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Abstract: Background: Accumulating research demonstrates that the timing of exercise plays an

important role in influencing episodic memory. However, we have a limited understanding as to

the factors that moderate this temporal effect. Thus, the purpose of this systematic review with

meta-analysis was to evaluate the effects of study characteristics (e.g., exercise modality, intensity

and duration of acute exercise) and participant attributes (e.g., age, sex) across each of the temporal

periods of acute exercise on episodic memory (i.e., acute exercise occurring before memory encoding,

and during memory encoding, early consolidation, and late consolidation). Methods: The following

databases were used for our computerized searches: Embase/PubMed, Web of Science, Google Scholar,

Sports Discus and PsychInfo. Studies were included if they: (1) Employed an experimental design

with a comparison to a control group/visit, (2) included human participants, (3) evaluated exercise

as the independent variable, (4) employed an acute bout of exercise (defined as a single bout of

exercise), (5) evaluated episodic memory as the outcome variable (defined as the retrospective recall

of information either in a spatial or temporal manner), and (6) provided sufficient data (e.g., mean, SD,

and sample size) for a pooled effect size estimate. Results: In total, 25 articles met our inclusionary

criteria and were meta-analyzed. Acute exercise occurring before memory encoding (d = 0.11, 95% CI:

−0.01, 0.23, p = 0.08), during early memory consolidation (d = 0.47, 95% CI: 0.28, 0.67; p < 0.001)

and during late memory consolidation (d = 1.05, 95% CI: 0.32, 1.78; p = 0.005) enhanced episodic

memory function. Conversely, acute exercise occurring during memory encoding had a negative

effect on episodic memory (d = −0.12, 95% CI: −0.22, −0.02; p = 0.02). Various study designs and

participant characteristics moderated the temporal effects of acute exercise on episodic memory

function. For example, vigorous-intensity acute exercise, and acute exercise among young adults, had

greater effects when the acute bout of exercise occurred before memory encoding or during the early

memory consolidation period. Conclusions: The timing of acute exercise plays an important role in

the exercise-memory interaction. Various exercise- and participant-related characteristics moderate

this temporal relationship.
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1. Introduction

Episodic memory refers to the retrospective recall of information from a spatial-temporal context [1].

That is, retrieving previously encoded information based on its place and location in time. Episodic

memory function is critical for communicative behavior [2], is predictive of longevity [3], and the

deterioration of episodic memory is associated with several neurocognitive and neuropsychiatric

disorders [4]. Thus, identification of behaviors that enhance episodic memory is a worthwhile endeavor.

Accumulating research demonstrates that both acute and chronic exercise behavior can subserve

cognitive function, including episodic memory [5–27]. Of interest to this review are the effects of acute

exercise (vs. chronic exercise) on episodic memory. This tailored focus on acute exercise is justified,

as the mechanisms through which acute and chronic exercise influence episodic memory is distinct

(discussed elsewhere [28,29]). Recent excellent reviews (e.g., see Roig et al. [14,15]) have qualitatively

and quantitatively summarized the effects of acute exercise on memory function. These reviews,

as well as other reviews [16,30], have demonstrated that acute exercise has small-to-moderate effects on

enhancing memory, and that these effects may, in part, be moderated by key study characteristics (e.g.,

timing of exercise and the memory assessment, exercise modality, intensity and duration of exercise)

and participant attributes (e.g., age, sex).

For example, the timing of the exercise and memory stimulus plays a critical role in the

exercise-memory interaction [14,15]. Various temporal periods have been evaluated in recent work

on this topic, including acute exercise occurring before memory encoding, during memory encoding,

and during the early and late phases of memory consolidation. Accumulating research suggests that

when the acute bout of exercise occurs shortly before the memory task, episodic memory may be

enhanced [31–34]. As we have discussed elsewhere [29], this may be a result of acute exercise-induced

alterations in long-term potentiation (LTP), or the functional connectivity of communicating neurons.

Although there is accumulated research demonstrating that the timing of exercise plays an

important role in influencing episodic memory, we have a limited understanding as to whether this

temporal effect of acute exercise on episodic memory is influenced by study characteristics (e.g., exercise

modality, intensity and duration of acute exercise) and participant attributes (e.g., age, sex). Such an

effect is plausible for several reasons [35]. These characteristics appear to play a moderating role on

their own (while not considering the temporal effects of acute exercise on memory). For example,

we recently demonstrated that the vigorous-intensity, acute exercise has greater effects in enhancing

episodic memory when compared to the lower-intensity, acute exercise [34]. However, it is plausible

that vigorous-intensity, acute exercise would have a differential effect on episodic memory based on the

timing of the acute bout of exercise and the memory stimulus. For example, acute, vigorous-intensity

exercise may enhance memory when it occurs prior to memory encoding (via LTP) and may also

enhance long-term memory if it occurs during the consolidation period (e.g., vigorous-intensity, acute

exercise-induced increases in neurotrophins may help stabilize the memory trace) [36]. However,

vigorous-intensity, acute exercise may have a negative effect on episodic memory if occurring during

memory encoding, as this higher-intensity bout of exercise may induce a transient hypofrontality effect

and mental fatigue [37,38], which in turn, may reduce memory encoding.

Regarding participant attributes, other reviews demonstrate that, for example, young adults (vs.

older adults) appear to have greater memory-enhancing effects from acute exercise [15]. However, it is

uncertain as to whether these (exercise intensity, age) and other characteristics (e.g., sex) consistently

influence the acute exercise-memory interaction across all exercise-memory temporal periods. Thus, the

purpose of this systematic review with meta-analysis was to evaluate the effects of study characteristics

(e.g., exercise modality, intensity and duration of acute exercise) and participant attributes (e.g., age, sex)

across each of the temporal periods of acute exercise on episodic memory (i.e., acute exercise occurring

before memory encoding, and during memory encoding, early consolidation, and late consolidation).

We hypothesize that the acute exercise occurring before memory encoding and during early and

late consolidation will enhance episodic memory, whereas acute exercise occurring during memory

encoding will impair episodic memory. However, of central focus of this review, we hypothesize
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that key moderators (e.g., vigorous-intensity exercise, age) will influence this temporal relationship

between acute exercise and episodic memory function. The identification of potential moderators of

this temporal relationship should aid in the design of future projects on this topic as well as, even

within one temporal period (e.g., acute exercise before memory encoding), demonstrate the complexity

of the acute exercise-memory interaction.

2. Methods

2.1. Data Sources and Search Strategy

The following databases were used for our computerized searches: Embase/PubMed, Web of

Science, Google Scholar, Sports Discus, and PsychInfo [39]. Articles were retrieved from inception to

14 February 2019. The search terms, including their combinations, were: Physical activity, exercise,

physical exercise, cognition, memory, episodic memory, and temporality.

2.2. Study Selection

The literature searches were performed independently by two separate authors and comparisons

were made to determine the number of eligible studies. Consensus was reached from these two

independent reviews. Upon performing the computerized searches, the article titles and abstracts were

reviewed to identify potentially relevant articles. Articles appearing to meet the inclusionary criteria

were retrieved and reviewed at the full text level.

2.3. Inclusionary Criteria

Studies were included if they: (1) Employed an experimental design with a comparison to a

control group/visit, (2) included human participants, (3) evaluated exercise as the independent variable,

(4) employed an acute bout of exercise (defined as a single bout of exercise), (5) evaluated episodic

memory as the outcome variable (defined as the retrospective recall of information either in a spatial

or temporal manner), and (6) provided sufficient data (e.g., mean, SD, and sample size) for an effect

size estimate.

2.4. Methodological Quality of Evaluated Studies

Two authors independently evaluated the methodological quality of the included studies. When

disagreements between the two reviewers occurred, they discussed the discrepant results together

and reached a consensus. The methodological quality of each included study was evaluated using the

Physiotherapy Evidence Database (PEDro) scale. This scale is based on 11 items to assess study rigor,

including: Eligibility criteria, random allocation, concealed allocation, baseline comparability, blinded

subjects, blinded therapists, blinded assessors, follow-up, intention-to-treat, between group analysis,

and outcome point estimates. We adapted the PEDro scale to fit our study topic. Of the 11 items,

we removed the eligibility criteria item because this focuses more on external validity as opposed

to internal validity. Further, blinded subjects and blinded therapists were removed because it is not

feasible to blind the subject/researcher for an exercise protocol. Further, follow-up and intention-to-treat

items were removed because of the acute exercise paradigm employed in our evaluated experiments.

Thus, we retained and evaluated the following items: Random allocation, concealed allocation, baseline

comparability, blinded assessors, between group analysis, and outcome point estimates. In addition to

these six items, we added an additional internal validity item, including whether studies reported an

objective measure of exercise intensity (e.g., heart rate). In total, seven items were evaluated. Studies

that met the evaluated criteria were given a point (seven points maximum), with a greater score

indicative of higher methodological quality. Points were only awarded if the criterion was clearly

satisfied in the paper. Given that some of the studies employed a within-subject design, these studies

were automatically awarded a point for the baseline comparability item.
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2.5. Data Extraction of Included Studies

Detailed information from each of the included studies was extracted, including the following

information: Author, sample characteristics, study design, exercise temporality (i.e., when the exercise

took place in reference to the memory assessment), exercise protocol, memory assessment, and results.

2.6. Categorization of Temporal Period

We evaluated four temporal periods regarding the timing of exercise and the memory assessment.

These included: (1) Exercise before memory encoding vs. control, (2) exercise during memory encoding

vs. control, (3) exercise during early consolidation vs. control, and (4) exercise during late consolidation

vs. control.

The temporal period of ‘exercise before memory encoding’ was defined as the acute bout of exercise

occurring prior to encoding the memory stimuli. We defined ‘exercise during memory encoding’ if

the acute bout of exercise occurred while encoding the memory stimuli. Early consolidation was

considered within the first four h post memory encoding, whereas late consolidation was defined as

four or more h after memory encoding. This specific threshold of four h was utilized as the two studies

evaluating the effects of exercise during the late consolidation period employed this time frame [19,40].

2.7. Categorization of Moderators

The evaluated moderators included age, sex, race-ethnicity, memory type, exercise intensity,

exercise duration, and exercise modality. We were not able to evaluate the moderation effects of

cardiorespiratory fitness, as too few studies evaluated this parameter. The evaluated moderators were

chosen as they have been shown to influence episodic memory [15,30,41]. Notably, however, not all

of these moderators could be evaluated for each of the temporal periods. Moderation analyses were

computed when at least two studies provided data for the moderation analysis.

Age was categorized as young-adult (18–24 years), adult (25–44 years), middle-age (45–60 years),

and older adults (>60 years) [15]. The sex moderation analyses were evaluated for males, females,

mixed samples, and predominately male/female. Predominately male/female was defined as a study

including >71% of a particular sex [42]. Race-ethnicity was defined as non-Hispanic white and other.

For the episodic memory type, we evaluated both short-term and long-term episodic memory, with the

latter defined as a delayed period >2-min [15]. Exercise-intensity was based on thresholds suggested

by the American College of Sports Medicine [43]. For example, based on maximum heart rate estimates,

light, moderate and vigorous-intensity exercise, respectively, were defined as <64%, 64%–76%, and

>76%. Exercise duration was defined as short duration (<20 min), medium (20–40 min), and long

duration (>40 min) [15]. Lastly, exercise modality was defined as treadmill-based walking/running

or cycling.

2.8. Data Synthesis

The Comprehensive Meta-Analysis software (Version 3, Biostat, NJ, USA) was used to calculate

effect sizes (Cohen’s d) and 95% CI, employing a random-effects model. The weighted mean effect

size (Cohen’s d) and 95% CI were calculated using the inverse variance weighting method. Effect

size estimates were evaluated for each of the above-mentioned moderators for each temporal period.

The degree of heterogeneity of the effect sizes was evaluated with the Cochran’s Q-statistic. Egger’s

regression test was used to evaluate the potential publication bias.

3. Results

3.1. Retrieved Articles

Figure 1 displays the flow chart of the article retrieval process. The computerized searches

identified 6621 articles. Among the 6621 articles, 6569 were excluded and 52 full text articles were
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reviewed. Among these 52 articles, five were duplicates and 22 were ineligible [5,24–26,44–61] as

they did not provide enough data for an effect size calculation. Thus, in total, 25 articles met our

inclusionary criteria and were eligible for the quantitative meta-analysis.

Figure 1. Flow chart of article retrieval.

3.2. Study Quality

The methodological quality of the studies is shown in Table 1. On a scale from 0–7, the mean

score was 4.72 (SD = 0.79). For the random allocation (between-subject design) or counterbalancing

(within-subject design) item, 24 of the 25 studies (96.0%) satisfied this criterion. Similarly, the majority

of studies (N = 21; 84.0%) employed a baseline comparison assessment, objective measure of exercise

intensity (N = 22; 88.0%), between/within-group analysis (N = 25; 100%), and outcome point estimate

(N = 25; 100%). However, only one study (4.0%) provided sufficient details on whether allocation

concealment was employed, and zero studies (0.0%) blinded the assessors to the outcome.
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Table 1. Methodological quality of the included studies.

Author
Random

Allocation/Counterbalance
Concealed
Allocation

Baseline
Comparability

Blinding of
Assessors to

Outcome

Between/Within
Group Analysis

Reported Objective
Measure of Exercise

Intensity

Outcome
Point

Estimate
Total
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3.3. Article Synthesis

Details on the study characteristics are displayed in Table 2 (extraction table). Studies ranged from

young adults (18 years) to older adults (84 years). Sample sizes ranged from 10 to 352 participants.

Among the 25 studies, 17 (68%) employed a between-subject design. The acute exercise protocols

varied, ranging from an isokinetic resistance exercise, to a 2-min run, to a 60-min brisk walk. Common

memory assessments included word list formats (e.g., CVLT, California Verbal Learning Test; RAVLT,

Rey Auditory Verbal Learning Test), but other episodic memory assessments included, for example,

paragraph recalls, image recognition, and recall of visually observed film stimuli.
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Table 2. Extraction table of the evaluated studies.

Author Sample Study Design Exercise Temporality Exercise Protocol Memory Assessment Results

Stones et al.
(1993) [62]

20 older adults,
Mage = 84.5

Experimental;
between-subject

Memory battered occurred
before exercise,

immediately after exercise
and then 30-min

post-exercise

15-min exercises, which occurred
while sitting in a chair (e.g.,

stretching, low-intensity aerobic
activity, slow rhythmical

movement)

Word fluency
Exercise was associated with greater
semantically cued memory (p < 0.01).

Schramke et al.
(1997) [63]

Two age groups, each
including 48 adults.

Younger group, 18–38 year.
Older group, 60–80 year.

Experimental;
within-subject

Exercise occurred either at
rest or during encoding,

and similarly, either during
retrieval or not.

5–7 minutes of walking in a long
internal corridor.

CVLT; California verbal
learning test

There was no difference in learning
that was due to initial exercise
condition, but both age groups

showed greater recall when state was
congruent before learning and

delayed recall.

Labban et al.
(2011) [6]

48 young adults
(Mage = 22.0)

Experimental;
between-subject

Exercise occurred before
and after encoding

30-min of cycle ergometer exercise,
with 20-min at moderate-intensity

Paragraph recall, with
participants listening to two

paragraphs and then recalling
as much information as

possible from the paragraphs

Exercise occurring prior to the
memory task was effective in
enhancing memory (p < 0.05).

Salas et al.
(2011) [64]

80 college undergraduate
students (46 women).
Mage = 19.3, SD = 2.3

Experimental;
between-subject factorial

design. A 2 (encoding
condition: walking vs.
sitting) × 2 (retrieval

condition: walking vs.
sitting).

Exercise occurred either at
rest or during encoding,

and similarly, either during
retrieval or not.

10 minutes of walking outside at a
brisk pace

Word-list memory task (10
nouns presented sequentially

for 6 s each)

Students who walked before encoding
had significantly higher recall

(M = 0.45, SD = 0.17) compared to
students who sat before encoding

(M = 0.36, SD = 0.15), F(1,76) = 6.34,
η

2
p = 0.08.

Nanda et al.
(2013) [65]

10 healthy adult male
medical students.

Mage = 19.5, SD = 0.9

Quasi-experimental;
within-subject

Exercise occurred between
pre- and post- memory

assessments.

Cycle ergometer exercise for
30-min at moderate-intensity of

70% of heart rate reserve

Spatial span and paired
associates memory task

Spatial span did not increase from pre-
to post, but paired associates was

significantly higher after the
exercise bout.

Schmidt-Kassow
et al. (2014) [10]

49 right-handed German
young adults (18–30 year)

Experimental;
within-subject

Exercised during encoding
Self-selected walking pace during

memory encoding
40-item (Polish) word list.

Experiment 1: words recalled during
walking was higher than non-walking

(5.5, SD = 3.3; vs. 4.8, SD = 4.2),
F = 6.98, p = 0.02, η2

p = 0.31.
Experiment 2: words recalled during

walking was higher than non-walking
(5.3, SD = 4.6; vs. 4.1, SD = 3.5),

F = 6.44, p = 0.02, η2
p = 0.19.
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Table 2. Cont.

Author Sample Study Design Exercise Temporality Exercise Protocol Memory Assessment Results

Weinberg et al.
(2014) [66]

23 participants (Mage = 20.6
year) in the exercise group
and 23 (Mage = 20.2 year) in

the control group.

Experimental;
between-subject

Exercised during early
consolidation

Isokinetic dynamometer knee
extension exercise. Session

consisted of submaximal voluntary
dynamic contractions for a

warm-up, maximal voluntary
isometric contractions, and 6 sets

of 10 repetitions of maximal
voluntary knee extension

contractions. Both legs were
exercised. In the control (passive)
group, the experimenter passively
moved the participant leg between

extension and flexion.

180 images from the IAPS.
Follow-up memory recall

assessment took place 48-h
later. The retrieval task

included 90 studied images
and 90 new images.

Participants were instructed to
indicate “remember”,

“familiar”, or “new” after
seeing each image.

There was no valence × group
interaction effect. There was a main
effect for valence in that participants

remembered more positive and
negative images than neutral images.

Basso et al.
(2015) [67]

85 young adults,
Mage = 22.1

Experimental;
between-subject

Memory tasks occurred
before exercise and at

various time-points after
exercise (30–120 min)

50-min of vigorous-intensity
exercise on cycle ergometer

Hopkins verbal learning test
revised, modified Benton

visual retention test, Digit span

Acute exercise improved
prefrontal-cortex, but not
hippocampal-dependent

memory function.

Loprinzi et al.
(2015) [68]

87 young adults,
Mage = 21.4 year

Experimental;
between-subject

Exercise before
memory task

Light, moderate, and
vigorous exercise

Spatial span and paired
associates

Acute exercise was not associated with
either memory outcome.

Bantoft et al.
(2016) [69]

45 undergraduate students,
Mage = 22.6 year (6.2)

Experimental;
within-subject

Sitting, standing or walking
during memory task

Low-intensity walking Digit span
There were no differences in memory

performance across the three
conditions.

van Dongen
et al. (2016) [19]

72 young adults,
approximately 22 years

Experimental;
between-subject

Exercise immediately after
encoding and 4 hours after

encoding

35 min of intermittent
high-intensity exercise on cycle

ergometer
Paired associates learning task

Exercising 4 hours after memory
encoding was advantageous in
improving memory function.

Crush et al.
(2017) [70]

352 participants, mean age
approximately 21 years

Experimental;
between-subject

Exercise occurring before
memory assessment

16 total groups, with groups
ranging from 10 min of exercise to

60 min of exercise, including
resting periods of either 5, 15,

or 30 min

Spatial span
Shorter exercise recovery periods had a
greater effect on memory performance.

Frith et al.
(2017) [31]

88 participants (22 per
group), approximate

age = 21 years.

Experimental;
between-subject

Exercise occurring before,
during, and after memory

encoding

15-min treadmill bout of
progressive high-intensity

aerobic exercise
RAVLT

High-intensity exercise prior to
memory encoding was effective in

enhancing long-term memory, for both
20-min delay (F = 3.36, p = 0.02,

η
2

p = 0.11) and 24-h delay (F =2.80,

p = 0.04, η2
p = 0.09).
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Table 2. Cont.

Author Sample Study Design Exercise Temporality Exercise Protocol Memory Assessment Results

Keyan et al.
(2017) [71]

49 undergraduates between
18–29 years

Experimental;
between-subject

Exercise occurred during
the early memory

consolidation period

Stepping exercise for 10-min on a
15 cm stepper, with a goal of

exercising at 50%–85% of max.

Viewed a film depicting a car
accident. Involves 10 min of

live footage depicting
emergency workers attending
the scene of a motor vehicle

accident.

Exercise (vs. control) did not induce
more recall of central (t = 0.11, p > 0.05)
or peripheral (t = 0.42, p > 0.05) details
of the accident film. However, those
that exercise recalled more intrusive

memories of the car accident (t = 2.36,
p = 0.02, d = 0.68).

Keyan et al.
(2017) [72]

54 healthy undergraduate
students, Mage = 19.5 (3.0)

Experimental;
between-subject

During a memory
reconsolidation paradigm,

participants either
exercised or did not

exercise after memory
reactivation

20–25 min of incremental cycling
Trauma film depicting the

aftermath of a highway
car crash

The exercise with reactivation
condition recalled more central details

of the trauma film.

McNerney et al.
(2017) [73]

Experiment 1: 136 young
adults, Mage = 19.2 (1.2)

Experiment 2: 132 young
adults, Mage = 19.1 (1.2)

Experimental;
between-subject

Exercise occurring before
and after memory encoding

2-min of sprints
Paired associate learning,

procedural learning, and text
memory

Improvements in procedural and
situation model memory occurred,

regardless of whether exercise
occurred before or after memory

encoding.

Most et al.
(2017) [74]

Experiment 1: 82
undergraduate psychology

students (Mage = 19.9).
Experiment 2: 83

undergraduate psychology
students (Mage = 19.9).

Experiment 3: 48
undergraduate psychology

students (Mage = 19.2).
Experiment 4: 75

undergraduate psychology
students (Mage = 21.1).

Experimental;
between-subject

Exercise occurring after
memory encoding

5-min of step exercise Paired faces and names.
Acute exercise in the early

consolidation period enhanced
memory.

Sng et al. (2017)
[32]

88 participants,
approximately 21–25 years

(mean for each group)

Experimental;
between-subject

Exercise occurred before,
during and immediately
after memory encoding

15-min moderate intensity brisk
walking (self-selected)

RAVLT

Exercising before memory encoding
was superior for enhancing learning
(p = 0.05), 24-h memory recognition

(p = 0.05) and 24-h memory attribution
(p = 0.006).
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Table 2. Cont.

Author Sample Study Design Exercise Temporality Exercise Protocol Memory Assessment Results

Delancey et al.
(2018) [40]

40 participants,
approximately 20 years

of age

Experimental;
between-subject

Exercise occurring 4 hours
after memory encoding

High-intensity bout of exercise for
15 minutes

RAVLT

Those who exercise during the
consolidation period have a greater
24-h follow-up memory attribution

(p = 0.04).

Haynes et al.
(2018) [33]

24 participants
(Mage = 20.9; SD = 1.9),

with 66.7% being female.

Experimental;
within-subject

Exercise occurring before,
during, and after memory

encoding

Self-selected brisk walking pace for
15-min

RAVLT

Short-term memory was greater in the
visit that involved exercise prior to the

memory task (F= 3.76, p = 0.01,
η

2
p = 0.79). Similar results occurred

for long-term memory, but there were
no exercise effects on prospective

memory.

Labban et al.
(2018) [75]

15 Participants; Mage = 22.7,
SD = 3.1

Experimental;
within-subject

Exercise occurring both
before and after memory

encoding.

30-min of moderate intensity
cycling

RAVLT

Exercise that occurred before encoding
(vs. control) was advantageous in

enhancing long-term memory,
including both 60-min delayed

memory (p = 0.03) and 24-h delayed
recall (p = 0.03).

Siddiqui et al.
(2018) [76]

20 participants (60% male).
Mage = 21.1; SD = 1.0

Experimental;
within-subject

Exercise occurring both
before and during memory

encoding.

20-min treadmill walk at a
self-selected brisk walking pace

The
Deese-Roediger-McDermott

(DRM) paradigm. Included a
15-item word list.

For both short-term and long-term
memory, the visit the involved exercise
before the memory task resulted in the

greatest memory performance
(F = 11.56, p < 0.001, η2

p = 0.38)

Wade et al.
(2018) [77]

34 female participants;
Mage = 20.5 (1.2) in the
exercise group and 20.8

(1.8) in the control group.

Experimental;
between-subject

Exercise occurred before
memory encoding

15-min treadmill walk at a
self-selected brisk walking pace

Emotional memory assessment
using images from the IAPS

(International Affective Picture
System).

There were no statistically significant
group differences across any of the

assessment periods (i.e., 1-day, 7-day,
and 14-day follow-up assessments).

Yanes et al.
(2018) [78]

40 participants, Mage = 21.0
Experimental;

between-subject
Exercise occurred before

memory encoding
15-min treadmill walk at a

self-selected brisk walking pace
6-paragraph passage for

memory recall

Exercise before encoding had greater
scores on the short-term and long-term
memory assessments, but this did not
reach statistical significance (F = 1.0,

p = 0.32, η2
p = 0.03).

Zuniga et al.
(2018) [79]

Experiment 1 (N = 30),
Mage = 20.4 (1.8);

Experiment 2 (N = 57),
Mage = 20.6 (4.1) in low-fit
group and Mage = 19.4 (1.6)

in high-fit group.

Experimental;
within-subject

Exercise occurred before
memory encoding

3-min warm-up period on the
treadmill, followed by 10-min of

walking at either light or
moderate-intensity.

Three lists of 30 concrete
English nouns from the MRC

Psycholinguistic database.

Both light-intensity (t = 2.79, p = 0.01)
and moderate-intensity (t = 3.02,

p = 0.006) recalled more words than
the sedentary condition. Results were

similar when comparing high-fit to
low-fit individuals.

CVLT; California verbal learning test; IAPS, International Affective Picture System; RAVLT, Rey Auditory Verbal Learning Task.
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3.4. Article Reference

There were too many effect sizes to report in a standard forest plot (as noted in Tables 3–6). Thus,

these quantitative results are not displayed in a forest plot, but rather, are shown in Tabular format

(Tables 3–6). However, to indicate which studies contributed to the moderation analyses, Tables 3–6

notes the reference for each study stratified by the moderator, as well as the exercise and memory

temporal period.

3.5. Quantitative Analysis

Table 3 displays the moderation results for the studies comparing exercise before memory encoding

vs. control scenarios. The overall effect size for this temporal period was, d = 0.11 (95% CI: −0.01, 0.23,

p = 0.08). This overall effect for this temporal period is also shown in Figure 2. There was evidence of a

significant moderation effect for this temporal period (Q = 356.0, df (74), p < 0.001, I2 = 79.2). For young

adults, acute exercise occurring before memory encoding enhanced episodic memory (d = 0.18, 95%

CI: 0.06, 0.29). However, for older adults, acute exercise occurring before memory encoding impaired

memory function (d = −0.53, 95% CI: −0.88, −0.18). Other significant moderators that demonstrated an

enhancement effect of acute exercise prior to memory encoding included samples that utilized a mixed

sex sample (d = 0.28, 95% CI: 0.14, 0.43), samples that were predominately white (d = 0.26, 95% CI: 0.02,

0.50), long-term memory outcomes (d = 0.19, 95% CI: 0.03, 0.34), vigorous-intensity exercise (d = 0.54,

95% CI: 0.19, 0.89), and cycling exercise (d = 0.46, 95% CI: 0.12, 0.81). The regression intercept for the

Egger’s test (intercept = 1.34, p = 0.11) was not statistically significant, indicating that there was no

evidence of publication bias.

Table 3. Moderation results for exercise before memory encoding vs. control.

Moderator

Exercise Before Memory Encoding vs. Control

Reference
Number of Effect Size

Contributions
Effect Size
(Cohen’s d)

Lower
CI

Upper
CI

Age

Young Adult [6,31–33,63–65,68,70–79] 66 0.18 * 0.06 * 0.29 *
Older Adults [62,63] 9 −0.53 * −0.88 * −0.18 *

Sex

Male [65] 2 0.32 −0.41 1.05
Female [77] 3 −0.14 −0.75 0.46
Mixed [6,31–33,64,68,71–76,78,79] 42 0.28 * 0.14 * 0.43 *
Predominately Female [62,70,79] 22 −0.06 −0.27 0.15

Race-Ethnicity

Predominately white [33,68,76,78,79] 17 0.26 * 0.02 * 0.50 *
Mixed [6,31,32,70,75,77,79] 31 0.10 -0.08 0.29

Memory Type

Short-term [31–33,65,70,73,74,76] 23 −0.01 −0.22 0.21
Long-term [6,31–33,62–64,71–73,75–79] 46 0.19 * 0.03 * 0.34 *

Exercise Intensity

Light [62,63,68,79] 17 −0.20 −0.45 0.04
Moderate [6,32,33,64,68,70,73–79] 45 0.14 −0.01 0.28
Vigorous [31,65,68,71] 9 0.54 * 0.19 * 0.89 *

Exercise Duration

Short [31–33,62–64,70,71,73,74,77–79] 45 0.07 −0.09 0.22
Medium [6,65,68,70,72,75,76] 24 0.20 −0.02 0.41
Long [70] 6 0.04 −0.37 0.45

Exercise Modality

Walking/Running [31–33,63,64,68,70,73,76–79] 57 0.06 −0.07 0.19
Cycling [6,65,72,75] 10 0.46 * 0.12 * 0.81 *

* indicates statistically significant effect size (p < 0.05).
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Table 4 displays the moderation results for the studies comparing exercise during memory

encoding vs. control. The overall effect size for this temporal period was, d = −0.12 (95% CI: −0.23,

−0.01, p = 0.03). This overall effect for this temporal period is also shown in Figure 2. There was no

evidence of a significant moderation effect for this temporal period (Q = 18.4, df (17), p = 0.36, I2 = 7.6).

In this temporal paradigm, studies that included a mixed sex sample (d = −0.13, 95% CI: −0.26, 0.00)

and a racially mixed sample (d = −0.27, 95% CI: −0.48, −0.06) demonstrated that acute exercise during

memory encoding (vs. control) had a worse episodic memory function. Similar results occurred for

long-term memory (d = −0.23, 95% CI: −0.36, −0.09) and short duration acute exercise (d = −0.20, 95%

CI: −0.35, −0.04). The regression intercept for the Egger’s test (intercept = −0.90, p = 0.37) was not

statistically significant, indicating that there was no evidence of publication bias.

Table 4. Moderation results for exercise during memory encoding vs. control.

Moderator

Exercise During Memory Encoding vs. Control

Reference
Number of Effect Size

Contributions
Effect Size
(Cohen’s d)

Lower
CI

Upper
CI

Sex

Mixed [10,31–33,76] 16 −0.13 * −0.26 * 0.00 *
Predominately Female [69] 2 −0.09 −0.33 0.15

Race-Ethnicity

Predominately white [33,76] 6 0.00 −0.17 0.17
Mixed [31,32] 8 −0.27 * −0.48 * −0.06 *

Memory Type

Short-term [31–33,69,76] 6 0.02 -0.14 0.18
Long-term [10,31–33,76] 12 −0.23 * −0.36 * −0.09 *

Exercise Intensity

Light [10,69] 4 −0.15 −0.35 0.05
Moderate [32,33,76] 10 −0.09 −0.26 0.07
Vigorous [31] 4 −0.18 −0.49 0.14

Exercise Duration

Short [31–33] 12 −0.20 * −0.35 * −0.04 *
Medium [10,76] 4 0.00 −0.22 0.22

* indicates statistically significant effect size (p < 0.05).

Table 5 displays the moderation results for the studies comparing exercise during early

consolidation vs. control scenarios. The overall effect size for this temporal period was, d = 0.47

(95% CI: 0.28, 0.67, p < 0.001). This overall effect for this temporal period is also shown in Figure 2.

There was evidence of a significant moderation effect for this temporal period (Q = 387.2, df (61),

p < 0.001, I2 = 84.2). When acute exercise occurred during the early consolidation period (vs. control),

acute exercise enhanced episodic memory for young adults (d = 0.54, 95% CI: 0.35, 0.73), mixed sex

samples (d = 0.60, 95% CI: 0.40, 0.80), vigorous-intensity exercise (d = 1.09, 95% CI: 0.83, 1.35), long

duration acute exercise (d = 1.36, 95% CI: 1.09, 1.64), and cycling-based acute exercise (d = 1.17, 95% CI:

0.91, 1.43). Notably, the light-intensity, acute exercise during the early consolidation period (vs. control)

impaired the episodic memory function (d = −0.59, 95% CI: −1.12, −0.06). The regression intercept

for the Egger’s test (intercept = 3.54, p < 0.001) was statistically significant, indicating that there was

evidence of publication bias.
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Table 5. Moderation results for exercise during early consolidation vs. control.

Moderator

Exercise During Early Consolidation vs. Control

Reference
Number of Effect Size

Contributions
Effect Size
(Cohen’s d)

Lower
CI

Upper
CI

Age

Young Adult [6,19,31–33,63,64,67,73–75] 59 0.54 * 0.35 * 0.73 *
Older Adults [63] 3 −0.95 −1.76 −0.15

Sex

Mixed [6,19,31–33,64,67,73–75] 55 0.60 * 0.40 * 0.80 *

Race-Ethnicity

Predominately white [33] 4 −0.07 −0.76 0.63
Mixed [6,31,32,75] 12 −0.14 −0.56 0.28

Memory Type

Short-term [31–33,67,73,74] 35 1.05 * 0.79 * 1.30 *
Long-term [6,19,31–33,63,64,73–75] 26 −0.14 −0.40 0.11

Exercise Intensity

Light [63] 6 −0.59 * −1.12 * −0.06*
Moderate [6,32,33,64,73,75] 19 −0.02 −0.31 0.27
Vigorous [19,31,67] 33 1.09 * 0.83 * 1.35 *

Exercise Duration

Short [31–33,63,64,73,74] 29 −0.13 −0.34 0.09
Medium [6,19,75] 5 0.21 −0.32 0.74
Long [67] 28 1.36 * 1.09 * 1.64 *

Exercise Modality

Walking/Running [31–33,63,64,73,75] 26 −0.19 −0.43 0.05
Cycling [6,19,67] 32 1.17 * 0.91 * 1.43 *

* indicates statistically significant effect size (p < 0.05).

Table 6 displays the moderation results for the studies comparing exercise during late consolidation

vs. control scenarios. The overall effect size for this temporal period was, d = 1.05 (95% CI: 0.32, 1.78,

p = 0.005). This overall effect for this temporal period is also shown in Figure 2. There was evidence of

a significant moderation effect for this temporal period (Q = 21.2, df (3), p < 0.001, I2 = 85.9). When

acute exercise occurred during the late consolidation period (vs. control), acute exercise enhanced

episodic memory for long-term memory (d = 1.20, 95% CI: 0.13, 2.27), short-duration acute exercise

(d = 1.31, 95% CI: 0.20, 2.43) and walking/running (d = 1.31, 95% CI: 0.20, 2.43). The regression intercept

for the Egger’s test (intercept = 8.30, p < 0.001) was statistically significant, indicating that there was

evidence of publication bias.

Table 6. Moderation results for exercise during late consolidation vs. control.

Moderator

Exercise During Late Consolidation vs. Control

Reference
Number of Effect Size

Contributions
Effect Size
(Cohen’s d)

Lower CI Upper CI

Memory Type

Long-term [19,40] 3 1.20 * 0.13 * 2.27 *

Exercise Duration

Short [40] 3 1.31 * 0.20 * 2.43 *

Exercise Modality

Walking/Running [40] 3 1.31 * 0.20 * 2.43 *

* indicates statistically significant effect size (p < 0.05).

The summative findings across the four temporal periods are displayed in Table 7. These findings

(which summarize the results from the previous tables) indicate the statistically significant positive and

negative effects of acute exercise on memory across the evaluated moderators (demographic, exercise,

and memory characteristics).



Brain Sci. 2019, 9, 87 15 of 21

Table 7. Summative findings of the moderation results across the four acute exercise and memory

temporal periods.

Exercise and Memory Temporal Periods

Moderator Before vs. Control During vs. Control Early vs. Control Late vs. Control

Demographic Characteristic

Young adults + +

Older adults −

Mixed-sex sample + − +

Predominately white +

Racially-Ethnically mixed sample −

Exercise Characteristic

Light-intensity −

Vigorous-intensity + +

Short-duration − +

Long-duration +

Cycling + +

Memory

Short-term memory +

Long-term memory + − +

The four temporal periods included: (1) exercise before memory encoding vs. control, (2) exercise during memory
encoding vs. control, (3) exercise during early consolidation vs. control, and (4) exercise during late consolidation
vs. control. +, statistically significant positive effect, −, statistically significant negative effect.

ff − − −

−

Figure 2. Overall pooled effect size estimates (Cohen’s d with 95% CI) across the four exercise

temporal periods.

4. Discussion

Previous experimental work demonstrates that acute exercise (i.e., a structured bout of treadmill

or cycling exercise) can enhance episodic memory function [15,30]. Further, as demonstrated in

recent experiments [31–33], narrative reviews [14,35], qualitative reviews [34], and meta-analytic

reviews [15,16], the timing of acute exercise appears to play a key role in subserving episodic memory

function. In alignment with these previous publications, our meta-analysis demonstrates that acute

exercise occurring during early memory consolidation (d= 0.47, 95% CI: 0.28, 0.67; p< 0.001) and during
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late memory consolidation (d = 1.05, 95% CI: 0.32, 1.78; p = 0.005) enhanced episodic memory function.

These respective effect sizes represent medium and large effects. Conversely, our meta-analytic results

demonstrate that acute exercise occurring during memory encoding had a negative effect on episodic

memory (d = −0.12, 95% CI: −0.22, −0.02; p = 0.02). The temporal period involving acute exercise

before memory encoding was not statistically significant at the group level (d = 0.11, 95% CI: −0.01,

0.23, p = 0.08), but this was driven by the statistically significant (Q = 356.0, df (74), p < 0.001, I2 = 79.2)

moderation effects for various characteristics, as described below.

Of central interest of the present meta-analysis was whether study characteristics and participant

attributes moderated the temporal effects of acute exercise on episodic memory function. These

summative findings across the four temporal periods are displayed in Table 7. Regarding the

temporal period of acute exercise occurring before memory encoding, notably, we observed an

interesting age-specific effect. That is, acute exercise before memory encoding was advantageous in

enhancing episodic memory function for young adults, but impaired memory function for older adults.

This enhancement effect for younger adults aligns with the moderation results from the meta-analysis

of Roig et al. [15]. That is, the meta-analysis of Roig et al. evaluated the effects of exercise on memory

function and also evaluated various moderators (e.g., age) of this effect. We extend the meta-analysis

of Roig et al. [15] by demonstrating that this age-specific effect occurs for both exercise prior to memory

encoding and acute exercise during the early memory consolidation period. It is uncertain as to why

older adults may have impaired episodic memory function after an acute bout of exercise. Speculatively,

for older adults (vs. younger adults), acute exercise may impose greater physiological and cognitive

stress, and ultimately, may impair memory function from an enhanced cognitive load effect. Similarly,

it may take older adults longer to recover from an acute bout of exercise, which could have influenced

these age-specific effects. Future work should conduct a side-to-side comparison of acute exercise on

episodic memory among both young- and older-adults. Such work should also vary the acute exercise

recovery period to determine whether this attenuates the negative memory effects observed among

older adults.

Other notable findings for acute exercise before the memory-encoding period was the moderation

effects for long-term memory, vigorous-intensity exercise, and cycling-based exercise. It is likely

that acute exercise has a greater effect on long-term memory (vs. short-term) due to the acute

exercise-induced molecular pathways that are activated to subserve long-term memory (e.g.,

neurotrophin production, long-term potentiation) [28,29]. We also demonstrated that vigorous-intensity,

acute exercise was optimal in enhancing episodic memory, which aligns with a recent systematic

review [34]. Similar to the mechanisms noted above for long-term memory, higher intensity acute

exercise may more robustly modulate mechanisms (e.g., long-term potentiation) related to episodic

memory function. Lastly, an interesting finding for this temporal period was that cycling-based exercise

had a greater effect on enhancing episodic memory function. This was a surprising finding to us. It is

expected that ambulatory exercise (vs. cycling) is a more complex movement pattern, and more complex

movement patterns have greater effects on regional cerebral blood flow and cortical excitability [80,81],

factors likely to subserve episodic memory [82]. However, perhaps these ambulatory activities are

not more complex movement patterns than cycling, given that walking (and perhaps jogging) is

part of the daily routine of the participants evaluated in these experiments. Notably, cycling may

be considered a complex movement pattern, especially among novice cyclists. Future work should

conduct a side-to-side comparison of ambulatory vs. cycling exercise on episodic memory function,

while considering the participant’s experience with these exercise modalities. Further, particularly

among novice cyclists, even a relatively light workload may be perceived as vigorous-intensity exercise.

Thus, it is possible that this exercise modality-specific effect may actually be driven by an exercise

intensity-specific effect. Future work is needed to help disentangle these interrelationships.

Regarding the early memory consolidation period, notable observations were that

vigorous-intensity, acute exercise and long-duration acute exercise were positively associated with

episodic memory function. These observations align with the mechanisms thought to enhance memory
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stabilization, specifically, the late-phase of long-term potentiation (discussed in detail elsewhere [28]),

which is a protein synthesis-dependent process [28]. Higher-intensity and longer duration acute exercise

are likely to have greater effects on the production of key proteins (e.g., brain-derived neurotrophic

factor) that would subserve the late-phase of long-term potentiation [36]. In our late-phase memory

consolidation temporal period analyses, our findings demonstrated that the short-duration acute

exercise was advantageous in enhancing episodic memory when it occurred in this temporal period.

At this point in the memory stabilization process (4-h post memory encoding), it is likely that only a

short duration bout of exercise (vs. longer duration) is needed to further stabilize the memory trace.

Regarding the temporal period involving acute exercise during memory encoding, our findings

demonstrated that, across various factors (e.g., mixed sex, short-duration acute exercise), acute exercise

impaired episodic memory function. This finding is likely a result of reduced cognitive resources

toward encoding the memory stimuli during an acute bout of exercise. Cognitive resources may be

redistributed away from encoding the stimuli in order to sustain the movement itself [37,38].

When considering all four temporal periods, there was not a consistent effect of a particular

moderator (e.g., young adults) across the different temporal periods. However, there were relatively

few studies conducted in the early- and late-memory consolidation temporal periods; thus, we should

interpret our findings accordingly. Further, we observed evidence of publication bias for both of

these temporal periods, and as such, future work in these temporal periods is needed before we can

definitely conclude whether or not the study and participant characteristics differentially influences

episodic memory across these four temporal periods.

In addition to future work evaluating the effects of these temporal periods, as well as potential

moderators, it would be a worthwhile endeavor for future work to continue to explore the mechanisms

of acute exercise on episodic memory function. As discussed thoroughly elsewhere [83], exercise

may help to rewire the neuronal networks involved in memory function. For example, exercise may

help to coordinate neuronal firing in hippocampal circuits and enhance integration of adult-born

neurons into existing hippocampal-entorhinal circuity [83]. As we recently demonstrated, exercise may

enhance the functional connectivity of key memory-related brain structures (e.g., connectivity between

parahippocampi and connectivity of hippocampal-orbitofrontal pathway) [84,85]. Relatedly, structural

brain changes have been observed from chronic exercise [86]. From cellular and molecular perspectives,

acute exercise may upregulate key neurotrophins (e.g., brain-derived neurotrophic factor) that may

help facilitate neuronal communication via increasing neural activity and receptor activity [87]. Acute

exercise may also be beneficial via exercise-induced increases in glucose and oxygen metabolism, as

well as increases in neurotransmitter concentrations [87]. Importantly, future work should evaluate

whether there are distinct mechanisms across the different exercise-memory temporal periods.

In conclusion, our meta-analytic findings demonstrate two key observations. First, the temporal

period of acute exercise on episodic memory plays an important role in the exercise-memory interaction.

When acute exercise occurs before memory encoding or during early and late memory consolidation,

then memory enhancement effects are likely to be observed. However, when acute exercise occurs

during memory encoding, memory function is likely to be impaired. Secondly, various study design

and participant characteristics are likely to moderate the temporal effects of acute exercise on episodic

memory function. For example, vigorous-intensity, acute exercise, and acute exercise among young

adults, are likely to have greater effects when the acute bout of exercise occurs before memory encoding

or during the early memory consolidation period.
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