consequence of MTL function
(Higuchi & Miyashita, 1996; Miyashita et al., 1998; Naya
et al., 2001).

Our hypotheses regarding the entorhinal place code and
relational memory were both supported by substantive phys-
iological evidence. We argued that EC supports a leaky in-
tegrator functioning like short-term memory (Eq. 6). We ar-
gued for the plausibility of this hypothesis using detailed in-
tracellular experiments (Egorov et al., 2002), neuroanatomy
(Haeften et al., 2000), and physiology (Chance et al., 2002).
Using this implementation we demonstrated a close corre-
spondence between simulated neurons and data from single
entorhinal units during spatial navigation (Quirk et al., 1992;
Frank et al., 2000). In treating relational memory, we argued
that the MTL, in particular the hippocampus proper, causes
the development of an intermediate stimulus representation
that reflects temporal context (Eq. 9). There is considerable
evidence for just this phenomenon in the primate (Higuchi
& Miyashita, 1996; Messinger et al., 2001; Miyashita, 1988;
Naya et al., 2001).
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Relationship to other work

The present work draws together thought on MTL func-
tion in apparently disparate domains. In doing so, it builds
on extensive work in each of these domains. The relation-
ship of the model presented here to other models of rela-
tional memory, in particular models developed to describe
the effect of hippocampal lesions on the so-called transitive
inference task, was discussed above. We discuss the relation-
ship of TCM to other models of episodic memory and place
cells here.

Retrieved context models of memory. In the domain of
episodic recall TCM can be seen as a descendant of the
stimulus-sampling model (Estes, 1950, 1955), which was
subsequently cast as a model of temporal effects and forget-
ting in paired associate learning (Mensink & Raaijmakers,
1988, 1989). The important difference between TCM and
these prior models is the nature of contextual drift. Whereas
those other works assumed that contextual drift was a random
process, TCM assumes that contextual drift is a consequence
of elements retrieved by the nominal stimuli presented during
learning.

TCM’s focus on contextual processing in describing
episodic recall has parallels in other aspects of memory re-
search. As mentioned earlier, retrieved context models have
also made considerable headway in describing the structure
of semantic memory (Griffiths & Steyvers, 2002; Landauer
& Dumais, 1997). Retrieved context has also been proposed
as the basis for episodic recognition decisions (Dennis &
Humphreys, 2001). When presented with a probe item, Den-
nis and Humphreys (2001) proposed that it is used to retrieve
a superposition of context vectors corresponding to the state
of contexts in which the item was previously presented. This
retrieved context is then compared to a representation of list
context. This approach, which successfully explains the bulk
of the extant recognition memory data, represents a depar-
ture from many previous models of recognition memory (e.g
Murdock, 1982; Shiffrin & Steyvers, 1997). Recent years
have seen the development of a neuroanatomical model of
two-process recognition memory in which the hippocampus
proper is responsible for episodic recollection, whereas cor-
tical regions within the MTL are responsible for a scalar fa-
miliarity signal (Davachi, Mitchell, & Wagner, 2003; Nor-
man & O’Reilly, 2003; Rugg & Yonelinas, 2003; Yonelinas,
Kroll, Dobbins, Lazzara, & Knight, 1998; Yonelinas et al.,
2002). This view of the hippocampus in recognition mem-
ory is quite consistent with the view expressed here—that
the hippocampus is responsible for reconstructing patterns of
context present in entorhinal cortex. Reconstruction of these
patterns is a plausible candidate for recollection (Polyn, Nor-
man, & Cohen, 2002). If this is the case, and context changes
gradually in entorhinal cortex, as hypothesized here, then one
would expect to see associative effects as a consequence of
successful recollection during a recognition test.

It is striking that retrieved context has been proposed
in the cognitive literature, more or less independently, as
a mechanism for performance in three diverse classes of

tasks: episodic recall (Howard & Kahana, 2002a), recog-
nition memory (Dennis & Humphreys, 2001), and seman-
tic learning (Griffiths & Steyvers, 2002; Landauer & Du-
mais, 1997). The similarities of these three classes of models
represent a unique opportunity for theoretical convergence.
The present work suggests that a unification would have rel-
evance for understanding the function of the medial temporal
lobe.

Path integration models of the place code. TCM describes
the entorhinal place code as a joint expression of temporal-
spatial context. That this might provide an explanation of
the MTL’s importance in both episodic memory and spatial
navigation has been proposed by other authors (e.g. Levy,
1989). Our emphasis on inputs corresponding to information
about physical motion in space places the present treatment
in the tradition of “path integration” models of the place code
(McNaughton, Barnes, Gerrard, et al., 1996; Samsonovich &
McNaughton, 1997; Redish & Touretzky, 1997). Much like
the present treatment, these models postulate that the place
code results from updating a representation of position by
operating on input from the head direction system. In partic-
ular, the treatment of Redish and Touretzky (1997, see also
Redish, 1999) postulated that path integration takes place in
the EC. In the present treatment, we have argued that a leaky,
“pseudo” integrator resides in EC.

The most obvious difference between prior path integra-
tion place cell models and the present treatment is the level
of neural sophistication those models brought to bear on the
problem. The relative simplicity of the present treatment is
a consequence of several factors. One is the relatively lim-
ited scope of of the current treatment, restricting our attention
to the properties of the entorhinal place code and neglecting
such important factors as the means of operation of the head
direction system and the hippocampal place code. Another
is the recent discovery of “integrator cells” in the EC that
integrate their inputs in the absence of synaptic connections
(Egorov et al., 2002). This remarkable finding simplifies
considerably the neural hardware required to implement an
integrator. Of course the intracellular machinery that sup-
ports the properties of these cells is of tremendous interest
(Fransen, Egorov, Hasselmo, & Alonso, 2003).

On a computational level, the current treatment differs
from prior work on path integration models of place cell
formation by postulating that path integration is “leaky”—
ρi is less than one (see Figure 4), meaning that integration
is not perfect. In contrast, prior models hypothesized that
integration was not leaky, but perfect. The “leakiness,” or
forgetting, in the current treatment was originally introduced
to TCM as a way of modeling recency and contiguity effects
in episodic memory performance. However, the assumption
of forgetting in dead reckoning simplifies considerably the
computational requirements of the system.

In dead reckoning, the current position is derived from
the prior position combined with the current movement. If
there is any error in the estimation of the current movement,
this will lead to an error in the subsequent estimate of posi-
tion. This error will accumulate in a perfect integrator—with
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more movements, the amount of uncertainty in position will
grow without bound as more and more movements are inte-
grated. Previous path integration models have devoted con-
siderable effort to error-correcting mechanisms to counter-
act this tendency (e.g Redish & Touretzky, 1997). However,
when ρ ✟ 1, t is not subject to cumulative error. The amount
of “error,” while decidedly non-zero, is stable with time. It
is an open question whether the systematic discrepancies be-
tween the model’s representation and a perfect representation
of place are reasonable given the observed data. At least in
the case of retrospective coding, an “error-free” representa-
tion of place is unable to describe the observed data (Fig-
ure 4).

Receptive field place cell models. The other large class
of models of place cell formation can be referred to as “re-
ceptive field models” (Brunel & Trullier, 1998; Burgess &
O’Keefe, 1996; Hartley et al., 2000; Kali & Dayan, 2000;
Sharp, 1991; Sharp et al., 1996). These models make two
broad assumptions about the basis of the place code. One is
that the hippocampus receives inputs from the EC that have
a spatial-geometric character. The second assumption is that
the hippocampus supports a conjunctive coding of these in-
puts, resulting in a sharper, more focused spatial representa-
tion.

In one popular theory (Burgess & O’Keefe, 1996; Hartley
et al., 2000), entorhinal cells are assumed to code for the
distance to a particular landmark, such as a wall, within the
environment. Hippocampal cells receive input from a num-
ber of entorhinal cells, resulting in a relatively focused place
field. For instance, one entorhinal cell might respond prefer-
entially whenever the animal is 10 cm from the Eastern wall
of an enclosure, resulting in a place field shaped like a “strip”
running North-South 10 cm from the Eastern wall. Another
entorhinal cell might respond preferentially whenever the an-
imal is 8 cm from the Northern wall of the enclosure. In other
treatments (Brunel & Trullier, 1998; Kali & Dayan, 2000),
the entorhinal inputs are assumed to retain directionality, as
well as sensitivity to the distance of landmarks. The inclu-
sion of directionality is consistent with an encoding of “local
view” information.

Receptive field models rely on a conjunctive code of en-
torhinal representations. For instance, Brunel and Trullier
(1998) and Kali and Dayan (2000) showed that by means
of conjunctive coding, broad, directionally-sensitive place
fields in EC can give rise to focused, non-directional fields
in the hippocampus. Conjunctive coding from multiple, non-
specific entorhinal cells can give rise to a more specific hip-
pocampal representation. To use the example above, a hip-
pocampal cell might receive input from these two entorhinal
cells and have a place field that is in the North-East quad-
rant of the enclosure, 10 cm from the Eastern wall and 8 cm
from the Northern wall. In this example, the hippocampus
provides a more focused spatial representation than EC by
means of a conjunctive representation. This is quite con-
sistent with recent findings of Anderson and Jeffery (2003)
that some hippocampal place fields were modulated by the
presence of non-spatial environmental stimuli in a conjunc-

tive fashion. The combination of spatial-geometric input and
conjunctive encoding leads to some very specific predictions.
For instance, if the inputs to hippocampal place cells are cod-
ing for distances to the boundary in an environment, then
hippocampal place cells should deform in a very specific
way as the environment is stretched. These predictions have
been directly observed in quite dramatic fashion (O’Keefe &
Burgess, 1996).

The present treatment, in focusing exclusively on the en-
torhinal place code, is completely mute on the issue of
whether or not the hippocampus generates a conjunctive code
of its inputs. The other main assumption of receptive field
models of the hippocampus is that cells in EC provide a
spatial-geometric code as input to the hippocampus. At first
glance, it might seem that this is in direct contrast to the
weighted sum over recent movements explored here. This
contrast could be more apparent than real. It is possible
that the weighted sum over recent movements postulated
here approximates the spatial assumptions of the receptive
field models sufficiently closely to result in comparable pre-
dictions if similar assumptions about the hippocampus are
made. For instance, a weighted sum over recent movements
should weight recent movements strongly, resulting in a di-
rectional selectivity, as assumed by some recent receptive
field models (Brunel & Trullier, 1998; Kali & Dayan, 2000).
Similarly, a weighted sum over recent movements might be
able to approximate the specification that entorhinal cells
code for distance to a wall of an enclosure.

This paper has tried to explain the entorhinal place code
using solely self-motion information as input to Eq. 6. This
should not be taken as a statement that tIN

i should contain
only self-motion information in spatial applications. Because
ti reflects a temporal-spatial integrator, a joint representation
of temporal-spatial context, we would expect that exposure
to salient non-spatial stimuli during exploration would con-
tribute to ti. There is therefore no fundamental difficulty
in modeling “receptive fields” defined by a relationship to
a landmark. Inputs tIN

i corresponding to landmark stimuli
should be able to be “dropped in” to ti in the same way as
retrieved temporal context from words are. In this way, ar-
guments advanced in the current ms is not necessarily incon-
sistent with hippocampal place cells that appear to be bound
to landmarks or conjunctions of landmarks (e.g. Gothard,
Skaggs, Moore, & McNaughton, 1996).

Contextual retrieval in spatial navigation

In treating relational memory we emphasized the impor-
tance of new item-to-context learning in establishing an in-
termediate stimulus representation. We argued that a non-
zero value of αN meant that the hippocampus was function-
ing normally and allowed an item to reconstruct the state of
context in EC that was present when the item was initially
presented. In that section, we argued that setting αN to zero
provided a good model of hippocampal lesions in transitive
association (Figure 12). In contrast, when we were treating
the entorhinal place code, we set αN to zero throughout. How
is it that the activity of cells in EC during spatial navigation,
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believed to be the most characteristically hippocampal func-
tion (O’Keefe & Nadel, 1978) can be described under cir-
cumstances that corresponded to a hippocampal lesion in our
treatment of relational memory?

Although we initially set γ to zero in treating the entorhi-
nal place code out of convenience, it is clear that including
item-to-context learning in spatial navigation would require
some elaboration of the model. What would happen if γ was
set to a non-zero value in the spatial navigation applications?
The first decision that needs to be made is what constitutes
an “item” to define item-to-context learning (as in Eq. 9). If
we simply define each head direction as an “item” this leads
to a very interesting, but suboptimal situation. A thought
experiment should suffice to illustrate.

A thought experiment in which head directions retrieve
context. Consider the situation in which we have a series of
four movements that repeat in sequence as the animal runs
around a square maze. We have four orthonormal “items,”

v0, vπ ✆ 2, vπ and v3π ✆ 2 corresponding to movements in the
four cardinal directions. These are repeatedly presented in
order. We can then describe the behavior of t in terms of
these four basis vectors. If there is no item-to-context learn-
ing, there will be something like a place code—ti will be
different on the four sides of the square. Let us denote the
activity on the ith segment of the Nth traversal of the maze as
tiN . Let us “turn on” new item-to-context learning with γ � 1
and consider the asymptotic behavior as N gets large. After
a sufficiently long time, tIN

iN should no longer change with N,

so that tIN
i � N ✁ 1 ✁ � tIN

iN . For this to be the case, substituting into

Eq. 9 tells us that

tIN
i � N ✁ 1 ✁ ∝ tiN

✂
tIN
i � N ✁ 1 ✁ ☛ (21)

For this to be true, tiN must lie in the same direction as
tIN
i � N ✁ 1 ✁ . But tiN includes a term tIN� i ✁ 1 ✁ N

. This means that

tIN� i ✁ 1 ✁ N
, the input vector from the previous direction has to lie

in the same direction as tIN
iN . The steady state of this system is

for the t vectors corresponding to all four stages of the path
and all four input vectors tIN to point in the same direction.19

This means that the space spanned by ti after learning has
collapsed into a single point. There is no longer any place-
specific firing under these circumstances. After sufficient ex-
perience, the place field for every simulated cell would cover
the entire maze. We conclude from this thought experiment
that self-motion information can not retrieve context in the
same way that non-spatial items do in Eq. 6.

Elaborations of the contextual retrieval rule. We just saw
that it is insufficient to treat velocity vectors as “items” in
engaging the contextual retrieval rule (Eq. 9). How might
TCM be elaborated to account for hippocampal function dur-
ing spatial navigation? One possibility is that for an “item” to
engage the new item-to-context learning rule (Eq. 9) it must
have certain properties that are not met by input from the
head direction system, but that are met by words in a ran-
domly assembled list and other non-spatial stimuli. There

are several properties that distinguish these classes of stim-
uli. For instance, it is possible that the anatomy and/or phys-
iology of the MTL is such that head direction inputs can-
not engage new item-to-context learning whereas non-spatial
stimuli can. It is possible that to engage new item-to-context
learning it is necessary to have a rapid change in the item
representation. This is more plausible for non-spatial stimuli
than for head direction—physics and the inherent overlap in
the tuning curves of head direction cells means that you can’t
“turn on” one particular head direction all at once. If this is
the case, then a high-pass filter at the input end of the hip-
pocampus (perhaps the dentate gyrus) could accomplish this
task. Another possibility is that new item-to-context learning
could only be engaged by items with sufficiently low fre-
quency. The head direction system is active more or less all
the time, whereas the types of non-spatial stimuli typically
used in memory experiments are infrequently encountered.

If the hippocampus does not associate head directions
to positional representations during spatial navigation, then
what does it do? Redish (1999) has suggested that the hip-
pocampus plays a role in spatial navigation by retrieving con-
text to help orient the animal when it enters a new environ-
ment. Another possibility is that the hippocampus does per-
form new item-to-context learning during spatial navigation,
but that this process is restricted to salient environmental
stimuli. This could be important in associating non-spatial
stimuli to spatial locations (Burgess, Maguire, & O’Keefe,
2002; Gilbert & Kesner, 2002). Recently, Burgess and col-
leagues (Burgess, 2002; Burgess et al., 2002) have hypoth-
esized that when presented with items encountered in a vir-
tual environment, the hippocampus plays a key role in re-
trieving the spatial context the item was learned in. This hy-
pothesis is supported by both neuropsychology (Spiers et al.,
2001) and functional imaging (Burgess, Maguire, Spiers,
& O’Keefe, 2001). Contextual retrieval of salient stimuli
could also be important in supporting behavioral path inte-
gration. To return to the home cage, the rat must presum-
ably recover the spatial representation of the home cage’s
location. If presenting the item “home cage” as a probe,
then retrieved context would be the location of that object.
This interpretation is consistent with lesion studies of be-
havioral path integration, which show that animals with hip-
pocampal damage cannot return directly to their starting po-
sition (Maaswinkel, Jarrard, & Whishaw, 1999; Whishaw,
McKenna, & Maaswinkel, 1997; Whishaw & Maaswinkel,
1998 but see Alyan & McNaughton, 1999). The finding that
hippocampal place fields in blind rats only become aligned
after the first experience with a distinctive landmark object
(Save, Cressant, Thinus-Blanc, & Poucet, 1998) is also quite
consistent with the idea that contextual learning and retrieval
only engages sufficiently distinctive stimuli.

At the very least the mesoscopic computational approach
taken here has enabled us to frame the question of hippocam-
pal function in a way that, if satisfied, will be simultaneously
consistent with considerations from multiple domains. If one

19 If we have four orthonormal input vectors initially, the steady

state is the vector with all four components set to 1 ✂ 2.
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can model hippocampal place cell behavior in a way that en-
ables the hippocampus to reconstruct the state of EC when
presented with a repeated non-spatial stimulus, then the re-
sulting physiological model would be able to explain data
from a broad variety of cognitive memory tasks.

Conclusions

The Temporal Context Model (TCM), developed to de-
scribe essential properties of episodic recall, captures key
properties of both the entorhinal place code and relational
memory. It does so by proposing the existence of a leaky
integrator, and changes in stimulus representations, respec-
tively. Both mechanisms are consistent with observed
cellular-level data. TCM can address data across a wide va-
riety of tasks, providing a first step toward a unified compu-
tational account of MTL function.
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Appendix A: A worked example
illustrating the recency effect

Table 2 shows a worked example that illustrates how con-
textual drift results in recency in TCM. In this example, items
A, B and C were presented at times 1, 2, and 3, respectively.
In the example an immediate recall test was presented at
time-step 4. In this case, there was no item presented and
thus no contextual drift so that tT � t3.20 At the end of the
list,

MT F
T � MT F

0
✂

fAt ✄1 ✂
fBt ✄2 ✂

fCt ✄3 ☎ (22)

where MT F
0 is the state of the matrix before the list is pre-

sented. We will assume for simplicity that there are no terms
in MT F

0 involving the item representations of the items in the

list.21 Let us explicitly calculate the cue strength between
tT and item B. This cue strength is fB ✄ MT F

T tT . First, let us

calculate fB ✄ MT F
T :

fB ✄ MT F
T � fB ✄ ✝ MT F

0
✂

fAt ✄1 ✂
fBt ✄2 ✂

fCt ✄3 ✞
� fB ✄ MT F

0

✂
fB ✄ fAt ✄1 ✂

fB ✄ fBt ✄2 ✂
fB ✄ fCt ✄3

� 0
✂ � 0 ✂ t ✄1 ✂ � 1 ✂ t ✄2 ✂ � 0 ✂ t ✄3

� t ✄2 (23)

The third line follows from our assumption that the item rep-
resentations are orthonormal. Multiplying MT F from the left
with the item representation fB ✄ has “picked out” only the
terms in MT F involving fB. From this, we see that ai for item
B is just t ✄2tT . This is illustrates the statement made earlier
that the cue strength between an item and a state of context is
the similarity of the cue context to the states of context that
obtained when the item was presented—in this case tB.

Let us explicitly calculate this quantity, using the fact that
tT in this example is just t3:

aB � t2 ✡ t3 � t2 ✡ ✝ ρt2
✂ βtIN

C1 ✞
� ρt2 ✡ t2

✂ βt2 ✡ tIN
C1

� ρ � 1
✂ β � 0

Where the last line follows from the constraint that ✁✞✁ ti ✁✞✁ � 1
for all i and the assumption that initially all the input vec-
tors tIN

i from a random word list are orthonormal. The last
column in Table 2 gives the probability that the first item re-
called with tT as a cue will be A, B or C. These values add up
to one, which is consistent with the definition of the probabil-
ity of first recall (Laming, 1999; Howard & Kahana, 1999).

It is important to note that while TCM has been applied ex-
tensively to free recall, it does not contain any of the sam-
pling and recovery rules that would be necessary to produce
a complete description of the task (such as those specified by
SAM Raaijmakers & Shiffrin, 1980, 1981).

Appendix B: Calculation of αO
and αN on each trial

When items are presented in contexts that are similar to
the input patterns they evoke (i.e.tIN

i ✡ ti ✁ 1 � 0), the constraint

that ✁✆✁ tIN
r � 1 ✁✞✁ requires that αO and αN be different on such

trials compared to trials where there is no such similarity. If
αO and αN were not able to change value from trial to trial to
enforce the condition that ✁✆✁ tIN

i ✁✞✁ � 1, then Eq. 9 could enable✁✞✁ tIN ✁✆✁ to grow without bound, or decay to zero with repeated
item presentations. Each time an item is presented at time
step i, the constraint that the length of the input pattern when
that item is repeated at time step r is unity, ✁✆✁ tIN

r ✁✆✁ � 1, leads
to the equation,

α2
O � 1

γ2 ✂
2γti ✡ tIN

i

✂
1

☛ (24)

If there is no similarity between tIN
i and ti ✁ 1, then ti ✡ tIN

i � β
from Eq. 6. The value of αO can be determined from this
equation, given γ. When γ � 0, αO � 1 for all presentations.
When γ � 0, as in the intact case, the value of αO depends on
the similarity of the input pattern tIN

i to the contextual pattern
ti. Once a value for αO is calculated, αN is then determined
from the definition of γ. We assume that the initial inputs
evoked by the stimuli are orthonormal, tIN

A1
✡ tIN

B1 � δAB, where

δAB is one if A � B and 0 otherwise.

Appendix C: A worked example
illustrating associative effects

Table 3 shows a worked example illustrating the associa-
tive effects attributed to the two components. In this exam-
ple, five items, A through E are presented in sequence at time
steps 1 through 5. We assume that an infinitely long delay in-
tervenes before the recall test, such that tT ✁ 1 ✡ ti � 0 for all the
items in the list. To illustrate the associative effects caused
by retrieved context, at the time of test T , we present item
C as a cue for recall of the other items in the list. In treat-
ing free recall, previous studies (Howard & Kahana, 2002a;
Howard et al., In revision; Howard, 2004) have presented a
just-recalled item to the network as a cue to retrieve other
items to generate a CRP function. Equation 9 tells us that the
context retrieved by C when it is presented the second time,
as a cue, will be a combination of the state initially evoked,
plus the state of context that obtained when C was initially
presented:

tIN
C2 � αOtIN

C1

✂ αNtC1
☛ (25)

20 Under some circumstances, it might be desirable to consider

that the “recall signal” itself causes some degree of contextual drift.
21 We could also assume that there was no overlap between the

pre-list contexts and the test context.
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Table 2
Worked example showing the values of various quantities necessary to calculate probability of recall for several items. In this
example, items A, B and C are presented at times 1, 2, and 3 respectively. The recall test was given at time T . For convenience,
τ has been set to 2. The last column shows the probability of recalling each item first if ρ � 0 ☛ 7.

i fi ti ∆MT F ai P � i ✁ tT ✂
0 0 t0 0

1 fA ρt0
✂ βtIN

A1
fAt ✄1 t1 ✡ t3 � ρ2 0.26

2 fB ρt1
✂ βtIN

B1
fBt ✄2 t2 ✡ t3 � ρ 0.32

3 fC ρt2
✂ βtIN

C1
fCt ✄3 t3 ✡ t3 � 1 0.43

T 0 t3 0

Table 3
Worked example showing the values of various quantities necessary to calculate probability of recall for several items. In this
example, items A, B, C, D and E are presented at times 1, 2, and 3 respectively. After a very long delay, item C was presented
as a cue for a recall test at time T . For convenience, τ has been set to 2, and γ set to one. The last column shows the probability
of recalling each item in response to C as a cue for ρ � 0 ☛ 7.

i fi ti ∆MT F ai P � i ✁ tT ✂
0 0 t0 0

1 fA ρt0
✂ βtIN

A1
fAt ✄1 t1 ✡ tT � βαNρ2 0.22

2 fB ρt1
✂ βtIN

B1
fBt ✄2 t2 ✡ tT � βαNρ 0.23

3 fC ρt2
✂ βtIN

C1
fCt ✄3

4 fD ρt3
✂ βtIN

D1
fCt ✄3 t4 ✡ tT � βρ � αN

✂ βαO ✂ 0.29

5 fE ρt4
✂ βtIN

E1
fCt ✄3 t5 ✡ tT � βρ2 � αN

✂ βαO ✂ 0.26
...

T fC ρtT ✁ 1
✂ βtIN

C2
fCt ✄T

For this example, we assume that γ � 1, meaning that αO �
αN . We also assume that all of the initial inputs are orthonor-
mal, and orthogonal to t0 and tT ✁ 1. Now, the state of context
used to cue recall of A, B, D and E is just

tT � ρtT ✁ 1
✂ βtIN

C2

� ρtT ✁ 1
✂ β ✝ αOtIN

C1

✂ αNtC1 ✞
First, let’s explicitly calculate the cue strength of tT to B:

aB � tB1 ✡ tT

� tB1 ✡ ✝ ρtT ✁ 1
✂ βtIN

C2 ✞
� tB1 ✡ ✆

ρtT ✁ 1
✂ β ✝ αOtIN

C1

✂ αNtC1 ✞ ✟
� ρtB1 ✡ tT ✁ 1

✂ βαOtB1 ✡ tIN
C1

✂ βαNtB1 ✡ tC1

� ρ � 0
✂ βαO � 0

✂ βαNtB1 ✡ ✝ ρtB1

✂ βtIN
C1 ✞

� βαNρ

In particular, the last line takes advantage of the fact that
tB1 ✡ tIN

C1 � 0. Note that if αN � 0, then aB � 0—the cue

strength of the item immediately preceding the cue goes to
zero. Now let’s calculate the cue strength of tT to A. Picking
the derivation up further in than the last one, we find

aA � tA1 ✡ tT

� tA1 ✡ β ✝ αOtIN
C1

✂ αNtC1 ✞

� βαOtB1 ✡ tIN
C1

✂ βαNtA1 ✡ tC1

� βαO � 0
✂ βαNtA1 ✡ ✝ ρtB1

✂ βtIN
C1 ✞

� βαNtA1 ✡ ✆
ρ ✝ ρtA1

✂ βtIN
B1 ✞ ✂ βtIN

C1 ✞
� βαN ✝ ρ2 � 1

✂ βρ � 0
✂ β � 0 ✞

We see from this that the cue strength of A, the item two be-
fore the cue, is also zero if αN � 0. When not zero, it lower
than the cue strength for B, because it includes an extra factor
of ρ. This illustrates the contiguity effect—items closer to
the cue have a higher cue strength (and are thus more likely
to be recalled).

In the forward direction, not only does the tC1
term from

tIN
C2

contribute to the cue strength, but so does the tIN
C1

term.

This is so because the context from items that followed C1

include a term with tIN
C1

. For instance,

tD1 � ρtC1

✂ βtIN
D1

� ρ ✝ ρtB1

✂ βtIN
C1 ✞ ✂ βtIN

D1
☛

Where the second line follows from the first by expanding
tC1

using Eq. 6. From this we can see that tD1 ✡ tIN
C1 � ρβ. As

a consequence,

aD � βtD1 ✡ tIN
C2

� βtD1 ✡ ✝ αOtIN
C1

✂ αNtC1 ✞
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� β ✝ αOtD1 ✡ tIN
C1

✂ αNtD1 ✡ tC1 ✞
� β � αOρβ ✂ ραN ✂
� βρ � αOβ ✂ αN ✂

We can see that this is greater than aB if αO � 0. This imple-
ments associative asymmetry. The cue strength to E is just
this expression with an additional factor of ρ:

aE � ρaD ☎ (26)

showing evidence for contiguity.

Appendix D: Derivation of
transitive associations

The following derivation assumes that in a first stage of
learning, A

�
B is presented, followed by B

�
C in a second

stage of learning. Each pair is presented just once in this
derivation. We will refer to the state of context prior to pre-
sentation of A in the first stage of learning as t1 and the state
prior to the presentation of B in the second stage as t2. We
assume that the delay between phases of learning is infinitely
long so that t1 ✡ t2 � 0. So, item A is presented at time step A1,
item B is presented at time step B1, and then later at time step
B2, and item C is presented at time step C2. We assume that
the initial inputs from each item (tIN

A1
, tIN

B1
and tIN

C2
, but not tIN

B2
)

are orthonormal (meaning, orthogonal and of unit length), as
well as orthogonal to the initial contexts t1 and t2. We denote
the time of test, when one of the items is repeated as a cue as
time step r. We assume that there is an infinite delay prior to
test so that tr ✁ 1 ✡ tC2 � 0.22

For the first stage of learning we have:

tA1 � ρt1
✂ βtIN

A1

tB1 � ρtA1

✂ βtIN
B1

☛
During the second stage of learning we have:

tB2 � ρt2
✂ βtIN

B2

tC2 � ρtB2

✂ βtIN
C2

☛
The state of context at time of test, tr, serves as the re-

trieval cue. This will include the input from the cue item
(for instance, tIN

Ar
if item A is the cue), as well as the state of

context tr ✁ 1 prior to presentation of the cue. This component
could be responsible for a recency effect (Murdock, 1963b,
1963c, 1963a), but we have assumed that there is an infinite
delay so that tr ✁ 1 is not an effective retrieval cue for any of
the stimuli. In this case, the cue strength is solely determined
by the input pattern (e.g. tIN

Ar
) retrieved by the cue item. If

item A is presented as a cue at time-step Ar, then the cue
strength of item B is

βtIN
Ar ✡ � tB1

✂
tB2

✂ ☛ (27)

Similarly, the cue strength from A to C after learning is just

βtIN
Ar ✡ tC2

☛ (28)

The cue pattern tIN
Ar

will be a function of tIN
A1

and tA1
, accord-

ing to Eq. 9. To determine the value for each of these cue
strengths, we just need to expand the t’s far enough using
Eqs. 6 and 9 so that their relationship to tIN

A1
and tA1

is made

clear.
First we will show that when A is presented as a cue, the

cue strength to B is non-zero even when αN is zero. The cue
strength from A to B is proportional to

tIN
Ar ✡ � tB1

✂
tB2

✂ � ✝ αOtIN
A1

✂ αNtA1 ✞✁�
✝ ρtA1

✂ βtIN
B1

✂ ρt2
✂ βtIN

B2 ✞
� ✝ αOtIN

A1

✂ αNtA1 ✞✁�✆
ρtA1

✂ βtIN
B1

✂ ρt2
✂ β ✝ αOtIN

B1

✂ αNtB1 ✞✠✟
� αOρtIN

A1 ✡ tA1

✂ αNρtA1 ✡ tA1

✂ α2
NβtA1 ✡ tB1

� ρ ✝ αOβ ✂ αN
✂ α2

Nβ ✞ ☛
This value is non-zero even when αN � 0. Similarly, the cue
strength from B to C is proportional to:

tIN
Br ✡ tC2 � ✝ αOtIN

B2

✂ αNtB2 ✞ ✡ tC2

� αOβρ ✂ αNρ

Again, this is non-zero even if αN � 0. Learning of the
premise pairs can proceed even in the absence of new item-
to-context learning.

In contrast, a non-zero transitive association between A
and C depends completely on the existence of new item-to-
context learning. The cue strength from A to C is given by:

tIN
Ar ✡ tC2 � ✝ αOtIN

A1

✂ αNtA1 ✞ � ✝ ρtB2

✂ βtIN
C2 ✞

� ✝ αOtIN
A1

✂ αNtA1 ✞✂� ✆
ρ ✝ ρt2

✂ βtIN
B2 ✞ ✂ βtIN

C2 ✟
� ✝ αOtIN

A1

✂ αNtA1 ✞ �✄
ρ

✆
ρt2

✂ β ✝ αOtIN
B1

✂ αNtB1 ✞✠✟ ✂ βtIN
C2 ☎

� αOαNρβ ✝ tIN
A1 ✡ tB1 ✞ ✂ α2

Nρβ � tA1 ✡ tB1
✂

� αOαNρ2β2 ✂ α2
Nρ2β

� αNρ2β � αOβ ✂ αN ✂
The last line is Eq. 17 from the main text. Clearly, this cue
strength goes to zero if αN � 0, demonstrating that transitive
associations depend on new item-to-context learning.

Within this framework, transitive associations develop be-
cause of the context retrieved during the second presentation
of B. When B becomes bound to contextual elements from
A, these elements form part of the contextual representation
associated with C, leading ultimately to the transitive associ-
ation. To make this explicit, when B is presented the second

22 These simplifying assumptions enable us to avoid changes in
αO and αN that would occur as a consequence of the assumption

that
✌✍✌
tIN
i

✌✍✌
. If there is similarity between the input tIN

i and the prior
context ti, then αO and αN must be adjusted. See the discussion of
normalization in the description of the simulation for more infor-

mation.
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time as part of B
�

C,

tIN
B2 � αOtIN

B1

✂ αNtB1
☛ (29)

This second term, tB1
overlaps considerably with the contex-

tual elements retrieved by A:

tB1 � ρtA1

✂ βtIN
B1

(30)

The contextual state associated with C, tC2
, includes tIN

B2
.

When αN � 0, the context retrieved by B on its second pre-
sentation includes tA1

and tIN
A1

. In the presence of new item-

to-context learning, contextual elements originating from A
are associated to C. In the absence of item-to-context learn-
ing (i.e. when αN � 0), then only a stimulus-specific repre-
sentation from B contributes to C’s context. In this case there
will be no A

�
C association.
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