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Abstract

The self is the core of our mental life. Previous investigations have demonstrated a strong neural

overlap between self-related activity and resting state activity. This suggests that information

about self-relatedness is encoded in our brain’s spontaneous activity. The exact neuronal mech-

anisms of such “rest-self containment,” however, remain unclear. The present EEG study investi-

gated temporal measures of resting state EEG to relate them to self-consciousness. This was

obtained with the self-consciousness scale (SCS) which measures Private, Public, and Social

dimensions of self. We demonstrate positive correlations between Private self-consciousness

and three temporal measures of resting state activity: scale-free activity as indexed by the

power-law exponent (PLE), the auto-correlation window (ACW), and modulation index (MI).

Specifically, higher PLE, longer ACW, and stronger MI were related to higher degrees of Private

self-consciousness. Finally, conducting eLORETA for spatial tomography, we found significant

correlation of Private self-consciousness with activity in cortical midline structures such as the

perigenual anterior cingulate cortex and posterior cingulate cortex. These results were rein-

forced with a data-driven analysis; a machine learning algorithm accurately predicted an individ-

ual as having a “high” or “low” Private self-consciousness score based on these measures of the

brain’s spatiotemporal structure. In conclusion, our results demonstrate that Private self-

consciousness is related to the temporal structure of resting state activity as featured by tempo-

ral nestedness (PLE), temporal continuity (ACW), and temporal integration (MI). Our results sup-

port the hypothesis that self-related information is temporally contained in the brain’s resting

state. “Rest-self containment” can thus be featured by a temporal signature.
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1 | INTRODUCTION

1.1 | From the resting state’s temporal signature to

the self

The self and its neural correlates have been extensively investigated

in neuroscience. Several lines of research show that the self is

associated strongly—although not exclusively—with neural activity,

especially in the cortical midline structures (CMS) (Hu et al., 2016;

Murray, Debbané, Fox, Bzdok, & Eickhoff, 2015; Murray, Schaer, &

Debbané, 2012; Northoff & Heinzel, 2006; Sui & Humphreys, 2016).

Most interestingly, various studies observed neural overlap between

self-related activity and spontaneous activity in CMS (Bai, Liang,

Li, Voss, & Sleigh, 2015; D’Argembeau et al., 2005; Davey, Pujol, &

Harrison, 2016; Huang, Obara, Davis, Pokorny, & Northoff, 2016; Qin#Shared first author.
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et al., 2016; Qin & Northoff, 2011; Schneider et al., 2008; Whitfield-

Gabrieli & Ford, 2012). Such “rest-self overlap” suggests that informa-

tion about the self can be represented (Sui & Humphreys, 2016) in the

resting state activity, which is known as “rest-self containment”

(Northoff, 2016). The exact neuronal mechanisms of such “rest-self

containment,” however, remain unclear.

There is evidence that the brain’s spontaneous activity shows an

elaborate spatiotemporal structure. Various neural networks, including

the default-mode network (DMN), have been described on the spatial

side (Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013; Yeo

et al., 2011). On the temporal side, spontaneous activity shows fluctu-

ations and oscillations in different frequencies, ranging from infraslow

(0.01–0.1 Hz), over slow (0.1–1 Hz), to faster (1–240 Hz) frequencies

(Buzsáki, 2007; Buzsáki & Draguhn, 2004). Moreover, slower frequen-

cies show much stronger power than faster ones. Together, these two

characteristics—fluctuations in spontaneous activity at different fre-

quencies and slower frequencies having more power than faster

ones—obey what is described as scale-free properties (He, 2011; He,

2013; He, 2014; Huang et al., 2016; Huang et al., 2017; Linkenkaer-

Hansen, Nikouline, Palva, & Ilmoniemi, 2001). This can be measured

using the power law exponent (PLE) in the frequency domain.

Scale-free properties indicate fractal organization where the fas-

ter frequencies are nested within the more powerful slower ones—this

amounts to “temporal nestedness.” Such temporal nestedness on the

neuronal level may also be relevant on the psychological level of the

self. As the self is preserved and manifested in both shorter and longer

time scales, ranging from milliseconds over hours and weeks to years

and decades, one would suspect “temporal nestedness” to hold on the

psychological level. This has been supported by a recent study of ours

which demonstrated a relation between scale-free properties and pri-

vate self-consciousness in the infraslow frequency range, as obtained

with fMRI (Huang et al., 2016). In contrast, the relation of the EEG-

based faster frequencies’ temporal nestedness, their scale-free prop-

erties (1–40 Hz), with the self remains unclear.

Yet another measure of the temporal structure of spontaneous

activity is the autocorrelation window (ACW) (Honey et al., 2012;

Murray et al., 2014). Simply put, the ACW measures the correlation in

neural activity patterns across different points in a time series; the

stronger the correlation between distant points in time, the longer the

ACW. It thus indexes sameness or “temporal continuity” of neural

activity. It is still unclear how such “temporal continuity” on the neuro-

nal level is related to the self on the psychological level. This is of high

interest given that, on a psychological level, our self can be character-

ized by temporal continuity as we perceive ourselves in an extended

way (Ersner-Hershfield, Tess Garton, Ballard, Samanez-Larkin, &

Knutson, 2009; Ersner-Hershfield, Wimmer, & Knutson, 2009;

Northoff, 2017). The relationship between temporal continuity on the

neuronal level and the psychological level of self-consciousness

remains unclear though.

In addition to the temporal nestedness of scale-free properties

and the temporal continuity of the ACW, spontaneous activity also

shows coupling between different frequencies. This amounts to cross-

frequency coupling (CFC) (Aru et al., 2015; Bonnefond, Kastner, &

Jensen, 2017; Canolty et al., 2009; He, Zempel, Snyder, & Raichle,

2010; Hyafil, Giraud, Fontolan, & Gutkin, 2015; Lakatos, Karmos,

Mehta, Ulbert, & Schroeder, 2008; Tort et al., 2008). CFC can be

quantified by measuring the modulation index (MI) of the signal

(Canolty & Knight, 2010; He et al., 2010). The CFC refers to dynamic

interactions between oscillations in the brain that operate at different

frequency bands (Hyafil et al., 2015). This has been shown in both

slow and fast frequencies (Aru et al., 2015; Buzsáki, Logothetis, &

Singer, 2013; Hyafil et al., 2015), and in the infraslow ranges (Huang

et al., 2017). CFC demonstrates the relationship between varying neu-

ral oscillations, thus allowing for what is described as “temporal inte-

gration.” It is still unclear, however, how such temporal integration of

different frequencies is related to the self.

The question of temporal integration becomes even more power-

ful given that, on a psychological level, the self has been associated

with the integration of different functions: sensory (Sui, He, &

Humphreys, 2012; Sui, Rotshtein, & Humphreys, 2013), motor

(Frings & Wentura, 2014), affective (Northoff et al., 2009), cognitive

(Nakao et al., 2016; Nakao, Bai, Nashiwa, & Northoff, 2013; Nakao,

Ohira, & Northoff, 2012), and social (Schilbach et al., 2013). Strikingly,

these functions operate in different frequency ranges (Buzsáki, 2007)

and their integration on the psychological level may ultimately be

traced to temporal integration on the neuronal level. Therefore, what

on the psychological level is described as the integrative function of

the self may, on the neuronal level, be realized by temporal integration

of different frequencies as mediated by CFC. One would conse-

quently expect resting state CFC (as measured by MI) to predict the

degree of self-consciousness. That is yet to be investigated.

Taken together, there is strong empirical evidence that (i) the

brain’s resting state activity—its spontaneous activity—is closely

related to our sense of self, or self-consciousness (Davey et al., 2016;

Northoff, 2016; Qin & Northoff, 2011); and that (ii) on a purely psy-

chological level, the self can be characterized by strong temporal inte-

gration which includes temporal nestedness (manifest over different

time scales or frequency ranges), temporal continuity (as in self-conti-

nuity), and temporal integration (as in the integrative function of self ).

Aiming to bridge the gap between psychological and neuronal levels,

we therefore applied measures to the brain’s spontaneous activity,

specifically the PLE, ACW, and CFC, which index those psychological

temporal features—temporal nestedness, continuity, and integration—

on the neuronal level and we correlated them with self-

consciousness.

1.2 | Aims and hypotheses

The main and overarching aim of our study was to investigate how

the various measures of the resting state’s temporal signatures are

related to self-consciousness. For that purpose, we conducted resting

state EEG with eyes closed (EC). The resting state’s temporal signature

was analyzed in a whole-brain manner with measures for temporal

nestedness (scale-free activity as with PLE), temporal continuity (the

ACW), and temporal integration (CFC as measured with MI). The same

participants also underwent psychological assessment of their self

with the self-consciousness scale (SCS) which includes Private, Public,

and Social subscales (Abe & Bagozzi, 1996; Fenigstein, Scheier, &

Buss, 1975; Scheier & Carver, 1985). Generally, we hypothesized a

direct relationship between the various measures of the resting state’s
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temporal signature and private self-consciousness. This was further

tested by applying machine learning as a data-driven method of

validation.

The first specific aim was to measure the resting state’s temporal

nestedness through its scale-free properties and relate them to self-

consciousness. In one of our previous fMRI studies (Huang et al.,

2016), it was found that the PLE in the infraslow frequency range

(0.01–0.1 Hz) in the medial prefrontal cortex correlated significantly

with the Private self-consciousness scale subscore, while the Public

and Social subscores did not. Based on these previous fMRI results,

we hypothesized that higher degrees of scale-free properties in the

resting state as measured by the power law exponent are related to

higher degrees of Private self-consciousness (as distinguished from

Public and Social self-consciousness).

The second specific aim was to measure the resting state’s tem-

poral continuity through the ACW and relate it to self-consciousness.

Based on the strong determination of ACW by slower frequencies

specifically (Honey et al., 2012), and the finding that the infraslow fre-

quencies (in fMRI) correlated with private self-consciousness (Huang

et al., 2016), we hypothesized that a longer ACW was related to both

higher degrees of scale-free activity and Private self-consciousness.

The third specific aim was to associate the resting state’s tempo-

ral integration with self-consciousness. This was done by examining

CFC as measured by MI. Based on the close link between scale-free

properties and cross-frequency coupling (He, 2014; He et al., 2010)

with strong impact of the slow frequencies on both CFC (He et al.,

2010) and private self-consciousness (Huang et al., 2016), we hypoth-

esized that higher degrees of MI are related neuronally to higher

degrees of PLE and ACW, and psychologically to stronger Private self-

consciousness.

Using eLORETA for topographical analyses, our fourth specific

aim was to test for the relevance of EEG-based resting state activity

in cortical midline structures such as the perigenual anterior cingulate

cortex (pACC) and posterior cingulate cortex (PCC) for self-conscious-

ness. Based on previous results (Davey et al., 2016; Huang et al.,

2016; Northoff et al., 2006), we hypothesized that the degree of EEG-

based resting state activity in pACC/PCC (as measured by eLORETA

values) is related to the degree of Private self-consciousness.

Finally, we wanted to evaluate the relationship between PLE,

ACW, MI, and eLORETA values for determining the SCS scores using

a data-driven approach. For this, we employed a supervised classifier.

A classifier is a system that divides data into different classes, by

learning the relationship between the selected features and the

selected classes. Specifically, we used a Support Vector Machine

(SVM), which is a popular and useful classifier algorithm, to do this. As

this was a data-driven analysis we did not have an a priori hypothesis,

but rather we used it to supplement our other findings.

2 | MATERIALS AND METHODS

2.1 | Subjects

Fifty (25 female) healthy subjects were included in the subsequent

analysis. Sixty participants completed the resting state session. Of

these, four were excluded due to technical issues related to EEG

recording and three were excluded due to excessive movements dur-

ing the resting state session. A further three participants tested posi-

tive for marijuana through the E-Z Split Key cup 5 (testing for

marijuana, opiates, cocaine, methamphetamine, and phencyclidine).

This urine drug test was performed the day of the EEG session as part

of an adjacent study. Due to the possibility that the drug would affect

the EEG data (Banoczi, 2005), their data was excluded from all

analyses.

All participants were between the ages of 18 and 55 and were

right-handed as per the Edinburgh Handedness Tool (Oldfield, 1971).

The Handedness Tool subscores were the following: Writing had a

mean of 100, and standard deviation (SD) of 0; Throwing had a mean

of 90.24 and SD of 20.06; Toothbrush had a mean of 87.80 and a SD

of 26.88; Spoon had a mean of 91.46 and SD of 19.05; Laterality Quo-

tient had a mean of 92.38 and SD of 11.48. Participants completed a

self-report health questionnaire in which all reported no history of

neurological or psychiatric diagnosis, no history of concussion or other

head injury, and no history or current use of substances of abuse. The

experimental protocol was approved by the research ethics committee

of the University of Ottawa Institute of Mental Health Research, and

the study was carried out with their permission. Written informed

consent was obtained from each participant prior to study

participation.

2.2 | Self-consciousness scale

The Self-Consciousness Scale (SCS) (Abe & Bagozzi, 1996; Fenigstein

et al., 1975; Scheier & Carver, 1985), a 20-item self-report question-

naire, investigates the concept of the self. It breaks this ambiguous

concept down into three concrete dimensions: Private, Public, and

Social self-consciousness. Each of these dimensions is a subscale

which is comprised of responses from six questions.

The Private subscale is concerned with thoughts and reflections

about oneself, while the Public subscale concerns oneself in interac-

tions with others in the Public arena (Fenigstein et al., 1975). The

Social subscale, on the other hand, relates to Social anxiety; its ques-

tions concern feelings of discomfort while in the presence of others

(Abe & Bagozzi, 1996).

All participants completed the SCS prior to the EEG resting state

session, and the subscale scores were calculated after the session

according to the scoring key. All remaining correlations between rest-

ing state measures were one-tailed bootstrapped correlations based

on 1,000 samples.

2.3 | Electrophysiological recording

EEG data was recorded using a Neuroscan amplifier (Compumedics

Neuroscan, Charlotte, NC, USA) and Ag/AgCl electrodes through a

64-channel cap (according to the International Ten-Twenty System)

referenced to the right mastoid. The data was sampled at 1,000 Hz

with DC recording. The impedance of each electrode was kept under

5 kΩ. An electrooculogram was recorded for each participant with a

pair of electrodes above and below the right eye, and another pair on

the outer canthi of each eye. The EEG data pre-processing was
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performed using the EEGLAB toolbox for MATLAB. The CB1 and CB2

channels were deleted from the data because of irrelevance, and the

data was referenced to two mastoid channels (M1 and M2). The data

was filtered with a low-pass filter at 40 Hz and a high-pass filter

at 1 Hz.

Five minutes of eyes closed resting-state data was recorded, with

the participant sitting down. From this 5 min, four uninterrupted

minutes in which no data had been cut out (due to artifacts) was

extracted. All subsequent analyses were done on this four uninter-

rupted minutes.

2.4 | Artifact rejection

Artifacts such as eye blinks and muscle related potentials were left in

the data for the independent component analysis (ICA). The ICA was

performed via EEGLAB software on the data to create 62 ICs. A visual

inspection of the ICs determined which components were the result

of electrode and physiological noise. Rejection was based on time

course data. As stated above, from the 5 min of eyes closed resting-

state data recorded, four uninterrupted minutes was extracted and

used in all subsequent analyses.

2.5 | Power and power law exponent (PLE) analysis

The power law exponent was calculated using an in-house MATLAB

script according to the methods of previous articles (He, 2011; He,

2014; Huang et al., 2016). First, uninterrupted data files of 4 min

underwent a windowed Fast Fourier Transform (FFT). The window

length was 2,000 ms, the window overlap was 50%, and the number

of points used in the FFT was 120,000. One FFT was extracted per

window before averaging them. This averaged FFT was log–log trans-

formed in both the frequency range (1–40 Hz) and power spectrum

according to previous studies (Bullmore & Sporns, 2009; He et al.,

2010; Huang et al., 2016). MATLAB’s polyfit function was then used

to do a linear fit between the log–log transform, and the slope of this

line was extracted as the PLE value. One PLE value was extracted per

channel, and the mean of all channels was used in all subsequent

analyses.

Absolute power was extracted for each of the bands (delta

1–4 Hz, theta 4–8 Hz, alpha 8–12 Hz, and beta 13–30 Hz) separately,

also using a custom MATLAB script. They were then partially corre-

lated with all three self-consciousness subscores. This was done to

determine if the power of any one band correlated significantly with

the subscores, and it was this power that was responsible for the sig-

nificant correlations with the PLE.

2.6 | Autocorrelation window

The ACW was calculated in MATLAB (v2016a) using custom scripts

according to Honey et al. (2012). The ACW is defined as the full-

width-at-half-maximum of the autocorrelation function (Figure 3a) for

the EEG time course. It estimates the width of the mean lobe of the

autocorrelation.

To calculate the ACW, we examined the autocorrelation function

at the following lag-times: 0.1, 0.5, and 1.0 s. The number of steps for

all three lag-times was 23, though the 0.1 s lag computed 101 coeffi-

cients, 0.5 s lag computed 501 coefficients, and 1.0 s lag computed

1,001 coefficients. The ACW values (Figure 3b) computed for all three

lag-times agreed.

All data was sampled at 500 Hz, the size of the window was 20 s,

and the overlap of the window was 50%.

2.7 | Modulation index

The MI was calculated in MATLAB (v2016a) using custom scripts

according to Canolty et al. (2009), Tort, Komorowski, Eichenbaum,

and Kopell (2010), and Richter, Babo-Rebelo, Schwartz, and Tallon-

Baudry (2017). The MI measures the intensity of phase amplitude

coupling between the nested and nesting frequencies during the time

interval being examined (Tort et al., 2010). In this study, the MI was

calculated for the full 4-min Eyes Closed resting state for each partici-

pant, with delta (1–4 Hz) as the “phase-modulating” band, and all

other frequencies (4–40 Hz) as the “amplitude-modulated” band. Spe-

cifically, as done in previous articles (Richter et al., 2017; Tort et al.,

2010), the signal—each EEG channel here—was first filtered at the

phase (1–4 Hz) and the amplitude (4–40 Hz) frequencies to extract fil-

tered signals. The Hilbert transform was then applied to both the

phase and amplitude filtered signals to obtain timeseries of the phases

and amplitude envelope, respectively. The composite timeseries of

both filtered signals was constructed and the phases of this composite

were binned. The mean of the filtered amplitude signal in each phase

bin was calculated. Finally, this mean amplitude was normalized by

dividing it by the sum over all the bins.

2.8 | Exact low-resolution brain electromagnetic

tomography analysis

Low-resolution brain electromagnetic tomography (LORETA) is a

source analysis technique which aims to estimate the location and

activity of the neural generators which give rise of EEG activity

recorded at the scalp. Known as the inverse problem, the goal is to

determine the most probable source of the EEG activity. There are

several methods to resolve this problem; however, LORETA is one

approach which provides a linear solution to the question of where in

the cortex is the source of the EEG activity recorded at the scalp.

It was developed at the KEY Institute for Brain-Mind Research at

the University of Zurich (Pascual-Marqui, Michel, & Lehmann, 1994)

to compute the three-dimensional intracerebral distribution of neural

current density sources. Exact Low-Resolution Brain Electromagnetic

Tomography (eLORETA) is a refinement of the original sLORETA

method. It does not require standardization for correct localization

(Pascual-Marqui, 2007) and is more precise in the location of the

probable current density sources. When eLORETA is measured in spe-

cific brain regions as done here, the current density, based on the con-

figuration of the EEG electrodes and the activity recorded at each of

these electrodes, is computed. Since it is a current, the calculated

values can be positive or negative.

The current implementation of eLORETA uses a realistic head

model (Fuchs, 2002) and electrode coordinates (Jurcak, Tsuzuki, &

Dan, 2007). The 4-min artifact-free blocks were exported into text
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files from the EEGLAB software for eLORETA analysis. The steps to

calculate eLORETA values were as follows: (1) computing EEG cross-

spectra from the raw 64-channel EEG recordings; (2) computing corti-

cal generators of surface oscillatory activity using the cross-spectra;

and (3) computing these values for the region of interest (ROI) voxels,

according to Huang et al. (2016). Here the ROI was defined as PCC

and pACC using all voxels within 12 cm of the following seeds (MNI

coordinates):

X Y Z

PCC −5/5 −54 22

PACC −5/5 47 11

2.9 | Statistical correlations

For each resting-state measure (PLE, ACW, MI, eLORETA), three par-

tial correlations were performed, with Private, Public, and Social sub-

scores. The other two subscores were controlled for in the partial

correlations. In addition, to examine the relationship between resting

state measures, and for the control correlations with the power of

each frequency band, one-tailed bootstrapped correlations (1,000

samples) were carried out.

For all correlations, partial or bivariate, the Pearson correlation

coefficient was measured since the relationship between the resting-

state measure and the SCS subscores was expected to be linear.

Though PLE is a nonlinear measure, the relationship between the PLE

and SCS scores, which the correlations measure, is linear (Huang et al.,

2016) in that they are related by the equation y = mx + b, with m

being the slope of the line. The significance level for each of the corre-

lations is .05.

To account for the multiple correlations performed in this study,

the Benjamini–Hochberg False Discovery Rate (FDR) (Benjamini &

Hochberg, 1995) was applied to all p-values, as was done in recent

articles (Arazi et al., 2017; Cruzat et al., 2018; Huang et al., 2018). All

statistical tests from the study were listed together and the FDR was

applied to all p-values at once. Therefore, the p-values in the results

and figures are FDR corrected for multiple comparisons.

2.10 | Support vector machine (SVM)

The LibSVM MATLAB toolbox (Version 3.22) was used as an imple-

mentation of the SVM algorithms (Chang & Lin, 2011). This method

was employed to test our findings mentioned above of strong signifi-

cant correlations between our measures and Private subscores. Due

to our small number of observations (50) for this method, only the Pri-

vate subscore was tested.

A linear SVM constructs an optimal linear hyperplane in the fea-

ture space, which classifies the data into two classes. We divided our

participants into two classes: a “high Private self-consciousness” class,

and “low Private self-consciousness” class. We determined that the

mean Private SCS score among participants was 15.1, so each partici-

pant below the mean was labeled as “low Private self-consciousness,”

and each above the mean was labeled as “high Private self-

consciousness.” We used the results of the PLE, ACW, MI, and eLOR-

ETA (both PCC and pACC) analyses as features, which resulted in

five-dimensional data points. The SVM was trained on 30 random par-

ticipants and then tested on the remaining 20 participants. It was

trained to find the optimal model parameters in three successive

search spaces, each with a three-fold cross validation. First, we

searched for the optimal model parameters (c and gamma) in a large

search space, then the searching space was narrowed two more times

into smaller and smaller spaces. When the optimal parameters are

determined, the model is applied to the test set for classification. After

classification, we extracted the feature weights to evaluate the impor-

tance of each feature for classification.

3 | RESULTS

3.1 | Behavioral data

The Self-Consciousness Scale (SCS) yielded three subscores, one for

Private, Public, and Social (Figure 1). The distribution of the subscores

were as follows: the mean of the Private subscore was 15.10, with the

standard deviation 3.78 and the range from 7 to 25; the Public sub-

score had a mean of 10.52, standard deviation of 4.51 and range from

0 to 21; in the Social subscore, the mean was 7.60, the standard devi-

ation of 3.56, and a range from 2 to 16.

3.2 | Power law exponent (PLE) and self-

consciousness

The PLE was calculated based on the methods of He et al. (2010), and

Huang et al. (2016) from the power spectrums of all 50 participants

(Figure 2a). The distribution of the PLE values included a mean of

0.851, a SD of 0.099, and a range of 0.665–1.076 (Figure 2b).

In one-tailed partial correlations with the SCS subscores

(Figure 1), the Pearson correlation values for the PLE were the follow-

ing: for the Private subscore, r = .329, p = .047; for the Public sub-

score, r = .100, p = .377; for the Social subscore, r = −.058, p = .411

(Figure 2c).

To determine if the significant correlation between PLE and Pri-

vate SCS was due to the power of any individual frequency band, we

partially correlated the power—while controlling for the other two

subscores—in delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and

beta (13–30 Hz) with all three subscores.

The partial correlation results for the Private subscore were the

following: in the delta band, r = .198, p = .204; in the theta band,

r = .072, p = .386; in the alpha band, r = .107, p = .377; in the beta

band, r = .124, p = .477. None of these partial correlations were

found to be significant.

For the partial correlations with the Public subscore, the results

were the following: in the delta band, r = .100, p = .459; in the theta

band, r = −.092, p = .474; in the alpha band, r = .098, p = .491; in the

beta band, r = −.013, p = .420.

Finally, with the Social subscore, the results were the following: in

the delta band, r = −.035, p = .386; in the theta band, r = −.028,
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p = .386; in the alpha band, r = −.137, p = .151; in the beta band,

r = −.146, p = .332.

3.3 | Auto-correlation window and self-

consciousness

The ACW was calculated based on the methods of Honey

et al. (2012) from all EEG channels for the 50 participants. The ACW

was determined from the autocorrelation function of each participant

(Figure 3a). The distribution of the ACW values included a mean of

0.051, a SD of 0.018, and a range of 0.026–0.103 (Figure 3b).

To determine the relationship of the ACW to the PLE, a one-

tailed bootstrapped correlation was done which found a Pearson coef-

ficient of r = .394, p = .023, 95% CI (.077–.622) (Figure 3c).

In one-tailed partial correlations with the SCS subscores

(Figure 1), the correlation values for the ACW were the following: for

the Private subscore, r = .367, p = .045; for the Public subscore,

r = −.048, p = .420; for the Social subscore, r = −.214, p = .181

(Figure 3d).

3.4 | Modulation index and self-consciousness

The MI was calculated based on the methods of Canolty et al. (2009),

Tort et al. (2010), and Richter et al. (2017) from all EEG channels for

the 50 participants. It was also calculated in He et al., 2010 which

examined scale-free brain activity and temporal structure, therefore

this measure was calculated in addition to the PLE and ACW. The dis-

tribution of the MI values included a mean of 7.272, a SD of 4.135,

and a range from 1.151 to 18.963 (Figure 4a).

To determine the relationship of the MI to the PLE and ACW,

two one-tailed correlations were done. The correlation between the

MI and the PLE was found to be significant, with a Pearson correlation

value of r = .493, p = .000, 95% CI (.292–.668) (Figure 4b). The corre-

lation between the MI and the ACW was also found to be significant,

with a Pearson correlation value of r = .474, p = .020, 95% CI

(.124–.717).

In one-tailed partial correlations with the SCS subscores

(Figure 1), the correlation values for the MI were the following: for the

Private subscore, r = .312, p = .047; for the Public subscore, r = .192,

p = .205; for the Social subscore, r = −.147, p = .293 (Figure 4c).

3.5 | Private self-consciousness partial correlations

controlling for other measures

From the results stated above, one further correlation was carried

out. In this instance, however, the remaining two measures were also

added as covariates. This would determine if the relationship between

the Private subscore and the measure remained significant if the par-

tial correlation included the other two measures as covariates, in addi-

tion to the public and social subscores.

Therefore, three one-tailed bootstrapped correlations were done.

The first measured the partial correlation between the Private sub-

score and the ACW, while controlling for the public and social sub-

scores, and the PLE and MI. The Pearson correlation value was

r = .376, p = .045.

When the same correlations were performed with the PLE and

MI—controlling for the MI and ACW, and the PLE and ACW,

respectively—the correlations were no longer significant. The respec-

tive Pearson correlation values were r = −.166, p = .279, and

r = .191, p = .226.

This indicates that only the ACW and Private subscore relation-

ship was significant when the public and social subscores and the PLE

and MI were controlled for.

3.6 | Tomography and self-consciousness

From the regions of interest for the Default Mode Network (DMN) in

Huang 2016, we chose two regions to examine eLORETA activity in

our data. These two regions were the pACC (Figure 5a) and the PCC

(Figure 6a). With this activity, we did partial correlations with the SCS

subscores (controlling for the other two subscores) to determine the

relationship between self-consciousness and the activity in these two

DMN areas. These regions were contrasted with two controls areas,

not a part of the DMN, the cortex of the Dorsal Attention Network

(DAN) and the cortex of the Motor Network (M1), and the whole cor-

tex with no ROIs. In addition, these values of eLORETA activity were

one-tail correlated with the other resting-state measures (PLE, ACW,

MI) (Table 1). Significant p-values were found in correlations with all

measures for both the pACC and PCC, but not in control regions.

In one-tailed partial correlations with the SCS subscores

(Figure 1), the correlation values for the pACC eLORETA data were

the following: for the Private subscore, r = .315, p = .047; for the

Public subscore, r = .082, p = .386; for the Social subscore, r = −.103,

p = .377 (Figure 5b).

The Pearson correlation values for the PCC eLORETA data with

the SCS subscores were the following: for the Private subscore,

r = .327, p = .047; for the Public subscore, r = .076, p = .386; for the

Social subscore, r = −.083, p = .386 (Figure 6b).

Finally, the Pearson correlation values for the DAN eLORETA

data with the SCS subscores were the following: for the Private sub-

score, r = .303, p = .234; for the Public subscore, r = .047, p = .969;

for the Social subscore, r = −.099, p = .969. The values for M1 eLOR-

ETA data with the SCS subscores were the following: for the Private

subscore, r = .293, p = .234; for the Public subscore, r = .07, p = .969;

for the Social subscore, r = −.098, p = .969 (Figure 6b). As a last con-

trol measure, none of the correlations between the eLORETA activity

in the whole cortex, with no ROI, and the SCS subscores were signifi-

cant (p = .466, p = .302, p = .327, respectively).

3.7 | Support vector machine

The trained SVM could accurately distinguish “low Private self-con-

sciousness” and “high Private self-consciousness” individuals from the

test group (Figure 7). The trained SVM was tested using an indepen-

dent testing set. It was 95% accurate, correctly labeling 19 of the

20 individuals in the test set. For this study, we were interested in the

relative importance of each feature for classification, so we extracted

the weights of each feature used to construct the separating hyper-

plane. The weight coefficient for the PLE was 0.37, for the ACW was
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0.72, for the MI was 0.20, and for the eLORETA was 0.55 for the

pACC and 0.56 for the PCC.

4 | DISCUSSION

We here investigated how the EEG-based temporal signature of the

brain’s spontaneous activity is related to self-consciousness. First, we

demonstrated the positive relationship of temporal nestedness, as

indexed by PLE, with Private self-consciousness. Second, the degree

of the resting state’s temporal continuity, as measured by ACW, cor-

related positively with both PLE and Private self-consciousness. Third,

the temporal integration of the spontaneous activity, as measured by

MI, was related to PLE and ACW as well as to Private self-conscious-

ness. Finally, Private self-consciousness correlated positively with the

EEG-source current density estimation from cortical midline struc-

tures, the pACC and PCC specifically. In both DMN regions, as the

eLORETA current source density increased in participants, so did the

Private subscore. This contrasts with the non-DMN control regions,

which did not show a significant relationship with Private self-

consciousness.

Our results strongly support our hypotheses. All measures of the

resting state’s temporal signature—PLE, ACW, and MI—correlated

positively with the degree of Private self-consciousness. In contrast,

no such relationship was found for Public and Social self-conscious-

ness. Moreover, our data show a significant relationship between two

of the core cortical midline regions, pACC and PCC, and Private self-

consciousness, but not the control regions. Together with our results

on machine learning, our data strongly support the hypothesis that

information about our self or self-representation is encoded and con-

tained in the brain’s resting state. This is known as rest-self contain-

ment. Most importantly, we find that such rest-self containment

occurs on a temporal basis, specifically by the resting state’s degree of

temporal nestedness, temporal continuity, and temporal integration.

As these three neuronal features find their direct analogues on the

psychological level of the self, our results support a temporal basis of

self as featured by the temporal signature of the brain’s spontaneous

activity (see also Northoff, 2017).

Taken together, our data shows that the temporal structure of

the spontaneous activity encodes and contains information specifi-

cally about Private self-consciousness. This is further reinforced by

our machine learning results, which shows that features extracted

from the brain’s spontaneous activity can be used to classify high ver-

sus low Private self-consciousness. Thus, the temporal signature of

the brain’s spontaneous activity can characterize our self and its self-

consciousness. This suggests that temporal nestedness, continuity,

and integration also hold on the psychological level of self, which

therefore may be characterized in a temporal way (see Northoff,

2016, 2017).

4.1 | “Temporal nestedness” of spontaneous activity

and self-consciousness

Our first main finding shows a positive relationship between the rest-

ing state’s scale-free properties and Private self-consciousness. Higher

values of the PLE were related to higher degrees of Private self-con-

sciousness. Previous findings show a relation of scale-free properties

with personality traits (Hahn et al., 2012; Lei, Zhao, & Chen, 2013)

and self-consciousness (Huang et al., 2016) in the infraslow frequency

domain (0.01–0.1 Hz) as measured with fMRI. Our data shows an

analogous relationship in the faster frequency domain (1–40 Hz) of

EEG. The higher the degree of the resting state’s scale-free properties

in these frequencies, the higher the degree of Private self-conscious-

ness. Most interestingly, as in our previous fMRI study (Huang et al.,

2016), this relationship only holds for Private, but not Public and

Social dimensions of self-consciousness.

FIGURE 1 Self-consciousness subscale score distributions. Private (left), Public (center), and Social (right) are illustrated. The width of the plots

denotes the number of observations, with wider areas having more observations. The horizontal line in the boxplots signifies the mean of the

distributions, with crosses signifying outliers [Color figure can be viewed at wileyonlinelibrary.com]
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Scale-free properties describe the power relationship between

slower and faster frequencies. As slower frequencies show stronger power

than faster ones, the latter are temporally nested within the former—there

is thus “temporal nestedness” that indexes a fractal organization between

the different frequencies in the brain’s spontaneous activity (He, 2011;

He, 2014; Linkenkaer-Hansen et al., 2001; Palva et al., 2013). Both our

past (Huang et al., 2016) and present results suggests that such temporal

nestedness on the neuronal level is closely related to our self through Pri-

vate self-consciousness. This is further supported by the fact that the

power of the single frequency ranges themselves did not predict Private

self-consciousness. Hence, it is really the fractal organization, and thus

temporal nestedness, that encodes Private self-consciousness.

Psychologically, our self-spans across different time ranges. Our self

may exert impact on the level of seconds as, for instance, when impact-

ing and modulating stimuli in terms of different degrees of self-

relatedness (Northoff et al., 2006; Sui et al., 2012; Sui et al., 2013; Sui &

Humphreys, 2015). This amounts to what has been described as “syn-

chronic self” (Northoff, 2016). At the same time, our self is also manifest

in extremely long timescales and thus slower frequency ranges, as over

days, weeks, and even years and decades. This thus reflects a “self-conti-

nuity” as “diachronic self” (Ersner-Hershfield, Tess Garton, et al., 2009;

Ersner-Hershfield, Wimmer, & Knutson, 2009; Northoff, 2017) which,

following our data, may be traced to the temporal nestedness between

the different frequencies in the brain’s spontaneous activity.

4.2 | “Temporal continuity” of spontaneous activity

and self-consciousness

Our second main finding concerns the relationship of the ACW of our

data to Private self-consciousness. What do these results mean? For

FIGURE 2 Power law exponent (PLE) distribution and correlation with SCS subscales. (a) Log–log power spectrum of all participants for 4 min of

eyes closed resting state, from which the PLE was calculated. Power spectrums are the mean of all channels. Alpha peak at roughly 10 Hz is

prominent since the resting state is eyes closed. Data was bandpass filtered from 1 to 40 Hz. (b) Distribution of PLE’s for all participants from power

spectrums seen in a. the width of the plots denotes the number of observations, with wider areas having more observations. The horizontal line in

the boxplots signifies the mean of the distributions. (c) One-tailed, bootstrapped partial correlations between PLE’s and SCS subscale scores. The

other two subscores were included as covariates in the partial correlations. Of the three subscales, only private had a significant correlation with

PLE’s. Circle = private, Cross = public, Triangle = social. The p-values are FDR corrected [Color figure can be viewed at wileyonlinelibrary.com]
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that, we must go back to the neuronal level and consider what exactly

the ACW measures. The ACW measures the degree of sameness of

neural activity patterns across time when correlating the different time

points with each other. As the slower frequencies, due to their long

cycle duration and strong power, shape the ACW more strongly that

shorter and less powered faster frequencies (Honey et al., 2012), one

would expect positive correlation between scale-free properties such

as the PLE, and the ACW. This is exactly what our results revealed.

Longer ACW indicates that neuronal activity remains the same

over time. Hence, ACW can be said to measure the degree of “tempo-

ral continuity” of the brain’s spontaneous activity. Most importantly,

our results show that such temporal continuity on the neuronal level

is related to our self, specifically Private self-consciousness; the higher

the degree of temporal continuity on the neuronal level, the higher

the degree of Private self-consciousness. In contrast, no such correla-

tion was observed for Public and Social self-consciousness. Hence,

temporal continuity on the neuronal level may be directly related to

self on the psychological level. This relationship is embodied by our

machine learning model, in which the ACW was the most heavily

weighted feature for classification. This reinforces the special relation-

ship of the brain’s temporal continuity to self-consciousness.

The relationship between temporal continuity on the neuronal level

and self-consciousness on the psychological level is of interest given that

psychologically the self can indeed be characterized by its continuous

nature, specifically self-continuity resulting in personal identity (Northoff,

2017). The self has been demonstrated to delay reward choice more

strongly than nonself (Ersner-Hershfield, Wimmer, & Knutson, 2009)—the

self thus appears to infuse temporal delay with temporal continuity into

psychological functions such as reward. This is even more interesting

given that the ACW on the cellular level has been related to the degree to

which monkeys can delay reward delivery (Murray et al., 2014). Temporal

continuity, on both the neuronal and psychological levels, thus seem to

provide the “glue,” or “common currency,” between the brain and the self.

4.3 | “Temporal integration” of spontaneous activity

and self-consciousness

Our third main finding consists in the relationship between cross-

frequency coupling (as indexed by MI) and Private self-consciousness.

FIGURE 3 ACW distribution and correlation with SCS subscales. (a) Autocorrelation function of all participants for 4 min of eyes closed resting

state, from which the ACW (arrow) was calculated. The ACW was calculated by a 20 s window with 50% overlap and at lag of 0.5 s. (b)

Distribution of ACW’s for all participants from autocorrelation function seen in a. The width of the plots denotes the number of observations,

with wider areas having more observations. The horizontal line in the boxplots signifies the mean of the distributions, with crosses signifying

outliers. (c) One-tailed, bootstrapped correlation between ACW and PLE, which is significant (p-value stated). (d) One-tailed, bootstrapped partial

correlations between ACW’s and SCS subscale scores. The other two subscores were included as covariates in the partial correlations. Of the

three subscales, only Private had a significant correlation with ACW’s. Circle = Private, Cross = Public, Triangle = Social. The p-values are FDR

corrected [Color figure can be viewed at wileyonlinelibrary.com]
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As in the other measures, we observed a positive correlation between

MI and Private self-consciousness. No such relation was observed for

Public and Social dimensions of self.

Cross-frequency coupling describes the relation between slower and

faster frequencies; the slower frequency couples to the faster frequency

(Aru et al., 2015; Hyafil et al., 2015). Interestingly, we observed the

degree of CFC to be related to both PLE and ACW. Higher degrees of

CFC were directly related to stronger PLE and longer ACW. Given that

all three measures are strongly driven by the slower frequencies as fea-

tured by long cycle duration, one would have expected their correlation.

This is also in line with the findings by He et al. (2010) who observed a

close relation between scale-free properties and CFC (as measured with

MI) in ECoG. Our results replicate and extend these findings by showing

that CFC correlates not only with PLE, but also with ACW.

Psychologically, the self has been associated with integration in

various functions. The self promotes integration of sensory (Sui et al.,

2012; Sui et al., 2013), motor (Frings & Wentura, 2014), reward (Sui,

2016; Sui et al., 2013), cognitive, specifically attention (Sui et al.,

2013) and decision making (Nakao et al., 2012; Nakao et al., 2013),

and emotional (Northoff et al., 2009) functions. Therefore, Sui and

Humphreys (2015) characterized the self by integration, therefore

self-integration, where the self provides some sort of “glue” on the

psychological level.

How does the integrative function of self on the psychological

level stand in relation to temporal integration on the neuronal level as

in CFC? Integration on the psychological level is possible only by inte-

grating the different time scales of the various functions and their

respective contents. Hence, integration on the psychological level is

possible only if integrating different time scales and their respective

frequencies. We now assume that such temporal integration on the

psychological level is mediated by temporal integration on the neuro-

nal level, which in turn is mediated by CFC.

Based on the MI, which measures CFC, we assume that the integra-

tive function of self allows one to relate short, fast frequency stimuli

(as in the beta and gamma frequency range) to the brain’s ongoing spon-

taneous activity, with its stronger power in the slower frequency ranges

of delta, theta, and possibly even the infraslow ranges (0.01–0.1 Hz).

Specifically, one would hypothesize that the fast frequency stimuli are

processed by equally fast frequencies whose amplitude, as evoked during

task-evoked activity, may then be coupled to, and thus integrated with,

the spontaneous activity’s long phase durations of the slower frequen-

cies. This would produce slow-fast phase-amplitude coupling. We

FIGURE 4 MI distribution and correlation with SCS subscales. (a) Distribution of MI’s for all participants calculated from 4 min of eyes closed

resting state. The width of the plots denotes the number of observations, with wider areas having more observations. The horizontal line in the

boxplots signifies the mean of the distributions, with cross signifying outlier. (b) One-tailed, bootstrapped correlations between MI and PLE and

ACW, both of which were significant (p-values stated). (c) One-tailed, bootstrapped partial correlations between MI's and SCS subscale scores.

The other two subscores were included as covariates in the partial correlations. Of the three subscales, only Private had a significant correlation

with MI’s. Circle = Private, Cross = Public, Triangle = Social. The p-values are FDR corrected [Color figure can be viewed at wileyonlinelibrary.com]
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consecutively hypothesize that such coupling from the slower frequen-

cies’ phase to the faster frequencies’ amplitude—crossing between spon-

taneous and task-evoked activity—may signify the integrative function of

self as described by Sui and Humphreys (2015). However, to demon-

strate that, future studies are needed which link self-integration on the

psychological level to phase-amplitude coupling on the neuronal level.

4.4 | Limitations

We here tested only for resting state; we did not include an explicit

self-related task in our study. Future studies may therefore want to

test how the applied measures of PLE, ACW, and MI are modulated

during task-evoked activity and how that is related to Private self-

consciousness.

Next, we are not able to disentangle self and consciousness. Pre-

vious investigations suggest that the self may already be processed

unconsciously, for example during the absence of consciousness

(Huang et al., 2014; Qin & Northoff, 2011). Future studies may there-

fore dissociate self and consciousness and investigate which is related

to the various measures of the temporo-spatial signature.

Thirdly, we were unable to locate exactly the temporal measures

in specific regions of the brain due to the spatial limitations of EEG.

FIGURE 5 Perigenual anterior cingulate cortex (pACC) eLORETA correlation with SCS subscales. (a) eLORETA localization of pACC (a cortical

midline structure) based on MNI coordinates from a previous article. (b) One-tailed, bootstrapped partial correlations between pACC eLORETA

values and SCS subscale scores. The other two subscores were included as covariates in the partial correlations. Of the three subscales, Private

was just below the level of significance with the FDR correction applied. Circle = Private, Cross = Public, Triangle = Social. The p-values are FDR

corrected [Color figure can be viewed at wileyonlinelibrary.com]
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Our data does however support the involvement of cortical midline

structures, such as the pACC and PCC, as their eLORETA-based activ-

ity correlated only with Private self-consciousness.

Finally, our support vector machine analysis employed a rather

small amount of training data. As this analysis was merely to supple-

ment our main findings, we did not view this as a major issue.

FIGURE 6 Posterior cingulate cortex (PCC) eLORETA correlation with SCS subscales. (a) eLORETA localization of PCC (a cortical midline structure) based

on MNI coordinates from a previous article. (b)One-tailed, bootstrapped partial correlations between PCC eLORETA values and SCS subscale scores. The

other two subscores were included as covariates in the partial correlations. Of the three subscales, only Private had a significant correlation with PCC

activity. Circle = Private, Cross = Public, Triangle = Social. The p-values are FDR corrected [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Correlation between pACC and PCC eLORETA source current density and PLE, ACW, and MI

Correlation between eLORETA and: pACC r
b value pACC p

a value PCC r
b value PCC p

b value

PLE .339 .023 .332 .023

ACW .331 .047 .322 .047

MI .402 .047 .402 .052

a FDR corrected for multiple comparisons.
b Pearson r value for one-tailed bootstrapped (1,000 samples) correlation.
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5 | CONCLUSION

We investigated the temporal signature of the brain’s spontaneous

activity with EEG and linked that to self-consciousness. Our findings

show that specifically Private self-consciousness is positively related

to neuronal measures of temporal nestedness through PLE, temporal

continuity through ACW, and temporal integration through

CFC/MI. Together with our results from machine learning, these find-

ings suggest that the self is encoded (or represented) in the brain’s

spontaneous activity in a temporal way. The temporal signature of the

brain’s spontaneous activity may thus encode or represent self-related

information in a temporal way. Although not demonstrated here

explicitly, our data suggest that the temporal features of the brain’s

spontaneous activity—temporal nestedness, continuity, and

integration—translate into corresponding temporal features on the

psychological level. Temporal features may thus provide the “common

currency” between brain and self such that the latter can then be

characterized primarily in a temporal way.
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