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Abstract

Computational analysis of time-course data
with an underlying causal structure is needed
in a variety of domains, including neural spike
trains, stock price movements, and gene ex-
pression levels. However, it can be challeng-
ing to determine from just the numerical time
course data alone what is coordinating the
visible processes, to separate the underlying
prima facie causes into genuine and spurious
causes and to do so with a feasible compu-
tational complexity. For this purpose, we
have been developing a novel algorithm based
on a framework that combines notions of
causality in philosophy with algorithmic ap-
proaches built on model checking and statis-
tical techniques for multiple hypotheses test-
ing. The causal relationships are described
in terms of temporal logic formulæ, refram-
ing the inference problem in terms of model
checking. The logic used, PCTL, allows de-
scription of both the time between cause and
effect and the probability of this relation-
ship being observed. We show that equipped
with these causal formulæ with their associ-
ated probabilities we may compute the aver-
age impact a cause makes to its effect and
then discover statistically significant causes
through the concepts of multiple hypothe-
sis testing (treating each causal relationship
as a hypothesis), and false discovery control.
By exploring a well-chosen family of poten-
tially all significant hypotheses with reason-
ably minimal description length, it is possible
to tame the algorithm’s computational com-
plexity while exploring the nearly complete
search-space of all prima facie causes. We
have tested these ideas in a number of do-
mains and illustrate them here with two ex-
amples.

1 INTRODUCTION

Work on time series data has generally focused on iden-
tifying groups of similar or co-regulated elements us-
ing clustering techniques (Bar-Joseph, 2004) or finding
patterns via data mining (Agrawal and Srikant, 1995)
but comparatively little has been done to infer causal
relationships between the elements of these time series.
When trying to decipher the underlying structure of
a system, what we would ultimately like to know are
the rules governing its behavior. That is, knowing not
simply its patterns of activity, but what is responsible
for this activity would lead to a richer understanding
of the system as well as the ability to better predict
future events.

In biological systems, one example of this is discov-
ering dependencies between genes, finding those that
influence others. These networks provide a model of
biological processes that can then be tested and vali-
dated using knock-out experiments. Work in this area
has primarily used graph based methods (Friedman
et al., 2000; Spirtes et al., 2001; Murphy and Mian,
1999), such as Bayesian networks, which provide a
less expressive framework than temporal logic in terms
of the relationships they can represent and discover.
We seek to enrich the existing frameworks in order to
enable one to infer, describe and analyze arbitrarily
complex causal relationships, which must involve tem-
poral operators as well as probabilistic relationships
and propositional connectives. We present a method
for this purpose using a probabilistic temporal logic,
which allows us to express a richer variety of causal re-
lationships in a compact way. By posing our questions
about how two events are related in terms of model
checking and inference, we are able to efficiently in-
fer relationships in large datasets with many variables.
We will first introduce the problem of causality in phi-
losophy and then discuss graphical methods for causal
inference before describing our method and illustrating
its use with two different data sets.



2 BACKGROUND

The study of causality has a long history in philoso-
phy, going back as far as Ancient Greece. Since then
there have been a number of accounts, with the pri-
mary ones being in terms of regularities, processes,
counterfactuals and as probabilistic relations. Most
modern accounts of causality may be traced back to
Hume’s regularities of observation, where C causes E if
whenever C happens, E follows, and we detect this re-
lationship through observation of C and E. However,
Hume also restated this as “if C had not happened, E
would not have happened.” That statement is what
is known as a counterfactual. These previous theories
do not necessarily restrict the cause and effect to be
contiguous or even nearby in space. Process theories
restate the problem in terms of transfer of conserved
quantities (such as momentum), where this transfer re-
quires locality in space-time. However, when it comes
to inference, we need some notion of probability, since
few relationships are actually deterministic.

The central idea of probabilistic causality is that a
cause is something that is earlier than its effect (tem-
poral priority) and that raises the probability of this
effect (probability raising). One primary theory comes
from Suppes (1970). In Suppes theory, an event Ct′

is a prima facie cause of an event Et when all of the
following conditions hold:

1. t′ < t,

2. P (Ct′) > 0, and

3. P (Et|Ct′) > P (Et).

Note that these formulæ simply encode temporal pri-
ority and probability raising, with the stipulation that
the cause has a nonzero probability.

However, this simple definition leads to many situa-
tions being erroneously labeled causal. If two events (d
and e) have a common cause (c), with d being caused
slightly earlier than e, we may be led to conclude that
d causes e. This situation arises because whenever c
happens, it raises the probability of both d and e, but
since d is slightly earlier than e, it too appears to raise
the probability of e. It is not enough, then, to look only
for something that raises the probability of the effect,
as this erroneously admits relationships that are not
truly causal. To address this problem, there have been
a number of approaches, which may be roughly divided
into two groups: those that look for common causes
or earlier events that account at least as well for the
effect (Suppes, 1970; Reichenbach, 1956); and those
that look at sets of background factors, or contexts,
and test whether the cause raises the probability of

the effect with respect to these contexts (Eells, 1991).
In the first case, approaches such as that of Suppes
look for a third event (Dt′′) that occurs earlier than
the prima facie cause (Ct′) and the effect (Et), such
that:

1. P (Ct′ ∧ Dt′′) > 0,

2. |P (Et|Ct′ ∧ Dt′′) − P (Et|Dt′′)| < ǫ, and

3. P (Et|Ct′ ∧ Dt′′) ≥ P (Et|Ct′).

That is, Ct′ and Dt′′ must occur together with nonzero
probability, and Ct′ makes less than some small ǫ dif-
ference to the probability of Et, once Dt′′ is known.
If all of these conditions are true, then Ct′ is called
an ǫ-spurious cause of Et. Note that an event at the
same time as Ct′ or at a time between Ct′ and Et

cannot make Ct′ spurious under this method. There
may be causes - themselves not caused by Ct′ - that
occur temporally between Ct′ and Et that will not be
considered. However, the primary problem is that of
finding an appropriate value for ǫ. Further, even af-
ter finding the “correct” value, there need only be one
such Dt′′ for Ct′ to be deemed ǫ-spurious, while there
may be hundreds of other factors for which it makes a
significant positive difference.

Another approach, that of Eells (1991), is to com-
pute the average significance of a cause for its ef-
fect. In other words, one does not just seek any single
more powerful cause, but rather measures, overall, how
well the cause predicts the effect. First, Eells defines
the set of causal background contexts, {K1, K2...Kn}.
These are formed by holding fixed the set of all fac-
tors causally relevant to the effect (that occur at any
time earlier than the effect) in all possible ways. For
instance, given a set of three factors, {x1, x2, x3}, one
possible background context would be {x1,¬x2, x3}.
Eells then defines the average degree of causal signifi-
cance (ADCS) of a factor C for a factor E:

∑

i

Pr(Ki)[Pr(E|Ki ∧ C) − Pr(E|Ki ∧ ¬C)]. (1)

By taking the average difference C makes to E’s prob-
ability in each context, weighted by the probability of
that background context occurring, we can weed out
artifacts that make a consistent but small difference to
the probability of the effect.

In contrast to Suppes, Eells considers events that oc-
cur at any time prior to the effect (versus only those
prior to the potential cause). Also, instead of look-
ing for single causes that account better for the effect,
Eells considers contexts. The result is not a partition
into genuine/spurious causes, but rather a quantity de-
noting how significant each cause is for its effect. As



before, it is unclear how to treat the number produced
by the ADCS and determine which values are signifi-
cant.

3 PROBLEM OVERVIEW

While the philosophical theories described give us an
idea of how to identify causes, it still remains to turn
this into an automated algorithmic approach. The first
work in automating the inference of causal relation-
ships was by Pearl (2000) and Spirtes et al. (2000)
(SGS), using graphical models, such as Bayesian net-
works (BNs). In these approaches, the causal struc-
ture of the system is represented as a graph, where
variables are represented by nodes and the edges be-
tween them represent conditional dependence (and the
absence of an edge implies conditional independence).
Then, a number of assumptions about the data can be
used to direct these edges from cause to effect. The
result is a directed acyclic graph (DAG) where a di-
rected edge between two nodes means the first causes
the second. In these graphical approaches, the edges
can be oriented without the use of time course data, as
a consequence of the other assumptions. We will use
the terminology of SGS and primarily describe their
work, though these assumptions and the general pro-
cedure are used by many with some variation.

First, the Causal Markov condition (CMC) is that a
node in the graph (variable) is independent of all of its
non-causal descendants given its direct causes (those
that are connected to the node by one edge). The
inference of causal structures relies on two more as-
sumptions: faithfulness and causal sufficiency. Faith-

fulness assumes that exactly the independence rela-
tions found in the causal graph hold in the probability
distribution over the set of variables. This requirement
implies that the independence relations obtained from
the causal graph are due to the causal structure gen-
erating it. If there are independence relations that are
not a result of CMC, then the population is unfaith-
ful. The idea of faithfulness is introduced to ensure
that independencies are not from chance coincidence
but from some genuine structure. Causal sufficiency

assumes that the set of measured variables includes all
of the common causes of pairs on that set. In cases
where causal sufficiency does not hold, then the in-
ferred graphs can include those with nodes represent-
ing unmeasured common causes that could also have
lead to the observed distribution. Knowledge about
temporal ordering can also be used at this point if it
is available. In general the conditional independence
conditions are assumed to be exact conditional inde-
pendence, though it is possible to define some thresh-
old to decide when two variables will be considered
independent. The result is a set of graphs that all rep-

resent the independencies in the data, where the set
may contain only one graph in some cases when all
assumptions are fulfilled. However, when using these
graphical models there is no natural way of represent-
ing or inferring the time between the cause and the
effect or a more complex relationship than just one
node causing another at some future time.

Following the use of BNs, dynamic Bayesian networks
(DBNs) (Friedman et al., 1998) were introduced to ad-
dress the temporal component of these relationships.
DBNs extend BNs to show how the system evolves
over time. For this purpose, they generally begin with
a prior distribution (described by a DAG structure) as
well as two more DAGs: one representing the system
at time t and another at t + 1, where these hold for
any values of t. The connections between these two
time slices then describe the change over time. As be-
fore, there is usually one node per variable, with edges
representing conditional independence. Note that this
implies that while the system can start in any state,
after that the structure and dependencies repeat them-
selves. That is, the relationships from time 10 to 11
are exactly the same as those from time 11 to 12.

Another statistical method, applied primarily to eco-
nomics, was developed by Granger (1969) to take two
time series and determine whether one predicts, or
causes, the other with some lag time between them.
Building on this, recent work by Eichler and Didelez
(2007) focuses on time series and explicitly capturing
the time elapsed between cause and effect. They define
that one time series causes another if an intervention
on the first alters the second at some later time. That
is, there may be lags of arbitrary length between the
series, and they find these lags as part of the infer-
ence process. While it is possible to also define the
variables in this framework such that they represent
a complex causal relationship as well as the timing
of the relationship, the resulting framework still does
not easily lead to a general method for testing these
relationships. Further, while DBNs are a compact rep-
resentation in the case of sparse structures, it can be
difficult to extend them to the case of highly dependent
data sets with thousands of variables, none of which
can be eliminated.

When we talk about one thing causing another, partic-
ularly in terms of scientific data, rarely is it as simple
as “a causes b”, deterministically, with no other rele-
vant factors. Recent work by Langmead et al. (2006)
has described the use of temporal logic for querying
pre-existing DBNs, by translating them into struc-
tures that allow for model checking. This approach
allows the use of known DBNs for inference of rela-
tionships described by temporal logic formulæ. How-
ever, only a subset of DBNs may be translated in this



way(Langmead, 2008), and thus the benefit of this ap-
proach (as opposed to one where the model inferred
already allows for model checking) is limited.

In contrast to the approaches described earlier, we seek
a unified framework that captures, at equal levels, both
the probabilistic dependencies and temporal priorities
inherent in causal relationships. We motivate our ap-
proach with an example considering the temporal and
probabilistic relationship between smoking and lung
cancer. Cigarettes in the UK currently bear the warn-
ing “smoking kills,” but this statement does not tell
us how likely it is that a person who smokes these la-
beled cigarettes will die from smoking nor how long
it will take for death to occur. Given the choice be-
tween packages labeled “smoking kills in 90 years ”
and “smoking kills within 10 years”, we might make
very different decisions than when confronted with one
that simply says “smoking kills.” Note that we have
not yet mentioned the probability of death in either
case. The first case could be with probability 1 with
the latter being much smaller. This additional infor-
mation and the way it may affect our decision making
process points to the need for a more detailed descrip-
tion. That is, when we describe a causal relationship,
we need to be able to describe its probability and the
time over which it takes place.

4 METHOD

Our main problem may be formalized as follows: given
a set of time series data representing activities of a
system in which we hypothesize that there may ex-
ist a causal structure, we seek to infer the underlying
relationships forming this structure. In order to rep-
resent and infer these relationships, which may be far
more complex than one event causing another, we use
a probabilistic temporal logic. Broadly, the steps of
our method will be to represent the possible causal
relationships as logical formulæ, use model checking
to determine whether they are satisfied by the system,
and then determine which of the satisfied relationships
are causal using a measure of their degree of signifi-
cance and false discovery control to determine at what
level something is causally significant. Before describ-
ing how this representation relates to probabilistic no-
tions of causality, we give a brief overview of temporal
logic, and the particular logic used, PCTL.

4.1 TEMPORAL LOGIC

Temporal logics modify traditional modal logics to al-
low description of when a formula is true. That is,
rather than just “necessity” or “possibility”, a formula
may be true at the next point in time or at some point
in the future. In branching time logics, such as Com-

putation Tree Logic (CTL) (Clarke et al., 1999), the
future may be along one of multiple possible paths.
As opposed to a linear time temporal logic, for which
there is only one possible future path, we can express
whether a property holds for all possible paths (A),
or if there exists at least one path for which it is true
(E). The truth values of these formulæ are determined
relative to a Kripke structure, a graph with a set of
states, transitions between states, and labels indicat-
ing propositions true within the states.

We will use a probabilistic extension of CTL, Prob-
abilistic Computation Tree Logic (PCTL), as intro-
duced by Hansson and Jonsson (1994), as it allows
probabilistic state transitions, as well as explicit dead-
lines for when a formula must hold. We begin with
a set of atomic propositions, A, and a structure
(called a discrete time Markov chain (DTMC)) K =
〈S, si, L〉, T , where:

S is a finite set of states;

si is an initial state;

L : S → 2A is a state labeling function; and

T : S × S → [0, 1] is a transition function such that:

∀s ∈ S
∑

s′∈S

T (s, s′) = 1.

Then, relative to this structure we can define state
formulæ (those that hold within a state) and path for-
mulæ (those that hold along some sequence of states):

1. Each atomic proposition is a state formula.

2. If f1 and f2 are state formulæ, so are ¬f1, f1∧f2,
f1 ∨ f2, and f1 → f2.

3. If f1 andf2 are state formulæ, and t is a nonnega-
tive integer or ∞, f1U

≤tf2 and f1U
≤tf2 are path

formulæ.

4. If f is a path formula and 0 ≤ p ≤ 1, [f ]≥p and
[f ]>p are state formulæ.

The “Until” (U) formula in (3) means that the first
subformula (f1) must hold at every state along the
path until a state where the second subformula (f2)
holds, which must happen in less than or equal to t
time units. The modal operator “Unless” (U) is de-
fined the same way, but with no guarantee that f2 will
hold. In that case, f1 must hold for a minimum of t
time units. Finally, in (4) we add probabilities to these
until and unless path formulæ to make state formulæ.
For example, [f1U

≤tf2]≥p (which may be abbreviated

as f1U
≤t
≥pf2), means that with probability at least p, f2

will become true within t time units and f1 will hold
along the path until that happens. The probability of



a state formula is calculated over the set of possible
paths from the state, where the probability of a path
is the product of the transition probabilities along the
path, and the probability for a set of paths is the sum
of the individual path probabilities. Path quantifiers
analogous to those in CTL may be defined by:

Af ≡ [f ]≥1,

Ef ≡ [f ]>0,

Gf ≡ fU≤∞false, and

Ff ≡ true U≤∞f.

Finally we will also make use of the “leads-to” opera-
tor (Hansson and Jonsson, 1994):

f1 ;
≤t
≥p f2 ≡ AG[(f1 → F≤t

≥pf2)]. (2)

This formula implies that for every path from the cur-
rent state, if we are in a state where f1 holds then
through some series of transitions taking time ≤ t,
with probability p, we will finally reach a state where
f2 holds. One difficulty with this formulation is that,
as defined, “leads-to” also considers the case where f1

and f2 are true at the same state as one satisfying this
formula. We will need to stipulate that there must be
at least one transition between f1 and f2. In addition
to being important for our temporal priority condition
for casuality, this is also in keeping with how one natu-
rally reasons about the term “leads to.” We thus wish
to write:

f1 ;
≥t1,≤t2
≥p f2, (3)

which is interpreted to mean that f2 must hold in
between t1 and t2 time units with probability p. If
t1 = t2, this case simply says it takes exactly t1 time
units for f2 to hold. Proofs that this lower bound may
be added will appear in an extended version of this
paper.

Verifying whether these formulæ hold for a particular
system is the goal of model checking, where a system
is said to satisfy a formula if its initial state satisfies
the formula. For more information on this process,
we refer the reader to the original paper by Hansson
and Jonsson (1994) as well as a later paper by Baier
et al. (1997) that describes a symbolic approach to the
problem.

4.2 CAUSES AS LOGICAL FORMULÆ

Our aim is now to describe the conditions for causality
and express the causes themselves as PCTL formulæ.
Recall that the formulæ are defined with regards to
a probabilistic structure, as described earlier. While
these graphical structures consist of labeled nodes and
edges, note that unlike the causal models previously
described, such as BNs, the arrows between states

have no causal interpretation. They only imply that
it is possible to transition from the state at the tail
to the state at the head with some non-zero proba-
bility (which is used to label this edge in diagrams).
Note also that there may be multiple states with the
same labels. For example, there may be two states
labeled with identical sets of propositions, but that
are reached by different paths and which have differ-
ent paths possible from them. Thus, this graphical
model fundamentally differs from Bayesian networks,
where each variable generally has one node with in-
coming and outgoing edges (and lack thereof) rep-
resenting (in)dependencies. Our structures may also
contain cycles, allowing for feedback loops.

We will begin by giving the basic conditions for causal-
ity, starting with those for prima facie causality. We
specify the temporal priority condition of the causal
relationship in terms of the time that elapses between
cause and effect. If c occurs at some time t′ and e oc-
curs at a later time t, we characterize the relationship
by the time that elapses between them, |t′ − t|. That
is, if we want to state that after c becomes true, e will
be true with probability at least p in |t′ − t| or fewer
time units – but with at least one time unit between c
and e – we write:

c ;
≥1,≤|t′−t|
≥p e. (4)

If we simply want c to be earlier than e, that upper
bound will be infinity. Note that c and e are any valid
PCTL formulæ. For example, in the case of biological
systems, we could have:

(aup ∧ bdown)Ucup ;
≥1,≤4

≥0.9 dup, (5)

where this formula states that the simultaneous up-
regulation of gene a and suppression of gene b, until
gene c becomes up-regulated, subsequently results in
the up-regulation of gene d, with probability 0.9, in
between 1 and 4 time units.

Consequently, the probabilistic nature of the relation-
ship between cause and effect can be described in terms
of the probability of reaching c and e states and of the
paths between c and e states. We need to state that
it is possible (beginning from the initial state of the
system) to reach a state where c is true, and that the
probability of reaching a state where e is true (within
the time bounds) is greater after being in a state where
c is true (probability ≥ p) than it is by simply start-
ing from the initial state of the system (probability
< p). Recall that we do not begin with any a priori
knowledge of this structure, but rather aim to recreate
this from the data. However, our time course obser-
vations may be viewed as a sequence of the possible
states occupied by the system. From their ordering
and frequency, we may find the possible transitions



and their probabilities, which characterize a structure
as described earlier. We now define prime facie, or
potential, causes, as shown below.

Definition 4.1. c is a prima facie cause of e if the
following conditions all hold:

1. F≤∞
>0

c,

2. c ;
≥1,≤∞
≥p e, and

3. F≤∞
<p e.

Note that this definition inherently implies that there
may be any number of transitions between c and e, as
long as there is at least one, and the sum of the set
of path probabilities is at least p. We can also further
restrict this time window, when background knowledge
makes it possible, but the minimum condition is that
c is earlier than e by at least one time unit, and raises
the probability of e.

4.3 TESTING FOR SIGNIFICANCE

As we saw earlier, we need a way of finding which of
these possible causes are not significant. However, we
do not want to deem a cause spurious if there is only
one other cause that makes it so, as Suppes does, since
there may be multiple genuine causes of an effect with
varying strength. With Eells’s approach we face the
problem that since there are a large number of such
contexts 1) it is rare to have enough data to see them
occur with high enough frequency to be meaningful,
and 2) testing all such contexts is a non-trivial com-
putational task. If each background context occurs
with nonzero probability, we will have 2n such con-
texts, where n is the number of relevant factors. In
our examples, where we may have data for thousands
of genes, it is not possible to construct such a set of
contexts (let alone to do so for each possible cause
whose significance we aim to compute). We also have
the problem of: Which values of the ADCS (average
degree of causal significance) should be considered sig-
nificant?

We take our inspiration from both of these methods
and proceed as follows. To determine whether a par-
ticular c as a cause of e is insignificant, we compute
the average difference in probabilities for each prima
facie cause of an effect in relation to all other prima
facie causes of the effect. We begin with X being the
set of prima facie causes of e. Then, for each x ∈ X \c,
we compute the predictive value of c in relation to x,
by comparing the probability of transitioning to an e
state from a c ∧ x state versus a ¬c ∧ x state. If these
probabilities are very similar, then c might be an in-
significant cause of e. As noted earlier, there may only

be one such x, while there may be a number of other
x’s for which there is a large difference in the computed
probabilities. With:

ǫx(c, e) = P (e|c ∧ x) − P (e|¬c ∧ x), (6)

we compute:

ǫavg(c, e) =

∑

x∈X\c

ǫx(c, e)

|X |
. (7)

For each prima facie cause, we have now computed its
average potency as a predictor of its effect. If there is
only one other cause that would make a cause c seem
“spurious”, but a number of other factors (that are
themselves actually spurious causes of the effect), then
we will find that c has a high value of this measure.
Finally, we use this ǫavg to determine c’s significance.

Definition 4.2. A prima facie cause, c, of an effect,
e, is an ǫ-insignificant cause of e if ǫavg(c, e) < ǫ.

A prima facie cause that is not ǫ-insignificant is not
necessarily genuine. For the moment we will refer to
these causes as only significant, with the full detail
about when such causes may be labeled genuine post-
poned to a longer future publication.

Here again we come to the issue of what value of ǫ
should be chosen. An appropriate value can be found
using knowledge of the problem, through simulation,
or based on other statistical tests. Since we are testing
a multitude of hypotheses (from thousands to hun-
dreds of thousands), we determine the appropriate
value of ǫ statistically, using methods for false discov-
ery rate (fdr) control. In particular, we apply the em-
pirical Bayesian formulation proposed by Efron (2004).
This method uses an empirical rather than theoretical
null, which has been proven to be better equipped for
cases where the test statistics are dependent —as may
be true in the case of complex causal structures.

We have chosen to control the proportion of falsely
rejected null hypotheses (when we incorrectly deem a
hypothesis significant) rather than the proportion of
falsely accepted null hypotheses (when we incorrectly
deem a hypothesis insignificant). Since we are test-
ing a large number of hypotheses, we will accept that
we may miss some opportunities for discovery, but we
want the discoveries we make to be very likely to be le-
gitimate. For example, when we apply these methods
to biomedical (say, malaria) data, our ultimate goal is
to propose candidate gene or biomarker targets to ex-
plore for vaccine development. In that case it is costly
to explore each hypothesis, and better to be more cer-
tain about those that are proposed.

The basic idea of this approach is that we assume our
data contains two classes, namely, significant and in-



significant. We assume the significant class is small
relative to the insignificant class, and that these cor-
respond to rejection and acceptance of the null hy-
pothesis, with prior probabilities p1 = 1 − p0 and p0.
That is, p0 and p1 are the prior probabilities of a case
(here, a causal hypothesis) being in the “insignificant”
or “significant” classes respectively, with these proba-
bilities distributed according to an underlying density.
For each hypothesis, we have its associated z-value, the
number of standard deviations its significance score is
from the mean. We define the mixture density as:

f(z) = p0f0(z) + p1f1(z), (8)

Then the posterior probability of a case being insignif-
icant given z is:

Pr{null|z} = p0f0(z)/f(z), (9)

and the local false discovery rate (fdr), is:

fdr(z) ≡ f0(z)/f(z). (10)

Note that, in this formulation, the p0 factor is ignored,
yielding an upper bound on fdr(z). Assuming that p0

is large (close to 1), this simplification does not lead
to massive overestimation of fdr(z). One may also
choose to estimate p0 and thus include it in the fdr
calculation, making fdr(z) = Pr{null|z}. Thus, the
significance testing portion of the procedure is:

1. Estimate f(z) from the observed z-values (for ex-
ample by a spline fit);

2. Define the null density f0(z) from the data;

3. Calculate fdr(z) using equation (10).

Overall the steps of our inference process are:

1. Enumerate logical formulæ — using background
knowledge or testing those up to a specified level
of complexity;

2. Test which of the formulæ are satisfied by the
system and satisfy the conditions for prima facie
causality;

3. For each prima facie cause, compute the associ-
ated ǫavg;

4. Translate values for ǫavg into z-values and com-
pute fdr as above;

5. For each causal hypothesis where ǫavg(c, e) cor-
responds to zi such that fdr(zi) is less than a
threshold (say, 0.01) label it as significant, and
the rest as insignificant.

The advantage of this procedure is that we can test any
PCTL formula as a causal hypothesis and do not need
to specify an arbitrary threshold on what difference
a cause must make to its effect in order to not be
considered insignificant. Rather, the meaning of our
threshold is concrete and grounded in statistics.

5 EXAMPLES

While biological examples, such as that of gene expres-
sion data from microarrays, are of great importance,
the inference from such cannot be validated against
some ground truth i.e., we can never be certain that
the inferred relationships correspond truly to the rela-
tionships of the system. In order to validate our meth-
ods, we started by testing them on synthetic data sets,
where the true causal relationships could be revealed
after the inference process was completed. Here we
discuss one such data set, representing the firings of a
set of synthetic neurons over time. We then discuss a
data set where the causal structure is not known, but
where the story told by the relationships inferred is
consistent with what is known about the system.

5.1 SYNTHETIC MEA EXPERIMENTS

This data set consists of a series of synthetically gener-
ated patterns, and thus we may eventually reveal the
assumed true causal neural networks that were em-
bedded in the simulations1. The data were created to
mimic multi-neuronal electrode array (MEA) experi-
ments, in which neuron firings may be tracked over a
period of time. Data was generated for five different
structures, with neurons denoted by characters of the
English alphabet. Each data set contained 100,000
firings generated with one embedded structure plus
a degree of noise (this is a parameter that was var-
ied). In the example shown here, the underlying struc-
ture was a binary tree of four levels. At each time
point a neuron can fire randomly (dependent on the
noise level selected) or may be triggered to fire by one
of its cause neurons. Additional background knowl-
edge was known and used by the inference algorithm:
there is a 20 unit refractory period after a neuron fires
and then a 20 unit window of time after this when
it may trigger another to fire. Consequently, our al-
gorithm only needed to search for relationships where
one neuron causes another to fire during a window of
20–40 time units after the causal neuron fires. Con-
dition 2 of prima facie causality is then replaced with
c ;

≥20,≤40

≥p e, where c and e are individual neurons.

The results from all data sets, as well

1The data was provided as part of the 4th KDD work-
shop on Temporal Data Mining. It is publicly available at:
http://people.cs.vt.edu/~ramakris/kddtdm06/.



Figure 1: Inferred causal structure, with arrows de-
noting that the neuron at the tail causes the neuron
at the head to fire within 20 to 40 time units with high
probability.

as comparison with the PC algorithm
and Granger causality are available at
http://cs.nyu.edu/~samantha/papers/tlcs.html.
Here we examine in detail one of the five structures
recovered. Figure 1 shows this, which is one of the
most difficult structures to infer, as neurons such
as D and E are both highly correlated with H and
I. The process enumerated 641 prima facie causal
hypotheses. We then computed the empirical null
from the set of ǫavg values using the method and R
code made available by Jin and Cai (2006). The
results are shown in Figure 2, with a histogram of
the computed z-values for the causal hypotheses. The
empirical null in this case is given by N(−0.14, 0.39),
so it is shifted slightly to the left of the theoretical
null, and significantly narrower. The tail of the
distribution extends quite far to the right, continuing
up to 8 standard deviations away from the mean
(almost 20 times the empirical standard deviation). A
close up of this area is shown in figure 3. The results
obtained here are consistent with the known causal
structures that were used to create the simulated
data. The ten genuine causal relationships were the
only hypotheses with z-values greater than three,
though there were seven others that, like these, had
an fdr of zero.

With no prior knowledge, there are two methods for
determining the actual causes. First, in a case where
there are few causal relationships found, such as in
this example, we can examine the individual hypothe-
ses and manually filter the causal hypotheses. For in-
stance, if there are two causes of an effect, say, one
with z-value 7.2 and the other with a value 1.3, we
may speculate that the former is more likely to be the
genuine cause. If the data were experimental, we could
do further testing to validate (or refute) this claim.
Second, had there been a larger number of prima facie
causes of each effect, we could treat each of those as a
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Figure 2: Neural spike train example. We tested
pairwise causal relationships, taking into account the
known temporal constraints on the system.

family of hypotheses, conducting the procedure after
the computation of ǫavg on each of these families indi-
vidually. With future research, it may also be possible
to better estimate the empirical null distribution.

While we provide the full comparison only on our
website and omit it here due to space considera-
tions, we will summarize the results. We used the
Tetrad IV implementation of the PC algorithm and
the granger.test function in the MSBVAR R pack-
age, with a lag of 20 time units. We note that our
false discovery rate over all tests and false negative
rate are: 0.0093 and 0.0005 respectively, while that
of the Granger test are: 0.5079 and 0.0026 and PC
are: 0.9608 and 0.0159. Further, our discoveries were
highly robust, with over 95% of relationships found in
both datasets for a particular pattern and noise level.
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Figure 3: Close-up of the tail area of Figure 2. The
relationships in this area are exactly those of Figure 1.

5.2 MICROARRAY DATA

To test our method using actual data with an un-
known causal structure, we used a data set consist-
ing of a set of time-course gene expression profiles as
measured by microarrays. Microarrays allow the mea-



surement of expression levels (indicators for whether
genes are more or less active than some control) for
thousands of genes simultaneously. In a time-course
experiment, these levels are measured at regular inter-
vals, giving a picture of how the system behaves over
some period of time. The data we examined spans
the 48 hour Intraerythrocytic Developmental Cycle of
the malaria parasite Plasmodium falciparum (Bozdech
et al., 2003).

One interesting feature of this segment of the P. falci-

parum life cycle is that all genes are active at some
point during its 48-hours. This forms what is re-
ferred to as a “cascade” of activity, where as one
group of genes become up-regulated, others are down-
regulated. We tested relationships between pairs of
genes, where the influence occurred at the next time
point. That is, we considered formulæ of the form:
c ;

≥1,≤1

≥p e, where c and e represent the under- or
over-expression of particular genes. While we looked
at these relationships over the entire timecourse, one
could also speculate that different relationships are
active at different points during the cycle, and thus
require further analysis within each stage of the cy-
cle separately. Since the available timecourse data is
comparatively short and sparsely sampled, such finer
analysis is likely to result in overfitting, so we decided
to focus on the full timecourse data here.

We restricted our testing to only genes whose proteins
are involved in known protein-protein interactions,
thus leaving out all but 2846 unique genes. To esti-
mate f(z), we used a spline fit to the histogram. The
empirical null was estimated using the same method
as for the neural spike train data set, and computed
to be N(−1.00, 0.89), with the results of our analysis
shown in Figure 4. We see that were we to use the the-
oretical null, this hypothesis would mostly explain our
data and we would find very few significant causal re-
lationships. The data itself appears to follow a normal
distribution, but with a long right tail. The empiri-
cal null is shifted far to the left of the theoretical null,
taking into account this tail.

Note that there are thousands of prima facie causes
with low false discovery rates when using the empir-
ical null hypothesis. This data set, being from an
experiment where the structure of the system is not
known, does not allow for easy validation of these re-
sults. However, we may ask whether they are consis-
tent with what is known. In this case, it is commonly
believed that biological systems are quite robust, giv-
ing rise to backup mechanisms that allow processes to
continue uninterrupted in the case of perturbations.
We summarize the results from this example as fol-
lows: 1) Genes that are active during the same stage
of the cycle will have similar patterns of regulation and

will be involved in complex sets of relationships occur-
ring in that stage, and 2) Given that we will have a
large number of causal relationships orchestrating the
cascade, there will likely be a number of back-up mech-
anisms to allow the uninterrupted cascade of expres-
sion. Graphing the set of relationships has shown that
there is primarily one network that follows the pattern
of the cascade (sets of up-regulatory relationships fol-
lowed by up-regulation for one set of descendants and
down-regulation for another). We could use a very low
value (perhaps 0) for the fdr if our goal is a small set
of likely relationships (as is the case when our aim is
a set of genes to explore for possible vaccine use), as
well as speculating two possible classes of causal rela-
tionships: genuine and backup causes. Finer analysis
of such examples will be dealt with in future work.
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Figure 4: P. Falciparum microarray example. We
tested causal relationships amongst all pairs of genes
over the entire time-course. The histogram shows the
number of prima facie causes with a given z-value.

6 OPEN PROBLEMS

This general method points to a number of open prob-
lems. First, we would like to be able to reason about
token causality, where the aim is not to find general
causal relationships, such as that between smoking and
lung cancer, but rather to find the cause on a particu-
lar occasion - did a specific person’s smoking cause his
lung cancer. Secondly, we have assumed as most oth-
ers do that our time series are stationary, while many
systems may have periods of reorganization, where the
causal regime switches. Another line of work is to in-
tegrate spatial information, perhaps by another modal
operator, allowing a notion of not just temporal local-
ity but spatial locality as well. Finally, abstraction has
been an important topic in computer science and will
have applications in causality. There has not been a
natural way of determining at what level one should
try to infer causal relationships (e.g. in the case of bi-
ology we could look at humans, mechanisms connect-
ing organs, regulation of individual genes, and work
our way down to physical relationships), but abstrac-
tion may be able to help us answer these questions.



In future work we will address many of these classical
problems.

7 CONCLUSION

Understanding complex causal structures is at the
heart of many disciplines, particularly those of biol-
ogy and the social sciences, where theories explain in-
teracting parts of a whole and are subject to missing
and incomplete data and must be revised as new ex-
periments reveal new structure. There is a rich lit-
erature in philosophy on what constitutes a causal
relationship and how these may be identified. We
have exploited the fact that the conditions given for
causality in this philosophical tradition may be eas-
ily translated into the framework of temporal logic
and model checking. By translating these notions to
PCTL, we allow description of vital features that have
previously been left out of computational approaches
to causal inference, namely the temporal component of
the causal relationship as well as explicit description
of the sets of conditions comprising a cause. While
many of our inferred causes will be spurious, treat-
ing the problem of weeding out insignificant causes as
a multiple hypothesis testing problem using an em-
pirical null allows us to remain neutral as to the un-
derlying distribution of the data, while still control-
ling our false discovery rate. This general approach
has applications in a variety of areas (e.g. economics,
biology, politics), which we have illustrated through
two example datasets with very different underlying
structures. Supplementary material is available at:
http://cs.nyu.edu/~samantha/papers/tlcs.html.
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