
Aggregates in the Temporal

Query Language TQuel

TR86-009

March 1986

Richard Snodgrass and Santiago Gomez

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

Aggregates in the

Temporal Query Language TQuel

March, 1986

Richard Snodgrass & Santiago Gomez

Department or Computer Science

University or North Carolina

Chapel Hill, North Carolina 27514

Abstract

TR 8E-009

This paper defines aggregates in the temporal query language TQuel and provides their rormal

semantics in the tuple relational calculus. A rormal semantics (or Que! aggregates is defined in
the process. Multiple aggregates; aggregates appearing in the where, when, valid, and as-or

clauses; nested aggregation; and instantaneous, cumulative, and unique variants are supported.
These aggregates give the user a rich set or statistical functions that range over time, while
requiring minimal additions to TQuel and its semantics .

. :'l'bi1 work wu nppolied bJ NSF (l'&lli DCR·8402330 and by a Junior Faculty Denlopmnt Awud from the UNC.

CH FoUD.datioa. The &nt aat.hor wu npport.ed ia pan by u IBM Faculty Developmnt. Award.

. ,!;

Table or Contents

1. Introduction•............•..............•...............•............. :..................................... 1

1.1. Aggregates in Conventional Query Languages•.................. 1

1.2. Aggregates in Time-Oriented Databases ... 2

1.3. Structure or the Paper ... 3

2. Aggregates In Quel•...............•...•...•...................................... 5

2.1. Informal Specification or Quel Aggregates .•.................•............................ 5

2.2. Semantics of the Quel Retrieve Statement ... 7

2.3. Adding Aggregates to Tuple Relational Calculus 8

2.4. Unique Aggregation .. 12

2.5. Aggregates in the Outer Where Clause ... 13

2.6. Nested Aggregation .. 13

2.7. Expressions in Aggregates .. 14

2.8. Summary .. 14

3. Temporal Aggregates in TQuel ... 15

3.1. Adding Aggregates to TQuel ... 19

3.2. Cumulative versus Instantaneous Aggregates•.................................... 21

3.3. New Aggregates .. 23

3.4. Some Examples•..........•.. 25

3.5. Defaults ... 29

3.6. Syntax Summary .. 29

4. Tuple Calculus Semantics or TQuel Aggregates .. 31

4.1. Review or TQuel Semantics ... 31

4.2. New TQuel Aggregates .. 33

4.3. The Constant Predicate ... 35

4.4. Instantaneous Aggregates ..••....•... 37

4.&. Cumulative Aggregates .. 41

4.6. Mixing Different Aggregates in a. Query .. 45

4.7. Aggregates in the Outer Where Clause ... 45

4.8. Nested Aggregation .. 46

4.9. Unique Aggregation .. 47

4.10. Aggregates in the Other Outer Clauses .. 48

5. Conclusion .. :... 49

Acknowledgements ... 50

References 51

I

~. '

Table or Figures

Figure 1: Example Relations shown on a Time Line , 18

Figure t: An Example or count .. . 20

Figure 3:. Instantaneous versus Cumulative versus Unique Aggregates•.•...•.... 22

Figure 4: Converting an Event Relation into an Interval Relation·
·······~·-··· .. ~0

42

·~ · ...

Table or Examples

Example 1: How many faculty members are there in each

rank! .. 6

Example Z: How many faculty members and different ranks

are there!•.................................•... 7

Example 3: What was Jane's rank when Merrie was pro-

moted to Associate! 17

Example 4: How many faculty members were there each

time a paper was submitted to a journal! ..•....................................... :........... 25

Example 5: Who was making the second smallest salary,

and how much was it, during each period or time prior

to 1980! ,... 25

Example 8: Who were the professors hired into or promoted

to a rank while the first faculty member ever in that

rank was still in that category! •.. 26

Example 7: How many different salary amounts has the

department paid its members since its creation until

1981!•..............•.....• ~.. 26

Example 8: For each faculty member, list bis/ber last rank

and first journal they submitted a paper to. .. 27

Example lh Given the above set or experimental data, bow

equally spaced are the observations in timeT .. 28

Ul

Chapter 1

INTRODUCTION

A database represents objects in the real world, their relationships, and the ways they com

bine with each other. The effective modeling or reality has orten been difficult within conven

tional databases. Conventional databases are really snapshot databases, since they show the state

or the real world at one particular point in time; they do not support the passage or time. Several

researchers have proposed extensions to database models and query languages that include time

as an· intrinsic part.

This paper deals with the formal semantics or aggregates in a temporal relational database

query language. In this chapter, we will first see how aggregates are handle~ in a conventional

query language. Then we will turn our attention to aggregates in time-oriented relational data

bases.

1.1. Aggregates In Conventional Query Languages

A convenient way or combining data from tuples in a relational database is through aggre

gate operators. They include such common statistics as the count, the sum, and the average or

the values or an attribute in a given relation (or part or a relation). Most commercially available

relational database management systems (DBMS's) provide several aggregate operations JDa.te

1983, SQL/DS 1981, Ullman 1982J. One or the best known systems among these is lngres !Stone

braker et al. 1976J. Que! JHeld et al. 1975J, the query language used with lngres, is fairly

comprehensive in its support or aggregates. Techniques for implementing non-temporal aggre

gates in a relational query language are discussed by Epstein, with a description or the method

used by Que! for processing queries that involve arbitrarily complex aggregations or data. JEpstein

1979J. However, no formalization or the semantics or aggregates in Que! has been done to date.

1

Klug introduced an approach to handle aggregates within the formalism of both relational

algebra and tuple relational calculus fKlug 1982{. His method makes it possible to. define both

standard and unique aggregates in a rigorous way. Ceri and Gottlob present a translation from a

subset of SQL that includes aggregates into relational algebra, thereby defining an operational

semantics for SQL aggregates fCeri & Gottlob 1985{. Klug's approach was exploited in this trans

lation; his approach will be used later in this paper to build a formal semantics for aggregates in

Que!.

Finally, significant progress has been made in the area of •lalistical datobase• fLBL 1981,

LBL 1983j. Such databases, used primarily for summary statistics gathering and statistical

analysis, contain set-valued attributes. Klug's relational algebra and calculus have been extended

to manipulate set-valued attributes and to utilize aggregate functions {Ozsoyoglu, et al. 1986J,

thereby forming a theoretical framework for statistical database query languages. As such

languages manipulate non-llrst-normaJ-rorm relations, they are or limited relevance in this paper.

1.1. Aggregate. In Time-Oriented Databaaa

A variety of work has been done on incorporating time in a database (d., !Anderson 1982,

Bradley 1978, Bubenko 1977, Clifford & Warren 1983, Codd 1979, Lum et al. 1984, Sernadas

1980, Snodgrass & Ahn 19861). The majority of the researchers focus on issues such as how to

model time, how to treat time attributes in a manner consistent with the way humans view time,

and how to represent temporal information in an efficient manner.

Few researchers, however, have investigated aggregates in time-oriented relational data

bases. One of the first time-oriented query languages, the Legol 2.0 language, included aggregates

(Jones & Schwan 1070, Jones & Mason 1980(. In Legol 2.0, all the instances of aggregation are

perrormed over time because every tuple is time stamped. A distinction was made between

!1-ggregates at each time, or in•lonlaneou• aggregate•, that yield a distribution on the time axis,

and aggregates over all time, or cumulative oggregole•, that yield a single value:

I

lnBianlaneoua Cumulative

max highest

min lowest

sum· accumulate

nlllllber count

Furthermore, the purely temporal aggregates "first", returning the earliest time, and "last",

returning the latest time, were defined. No formal semantics was provided.

Ben-Zvi included several aggregate operators and functions in his TRM language, although

not in a. very clear or comprehensive manner [Ben-Zvi 1982/; Ariav also mentioned aggregates in

the context or his TOSQL language [Ariav 1985[. Finally, although Gadia's HTQuel language

does not explicitly include aggregates, his "temporal navigation" operators (e.g., First) can be

simulated using aggregates, since they effectively extract an interval from a collection or intervals

[Gadia & Vaishnav 1985/.

Aggregates in TQuel, a superset or Que! incorporating temporal constructs, were previously

defined informally [Snodgr= 1982[. Both instantaneous and cumulative versions or aggregates

were given. The difficulties caused by tuples that are duplicated over time and indeterminacy or

the temporal attributes, were identified and several alternative definitions or cumulative aggre-

gates were provided. As with the previous attempts, no satisfactory semantics was given.

1.3. Structure ot the Paper

For temporal relational database systems, some work has been done on aggregates, but they

still need a formal definition. It is necessary to specify the meaning of each aggregate from a

user's point or view and to specify a rigorous semantics for each or them. Formal definitions are

also useful for implementing the query language.

We will begin by constructing a formal semantics or aggregates in Que!. Then, an intuitive

introduction to temporal aggregates in TQuel will be given in Chapter 3. Chapter 4 is devoted to

developing a formal semantics for aggregates hi ·TQuel.

a

Throughout the paper, a fixed-width font is used for functions and operators in the query

language (e.g., count), and italics is used for functions in the semantics (e.g., eoanl).

4

Chapter Z

AGGREGATES IN QUEL

This chapter will present a complete semantics for the Que! aggregates, as a convenient

point of reference for the TQuel semantics to be developed in Chapter 4. An informal

specification for aggregates is given, followed by a formal semantics or the retrieve statement

with aggregates in the Que! language.

2.1. Informal Speelfleatlon of Que! Aggregates

The Que! operations for aggregation are

count The number or values that exist for a given attribute in a relation. Since every attribute
ha.• exactly one value in each tuple, this operator yields the same result on all attributes

-or a relation.

any An indicator of whether there exists at least one tuple in a relation. It returns a 1 if the

relation is non-empty and 0 otherwise.

sum The sum or the values present for a given attribute. This operator can be computed
only on a numeric attribute.

avg The average, or arithmetic mean, of the values present for a given attribute. The aver

age is defined in the usual way, i.e. the sum divided by the count. Because or this depen·
dency upon sum, the avg is also a numeric-attribute-only operator.

min The smallest of the values present for a given attribute. For an alphanumeric attribute,
the ·alphabetical ordering is used to determine the smallest element.

max The largest of the values present for a given attribute. For an alphanumeric· attribute,

the alphabetical ordering is used to determine the largest element.

These operators can be used in two types of aggregation:

(a) Scalar aggregates, yielding a ringle value as the result.

(b) Aggregate functions, producing several values determined by calculating the aggregate over

a subset of the relation. Each subset consists of the tuples such that the contents of one or
more attributes grouped in a by-list are the same. Hence the result of an aggregate function

. is a relation whose number or tuples equals the number or different values in the by-list.

While scalar aggregates are independent or the query in which they are nested, aggregate

functions are not. Since each value computed by such a function carries information on part of a

relation, tuple variables in the by-list must be linked to the corresponding tuple variables, if any,

in the outer gueru- that is, they should refer to the same part or the relation. (The inner 9uerv,

u opposed to the outer query, is the one consisting of the attribute to be aggregated, the by-list,

and the inner where clause.)

By their very nature, both scalar aggregates and aggregate functions operate on the entire

relation. However, they ean be /oea//11 restricted via a where clause to operate only on certain

tuples of the relation. The local or inner where clause is processed separately from the outer one

or the query.

EXAMPLE. Suppose the relation Faeu/111 holds relevant data, say name, rank and salary, about

the professors in a university department:

Facultv(Nome, Rani:, Salorv):

Nome Rani: Salary

Tom Assistant 23000

Merrie Assistant 25000
Jane Associate 33000

range of f ia Faculty

retrieve (f.Rank. NumlnRank = eount(f.Name by f.Rank))

Ez11mple 1: How many faculty members are there in each rank!

The range statement declares a tuple variable f that will be usoeiated to Faeu/11/ throughout

the query. The retrieve statement contains the target list of attributes to be derived for the out-

put relation, in this ease, Rtml: and NumlnRanl::

Rani: Num1nRonl:

Assistant 2
Associate 1

The output relation contains u many tuples as actual values exist in the by-list. U there bad

been no by-Jist, NumlnRanl: would be 3 in all the derived tuples. I

Aggrega.tion performed over the set of strictly different values in an attribute is ca.lled

unique aggregation. Que! supports three unique aggregates: eountU, &UIIIU, and avgU. Unique

versions of any, max and min are not necessary.

EXAMPLE. This example illustrates multiple aggregates and unique aggregation.

range of f is Faculty
retrieve (NumFaeulty = count(f.Name), NumRanks = eountU(f.Rank))

Ezample 2: How many faculty members and different ranks are there!

The result is a single tuple:

NumFacultu NumR•nl:s

3 2

I

2.2. Semantic• ot the Quel Retrieve Statement

kiuple relational calculus semantics for Que! statements without aggregates was defined by

Ullman]Ullman 1982] and will be reviewed here. Although attribute values in a target list can be

expressions in general, we ignore that detail in this paper for simplicity of notation. Thus the

skeletal Que! statement is

in which

range of It is Rt
retrieve (I, .D1 , ••• , t, .D

1
)

1 1 , ,

where 1/1

1 :5 i, :5 k' ... , 1 :5 i, :5 k
1 :5 j 1 :5 deg(R,

1
), ••• , 1 :5 j, :5 deg(R,,)

deg(R) is the degree of R, that is, the number of attributes in !ach tuple of R. The correspond·

ing tuple ealeu!us statement is

{w<•> I (31 1) • • • (31t)

(R1(1 1) 1\ · · · 1\ Rt(lt)

1\ wj1J- I,,Jhl 1\ · · · 1\ wjr]- I,,Jj,J

'I

- ·.·- .. · _ . ..:.~---- . - -·

This statement specifies that the tuple 11 ia in the relation R., the result tuple u ia composed of r

attributes, the m-th attribute of u is copied from the j. -th attribute or the tuple variable. 1, , . .
and that the participating tuples are determined by the restriction 1/11

• We use 1/11 instead or 1/J to

indicate modifications for attribute names and Quel syntax conventions.

I.a. Addlns Anresate. to Tuple Relational Calculua

The semantics for the Que(retrieve statement with aggregates will be presented now. We

first introduce the dggrtgdlt optrdlor6 to be used in the tuple calculus. This material is new, and

is based on Klug's method [Klug 1982].

Lit R be a relation of degree r containing n tuples, n ~ 0, and let I be a tuple variable

associated with R.

DEFINITION. count(R) ~ (n, ... , n)

That is, the count operator yields a tuple whose r components equal·n.

DEFINITION. an11(R) ~ (oign(n), •.. , Bign(n))

The sign function produces the value +1 if n is positive (at least one tuple in R), and 0 it n is
zero (no tuples in R). Again, all r components of the result tuple equal the same value.

For the remaining definitions, assume n > 0.

DEFINITION. •um(R) ~ { E 1]1], ... , E l]r] J
t e R(t) t e R(t)

Each component of the result tuple equals the sum of all values in the corresponding component
of the tuples of R.

DEFINITION. avg(R) ~ (.l E 1]1], •.. , .l E l]r])
n t E R(l) n IE R(l)

Each component or the result tuple equals the average or arithmetic mean of all values in the

corresponding component or the tuples of R.

DEFINITION. min(R) ~ (min 1]1], ... , min l]rJ)
IER(I) IER(I)

Each component or the result tuple equals the minimum of all values in the corresponding com
ponent of the tuples of R.

8

DEFINITION. ma>{R) ~ (max 1111, ... , max tirl)
tER(t) tER(t)

Each component of the result tuple equals the maximum of all values in the corresponding com
ponent of the tuples of R.

For n -o, sum, avg, min and ma2 are arbitrarily defined to be 0. However, new implemen-

tations can be more consistent with reality if they return a special null value for those cases.

The advantage of defining aggregate operators to work on relations instead of on domains

";s that duplicate values enter the set calculations without difficulty. Later on we consider unique

_aggregates which eliminate .duplicate values to compute aggregates over unique values.

The functions are used in the tuple calculus semantics. Let F be any of the aggregates

defined in Section 2J. Quel queries with one aggregate function are of the form

in which

range of 11 ie R1

retrieve (I, .D
1

, ••• , 11 .D1
g -F(I1 .D .. by 11 .D , 11 .D,. where ¢ 1))

1 1 , '· 1 1 2 • •

where¢

1 :5: i 1 :5: k, •.. ,1 :5: I, :5: k

1 :5: 11 :5: k, ... , 1 :5: I, :5: k

1 :5: j 1 :5: deg(R,
1
), ••• , 1 :5: j, :5: deg(R,.)

1 :5: m1 :5: deg(R11), ••• , 1 :5: m, < deg(R1J

Again, we simplify the expressions appearing in the aggregate to attribute names. There is also

the restriction that the tuple variable(s) mentioned in ¢1 must be either 111 or one of the tuple

variables appearing in the by clause: 11 , 11,. The attributes outside the aggregate,

D
11

, • • ·, D1,, and the attributes used within the aggregate, D,. .. · · · , D,.,, usually overlap,

but need not. This aggregate

(a) takes the cartesian product of the relations associated with the tuple variables appearing in
the aggregate,

(b) removes all resulting tuples that do not satisfy the condition in the where clause of the
aggregate,

I

-:, _,_ .. _,. ___ .. -·---~--~

(e) partitions the resulting tuples by the values or the attributes listed in the by clause,

(d) applies the aggregate to eaeh partition,

(e) and finally associates the result with each combination oftuples participating in the original
query; with the partition selected using the values indicated in the by clause.

We 6rst speciry the partition or the cartesian product or the relations associated with the

tuple variables appearing in the aggregate. Initially assume that the tuple variables 11 , ••• , 11 are
I '

all distinct. Define a partitioning function P corresponding to the aggregate in the query as a

runction or n -1 values ·=· ... , •• ' given by

(311)
•

(Rl (t,) A . . . A R, (t,)
1 1 • •

A '~.lm:l- •= A · · · A tt,[m.l- •·

A \&•'> }

where p ~ deg(R
11

). Each or the combinations or values a2, ••• , a. existing in the specified attri-

butes produces one partition on which the aggregate has to be applied.

EXAMPLE. The partitioning runction ror Example 1 is particularly simple:

P(s2)- {1 <•> I (3/)(Facu/lv(/) A t -1 A /Jronk)- o2)}

For this particular Facu/111 relation, P(Assistant) -{(Tom, Assistant, 23000), (Merrie, Assistant,

26000)} and P(Associate) -{(Jane, Associate, 33000)}. Note that we use attribute names rather

than indices ror notational convenience. I

Let f be the aggregate operator defined above corresponding to the Que! aggregate F (e.g.,

if F is count, I is count). A term or the rorm I (R) will denote the r-tuple obtained rrom the

application or aggregate operator f to relation R. The operator f applies the same aggregate to

10

every attribute in Ro Let /(P(o2, .. o, o.))[mJ denote the m-th attribute or the tuple evaluated

by f(P(a 2, ... , a.)). For Example 1, eouni(P(Assistant)) - {(2, 2, 2)} and

eouni(P(Assistant))JNome J -2.

The counterpart tuple calculus statement for the Que! query is then

{we•> l (31 1) • • o (31,)

(R,(I.) A . 0

• A R,(t,)

A w[tJ- I,,Jhl A 0

• • A wJrJ-t,,[i,J

A wJr+lJ-/(P(I,,Jmd, ... , I,,Jm.J))Jm,J

A .P' l}

The partitioning function computes the partitions, with the appropriate partition selected

by the parameter passed to P. Ir the tuple variables appearing in the aggregate are not distinct,

then the first two lines in the definition of P should be altered to eliminate duplicate tuple vari-

ables.

EXAMPLE. The tuple calculus statement for Example 1 is

{we•> l (3/)(Facultv(l) A wjlJ-/JronkJ A w[2J-couni(P(/jRonkJ))JNomeJ)} I

For a scalar aggregate, there is no by clause and the partitioning function P is simpler,

namely

p ~ {tC•> l (31,)(RI(t,) A I -I, A .Pt')}
1 1 1 1

Here, P is formulated to emphasize its similarity with the more· general partitioning function

given earlier. As expected, P computes a subset or R
11

• The tuple calculus statement for the

query remains the same as above, except that Pis used in place or P (11 Jm2J, ... , 11 Jm. J).
. . 2 •

11

EXAMPLE. For the count aggregate of Example 2,

P1 - {1<2
> I. (3/)(Facultu(l) 1\ I •I) } I

For a query involving several aggregates Ito ... , I• , a separate partitioning function P (of

either the scalar or the function form) is defined for each agsregate.

1.4. Unique Agregatlon

The aggregates as defined cannot do unique aggregation directly, because they operate on

relations, not on attributes. It turns out, however, that a slight change of the partitioning func

tion P solves the problem.

Let the modified partitioning function be defined in terms of P as

The net effect of this is the elimination of all duplicate values from the attribute upon which

aggregation will be performed.

For a scalar unique aggregate, the partitioning function U of degree p (rather than p+q) is

defined in a similar fashion based on P,

U ~ {w(I): (36)(6 E p 1\ wlll•blmtll}

EXAMPLE. For Example 2 for the countU aggregate,

P2 - {1<2
> I (3/)(Facullu(l) 1\ I •I) }

U2•{u<1l I (36)(6 EP2 /\ uiiJ-6!1J)}

•{(Assistant), (Associate)}

The final tuple calculus expression is then

{ w!2) I (31)(F4eu/lll(/) A w)l) • eount(P1))N4me) A u)2) - eo.~ni(U 2))R4nk)) } I

The tuple calculus semantics of all unique aggregates is simply obtained by substituting U

for P in the main formula of the previous section, and using the previously defined operators

eount, tum, and avg.

J.&. Asst-egatea In the Outer Where Clauae

So far we have seen standard and unique aggregates being used in the target list of a query.

They can also appear in an expression in the Que! where clause, alone or with other terms like

constants and values from attributes.

L~ us first deal with an aggregate in the main where clause. If it is a scalar aggregate, it is

independent of the rest of the query and therefore it is simply calculated and replaced by its

value. However, if an aggregate function appears in the outer where clause, its corresponding

partitioning function is defined, and the values of the aggregated attribute are used in place of

the aggregate in the query. Following the rule that the tuple variables in by-lists are global, the

by clause is linked to the rest of the query through the arguments to the partitioning function.

:1.11. Nested Aggregation

A similar rule applies in the case of nested aggregation, that is, when an aggregate function

11 appears in a local where clause of an aggregate 12• The tuple variables in the by-list of 11 are

linked to the tuple variables of the same name appearing in their outer environment (that is, the

12 query).

Nesting may be deeper, with 12 nested in (called from) an outer aggregate I 8• Again, if

tuple variables with the same name appear in the by-list of 12 and in the I a query, they will be

linked, and so on, .Links are accomplished via the arguments to the partitioning functions. Thus,

at any one time, only one level of nesting need be considered)Epstein 1979).

11

.. ____ . ____ ·....-----~-·---"'------- --· ;···

2.1. E.xpreulou In Aaresate.

In the formal semantics, we assumed that a single attribute was aggregated, ~r partition-

ing by zero or more attribute Yalues. Que! allows arbitrary expressions to be aggregated, and

supports expressions in the by clause. The former can be accommodated by simply substituting

appropriate expressions for attributes in the line relating the output attribute in the main tuple

calculus statement.

EXAMPLE. If Example 1 was modified to

range of f ia Faculty
retrieve (!.Rank, This= eount(f.Hama by f.Rank) • eount(f.Salary by f.Rank))

the only change would be in the computation or w [2j:

w[2J• count(P(f[R4nl: J))[Name j•couni(P(/[R4nk j))jS4/4rvj I

Expressions in the by clause require two changes: one in the definition of the partitioning function

where the parameters are equated and one in the main statement, where values or the parame-

ters are specified.

EXAMPLE. If Example 1 was modified to

range of f ia Faculty
retrieve (!.Rank, This = eount(f.Hame by !.Salary mod 1000))

the modified partioning function definition and tuple calculus statement would be

P(a2) • {1(2) I (3/)(Facultv(l) 1\ I •II\ f!Salarvj mod 1000 • a2)}

{w(•) I (3/)(Fmllll(/)/\ w[1] •/[Rani:] 1\ w[2] •count(P(I[Salarll[mod1000))[Namej)} I

J.a. Summaey

There are six fundamental operators that perform aggregation in Quel. The grouping and

selection of tuples to be aggregated is done by the partitioning function, which also determines

whether the standard or the unique nrsion is being used. Aggregates may appear in the outer

14

where clause, as well as nested in the inner where clause. The depth of nesting can be arbitrary.

While only the semantics for the retrieve statement has been given, it is easy to extend it to

specify aggregates in the Quel modification statements (append, delete, and replace)

[Snodgrass 1986), using the strategy discussed in this chapter. It is also straightforward to extend

the aggregates to operate over arbitrary expressions.

Now that the tuple calculus semantics of Quel with aggregates is complete, we can use

these results for defining a tuple calculus semantics for TQuel aggregates.

16

Chapter 3

TEMPORAL AGGREGATES IN TQUEL

In Chapter 2 we have seen the various Quel aggregates and their formal semantics. In this

chapter we introduce TQuel aggregates in an intuitive way through examples. We first give an

overview of the TQuel Janguage·and then turn to aggregates.

TQuel is a version of Quel, augmented to handle the time dimension)Snodgrass 1986).

Relations in TQuel can represent either a collection of events that. happen ol certain points in

time (event relations), or a collection of entities that have a duration, that is, a ••ginning and an

to in time (interval relations). Thus, event relations have a distinguished valid time attribute, ot,

and interval relations have two distinguished valid time attributes, from and lo.

TQuel differentiates between the Yalid time and the transaction time in a database

)Snodgrass &: Ahn 1986], in a way similar to that of Lum and Dadam's logical and physical time

)Lum et al. 1984). Both event and interval relations carry two transaction-time attributes, 8larl

and •top. The assignment of the transaction times to a target relation is made by the system

when data are recorded. The degree (deg) of a temporal relation is the number of explicit attri-

butes.

The TQuel retrieve statement augments the standard Quel retrieve statement by including

• a when clause, paralleling the already existing where clause, to select tuples whose temporal
attributes satisfy desired temporal constraints;

• a volid-al clause that permits the assignment of a non-default and possibly computed value
to the valid time attribute of a target event relation;

• r~alitl-from and r~alid-lo clauses that permit the same kind of assignment to the valid time
attributes of a target interval relation; and

• an ••·•/ clause to specify rollback to a previous transaction or series of transactions.

To simplify the exposition, we will not use transaction time, and hence the &s'of-through

clause, in the examples. All relations will be lli.lorica/ relations, containing only the from and lo

nlid times.

18

EXAMPLE. The relations Facultv, Submitted and PubliBhed, drawn from !Snodgrass 1986j, are

assumed to contain the following tuples:

Facultv(Name, Rank, Salarv):

Name Rani: Salary from to

Jane Assistant 25000 9-71 12-76

Jane Associate 33000 12-76 11-80

Jane Full 44000 11-80 00

Merrie Assistant 25000 9-77 12-82

Merrie Associate 40000 12-82 00

Tom Assistant 23000 9-75 12-80

Submitted(Author, Journal):

Author Journal at

Jane CACM 11-79

Merrie CACM 9-78

Merrie TODS 5-79

Merrie JACM 8-82

Pub/i$hed{Author, Journal):

Author Journal at

Jane CACM 1-80

Merrie CACM 5-80

Merrie TODS 7-80

A representation or the tuples in the three relations is shown in Figure 1. A faculty

member's salary is assumed, for the sake of this example, to change only on promotion.

ran~e of fl is Faculty
ran~e of !2 is Faculty
retrieve (fl.Rank)
valid at be~in of fl
where fl.Name ="Jane" and f2.Nama ="Merrie" and f2.Rank = "Associate"
when fl overlap begin of f2

Ezample 9: What was Jane's rank when Merrie was promoted to Associate!

17'

71

71

71

Flpre 11 Example Relations shown on a Time Line

Facultv relation

J&De, Altift&llt, 25K

.. •• ,. ..
Su6milled rela.tion

,. T.l . ,.. ,. ..

Puilulled rela.tion

,. •• ,. 71

Tom, Altilt&lll, 23K

..

Tl

Merrie, Alai:rta.Dt, 25K

Jaae, Anociate, MK

..

71

.. .. II

• J&De,CACM

• Merrie, TODS

Yetrie, CACM

.. .. II

Mt!rrie, Anoei&te, 40K

J&De, Fell, 44K

10 a N

Merrie, JACM

.. .. N

, o Merrie, TODS

• JUe,CACM

.. 71 • ..
Only two tuples will pa.rtieipate in this query, (Jane, Full, 44000, 11-80, oo) (or f1 and

(Merrie, Associate, 40000, 12-82, oo) for f:Z, ba.sed on the where and when cla.uses. The target

list specifies the va.lue or the Rani: a.ttribute and the valid-at clause specifies the va.lue or the

implicit ol attribute. The resulting rela.tion ha.s one tuple,

Rani: al

Full 12-82

I

18

3.1. Addlns Aaresatu to TQuel

It is desirable that TQuel aggregates be a superset or the Que! aggregates, with a natural

time-oriented interpretation. Therefore, the TQuel version or a Que! aggregate will perform the

same fundamental operation, while ranging over an event or an interval relation.

There are some differences between Que! and TQuel aggregates. Historical and temporal

databases are characterized by the changing condition or their relations: at time 11 a relation

contains a set or tuples, and at time 12 the same relation may contain a different set. Since aggre-

gates are computed from the entire relation, this in turn causes the value or an aggregate to

change from, say, v1 to v2• Hence, while in Que! an aggregate with no by-list (scalar aggregate)

returns a single value, in TQuel the same aggregate returns, generally speaking, a 1equence of

values, each attached to its valid times. For an aggregate with a by-list, a sequence or values for

each value in the by-list is generated.

EXAMPLE. Let us consider Example 1, this time on an historical relation:

ran~e of f 1• Faculty
retrieve (f.Rank, NuminRank = count(f.Name by !.Rank))

The most intuitive approach is to retrieve each tank, together with the number or faculty at that

rank. As can be seen in Figure 2, for each rank there can be more than one related count.

111

----..:·-·-

Flpre Is An Example of count

Facu/111 relation To~ Alailllut, 2~

Oust ror the Assistant rank)
Merrie, AaiJtut1 25K

J&Be, Ao~Utaol, 251C

n .. ,.. ••,
"

count (Name}

2 2

I I -
n .. ,. •• .. ,. .,

"
,. 10

The query yields the rollowing tuples

Rod Nu mlnR onl: /rom lo

Assistant 1 0..71 0..75

Assistant 2 0..75 12-76

Assistant 1 12-76 9-77

Assistant 2 0..77 12-80

Assistant 1 12-80 12-82

Associate 1 12-76 11-80

Associate 2 12-82 00

Full 1 11-80 00

This query, rormula.ted as ir it were a Que! query, outputs the lli8lor11 or the requested count,

which is a time-varying runction. When a Faculty tuple is created, or becomes invalid, the counl

changes its value. Thus each tuple output is valid between two events (represented by vertical

dotted lines) in the graph or the Facu/111 relation (Figure 1). Notice that DO tuples are generated

with a size or zero. I

Therefore, the correct way to determine valid times ror the output tuples is to

(a) compute the valid times rrom the valid clause in the query, and then

(b) · create a result tuple ror each interval or time when an aggregate value overlaps the interval
given by those computed valid times.

tO

a.J. Cumulative veraua hutantaneoua Aaresate.

An aggregate may or may not take into account tuples that are no longer Yalid. The fol-

lowing definitions are useful:

Cumulative Aggregale8. If the nlue returned by an aggregate for each point I in time is com

puted from all tuples that have been valid since the beginning of the retrieval interval up to and
including I, regardless of whether the tuples are still valid at I, then the aggregate is said to be

cumulative.

lnatantaneoua AggregaleB. H the value returned by an aggregate for each point I in time is com
puted only from the tuples valid at time I, then the aggregate is said to be instantaneous.

These aggregates act differently when applied to an event or an interval relation. For an

event relation, as the length or the time unit (the limerlamp granularitv) is reduced, the probabil-

ity of finding any valid tuples decreases)Snodgrass 1982). Aggregates such as count, applied at

a given instant, would thus have different values depending upon the length or the time unit,

which Is not a good feature. On the other hand, it is always possible to count the events that

have occurred in the past, or in a given period of time, in a cumulative fashion. For an interval

relation, tuples are valid over an interval of time which is at least as long as the timestamp

granularity, and therefore the above problem does not exist. We therefore restrict aggregate

operators over event relations to be cumulative, while aggregate operators over interval relations

can have both an instantaneous and a cumulative version. This distinction may need to be

reassessed when "fuzzy" events are supported (c.r.,)Snodgrass 1982)). However, each value of an

aggregate, be it instantaneous or cumulative, is valid during a period or time.

-"·'''-·

Each Que! aggregate has two TQuel versions: one for the instantaneous and the other for

the cumulative case. The cumulative version (defined for both event and interval relations) will

have the same name as the instantaneous version, with a "c" appended to it.

EXAMPLE. To illustrate the difference between instantaneous, cumulative, instantaneous unique

and cumulative unique aggregates of an interval relation, consider the diagram of the output of

an instantaneous aggregate compared to the output or the cumulative one in Figure 3, which

illustrates the execution or the following query,

lll

range of f !e Faculty
retrieve (Cl = count(F.Rank), C2 = countC(F.Rank), C3 = countU(F.Rank),

C4 = countUC(F.Rank))

on the historical Foeult11 relation shown in Figure 1. I

Figure 3: Instantaneous versus Cumulative versus Unique Aggregates

Focultv relation To~ A11istut, 23K Merrie, A!sociate, .fOK

Merrie, A!sista.Dt, 25K

Jue, Anoc1ate, 33K

Jue, Anistu.t, 2SK Jaae, Fall, 4-tK

'71 ,. .. •• .. ,. ,., ..

Cl = count(F.Rank)
2 2 2

T1 ,. 73 74 "' 71 .. 71 .. 11
C2 = countC(F.Rank) 6 5

a
2 -I

fl 72 73 74 .. ,. ,.
C3 = countU(F.Rank)'

2 2 2

I I

T1 ,.. •• ... ,. .. 71 ,. .,
C4 = countUC(F .Rank)

2 2

I I

n ,. 71 ,. • • ..
The above leads to our approach to TQuel aggregates: to aggregate a given attribute or

relation R,

(a) Determine the periods or time during which R remained "fixed" or "constant", that is, no
new tuples entered the relation (and, if R Ia an interval relation, no tuples became invalid).

(b) IF there is a by-list with this aggregate, subdivide each constant set of tuples into subsets,

each subset corresponding to a value of the by-list attributes.

(e) For each constant set of tuples, select the tuples that satisfy all the qualifications required

by the where, when and as-of clauses, if any. Defaults are used if those clauses are not

present. Each group of selected tuples is called an aggregation eel.

(d) Compute the aggregate for each aggregation set. Output the result from each group as a

tuple valid during its associated period of time, intersected with the interval or event

specified by the valid clause.

The basic strategy therefore consists of reducing a TQuel query to a series of Quel-style

queries, each applied on a period of time when the relation does not change its contents.

Thus, TQuel queries with aggregates can result in several tuples rather than a single value.

Each tuple contains the value of the aggregate, attached to the particular period of time it was

valid, showing that the aggregate is really a time-varying function. At each point in time, there is

exactly one value of the aggregate. A set of tuples is required to model the history or the aggre-

gate.

Que] allows an inner where clause as the way to preselect tuples for the computation of the

aggregate; otherwise, aggregates always operate on the entire relation. Similarly, in TQuel the

inner where, when and as-of-through clauses serve th~ same purpose.

3.3. New Aggregates

All Que! aggregates have a TQuel counterpart. There are also some aggregates unique to

TQuel. The first is quite similar to avg, applying both to static relations and temporal relations:

stdev The standard deviation of the set of n values present in a given attribute, defined as a

measure of the homogeneity of the values. This operator is restricted to operate only on

numeric attributes.

The remaining new aggregates are strictly temporal.

first This instantaneous aggregate returns, at each point in time, the oldest value of the

given attribute, that is, the one associated with the first valid tuple. IF two tuples have

the same from value, the one with earlier lo time is considered to be older. IF they have

the same/rom and to values, one is arbitrarily selected.

last This instantaneous aggregate is analogous to first. It returns, at each point in time,

the newest value of the given attribute, that is, the one associated with the last valid

tuple. IF two tuples have the same to value, the one with later from time is considered to

13

--·-- ---·--- ·- -····- '•· . -... -- --

be newer. If they have the same/rom and lo values, one is arbitrarily selected.

The cumulative versions firstC and lastC are also available. Note that, while first,

last, and lastC yield (potentially) several tuples or output, firstC outputs just one tuple.

All these new aggregates operate on the explicit attributes of relations. The next two are

useful when analyzing numeric data. varying over time.

avgti AVeraGe Time Increment: the average growth or decrease experienced by values of an
attribute over time. This aggregate is only applicable to numeric attributes. It returns a
value indicating growth per time unit; for example, feet/hour, or dollars/month. The

time unit can be optionally specified by the user by means of the per clause (see the
syntax in Section 3.6).

The avgti is obtained by comparing the attribute value or each tuple with the attri·
bute value or its chronologically previous tuple, relative to the time elapsed, and
smoothing out all the comparisons by taking their arithmetic mean. At least two tuples
are needed to compute avgti so that the comparison ean be made.

varts -VARiability of Time Spacing: the degree of inequality of the time spa~ing within a. given

set of attribute values. This aggregate returns a. non dimensional quantity which has the
same value for each attribute. A value or 0 indicates the tuples are perfectly spaeed.

The varts also considers the tuples in chronological order. It finds the ratio of the

standard deviation of the time lengths from one tuple to the next, to the average of

those time lengths. Like in avgti, at least two tuples are needed to perform the com
parison.

In addition, two instantaneous and two cumulative aggregates that operate on the implicit

valid times are available. They can be employed by the user to specify conditions in the temporal

qualification (when clause), the valid times (valid clause), and/or the transaction times (as-or-

through clause).

earliest The oldest time period of an interval relation, that is, the llrst from-to interval or ol
event. rr two tuples or an interval relation have the same from value, the one with
earlier lo time is considered to be older.

latest The newest time period or an interval relation, that is, the last from·lo interval or

ol event. If two tuples or an interval relation have the same to value, the one with
later from time is considered to be newer.

The cumulative versions earliestC and latestC are defined as well. They respectively

output the earliest and the latest time periods from the beginning of the query interval. Aggre-

gates in the when, Yalid and as-of clauses are called aggrefoled temporal eon•lruclo,. because

they return a time interval as their result. To adhere to the syntax or temporal expressions and

predicates, the earliest, latest, earliestC, and latestC aggregates take a tuple vari-

able, rather than an attribute, as an argument.

3.4. Some Examples

The first example shows bow an aggregate, which gives an interval relation, can occur with

an event relation in a query.

range of f ia Faculty
range of s ia Submitted

retrieve (s.Author, s.Journal, NumFac = count(f.Name when f overlaps))

Example .f: How many faculty members were there each time a paper was
submitted to a journal!

The res)!lt is:

Author Journal NumFac at

Merrie CACM 3 9-78
Merrie TODS 3 . f>-79

Jane CACM 3 11-79

Tom JACM 3 12-82

The count is computed for every period or time such that f overlaps s, and then, by default,

the valid times or the output are the overlap or the valid times or the count and the s tuple

variable, producing an event relation.

This query, modified from one given in jEpstein 1979J, shows an aggregate in the inner

where clause or another aggregate; a case or nested aggregation:

range of f ia Faculty

retrieve (f.name, tiny= min(f.salary where f.salary I= min(f.salary))
when begin of f precede "1980"

Ezample 5: Who was making the second smallest salary, and how much

was it, during each period or time prior to 1980!

The output is

name linv /rom to

Tom 23000 9-75 12-76

Tom 23000 12-76 9-77

Merrie 25000 9-77 11-80

Merrie 25000 11-80 12-80

Aggregates can a.lso appear outside the target list:

~ange of fl i• Faculty

~ange of f2 i• Faculty

~etrieve (f2.Nama, f2.Rank)

where fl.Name t= f2.Name and fl.Rank = f2.Rank

when earliestC(fl b7 fl.Rank) overlap f2

E::omp/e 6: Who were the professors hired into or promoted to a rank

while the first faculty member ever in that rank was still in that category!

Observe that the aggregates in the when, valid and as-or clauses have a tuple variable, rather

than an--attribute, as argument. First the earliestC in each rank is computed,

Rani:

Assistant

Associate

Full

ear/iellc(/1/

<9-71, 12-76>

<12-76, 11-80>

<11-80, co>

Only one tuple qualifies, and the output is

Name Rank /rom to

Tom Assistant 9-75 12-80

The when clause can be used inside an aggregate:

range of f i• Faculty

retrieve (amountct.= countuUC(f.salary when end of e precede "1981"))

Ezamp/e 1: How many different salary amounts has the department paid

its members since its creation until 1981!

Through the use of countUC, eaeh salary amount is counted only once for each period of time.

The count is nondeereasing since a cumulative operator is specilled. The result is

omountet from to

1 9-71 9-75

2 9-75 12-76

3 '1-77 9-77

• 9-77 11-80

5 11-80 00

An instantaneous and a cumulative aggregate can occur simultaneously in a query:

range of f is Faculty
range of s is Submitted
retrieve (f.Name,

topmost= last(f.Rank b,y f.Name),
fpaper = firstC(s.Journal by s.Author))

valid from begin of f to end of f

where s.Author = f.Name

Ezomp/e 8: For each faculty member, list his/her last rank and first jour

nal they submitted a paper to.

The computation or last yields

Nom<

Jane
Tom
Merrie

Associate
Associate

and the computation of firstC produces

Author

Jane
Merrie

Tom

CACM
CACM

JACM

11-80

12-80

12-82

to

00

00

00

rom

11-79

9-78

12-82

Combining the two intermediate relations, we get the final output.

Nome topmost fpoper from to

Jane Full CACM 11-80 00

Merrie Associate CACM 12-82 00

Tom Associate JACM 12-82 00

Our last example applies varts to the event historical relation t:rperiment, which has the

following tuples:

ezperimeni{IJield}:

1/ield al

1.78 32

1.79 34

1.83 36
1.84 37
1.88 39
1.88 41
1.90 43
1.91 45

range of x i• experiment
retrieve (VarSpaeing = varts(x.yield))

E:z:amp/e 9: Given the above set or experimental data, how equally spaced

are the observations in time!

Computation or the variability or time spacing, tor any attribute, consists or (a) sorting tuples by

their al attribute and (b) considering every pair or chronologically consecutive tuples, S, and S,+<,

and lin ding the coefficient or variation or the length or time rrom event S; to event S,+<, that is,

standard deviation or .o'2[atf-S1fa1J, · · ·, S,+<faiJ-S,JatJ>

average ot.o'2fatJ-S1fatJ, · · ·, S,+<fatJ-S,fatJ>

The intermediate calculations, rounded to tour decimal places, are displayed in this table:

al

32

34
36
37
39
41

43
45

Time
elapsed

2

2
1

2

2
2

2

and the result is the tollowing relation:

18

Coefficient
of voriotion

0.0000

0.2828

0.2474

0.2222

0.2033

0.1884

VarSpaeing /rom to

0.0000 36 37

0.2828 37 39

0.2474 39 41

I 0.2222 41 43

0.2033 43 . 45

0.1884 45 00

VarSpacing in this case decreases with time. Since VarSpaeing = 0 ·means that all tuples are

equally time-spaced, the gradual decrease in VarSpacing means that the observations, as time

passes, are approaching uniformity in their time spacing. The initial 0.0000 says that the first

three observations were perfectly time spaced. Because or the number or elements required to

compute a standard deviation, VarSpacing is not defined before time 36.

3.5. Default•

The computation of an aggregate is really a query in itself, thus it is natural to use the

same defaults in the three inner clauses. For each attribute being aggregated, the defaults must

guarantee that all existing tuples in the corresponding relation participate in the aggregation.

Hence,

where true
.. when 11 overlap · · · overlap I•

aa of "now"

These defaults permits the reduction of TQuel aggregates to Que! aggregates to be proven (cJ.,

!Snodgrass 1986J), thereby allowing TQuel aggregates to be used in exactly the same way as Que!

aggregates.

3.8. Syntax Summary

In order to accommodate aggregates, the TQuel syntax !Snodgrass 19861 is slightly aug-

mented. TQuel is a superset of Que!, that is, all legal Que! statements with aggregates are also

legal TQuel statements with aggregates. The following are the additions made to the above men-

tioned TQuel syntax.

zo

- ---·· --·-· --'-~--~'. ·:'.-":-----·--;_· -'-

<expression> ::-In addition lo IAe TQuel •11nl11:r, include:

I <aggregate term>

<aggregate term> ::-<aggregate op> (<aritb expr><by clause><retrieve tail>)

<by clause> ::•E·J by <attribute list>

<attribute list> ::- <arith expr>l <attribute list>, <arith expr>

<aggregate op> ::- eount I eountC I eounttll eountUC

SWII 1 sumC 1 sumt1 1 SWIItiC I I I .

avg I avgC I avgtll avgtiC

stdev I stdevC I stdevtl I stdevUC

anyl anyC

min l minC

max l maxC

first l firstC

last I lastC

<per clause> avgtil per <time unit> avgti

varts

<time unit> :.-millisecond I second l minute I hour

l day I week I month l quarter l year

<interval element> ::-In addition to tile TQuel 6f1nla:r, include:

l <aggt> (<tuple variable>< by clause><retrieve tail>)

<aggt> ::- earliest l earliestC l latest I latestC

ao

Chapter 4

TUPLE CALCULUS SEMANTICS OF TQUEL AGGREGATES

It is convenient to base the semantics of TQuel on the static relational database model,

especially becaus• of the available mathematical foundation supporting the latter!Codd 19721.

Thus the semantics of the augmented operations are expressed using traditional tuple calculus.

notation.

We will review the transformation of the tim•-speeific constructs of TQuel into the tuple

calculus, and briefly give the semantics of the TQuel retrieve statement, which is needed in order

to introduce the semantics of temporal aggregates. This review is a condensation from parts of

!Snodgrass 1986!. The semantics of the TQuel aggregates is then developed.

4.1. Review ot TQuel Semantlea

As stated in the overview of TQuel in Chapter 3, TQuel augments Que! by adding a valid

clause to specify the validity time(s) of tuples, a when clause to specify the relative time ordering

of the participating tuples; and an a.s-of clause to specify rollback in time.

The semantics makes use of several auxiliary functions: temporal constructor functions

(beginof, endof, o11erlap, eztend) that take one or two intervals and compute an interval and

temporal predicate functions (precede, overlap) that take two intervals and compute a boolean

value. All of them are ultimately defined in terms of the predicate Before and two functions first

and last.

The temporal predicate r in the when clause, containing the precede, overlap, and,

Or, and DOt operations, is transformed into a standard tuple calculus predicate r, containing

only the Before, 1\ , V , and ..., operations. The valid clause is _transformed into the. functions

~v and ~ •• each evaluating to an event, and containing the functions first and last. The as-of·

through clause is in fact a special when clause stating that the transaction times of the

31

underlying tuples must overlap the (constant) interval specified in the as-of-through clause. The

constants +o and +1 represent the endpoints of this interval from the expressions a ~nd {J. As a

consequence, the query

range of It Ia Rt
retrieve (1, .D

1
, ••• , I, .D1) 1 1 , ,

valld f'rom v to X
where 1/l
when r
u of a through /J

is translated into the tuple calculus statement

{w<•-+4) I (311)· • ·(31t)

(R1(1 1) 1\ · · · 1\ Rt(tt)

1\ w!II-1, !hi!\ · · · 1\ wjrj-l,fi,l
1 '

1\ wfr+lj-+. 1\ wlr+21-+x 1\ Before(wlr+l[, wlr+2])

1\ wlr-!aj-now 1\ wlr+41-oo

1\ "''
1\ r,

) }

In this statement, now represents the current transaction time. The superscript indicates

that the tuple u has r explicit attributes and 4 implicit attributes; t.his clearly refers to an inter-

Yal relation. The semantics Cor an event relation is similar, but with only 3 implicit attributes,

since the lo time is not present.

EXAMPLE. Example 3,

a :a

range of fl 1• Faculty
range of f2 1• Faculty
retrieve {fl.Rank)
valid at begin of fl
where fl.Name ="Jane" and f2.Name ="Merrie" and f2.Rank ="Associate"
when fl overlap begin of !2

which results in an event relation, has the following tuple calculus semantics,

{ w<H8) l (3/1)(3/2)

(Facultu(/1) {\ Faeultu(/2)

{\ w[l) -fl[Rank)

{\ w[l+l) =/llfrom)

{\ wJ1+2)- now{\ wJH3J-oo

{\ flJName) ="Jane"{\ /2JNameJ="Merrie" {\ /2JRankJ="Assoclate"

f\.. Before (I!Jfrom), f2Jfrom)) {\ Before(!2Jfrom J, /!Jio))

l} I

4,2, New TQuel Aggregates

Let us specify the semantics of the new aggregates introduced in Section 3.3. Let R be an

event relation of degree r (recall that the degree only concerns the explicit attributes) with n

tuples, n >2. These aggregates all compute a. single static tuple of degree r.

DEFINITION.

S ~ chronorder(R) ~('v'i)(l::; i::; lsi) ((31) (R(t) {\I-s,))
(\ Before(So-~JatJ, S,Jot))
(\ S,_1Jot),. S,Jat))

where lsi is the length of the sequence S. Each element or Sis a. Cull tuple from R, and the ele·

ments of S are ordered by the at times of R. If several tuples in R show identical ol times, only

one of them is taken into S. Hence, the length or Sis less than or equal ton.

DEFINITION.

33

(
1 lsl-t S,-li[r[-S,[r[) J

lsl-1 .~ S,-li[atJ -S,[al].

where S - ellronorder(R) and lsi > 1. Each attribute or the result tuple equals the average
increment (positive or negative) in the values or the corresponding attribute in R, per unit of

time (the default is the timestamp granularity, defined in Chapter 3). An optional per clause can
be used to specify the time unit desired; this causes multiplication of the result by a fixed conver

sion factor. For example, if timestamp granularity was a millisecond and the user specified "per
month" then the computed result is multiplied by the conversion factor or milliseconds to

months (2.592X10°) before being output.

~ (•d(D(R)) •d(D(R)) J
DEFINITION. 11ariB(R)- mean(D(R))' ... , mean(D(R))

where D(R) ~ <d, · · ·, dlsl-t> such that S- cllronorder(R), Is! >1,

(3i)(l ~ i ~ lsf-1 Ad, -s,-li[ai[-S,[at!J, and mean(X) and •d(X) respectively denote the

arithmetic mean and the arithmetic standard deviation or the real numbers in tbe set X. Each
attribute or the result tuple equals the variability of the spacing between the al times among the
tuples in R. This is in fact the coefficient or variation or the set D(R). The value is the same for

all r attributes.

Observe that mean(D(R)) is never zero since S,[at] and S,-li[al] are distinct. Not neces-

sarily all tuples from R will make their way into S; S was so defined in order to ensure that

avgli or varl• will not attempt a division by zero. Should tbe user need to specify which or the

tuples from R has to be chosen for the chronological order, one or the other aggregates can be

used to create a temporary relation T that contains the relevant tuples, and then avgti or

varts may be applied to T.

Let R be an interval relation or degree r, and I be a tuple variable associated with R.

DEFINITION.

,,d•v<R>~(Vl.. E (1[1lf-~< E 1[1])2
.....

n t e R(t) n t e R(t)

V 1.. E (l[rlf-~(E l[r]f)
fttER(l) ft IER(l)

Eaeb component of the result tuple equals the standard deviation of all values in the correspond
ing component of the tuples orR.

DEFINITION. Jirllaii(R) ~ {l~n~[l], 1~, 11 [r])

where tfi•" represents the tuple such that

R (t fi"')
1\ (\{t) (R(t) ..i;>Before (tfi,.,[r+l], l[r+l]))
1\ (\{t) ((R(t) 1\ lfi.,,[r+lJ- t[r+l]) =>:>Before (tfi,.,[r+2], l[r+2i))

The result tuple equals that tuple whose valid times are the earliest valid times in R. More

specifically, the second line of this predicate says that tfi"' began before all other tuples in R, and

the third line means that if another tuple from R bad the same from time as lfi•sJ• then lfi•"

ended before that tuple.

DEFINITION. lostogg(R) ~ (11.,1[1], ... , 11.,,[r])

where 11.,1 represents the tuple such that

R(t1.,,)

1\ (\{t) (R(t) =!>Before (t[r+2], 11.,,[r+2]))
1\ (\{t) ((R(t) 1\ 11,.,[r+2]- t[r+2]) ..i;>Before (l[r+lJ, 11,,dr+l]))

The result tuple equals that tuple whose valid times are the latest valid times in R. More

specifically, the second line of this predicate says that 11,., ended after all other tuples in R, and

the third line means that if another tuple from R bad the same to time as 11,.,, then 11.,, began

after that tuple.

Notice that, like the other aggregate operators, firetogg and loetogg both yield a single

tuple with r explicit attributes. The implicit time attributes will be given later in the complete

tuple calculus statements ..

Let R be an interval relation, R [from J be the value or the from implicit temporal attribute

of R, and R[to] be tbe value of the to temporal attribute of R.

DEFINITION. eorliest(R) ~ <firstogg(R)[from], firstogg(R)[toJ>

The result is the interval represented by the valid times of the earliest tuple in the relation.

DEFINITION. lotest(R) ~ <laslogg(R)Jfrom], lastogg(R)Jto]>

The result is the interval represented by tbe valid times of the latest tuple in the relation.

4.3. The Con1tant Predicate

As we have seen, aggregates change their values over time. This will be reftected as

different values of an aggregate being associated with different valid times, even in queries that

may look similar to Que! queries with scalar aggrega.tes, in which no inner when or as-of-through

clauses exist (recall the default clauses from Chapter 3). In TQuel, the role of the external or

outer where, when and n of clauses will be similar to that of tbe outer where in Que!: they

3&

determine which tuples from the underlying relations participate in the remainder of the query.

These selected tuples are combined with the tuples computed from the aggregation s!ts to obtain

the ·final output relation.

Aggregates always generate temporary interval relations, even though an aggregated attri-

bute can appear in an event relation. The interval relation bas exactly one value at any point in

time (for an aggregate function, the interval relation bas at most one value at any point in time

for each value in the by list). It is convenient to determine the points at which the value changes.

Let us first define the time-partition of a set of relations as

T(R1, ••• , R,) ~ {• I (31)(3i) (1 < i < k !\ R,(t) A (e •tlfromj V e •t!toj))}

The time partition brings together all the events e of the relations R1, ••• , R, , that is, all

tuple beginnings and endings (if the tuple is from an event relation, only one event is contri·

buted). If two events c and d are neighbors, i.e. no other event occurred between them, the time

interval from c to d did not witness any change in the set of relations, or in other words, all the

relations remained "constant". Define then the Con81ant predicate as

Con•lant(R, •.. , R,, c, d) ~c E T(R 1, ••• , R,)
f\ dE T(R 1, ••• , R,)
f\c,.d
A Before (c, d)
!\ (\fe)(e E T(R, ... , R,) ~Before(e, c) V Before(d, e))

In this predicate, the last line means that there is no event in the time between c and d.

The constant predicate will allow us to treat each constant time interval <c, d> separately,

thus reducing the inner query to a number of queries, each dealing with a constant time interval.

Ill other words, we will be able to follow the same steps as in the static Que! ease. For each time

interval < c, d > given by the constant predicate a value of the aggregate, valid from c to d,

will be computed and will potentially go into the result. This value is guaranteed to be unique by

the definition or c;on8tant.

ao

EXAMPLE. For the F•cultu relation, only for the following values or c and d is the

Conat•nt(F•cultlf, c, d) predicate true:

c d

9-71 9-75

9-75 12-76

12-76 9-77

9-77 11-80

11-80 12-80

12-80 12-82

12-82 now

Note that these consecutive intervals are exactly the ones indicated in Figure I. I

4.4. Inotantaneouo Aggregate.

For a multi-relational query with one instantaneous aggregate we will take the approach

used in the Que! semantics: tuples from the aggregate operation will be computed first via parti-

tioning functions. Again, let F be any of the aggregate operators defined so far. Consider the

TQuel query with one aggregate function,

in which

range of 11 Ia R1

range ot t, lo R,
retrieve {I, .D1·, ••• , I, .D1 , 11 -1(11 .D,. b;y 11 .D.,~ ... , t1 .D,.

11 ,, 11 !2JJ ••

valid from v to X
where 1/1

when r
ao of a through fJ

1 ~ i, s 1: • ••• , 1 s i, < 1:

1 ~ ,, ~ 1:, ••• , 1 ~ '· < 1:
1 ~ it ~ deg(R,

1
), ••• , 1 ~ j, ~ deg(R1,)

where ¢1

when r1

ao ot a1 through /11))

1 ~ m1 ~ deg(R11), ••• , 1 ~ m. S deg(R1.).

As with Que!, the where predicate should refer only to the tuple variable 11 or the tuple vari
'

abies appearing in the by clause. The same restriction holds for the when and as-or clauses

appearing in the aggregate.

Here, the partitioning functions will be based upon the four clauses that modify the aggre-

gate (the by, where, when and as-of clauses). Hence, using the same notation as in Chapter 2,

(31rl ... (31t}
1 •

(R1 (1,) 1\ · · · 1\ Rt{ll)
J, l • •

1\ 110]m2] - a2 /\ • • • 1\ 11,Jm, J -a,

1\ "'·' 1\ r,,
1\ (\111)(1::;11;5;r) Before(t,,J•IarlJ, +pJ 1\ Before(+01, t,,J•Iopj)

1\ Before (1
11

[from j, c) 1\ Before(d, 1
11

Jio J)

1\ (\Ill)(1;5;11;5;n) Before (11,Jfrom J, c) 1\ Before (d, 11,Jio J)

) }

where c and d are valid times, with c < d and p - deg (R
11

).

This definition assumes that the tuple variables 11 , ••• , 11 are distinct. If they are not, then
1 •

the duplicate tuple variables should be removed from the first three lines. Line 7 translates the

as-of-through clause, specifying that the transaction times or all tuples or the inner query, includ-

ing those in the inner where and when clauses, must overlap the rollback time specified in the

as-of-through clause. This is similar to the as-or Une in the outer query in TQuel. Lines 8 and 9

indicate that the tuple I, , associated with the aggregated attribute, and all tuples participating
•

in the by-list must overlap the interval <.c, d> (incidently, from the definition or the Conrlanl

predicate, which will supply the intervals <.c, d">l it is not difficult to see that the overlapping is

total.) This way, aggregates will always be computed from the tuples that were valid during that

interval.

The output relation from a query with an instantaneous aggregate is

18

{w((•-!1)+<) I (31 1) • • • (31;) (3c)(3d)

(R1(1 1) f\ · ··· f\ R;(tt)

f\ Con81ant(R1 , ••• , R1 , c, d) • •

f\ wJIJ -1, Ji1J f\ · · · f\ wJrJ-1, [i,J . '

f\ w[r+2J-laBI(~ •• c) f\ wJr-+aJ =./ir~l(~,. d) f\ Beforr(wJr+2J, wJr-+aj)

f\ wJr+4J -now f\ wJr-IQJ - oo

f\ "''

f\ (V'I)(l::;;I::;k) (Before(~ •• ldslopJ) f\ Before(tdslartJ, ~,))

A comparison with the tuple calculus expression given in Section 4.1 reveals that lines three

and five are new and lines one and six are altered. The Constant predicate involves the relations

appearing in the aggregate; the relation whose attribute is being aggregated plus all the different

relations in the by-list; other relations cannot affect the aggregate. Again, these relations are

assumed to be distinct for notational convenience. It ensures that the value of the aggregate,

computed in line five, is constant during the interval <.c, d>(recall that c and dare events del-

imiting one of the intervals occurring in a relation appearing as a parameter to the ConBianl

predicate.) Line six states that the tuple u is valid during the overlap of <c, d> and the valid

interval specified in the valid-from-to dause. Those portions of the valid interval not accounted

for will appear in another tuple, using a different c and d and probably a different value for the

aggregate.

EXAMPLE. Let us translate Example 6 operating on an historical database into tuple calculus.

P(•:. e, d)~ {•<2l I (3/)

(Focultv(l)

/\6 _,

/\ Before{l[/rom[, c)/\ Beforc(d,/[lol)

P(Assistant, 9-71, 9-75) • {(Jane, Assistant, 25000, 9-71, 12-76)}

P(Assistant, 9-75, 12-76) - {(Jane, Assistant, 25000, 9-71, 12-76),

The output relation is

{w<2-14!l l (31)(3c){3d)

(Focullv(l)

/\ Conllani(Facultv, c, d)

/\ w[1[•/[Ronk[

(Tom, Assistant, 23000, 9-75, 12-80)}

/\ w[2[•couni(B(/[Rank], c, d)[Name[

/\ w[3j•losl{l[/romj, c)/\ w[4[•firal{l[to[, d)

) }
Note it is not necessary to explicitly write Before(w[3j, w[41) here, as it was the ease when no

aggregate was present. I

For an aggregate with no by-list, only the where, when and as-or clauses may be present,

and the partitioning function P becomes again a subset of R
11

:

40

P (c,d)- {t<•l I (31 1) • • • (31,)

(R1(i1) !\ · · · !\ R,(t.)

!\ I - 111

!I r,1

!\ (Vh)(l~h~r) (Before (l,,[sl•rl], 4>#,) !\ Before (4>
01

, I,,Jstop j))

1\ Before (11 !from J, c) 1\ Before (d, 1, [lo!)
1 1

The tuple calculus statement for the query remains the same as above, except that P (c, d) is

used in1>lace of P {t
12

[m2J, ... , t,.fm.J, c, d) and only R11, c, and dare needed as arguments to

the Consl•nl predicate.

Once again, in the case of a multi-aggregate query, say / h ... , fA, a separate partitioning

function P of either the by-list or the non-by list form bas to be defined for each aggregate. The

Consl•nl predicate should mention the relations associated with all the tuple variables appearing

in any aggregate in the query.

4.5, Cumulative Aggregates

In TQuel, cumulative aggregates can be defined for both event and interval relations. A

cumulative aggregate operator applied on an event or an interval relation computes a function f

on all tuples that have been valid prior to now.

The instantaneous aggregates have their cumulative peers. They perform the same opera-

tions, but in an additive fashion as far as tuple validity is concerned, that is, assuming at all

times that the tuples created so far are still valid. It is possible to compute them· by taking

advantage of the already defined instantaneous aggregates. To do this, any event relation R may

41

be converted into an interval relation by defining all tuples in the interval relation to begin at R 's

event times and to end in the infinite. Then aggregates can be computed as in the instantaneous

case over this interval relation induced 6y R, as shown below:

Figure 41 Converting an Event Relation into an Interval Relation

. .

Events or • ;

~ ._----------------------~ original ~.

relation ! :

~---------------------------

U R is an event relation or degree r, then its induced stretch is given by the interval rela·

tion,

DEFINITION.

I'(R)- {1<•-+<l I (31 1
)

(R(t ')

A 1)1) -I'JII A · · · A tJrJ-I'JrJ

A l)r+lJ-I')r+lJ A l)r+2J-oo

A 1Jr-t3J-1 'Jr+2J A l)r-+4)-1 1)r-t3J) }

·A tuple is added to l'(R) at the time a new tuple enters R, apd no tuple is added to or deleted

from l'(R) at other times. Thus a cumulative aggregate will change its value at the time a new
tuple is added to the relation, and will remain constant at all other times.

Now consider an interval relation. Cumulative aggregates depend on the beginning points of

tuples. That is, they change their value whenever· a new tuple begins, and their value is

unaffecte"d when a tuple ends. This suggests how to define an induced stretch for interval rela-

41

tions. Tuples in it will have valid times beginning at R 's beginning times and ending in the

infinite. If R is an interval relation of degree r, then its induced stretch is given by the interval

relation

DEFINITION.

I'(R) ~ {t<•-+<) I (31')

(R(t')

A t)l) -1 1)1) A · · · A t)rJ-t'JrJ

A I)r+lJ -1 'Jr+lJ A tJr+2) - oo

A l)r-1>3) =1 1)r-!>3) A 1)r+4)-1 1)r+4))}

EXAMPLE. The induced stretch of Faculty is

Name Rank Salary from to

Jane Assistant 25000 9-71 00

Jane Associate 33000 12-76 00

Jane Full 44000 11-80 00

Merrie Assistant 25000 9-77 00

Merrie Associate 40000 12-82 00

Tom Assistant 23000 9-75 00

I

With these definitions, the same time partition and constant predicate as for event relations

can be employed.

Let I represent the cumulative version or any or the aggregate operators defined thus far,

namely, anyC, eountC, sumC, avgC, stdevC, maxC, minC, firstC, or lastC. The gen-

era! query will be exactly the same as for interval relations. To obtain the aggregation sets, the

appropriate I should be computed from R1 and then used instead of R1 in each of them. An
1 1

example will be given shortly.

The output from a cumulative aggregate is also an interval relation, because computed

aggregate values are valid during intervals or time.

43

It is interesting to note that first may change over time, because the set or tuples

comprising an interval relation may change over time. firstC, on the other band, stays the

same. Another, perhaps obvious, fact is that the same tuple results from applying either last or

lastC on an interval relation.

The semantics of avgti and varts is the same as that or the other cumulative aggre-

gates. Partitioning functions and the Con•lanl predicate are used with or without the R1o' ... , R1•

list depending on whether or not the query contains a by-list.

EXAMPLE. This is the tuple calculus version of Example 9 from Chapter 3.

P(c, d)~ {t(l) I (3z) (z E I'(ezperimenl)

A t-z

A Before(zJfromJ, c) A Before(d, zjloj)

}

{w(l-ie) I (3z)(3c)(3d)(31)

(ezperiment(z) A IE l'(e:rperimenl)

A Con•lant(l'(e:rperimenl), c, d)

A wJtJ- vori1(P(c, d))!,ieldJ

A w[2J-Io•l(l[/romJ, e) A w[3J-firol(d, l[loj)

) }
Note the tuple variable z appears only within the aggregate. Thus 3:r and e:rperimenl(s) can be

omitted from the tuple calculus statement in this ease. The last line provides the default valid

clause. I

44

4.8. Mixing Dlfl'erent Aagregatea In a Quer:y

A TQuel query may call for several aggregates, some or them instantaneous and some oth·

ers cumulative. or course, each or the aggregates is computed from its own partitioning rune·

tions. When each of the partitioning functions refers to a different set of relations, the Constant

predicate takes as arguments the relations in all partitioning functions. A simpler procedure,

however, is to take all the relations in the query.

Valid times for each output tuple are computed by following the same approach as before:

each output tuple is valid during an interval when tuples from all the non-aggregate attributes

are in the <4>.,4>x> interval, and this interval overlaps the valid times of the calculated aggre-

gates.

4.1. Aggregateoln the Outer Where Clause

TQuel aggregates, or arithmetic expressions containing TQuel aggregates, may be part of

the main where or when clause.

EXAMPLE. Example 6 illustrates this point. Let I be the induced stretch of Fa<ully.

P(a2, c, d) e {t<•J l (31) (IE l'(Facultv)

(\I-f

(\ !IR•nkl-••

(\ Before(!Jfrom], c)(\ Be/ore(d,/Jto))

}
Actually, sinee /JioJ -co for all/ E J'(Facullv), the last Before is not necessary.

P(Assistant, 0-71, 0-75)- {(Jane, Assistant, 25000, 0-71, 12·76)}

The relation resulting from the query is

4&

-·. ~---------~- ... ---··--- -· ---·- ------ -------· .. ,_,.,, ··--- -·:- -·- - .,.. _____ ~- .-.·-

{w<2illl I (3/1)(3/2)(3•)(34)

(Foeultv(l) 1\ Foeuttv(/2)

1\ Conllont(I'(Foeullv), e, d)

1\ w!II•/2jNameJ/\ w!2l•/2jRontj

1\ wj3j•/osl(/lj/romj, /osl(/2!/romj, e)) 1\ wj.fJ•.firoi(/Ijloj, .firsl(/2jloj, 4))

1\ f!Nomej ,./2jNome!/\ /ljRankJ•/2jRaniJ

1\ Before(earliesi(P(II!Ronkj, e, 4))lfromj, /2jloi)

1\ Before(l2lfromj, eor/iesi(P(/IjRonkJ, e, d))jloi)

The fifth line originates from the default valid clause, which in this ea.se is

Y&lid fro. begin 'of (t'l OYerlap f2) to end of (fl OYerlap !2)

Note that the instantaneous earliest is used. The fact that the cumulative version of the aggre-

gate wa.s specified in the TQuel query is reflected in the use or I'(Facullv) in the definition or

P(c, d) and its presence in the-constant predicate. I

Through the partitioning functions, the values or the aggregated attribute are first com-

puted, then used in place or the aggregate in the predicate or the query. Since the variables in

by-lists are "global", its by clause is linked to the rest of the query, as in Que!.

4.8. Neated Asgresatlon

In nested aggregation, the local where clause of an aggregate / 1 invokes another aggregate

It- II 12 has a by-list, links are established between the tuple variables in the by-list of 12 and

the tuple variables in the / 1 query.

EXAMPLE. Example 6 contains a nested aggregate. Let us show the partitioning functions P 1

and P2 for the outer and the inner aggregates respectively:

411

P 2 (c, d)- {t<•l l (3/) (Facultv(/)

A I -1

A Before(l[fromJ, c) A Before(d,f[toi)

P 1(c, d)= {t<•> l (31) (Faculty(!)

A tiii-!IIJ 1\ · · · 1\ t!4l-!l4l

A f!salaryj,. min(P2(c, dlJisalaryJ

A Before(l[fromJ, c) A Before(d,f[toi)

The tuple calculus statement for the retrieve statement will contain P 1(c, d) but not P 2(c, d);

that is, only one level of nesting occurs at any one time in a tuple calculus statement. I

4.11. Unique Aggregation

Unique aggregation is also possible in TQuel. There are four instantaneous unique aggre-

gates: eountU, sumU, avgU, and stdevU, and four cumulative versions of the same: eoun-

tUC, sumUC, avgUC, and stdevUC. It is not necessary to define unique versions for any,

max, min, first, ·last, avgti and varts, or their cumulative counterparts, because the

same results can be obtained with the non-unique aggregates.

Let p and g be as usual. When the inner query bas a by-list, the modified partitioning func-

tion is defined in terms of the ordinary P as

U(a 2, ••• , "•• c, d)- {w(l) l (36)(6 E P(a2, ••• ,a., c, d) A w[lj-6[m 1J)}

With no by-list, the modified partitioning function U (c, d) is similarly defined from

P(c, d).

4'1

The simple substitution or U for P in the final tuple calculus statement, together with the

use or the non-unique versions of the aggregates, yields the tuple calculus semantics of unique

aggregates.

EXAMPLE. To obtain the tuple calculus expression for the aggregation set in Example 7, the

induced stretch I is obtained from Fceulty, P is defined from/, and then

Ll(c,d)-{w<•-~<~>1 (3b)(bEB(e,d)l\wlll-blaclcruJ)} I

4.10. Aggregate• In the Other Outer Clauaea

Four aggregates may be used in the when, as-of, and valid clauses: earliest, latest,

earlieste, and lateste. Just like in the case of aggregates in the where clause, an aggre

gate that is used in the when clause can be modified with inner by, where, when and as-of

clauses.

With these restrictions, the semantics of the aggregated temporal constructors is the same

as that or the other aggregates. For the linking or tuple variables, the same notes as in the outer

and inner where clause apply. Being based on fir~l and lost (c.r., Section 4.1), there is no need to

define unique versions of the aggregated temporal constructors.

As in the case of first, for the earliest aggregate, note that, as the composition of an

interval relation is time-dependent, earliest of an interval relation may also change over time.

Moreover, as in the case or last and lastC, the latest and latestC aggregates always

produce the same result from an interval relation.

..

48

Chapter 5

CONCLUSION

We first defined the tuple calculus semantics of Que) aggregates. This definition, coupled

with that of the core language !Snodgrass 1986j, provides a complete formal semantics of Que!.

To the time-oriented aggregates corresponding to the ones already available in Quel, we defined

new operators that permit summarization over the time dimension. We then constructed a for

mal semantics for aggregates in the retrieve statement of the TQuellanguage.

We started by introducing the Constant predicate and the partitioning function. Within

intervals computed by Constant, a relation remains static, and aggregates can be computed in

the way shown in Chapter 2. This enabled us to formally define the semantic~ for instantaneous

aggregates. Later, the introduction of the induced stretch, which transforms any relation into an

interval relation ending in the infinite, permitted us to conveniently specify the semantics of

cumulative aggregates as a special ease of instantaneous aggregates. The issues of freely mixing

different aggregates, as well as the semantics of aggregates in the outer where and in the inner

where clauses (nested aggregation), were discussed and resolved. When appropriate, unique ver

sions of the aggregates are also provided. For the when, as-of, and valid clauses, the aggregated

temporal constructors earliest and latest, with the corresponding cumulative versions, are

available.

It is easy to extend the semantics to specify the TQuel modification statements (append,

delete, and replace) to include aggregates, using the strategy di~cussed in Chapter 4. It is

also straightforward to extend the aggregates to include arbitrary expressions, using the tech

nique discussed in Section 2.7.

The result is a complete formal semantics for TQuel and its static subset Que!. A complete

formal semantics for no other relational query language, temporal or otherwise, bas been defined.

The specifications of several other languages come close: the semantics of SQL ICeri & Gottlob

411

1985j includes almost all of the SELECT statement, including aggregates, but no modification

statements; HTQuel JGadia & Vaisbnav 1985J and Tansel's algebraic language JC!if!ord & Tansel

1985J do not include modification statements nor aggregate operators.

The next step is to develop an operational semantics in terms of a temporal relational alge·

bra (d., JMcKenzie 1986J). Here the challenge is the language core, rather than the aggregate

functions, which can be added quite easily. Implementation techniques, such as those developed

Cor Quel jEpstein 1979J, need to be developed for temporal aggregates.

Throughout this work we have seen that TQuel aggregates can be specified in a natural

way, consistent with the core of the query language, and with minimal additions to both the

language definition and to its semantics. The semantics of the TQuel aggregates let the DBMS

handle the implicit time attributes, consistent with the rest of TQuel. The presence of the time

dimension, while adding some complexity to the specification and handling of aggregates, pro

vides the user a rich set of functions capable or extracting information from the database at each

point of time or across time.

Acknowledgement.

We are grateful to Dr. Peter Bloomfield for his remarks on the requirements of ex peri men·

tal data in statistical time series that lead to the creation of the varts operator and to lisco

Ahn, David Beard and Ed McKenzie for helpful comments on this paper.

&0

'

REFERENCES

[Anderson 1982j Anderson, T. L. Modeling Time 41 IAe ConceptuGI Level. in Improving DGtoboae

Uaabilitv Gnd Reaponriveneaa, Ed. P. Scheuermann. Jerusalem, Israel: Academic Press,

1982, pp. 273-297.

jAriav 1985j Ariav, G. A Temporally Oriented DotG Model. Technical Report. New York Univer·

sity. Mar. 1985.

jBen-Zvi 1982j Ben-Z vi, J. TAt Time RtiGtional Model. PhD. Diss. UCLA, 1982.

[Bradley 1978J Bradley, J. OperGtiona DatG BGBtl, in Proceeding• of the Fourth International
Conference on Verv Lorge DaiG Baaea, West Berlin, Germany: Sep. 1978, pp. 164-176.

jBubenko 1977J Bubenko, J. A., Jr. TAt Temporal Dimenaion in Information Modeling, in Archi·

tecture and Models in Data Base Management Systems. North-Holland Pub. Co., 1977.

jCeri & _9ottlob 1985j Ceri, S. and G. Gottlob. Tronalating SQL Into Relational AlgebrG: Optimi

ZGtion, Semantica, Gnd EquivGitnct of SQL Querita. IEEE Tronsocliona on Software

Engineering, SE-11, No. 4, Apr. 1985, pp. 324-345.

[Clifford Ill Warren 1983J Clifford, J. and D. S. Warren. FormGI StmGntica for Time in DGtobasea.

ACM TrGnBGctiona on DGiab48t Svatem•, 8, No.2, June 1983, pp. 214-254.

[Clifford Ill Tansel 1985j Clifford, J. Tansel, A.U. On An AlgebrG For HiatoricGI Relation Dolo·

6aaea: Two Viewa. Proceeding• of ACM·SIGMOD 1985 International Conference on

Management of Dolo, , May 1985, pp. 247-265.

jCodd 1972j Codd, E. F. Relational Compleleneaa of DotG Bose Sublonguogea, in Data Base Sys

tems. Vol. 6 or Courant Computer Symposia Series. Englewood Cliffs, N.J.: Prentice Hall,

1972. pp. 6.>-98 .

jCodd 1979J Codd, E.F. Eztending lht Doloboae Relational Model to CGpture More Meaning.

ACM Tron,.ction• on Dotoba•e Svatem•, 4, No.4, Dec. 1979, pp. 397-434.

[Date 1983J Date, C. J. An Introduction to Dotoboat Sgstema. Vol. ll or Addison-Wesley Systems

Programming Series. Reading, MA: Addison-Wesley Pub. Co., Inc., 1983.

[Epstein 1979J Epstein, R. Techniquea for Proceaaing of Aggregotea in Relational Dotobose Sus

lema. UCB/ERL M7918. Computer Science Department, University or Calirornia, Berke

ley. Feb. 1979.

jGadia Ill Vaishnav 198Sj Gadia, S.K. and J.H. Vaishnav. A Querv LGnguGge For A Homogeneous

Temporal Dotaboae, in Proceedinga of the Conference on Principle• of DGtaboae Sva

tema, Apr. 1985.

[Held et a!. 1975j Held, G.D., M. Stonebraker and E. Wong. INGRES--A re1GiionG1 dGto boae

management 81/ttem. Proceeding• of IAe 1!175 Notional Computer Conference, 44 (1975)

51

pp. 400-416.

jSQL/DS 198Ij IDM SQL/ Data-Svstem, Concept• and Facilities. Technical Report GH24-5013-0.

IDM. Jan. 1981. ·.

[Jones & Mason 1980j Jones, S. and P. J. Mason. Handling the Time Dimension in a Data Base.

in Proceedings of the International Conference on Data BaBeB, Ed. S. M. Deen and P.
Hammersley. British Computer Society. University of Aberdeen: Heyden, July 1980, pp.

65-83.

jKiug 1982j Klug, A. Equivalence of Relational Algebra and Relational Calculu• Query Languages
Having Aggregate Function•. Journal of the Association of Computing MachineriJ, 29, No.

3, July 1982, pp. 699-717.

jLBL 198lj Procttding• of the Fir~t International Workshop on Statistical DatahoBe Manage·

ment. Ed. H.K. Wong, 1981.

jLBL 1983j ProctedingB of the Second International Wor.C.hop on StaliBtical Data6aBe Manage

ment. Ed. J. McCarthy, 1983.

jLum et a!. 1984j Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and

J. Woodfill. Designing DBMS Support for the Temporal Dimension. in Proceedings of the

-sigmod '84 Conference, June 1984, pp. 115-130.

!McKenzie 1986j McKenzie, L.E. and R. Snodgrass. An Incremental Temporal Relational Algebra.

1986. (In preparation.)

jOzsoyoglu, et al. 1986j Ozsoyoglu, G., Z.M. Ozsoyoglu and V. Matos. &tending Relational Alge
bra and Relational Calculu• with Set· Valued Attributes and Aggregate Functions. Techni·

cal Report. Department of Computer Engineering and Science, Case Western Reserve

University. 1986.

jSernadas 1980J Sernadas, A. Temporal Aapects of Logical Procedurt Definition. Information Sys·

tems, 5 (1980) pp. 167-187.

!Snodgrass 1982j Snodgrass, R. Monitoring DiBiributed SI!Btems: A Relational Approach. PhD.

Diss. Computer Science Department, Carnegie-Mellon University, Dec. 1982.

!Snodgrass 1986J Snodgrass, R. A Temporal Querv Language. Tran•actions on DatabaBt Systems
(to appear) (1986).

!Snodgrass & Ahn 1986j Snodgrass, R. and I. Ahn. Temporal Databa•e•. Computer (to appear),

(1986).

!Stonebraker et al. 1976j Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and

Implementation ofiNGRES. ACM Tranaactiona on Data6ase Svstem•; 1, No. 3, Sep.

1976, pp. 189-222.

jUllman 1982j Ullman, J.D. Principle• of Databaae Svstem•, Second Edition. Potomac,.Maryland:

Computer Science Press, 1982.

