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Abstract

This article engages with problems that are usually opaque: What trajectories do scientific de-
bates assume, when does a scientific community consider a proposition to be a fact, and how
can we know that? We develop a strategy for evaluating the state of scientific contestation on
issues. The analysis builds from Latour’s black box imagery, which we observe in scientific
citation networks. We show that as consensus forms, the importance of internal divisions to
the overall network structure declines. We consider substantive cases that are now consid-
ered facts, such as the carcinogenicity of smoking and the non-carcinogenicity of coffee.
We then employ the same analysis to currently contested cases: the suspected carcinogenic-
ity of cellular phones, and the relationship between vaccines and autism. Extracting meaning
from the internal structure of scientific knowledge carves a niche for renewed sociological
commentary on science, revealing a typology of trajectories that scientific propositions
may experience en route to consensus.
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When and how did we become certain that

smoking causes cancer, coffee does not,

and human activity is producing global cli-

mate change? Since the coining of scientific

consensus as closure (Pinch and Bijker

1984), various branches of the sociology of

science have made great strides in exposing

its mechanisms (e.g., Collins 2004; Frickel

and Moore 2006; Fujimura 1996; Gieryn

1996; Latour 1987; Shapin 1996; Star and

Griesemer 1989). Yet such studies fall short

of providing a tool to monitor the formation

of closure as consensus among relevant sci-

entists. Existing work in this area is case spe-

cific and limited with respect to comparative

research. As such, it has yet to develop an

analytic typology of possible patterns of con-

sensus formation.

This article offers a quantitative strategy to

measure scientific consensus/contestation lev-

els, which enables comparative research and

thus extends the generalizability of the sociol-

ogy of science. Such a measure may prove

useful to scholars of innovation, and it pro-

vides a new tool for anyone interested in

network structures and their outcomes.

Applying this strategy to several different

cases, we identify three trajectories scientific

aBen Gurion University
bColumbia University

Corresponding Author:
Uri Shwed, Department of Sociology and

Anthropology, Ben Gurion University of the

Negev, PO Box 653, Beer-Sheva 84105 Israel

E-mail: shwed@bgu.ac.il

American Sociological Review
75(6) 817–840
� American Sociological
Association 2010
DOI: 10.1177/0003122410388488
http://asr.sagepub.com



propositions assume on their way through

contestation to consensus among practicing

scientists: (1) spiral, in which substantive

questions are answered and revisited at

a higher level; (2) cyclical, in which similar

questions are revisited without stable closure

(Abbott 2001); and (3) flat, in which there is

no real scientific contestation. This typology

emerges from empirical analysis of controver-

sies and offers terms for rapprochement

between qualitative and quantitative analyses

of science.

Detecting consensus is not trivial, as some

level of contestation is always present in sci-

ence. Scholars dispute previous findings or

point to literature gaps to establish their own

footholds in the field (Bourdieu 1975; Merton

1973). This everyday, normative level of con-

testation is benign, particularly compared with

debates of epistemic rivalry, in which strongly

entrenched camps disagree on core issues.1 In

contexts that harbor extra-scientific interests,

such as the hazards of smoking, interested

groups may exaggerate normative contesta-

tion levels to claim that the extant scientific

knowledge is inconclusive (McCright and

Dunlap 2000; Proctor and Schiebinger

2008). An important contribution of science

and technology studies (STS) is to make

such political manipulation more transparent

and harder to exercise (Oreskes 2004a) by

delivering science to many publics (Collins

and Evans 2002; Latour 2004; Moore 1996)

and delivering lay voices to science (Epstein

1998; Jasanoff 2004; Rowe and Frewer

2005). However, qualitative engagement

with truth, rather than consensus, can only

pass judgment after the fact. A third wave in

the sociology of science seeks ways of assess-

ing science and promoting informed policy

discussions (Collins and Evans 2007; Latour

2009; Weinel 2008). This is the task we

embark on here.

The logic of the strategy we propose is

rooted in Collins’s (1975) ‘‘bottled ships’’

metaphor, which Latour’s conception of black

boxing elaborates: When a proposition is sta-

ble (i.e., a consensual scientific proposition or

a functioning machine), its internal elements

are concealed. While a proposition is in the

making and still contested, however, the inter-

actions between its internal elements are visi-

ble. We export this insight to the macro-

structure of scientific citation networks and

employ a network community-detection algo-

rithm (Leicht and Newman 2008) to evaluate

the degree of internal divisions in scientific

literatures. The analysis allows us to distin-

guish epistemic rivalries from benign contes-

tation: When different factions debate

a scientific issue, they create distinct regions

in a citation network. In epistemic rivalries,

such network regions are a defining character-

istic of a network’s structure. When consensus

over an issue emerges (and only benign con-

testation remains), the salience of these re-

gions to the overall network structure

diminishes. To account for temporality, we

develop a novel approach to answer Picker-

ing’s (1993) critique that quantitative analyses

are inherently ex-post in their relation to sci-

ence. We unfold the emergent temporality of

scientific debates by identifying a new prop-

erty of such disputes: the relevant temporal

length of scholarly interaction. By capturing

the temporality of consensus formation, we

discover that scientific literatures can follow

three trajectories—spiral, cyclical, or flat.

We apply our analysis strategy to four

cases in which experts’ reports identify the

timing of consensus accomplishment: the

carcinogenicity of smoking, solar radiation,

and coffee, as well as anthropogenic climate

change.2 A fifth validating case is the con-

troversy regarding gravitational waves,

which Harry Collins (e.g., 2004) studied

extensively. Our analysis reveals consensus

earlier than do expert evaluations. Having

validated our measure compared with exist-

ing authoritative mechanisms, we then apply

the method to two additional cases of cur-

rent relevance: Do cellular phones cause

cancer, and do vaccinations cause autism?

We find that there is no real contestation

within the scientific community about these

questions.
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EXISTING LITERATURE

Studying scientific consensus and closure is

a major focus of recent work in the sociology

of science. Different streams within the soci-

ology of science expose how scientific con-

sensus is not a direct consequence of new

findings but is shaped by extra-scientific fac-

tors such as culture (Hess 1995), power and

funding (Martin and Richards 1995), politics

(Epstein 1998), and personal credibility

(Leahey 2005; Shapin 1994). In addition,

consensus results from social processes

within the core set of practicing scientists

who negotiate results (Collins 1974, 1992,

2004), demarcate knowledge claims (Gieryn

1999; Wynne 1996), construct boundary ob-

jects to conceal conflict (Star and Griesemer

1989), employ micro-politics of translation

(Latour 1987), and fortify bandwagon practi-

ces (Fujimura 1996). A next step is to

develop a strategy that allows for easy com-

parison across cases.

Generally speaking, scholars identify con-

sensus by immersing themselves in a cognitive

scientific domain and then report their conclu-

sions on the status of the field. Studies of sci-

entific consensus thus leave its detection

entirely in the hands of experts, be they practi-

tioners of the issue under scrutiny or expert so-

ciologists of science. Oreskes’s (2004b) report

of consensus on climate change offers one

influential example. However, when deep

understanding of each case is required merely

to assess its consensus level, comparative

research that sorts and qualifies the plethora

of consensus forming mechanisms becomes

difficult. The sociology of expertise suggests

moving beyond expert filtration of knowledge

by developing general rules to assess different

expert claims (Collins and Evans 2007; Wei-

nel 2008). In this article, we provide such

a strategy using scientific products as data.

Sociologists of science used to quantify

consensus either by asking practitioners about

it (Biglan 1973; Hargens and Kellywilson

1994), by journal rejection rates (Hargens

1988; Hargens and Kellywilson 1994), by

(inverse) lengths of published abstracts, by

cohesiveness of graduate training (Ashar and

Shapiro 1990), or by agreement between dif-

ferent reviewers of grant proposals (Cole

1983). These studies examine consensus lev-

els in disciplines. Disciplines, however, are

not the arenas of scientific progress (Cole

1983; Kuhn 1970). While detecting consensus

in disciplines answers an interesting question,

it is not the central concern here. Science ad-

vances around sub- and multi-disciplinary

puzzles, as evident by the breadth of contrib-

utors to the report of the Intergovernmental

Panel on Climate Change (IPCC 2007).

Quantitative attempts at measuring scien-

tific consensus on issues, rather than disci-

plines, are rare (Cole and Zuckerman 1975).

Following their lead, Evans (2007a) recently

analyzed discursive-consensus formation on

subdebates (which might proxy the substan-

tive consensus we investigate). Overall, how-

ever, Cole and Zukerman’s effort ended

prematurely (Wray 2005). Before finding

a meaningful measure of scientific consensus,

sociologists stopped searching.

This abandonment of the search for a con-

sensus measure followed the emergence of the

sociology of scientific knowledge (SSK),

which diverted attention from classic, Merto-

nian sociology of science (Zuckerman 1988).

SSK mastered a qualitative gaze into scientific

knowledge. Classic sociologists of science

sought a consensus measure because they

were reluctant to engage with scientific con-

tent. SSK and later scholars abandoned the

search for a consensus measure because they

had no reason to short circuit their engage-

ment with domain knowledge. In doing so,

SSK gave up on the manipulation of scale

that makes comparative studies important

and influential.

Recent works from organizational theory

and social movement research offer a system-

atic examination of the dynamics of scientific

claims and fields, as well as their effects on

society (see Frickel and Gross 2005; Frickel

and Moore 2006; Owen-Smith and Powell

2008). Such studies abandon the distinction
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between external and internal influences on

science, revealing both as crucial. Science op-

erates in a co-constitutive environment of or-

ganizations and networks that is shaped by

social, technical, and economic changes (Po-

well et al. 2005; Smith-Doerr, Manev, and Ri-

zova 2004), as well as by funding (Evans

2007b; Hess 2006), geographical embedded-

ness (Whittington, Owen-Smith, and Powell

2009), and a host of micro strategies (Powell

and Colyvas 2008). Therefore, this tradition

may benefit from our conceptualization of

consensus.

In this article, we supplement such investi-

gations of ‘‘why we know’’ with a compara-

tive framework to examine ‘‘when we

know.’’ We show that it is possible to time

consensus and to compare it across cases

without demanding domain expertise of the

analyst. The focus on timing opens new ques-

tions for organizational theory and the sociol-

ogy of science. For science, the simplest of

these—and perhaps the most important—is

what do the trajectories of scientific proposi-

tions look like?

BLACK BOXING FACTS

How do we know when something is a fact?

Oreskes (2004b) asserts that science should

be evaluated by its inscriptions—that is,

when an entire scientific literature agrees

on something, we can treat it as a fact. Mak-

ing such a claim requires domain-specific

expertise. This demand hinders comparative

research and introduces potential biases.

Oreskes, for example, codes climate change

publications into groups characterized as

supportive, skeptical, and indifferent. It is

not surprising that skeptics challenged her

selection and coding schemes. By identifying

a structural measure of consensus, we mini-

mize experts’ discretion. Actor Network The-

ory (ANT) shares this goal.

Our theoretical model can be traced back

to Collins’s (1974) idea that facts are like

ships in bottles and we should study these

ships/facts as they are being built; that is, as

a core set of practicing scientists transform

several possible answers to a question into

one correct and several erroneous answers

(Collins 2004), where correct and erroneous

reflect only an agreement in the scientific

community at a given time, not some tran-

scendental truth. Latour (1999) elaborated

this notion into the broad ANT concept of

black boxing and detailed what we may find

in its formation process: A black box is an

apparatus that conceals its internal elements,

which are viewed only through inputs and out-

puts (Latour 1987, 1999). A working com-

puter is a black box with a keyboard (for

inputs) and a screen (for output). Only when

the computer malfunctions, or as it is assem-

bled, can we see that it is really a network,

tying together chips, magnets, service pro-

viders, and so on. Similarly, the proposition

‘‘smoking causes cancer,’’ stated today, needs

no proof; it works and is tied into a vast net-

work of persons, substances, studies, and pol-

icies. The entire epoch (of statistical

inference, tragic deaths, chemical processes,

and genetics) that once showed that smoking

causes cancer is concealed. Its elaboration is

no longer required because the proposition is

connected to every cigarette carton and life

insurance application. Its internal elements

(e.g., chemicals and statistics) already work

together, so their connections do not require

explication. Consensus formation is a black-

boxing process: the weaving together of mul-

tiple elements of scientific propositions until

their internal divisions are well hidden.

We can observe black boxing in citation

networks, or more precisely, in representa-

tions of scientific papers connected by cita-

tions. Empirical and theoretical work

suggests that citations most often signal agree-

ment.3 This probabilistic property induces

identifiable areas in the citation network

characterized by denser interactions—what

can be identified as network communities—

even when one is blind to citation type (e.g.,

favorable, opposing, or ceremonial). Conse-

quently, the network structure that emerges

from citation networks of contentious
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literatures is characterized by relatively segre-

gated communities. Of course, communities

are not completely segregated, as not all cita-

tions are favorable. Yet both Merton’s and La-

tour’s theories, as well as Hanney and

colleagues’ (2005) findings, suggest that con-

tentious literatures should exhibit a salient

community structure. It follows that the

salience of communities to a network’s typol-

ogy is measurable; a reduction in community

salience of citation networks over time should

point to consensus formation in the literature.

In this article, our empirical task is to con-

sider this proposition. After empirically show-

ing that community salience measures

consensus, we can identify patterns of consen-

sus formation. The many insights on micro

processes of consensus formation reviewed

earlier provide little help for identifying the

macro patterns of its formation over time.

Mulkay, Gilbert, and Woolgar (1975) argue

that there are three stages in the lives of prob-

lem areas: exploration, in which unconnected

scientists explore a new problem indepen-

dently; followed by unification, in which the

explorers become the leaders of a unified,

exponentially growing field; and finally

decline/displacement, caused by the institu-

tionalization of the field, which restricts new

discovery. In passing, Mulkay and colleagues

argue that the unification stage may lead to

a redefinition of the field, rather than to its

decline or displacement. Our findings show

that in Khunian normal science controversies,

such as the carcinogenicity of solar radiation,

Mulkay and colleagues’ model fits well. We

call this a spiral pattern, in which many new

questions pop up following the unification

stage. A different pattern is evident for public

controversies that are not really controversial

among scientists, such as the carcinogenicity

of coffee or the debate over autism and vac-

cines. We call these controversies flat because

they exhibit the same exponential growth of

papers but with flat (and low) contestation

levels. Finally, scientific controversies such

as the carcinogenicity of tobacco exhibit the

redefinition of the field mentioned by Mulkay

and colleagues in passing. We call these con-

troversies cyclical because they reveal how

consensus forms, is destroyed, and is rebuilt

again around different formulations of similar

substantive questions.

CONSENSUS AND
COMMUNITY

The strategy we develop in this article di-

verges from previous work by focusing on

papers without disciplinary boundaries.

Most previous studies that attempt to mea-

sure consensus deal with whole disciplines,

and the few exceptions focus on a qualitative

selection of a core set of scientists (i.e., au-

thors) that compose a sub-disciplinarian cog-

nitive domain (e.g., Cole and Zuckerman

1975; Collins 1974). By using papers as our

focal units (see elaboration below and in

the online supplement [http://asr.sagepub

.com/supplemental]), we avoid reducing

pieces of knowledge into their authors’

dynamics or institutions4 as we observe

how the products of science—peer-reviewed

papers—obtain verisimilitude (Latour 1999)

and become building blocks of a single prop-

osition. Measures focusing on author degree

or expert opinions are problematic because

they select on authors, leading to loss of

important information. If, for example, a cru-

cial step in the black boxing of ‘‘smoking

causes cancer’’ was a statistical innovation,

simply following cancer scholars would

never reveal it.

Although it seems anti-intuitive, brief

reflection indicates that when all papers about

a subject are black-boxed together, their net-

work structure is not defined by the presence

of disjoint communities. When papers pro-

mote the same views5 and cite the same sour-

ces, the science behind them is conclusive. It

may turn out that this science was wrong, or

that published consensus was a result of fiat,

but regardless of the reasons behind consen-

sus, the community structure of research liter-

atures’ citation networks can reveal if the
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scientific questions that produced them are

black boxed or contentious. Approaching the

problem from this perspective allows us to

develop a strategy for observing consensus

formation in scientific literatures, without reli-

ance on mediating experts’ interpretations.

METHODS

Since Price (1965) suggested that the degree

distribution of citations could point to impor-

tant papers and journals, network analysis

has become prominent in evaluating jour-

nals’ importance (Garfield 1972) and induc-

ing mappings of science (Moody 2004).

Generally speaking, the strategies reflected

in the network literature on citations take

for granted predetermined categories (e.g.,

disciplines or journals) and restrict analysis

to a predetermined subset of the literature.

This is unfortunate.

As Figure 1 shows, citation networks are

too complex to reveal anything by simple

observation. The tools scholars have used

to extract meaning from such graphs

demand reduction and simplification, for

example by removing infrequently cited pa-

pers (Small 2006) or predetermining the

sample of authors (Collins 2004). Such

automatic deletion distorts network meas-

ures and gives citation indexes a critical

level of importance. This assumption is not

self-evident. If, for example, all papers cit-

ing a specific paper in a network were never

cited themselves, deleting them would hide

this important finding. Our strategy also in-

volves data reduction, but one that is data

driven and analytic. We model the internal

structure of citation networks to reveal con-

sensus without classifying papers or authors

into membership of different camps. Our

measure enables agnosticism toward papers’

content because we extract meaning—that

is, the contestation level of scientific

debates—from the structure of the networks

indexed by their organic community

structure.

Modularity as a Measure of

Scientific Consensus

In network terms, a community is a subset of

a larger population where internal ties are

more prevalent than ties to other subsets. In

a network of asphalt roads, for example,

communities are villages, cities, and states.

In a network of scientific papers linked by ci-

tations, communities are groups of papers

that deal with the same issues and cite each

other. Papers that agree are likely to cite

each other much more than their protagonists

(Hanney et al. 2005), giving rise to commu-

nities of agreement. The simple intuition

underlying our strategy is that when different

communities are salient to the global struc-

ture, the field is contentious.

It follows that changes in a citation net-

work’s community structure represent

changes in consensus levels on an issue: Con-

tentious networks are well defined by commu-

nities, and consensual networks are not.

Consensus formation exhibits a decline in

community salience; the literature produces

a common, core community and many minis-

cule communities (e.g., in the case of smoking

and cancer, miniscule communities are popu-

lated by studies that retain smoking as a con-

trol variable when studying, say, the hazards

of solar radiation). A consensual literature

set is black boxed, and its internal divisions

carry little structural meaning. Statistically,

we measure this as the amount of information

that communities carry regarding a network’s

structure. In the current context, as a domain

gains consensus, its citation network’s com-

munity salience declines.6

What does community salience mean, and

how does one find communities? Different

methods are suitable for different cases

(Reichardt 2009). Recently, Newman (2006)

introduced a method for partitioning a network

into communities by maximizing modularity.

For a given network division, modularity

compares the odds of within-community ties

with these odds after a random rewiring of

the network. If a division does not include

822 American Sociological Review 75(6)



more within-community ties than it would

with random ties, it is an artifact of

individual-level properties (i.e., degree distri-

bution) and harbors no further information

about the structure. The division’s modularity

in such a case is 0. Modularity, then, measures

the salience of communities for a given divi-

sion. Maximizing this property is one way to

get a division.

Our focus is on the dynamics of commu-

nity salience, so the partition that maximizes

this property is appropriate for our purposes.

Figure 2 presents some simple networks and

their modularity scores and shows how mean-

ingful internal groupings—groupings that are

not defined by a node’s properties—increase

modularity.

Modularity maximization algorithms iden-

tify an important network property: the

maximal amount of information that groups

carry about a network. We argue that maximal

modularity—that is, modularity of the divi-

sion obtained by modularity maximization

—indexes community salience. If no partition

of a network reveals much about it, communi-

ties are not salient. Black boxing suggests that

community salience—the importance of com-

munities to the macro structure—is highest

when a proposition is combating objection

and lowest when it is consensual fact. When

consensus on an issue arises and contestation

levels decrease, modularity scores decrease

too—which is what we observe. The contesta-

tion we wish to reveal, however, is histori-

cally-specific epistemic rivalries. Modularity

does not distinguish between these and benign

contestation. The course of professionaliza-

tion in science, regardless of consensus, also

Figure 1. Citation Network of 4,276 Papers about Smoking and Cancer, 1920 to 1995
Note: The outside ring is populated by 906 isolated papers that do not cite other papers and were not

cited by 1995. Most of the network is connected in a large crowded component. Different graphic algo-

rithms may draw this network differently, but it remains hard to extract meaning from such

representations.
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creates salient network communities that

modularity detects. Such benign contestation

is a product of network size and reflects scien-

tists’ struggles to establish their own niches in

growing literatures. To discuss epistemic

rivalries, we therefore scale raw modularity

scores with a literature’s size (see the online

supplement).

DATA

So far, we have outlined a theoretical concept

for thinking about consensus and a way to

express it quantitatively. To show that our

concept actually measures consensus, we

consider five different cases and compare

them with expert reports made in real time.

Two of the cases we selected because they

pertain to scientific issues that were once

contentious but became consensual: smoking

and cancer, and anthropogenic climate

change. We supplement these with two cases

that were historically less contentious—the

carcinogenicity of solar radiation and coffee

(this was a case of consensus on a null find-

ing, as the scientific community quickly

exonerated coffee from suspicions of carci-

nogenicity). Our fifth case provides an iconic

example: the claim of gravitational waves,

which has had an impressive history in

SSK. These five cases validate our strategy

across different periods, contexts, and scales.

We then apply our strategy to the literatures

about the possible carcinogenicity of cellular

phones and the possible relationship between

vaccinations and autism, both of which lack

an authoritative expert report. This analysis

suggests that scientists agree that vaccina-

tions do not cause autism and that there is

consensus on the inconclusiveness of science

on cellular radiation. Media reports of these

issues overrepresent minority views (Boykoff

and Boykoff 2004).

Using keywords, we define our cases by

their cognitive domain rather than select on

authors. For each case, we use specific

Figure 2. Modularity of Five Artificial Networks of Eight Nodes
Note: Modularity is 0 for the two cases in the top panel. While the networks are very different, they have

in common the fact that ties are completely dependent on individual properties. In the top panel, random

rewiring would only reproduce the same network, and thus communities contribute no information

about the network structure. When all ties in a network are within communities, as in the bottom-left

network, modularity is high—random rewiring would allocate half of the ties in this case between com-

munities, and the original state has all of them within communities, so modularity is .5. As more

between-community ties are introduced in the original state (in the two remaining examples) modularity

declines.
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keywords that define a cognitive domain to

extract a comprehensive set of all papers in-

dexed by ISI Web of Science. We selected

keywords with the aim of including every rel-

evant paper. For example, the keywords used

to construct the ‘‘smoking and cancer’’ dataset

are (Smoking OR nicotine OR cigar* OR

Tobacco) AND (cancer OR carci*).7 Any

paper about cancer and smoking is included.

We limit the data to articles and reviews,

forming a comprehensive set of peer-reviewed

scientific works on a subject. Table 1 presents

general properties of these datasets.

As noted earlier, defining a cognitive

domain by sampling core-set authors (e.g.,

Cole and Zukerman 1975; Collins 2004) or

a broader set of contributing scientists (Wei-

nel 2008) may omit important parts of the

domain. Our approach, on the other hand, is

exposed to the danger of being over inclusive.

Selecting only on keywords, we let in some

irrelevant papers (e.g., Wallace [1994] dis-

cusses carcinogenicity risk evaluation in pesti-

cides, noting in the abstract that it is

insignificant compared with tobacco). Our

sense is that inclusion is superior to the risk

of exclusion because our method is robust to

noise. Theoretically, no other criteria can

define a cognitive domain with more accuracy

than the terms used by the papers (indeed,

Wallace’s paper takes for granted tobacco’s

carcinogenicity, maintaining the consensus).

If a paper is irrelevant, it will not connect to

other relevant papers and will have no effect

on the modularity score. Our approach is not

immune to deliberate manipulation (e.g., con-

structing a literature with the keywords

‘‘baby’’ and ‘‘murder’’ and reporting it as

a set about abortions), but no data collection

method is. Our approach, however, is easy

to assess through evaluation of keywords. Fur-

thermore, a sensitivity analysis shows that

(honest) changes in keyword selection do

not change the results (see the online

supplement).

Using Garfield’s HistCite
� software, we

generated a graph representation of the data

and further modified it in R (Csardi and

Nepusz 2006; R Development Core Team

2008) to account for temporality, as described

below. We then evaluated the salience of

community structure over time using the

Leicht and Newman (2008) algorithm, which

adds directionality to Newman’s (2006)

algorithm.

MODELING TIME

Our effort is inherently historical; we try to

answer Pickering’s (1993) call to understand

science in its temporal unfolding. We seek

the critical years in which, and the dynamic

patterns by which, propositions were black

boxed from contentious to consensual litera-

tures. Our modeling of time is critical; we

need to be sensitive to new developments

without neglecting old papers that remain rel-

evant. Our method relies on published pa-

pers, which produces a latency period from

the moment a discovery is made to its journal

publication.

How can we define scientific knowledge at

a given moment? Observing only the latest

research severs ties to old papers, while

observing all previous research greatly ex-

tends the latency period. Common strategies

are a cumulative approach (e.g., Leicht et

al. 2007), a cross-sectional method (e.g.,

Cole and Zuckerman 1975), or a moving

window strategy (e.g., Small 2006) that

uses sliding, fixed-width observation win-

dows. The latter two methods ignore cita-

tions to older papers and require an analyst

to predetermine either discrete periods or

a uniform observation width. By predeter-

mining these properties, an analyst imposes

an ex-post view of the field (Pickering

1993). Moreover, these strategies ignore

the fact that some papers are more reachable

than others, and that this difference in acces-

sibility is itself time variant (Evans 2008).

To properly account for temporal unfolding,

we need a mechanism to model window

width for each point in time.

A meaningful observation period improves

the moving window approach by determining
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window width from the changing structure of

citations. We call this the dynamic window

approach. For each year Y, we note a distribu-

tion of citation-ages, defined as the difference

between Y and the year of publication of each

paper cited in Y. The median of this distribu-

tion serves as window width for year Y.8 We

then define every paper published within the

width years from Y as a focal paper, relevant

for the year at the end of the window. We

include older papers that are still cited by

any focal paper to keep influential papers in

our analysis, regardless of their age; we do

not include the papers cited by these older pa-

pers. For example, of all citations made in pa-

pers about smoking hazards published in

1987, the median citation-age is 4. The

dynamic network for 1987, then, contains all

papers published from 1984 to 1987, and all

the papers they cited, regardless of year.

This procedure is superior to cross-sectional

and fixed-width window approaches because

its observation window is theoretically justi-

fied and sensitive to the varying time frames

of scientific activity.

To demonstrate the advantage of dynamic

windows over the cumulative approach, we

mimic Leicht and colleagues (2007). They

calculated authority scores9 for each court rul-

ing (paper), pointing to its importance in the

network (Kleinberg 1999), and plotted the

mean age of top authorities over time. For

each year Y, we calculate the mean difference

between Y and the publication years of the top

15 authorities, derived from the cumulative

network and from our dynamic approach. In

years that the set of top authorities is

unchanged, mean age increases by one. A

smaller increase, or a decline, signifies that

new papers became authoritative. If the

mean age rises by more than one, older papers

that were not authoritative are rediscovered as

such.

Figure 3 displays this analysis for cumula-

tive and dynamic windows in two cases—the

carcinogenicity of tobacco and coffee. In the

top panels, triangles represent the cumulative

approach, and circles represent our dynamic

windows. The Y-axis reports mean age of

the set of top authorities. The bottom panels

simply show the slopes of the top panels, to

highlight changes. Dark bars signal the cumu-

lative approach, and clear bars represent

dynamic windows. In both cases, the cumula-

tive networks (represented by triangles) reveal

early lock-in on a set of authorities.10

Relying on cumulative networks, one

would conclude that no major shifts occurred

in the research on coffee and cancer since

1984, and in research on smoking and cancer

since 1953. The latter, of course, is false.

Dynamic window networks, represented by

circles and empty bars, tell a different story:

These networks reveal critical points in which

the set of top authorities as discussed in a spe-

cific year change. With respect to smoking,

dynamic windows show an exuberant litera-

ture, evident by the changing slopes in the

empty bars. Here we see that the set of top

authorities was stable in only 3 of 53 years.

This is not an artifact of the modeling struc-

ture. In sluggish literatures, like the carcinoge-

nicity of coffee, the dynamic windows

approach reports similar results to the cumula-

tive approach. Our modeling also produces

a relevant variable for future studies—the

real-time meaningful observation period—and

thus answers the critique that quantitative

analyses of science are inherently ex-post.

They need not be.

RESULTS

We test whether scientific consensus forma-

tion is observable as a reduction in the com-

munity salience of propositions’ citation

networks, measured by the network modular-

ity score, scaled for size. When communities

are no longer a defining characteristic of

a citation network, the network works

together as a black box (compared to a past

state of contestation). To examine this idea,

we present scaled modularity dynamics of

five sets of scientific literatures, comparing

modularity drops to expert reports11 for
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calibration. We use monographs of the Inter-

national Agency for Research on Cancer

(IARC), an agency of the World Health

Organization, as indicators of scientific con-

sensus regarding suspected carcinogens.12

Likewise, the Intergovernmental Panel on

Climate Change (IPCC) supplies a consensus

indicator regarding climate change. For con-

troversies surrounding gravitational waves,

we rely on Collins’s (2004) extensive analy-

sis of the field.

We start with a simple case to illustrate the

analysis framework: the proposition, rejected

by experts, that coffee causes cancer. This

issue was never really contested, and we

expect modularity to be low throughout the

proposition’s history. The other cases examine

modularity trends vis-à-vis experts’ consensus

Figure 3. Top 15 Authorities across Time: Cumulative and Dynamic Time Frames
Note: The top panels plot the mean age of the top-15 ranking papers on Kleinberg (1999) authority

scores. Triangles represent the cumulative approach, and circles represent dynamic windows. The bot-

tom panels show the slopes of the top figures, with shaded bars for cumulative networks and empty

bars for windowed networks. When the top authorities are fixed, each passing year increases their

mean age by one year, and the slope is one. A naive cumulative conception of passing time produces

the appearance of lock-in on leaders once a network is larger than the set size (15). Dynamic moving

windows that capture papers relevant to a specific period (represented by circles and empty slope

bars) reveal the difference between the cases. The literature on smoking and cancer shows many turn-

ing points, likely reversing significant contestation. The research on coffee and cancer is stable over

time, maintaining its consensus.

828 American Sociological Review 75(6)



declarations: carcinogenicity of solar radia-

tion (IARC 1992), gravitational waves

(Collins 2004), tobacco’s carcinogenicity

(IARC 1986; U.S. Surgeon General 1964),

and anthropogenic climate change (IPCC

2007). Figure 4 presents modularity analy-

ses, noting the timing of experts’ consensus

declarations vis-à-vis our analysis.

Note that modularity trends are driven nei-

ther by time (or any time-dependent process,

such as online archiving) nor by the number

of papers in a window (N).13 This is evident

in the simple case of coffee and cancer.

Coffee is not cancerous; this was never hotly

debated. We thus expect the figure to show

a flat pattern of consensus formation.

The solid line in Panel A presents modular-

ity scores for the coffee and cancer literature

with the number of papers represented by

the dashed line. Except for a steep decline

between 1984 and 1987, as the literature

grew to more than 30 papers, the trend is sta-

ble and hovers around .1, even as the number

of papers increases. In 1991, the IARC

lumped coffee with several other drinks,

announcing they are not carcinogenic (IARC

Figure 4. Epistemic Rivalry, Size, and Expert Reports in Five Validating Cases
Note: The dashed line refers to the number of papers in the dynamic window and to the logarithmic

right-hand-side-axis. The solid line refers to the level of epistemic rivalry, estimated as the modularity

score scaled for logged network size, on the left-hand-side-axis. The bars show years in which critical

expert committees published a consensus report, or, in panel C, the years Collins identifies as marking

the end of controversy and the emergence of consensus.
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1991). The trend and level show no epistemic

rivalry since 1985 and are driven by neither

time nor N.

Panel B considers the proposition that solar

radiation causes cancer. At the outset, this

case seems to represent normal science—

scholars find that the sun causes cancer and

then disseminate that knowledge. We expect

modularity trends to follow what we call a

spiral—some initial epistemic rivalry is

quickly resolved, and scholars then move to

secondary questions. This leads to increasing

numbers of papers linked to a common core,

keeping modularity low. The history of skin

cancer research confirms this interpretation.

In the early 1980s, this literature was conten-

tious and its network structure was well

defined by communities, with scaled modular-

ity fluctuating around .15 with a peak of .19

in 1985. Subsequently, modularity dropped,

following a large-scale study relating mela-

noma to sun exposure (Elwood et al. 1985).

By 1992, scaled modularity levels dropped

to .1. We view such a significant decline

over several years as consensus formation.

That year, the IARC published its first

report on solar radiation, stating sufficient

evidence for carcinogenicity. In 1997, the

IARC updated its report with evidence of

carcinogenicity of tanning lamps. Note that

marked drops in modularity preceded both

expert reports.

The case of gravitational waves further val-

idates modularity as a consensus index. Schol-

ars of gravitational waves debate whether and

which of their observation tools may detect

the waves of gravitational energy emitted

from distant astronomical events. This case,

recorded by Collins (2004), allows one to

track periods of relative consensus or contes-

tation. Our analysis shows (see Panel C) that

the history of gravitational waves had three

periods of declining epistemic rivalry, in

which consensus was formed: 1966 to 1969,

1970 to 1976, and 1992 to 1997, each marked

by a steep and consistent decrease in modular-

ity scores. The earlier periods are followed by

a significant rise in scaled modularity,

signaling contestation, while the consensus

obtained in the last period is maintained.

According to Collins (2004), the field

underwent three major shifts: from attempts

to measure gravitational waves with metal

bars, to the use of cryogenic devices, and

finally to expensive interferometers. Panel C

maps well to these shifts. The first period14

of decreasing modularity (from .14 in 1966

to .12 in 1969) corresponds to the first experi-

ments conducted by Joseph Weber, which

consolidated the field of experimental gravita-

tional waves. The reaction to Weber’s papers

instigated the controversy that occupied Col-

lins’s early publications on the field and is

apparent in the increase of scaled modularity

from 1969 to 1971 (to .16). Collins (2004)

argued recently that this closure was clear

by 1975, although he did not know it in real

time. Our approach suggests that contestation

decreased after 1971 and reached its local low

(.1) by 1976. Collins (2004) calls the follow-

ing period (late 1970s to late 1990s) ‘‘the

bar wars’’—a dispute over the use of cryo-

genic bars versus interferometers. Scaled

modularity fluctuates between .1 and .12 in

that period. Collins (2004) does not clearly

state when this debate ended, although he

points to the National Science Foundation

review of 1996. We observe closure signs as

early as 1992, when modularity declined and

reached below .1 in 1995. Across the board,

our analysis of changing contestation levels

is consistent with Collins’s narrative.

Questions of smoking and climate change

(see Panels D and E) are intrinsically more

interesting because while experts today

believe these propositions are true, they used

to be very contested and were riddled with

claims of inconclusive science (McCright

and Dunlap 2000; Samet and Burke 2001).

These cases are central to the concept of agno-

tology—that is, industries’ deliberate hin-

drance of science (Proctor and Schiebinger

2008). Absent structural analysis, timing con-

sensus formation on the hazards of smoking

would likely point to 1964 and the first Sur-

geon General report, or 1986, when three

830 American Sociological Review 75(6)



major reports were published by the IARC

(1986), Surgeon General Koop (USDHHS

1986), and the National Academy of Sciences

(NAS) (1986). Timing climate change consen-

sus, one would likely point to the IPCC’s

(2007) fourth report or Oreskes’s (2004b)

paper that surveyed all relevant abstracts.

Our approach identifies consensus earlier,

refuting claims of inconclusive science and

revealing that the cases are different.

Panel D presents analysis of the proposi-

tion that smoking causes cancer. This is the

iconic cyclical case. Despite huge research ef-

forts, consensus was hard to form. Early

claims of carcinogenicity (e.g., Wynder, Gra-

ham, and Croninger 1953) spiked fierce

debate; scaled modularity rose to .13 by

1958, only to drop to .08 by 1964. Looking

at modularity trends, one could identify con-

sensus as early as 1961 based on the continu-

ous decline. Indeed, in 1962 the Royal

Academy of Physicians declared that tobacco

is carcinogenic, and in two years the U.S. Sur-

geon General (1964) joined this assessment.

Following the Surgeon General’s report, con-

sensus was shattered. Modularity ascended

from 1965 through the early 1980s and re-

mained high even as it fluctuated. Here we

can observe a combative literature, with

research funded in part by the public and in

part by tobacco companies. Historical ac-

counts describe the period as a series of battles

(Brandt 1998), which inspires our metaphor of

a cyclical pattern. The question of tobacco’s

carcinogenicity was answered and reopened

in different formulations, such as the possibil-

ity of safe cigarettes and the role of nicotine.

Historians argue that the Koop (USDHHS

1986) and the NAS (1986) reports resolved

the conflict, showing that smoking kills non-

smokers. Starting in 1981 (when the first

study to show the hazards of secondhand

smoke was published), scaled modularity

began to sharply drop, from .15 to .12 in

1985. Kabat (2008) describes how hazards

of secondhand smoke remained controversial

after the 1986 report, creating the need for

the 1992 EPA report. By then, scaled

modularity was at .1. As with gravitational

waves, modularity analysis conveys the gen-

eral pattern of historians’ account but identi-

fies nascent consensus somewhat earlier.

The climate change case (see Panel E) re-

veals that scientific contestation was evident

only until the early 1990s. While the public

representation of this debate suggests it is sim-

ilar to the tobacco case, Oreskes (2004b)

shows that the scientific community reached

consensus as early as 1993. We can observe

earlier dynamics: Between 1986 and 1990,

scaled modularity was relatively high, show-

ing a significant, stable, but not ultimate

decline toward 1992. IPCC’s (1992) early

report states consensus on climate change

but not on its anthropogenic causes, which is

not stated until the IPCC’s (1995) second

report, at which point scaled modularity drops

below .1, echoed in 2001 and 2007. Our re-

sults reject the claim of inconclusive science

on climate change and identify the emergence

of consensus earlier than previously thought.

Given the weight of this case in illustrations

of political interventions in science, it is note-

worthy that its scientific representation,

derived solely from peer-reviewed articles, re-

sembles the spiral pattern of cases like skin

cancer far more than cyclical cases such as

the hazards of smoking.

Two Currently Contested Cases

The patterns reported in Figure 4 support the

idea that the community salience of scientific

citation networks describes their epistemic

rivalries. To validate the approach, we com-

pared it with traditional ways of declaring

consensus. Having validated it, we can now

use our method to describe cases that still

seem contested. Figure 5 presents analysis

for the propositions that mobile phones’ radi-

ation is cancerous (Panel A) and that vacci-

nations cause autism (Panel B).

With respect to the proposition that cell

phones cause cancer, Panel A shows relatively

high scaled modularity of .15 in 1997. Since
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then, the literature is characterized by a fairly

steady decrease in scaled modularity, reaching

.09 in 2004 and decreasing since. Recall that

our strategy measures consensus but does

not point to its substance. For that, we exam-

ine abstracts of influential papers. By 2004,

most authorities found no significant cancer-

ous effects of mobile phones (e.g., Wakeford

2004). This particular literature is remarkably

cordial; the few studies that find effects admit

their methodological problems, while the

majority that do not find effects argue that

more research is needed. Neither side conclu-

sively argues that the issue is proven. Our re-

sults suggest that this case has been

consensual since 2002. The prevailing repre-

sentation in the field, exemplified by the com-

prehensive INTERPHONE study (Cardis et al.

2010), is that the science remains inconclu-

sive. Yet, in opposition to some media repre-

sentations of the subject that portray this

inconclusiveness as an epistemic rivalry (e.g.,

Figure 5. Epistemic Rivalries and Literatures’ Size in Two Publicly Contested Cases
Note: The dashed line refers to the number of papers in the dynamic window and to the logarithmic

right-hand-side-axis. The solid line refers to the level of epistemic rivalry, estimated as the modularity

score scaled for logged network size, on the left-hand-side-axis. Scaled modularity levels in the debate

regarding the carcinogenicity of cellular phones decrease until 2004 from .15 to .09 and are more stable

since. The scientific discussion of vaccinations as a cause of autism was never contested, as scaled mod-

ularity levels are very low, between .06 and .07 throughout the research period.

832 American Sociological Review 75(6)



Ketcham 2010), our analysis indicates that the

scientific consensus is that no proof for cellu-

lar radiation hazards has been identified. The

contestation tapped by journalists is entirely

benign contestation, while the scientists who

find no hazards of cellular radiation argue

themselves that more research is needed.

Turning to Panel B where we consider the

risk of autism posed by the triple vaccination

for Measles, Mumps, and Rubella (MMR), it

is evident that the scientific community has

consensus refuting the relationship. Yet anec-

dotal information from parents of children

with autism generates strong sentiment in

many lay communities that vaccines are caus-

ally related to autism. In the case of cellular

phones, doubt about the scientific consensus,

or belief that it may soon change, may lead in-

dividuals to stop using them with few implica-

tions aside from one’s social life. In the case

of MMR vaccinations and autism, however,

doubts about the scientific consensus lead in-

dividuals to withdraw from vaccinations, risk-

ing the loss of herd immunity for diseases

once largely eradicated from the developing

world (Glanz et al. 2009; Jansen et al. 2003;

Salathe and Bonhoeffer 2008; Smith et al.

2008). As with other contested issues that

are not really contested—for example, the

effectiveness of abstinence pledges and

DARE programs—identifying when science

has got the story right may have important

policy implications.

DISCUSSION

This article provides a new way of measuring

scientific consensus. We suggested that con-

sensus formation is a form of black boxing,

traceable as a decline in the community

salience of citation networks. Along the

way, we developed a new approach to tem-

porality in citation networks. Measuring

community salience as modularity, we distin-

guish between the component of community

salience created by normal fragmentation and

specialization, which we name benign

contestation, and the epistemic rivalries that

are the substance of severe contestation and

around which consensus forms. The former

is a product of the literatures’ size, while

we show that the latter identifies consensus

in accordance with expert evaluations. We

then analyzed two still-contested cases and

revealed emerging (or consistent) consensus.

Since 2004, the literature on cellular phone

hazards has been consensual. Regarding the

idea that MMR vaccinations cause autism,

our analysis reveals that this issue has never

carried any scientific contestation.

While our interpretation of the results pro-

vides excellent fit with existing evaluations,

there is no single ahistorical decisive empirical

threshold between consensus and contestation.

Reifying any value to identify such a threshold

would be ill advised, as our tool requires sensi-

tivity to different citation styles, literature sizes,

and periods. The results suggest that a ratio of

.1 between raw modularity and logged network

size may provide a useful rule of thumb. But

just as blind adherence to the .05 threshold

for statistical significance leads to substantive

nonsense in interpreting relationships between

variables in extremely large datasets, judgment

is necessary here, as well, to make substan-

tively meaningful statements. In these analyses,

some consensus formation processes did not

always remain below .1. For example, scien-

tific discussion on the carcinogenicity of coffee

hovers on either side of .1 after 1985. Like

other analyses (e.g., Bhutani, Johnson, and Si-

vieri 1999), marking a threshold of .1 does not

mean that coherent literatures with scaled mod-

ularity of .09 are always consensual, and those

with .11 are always contested. One should

focus on the trend and the context more than

the number.

A quantitative measure of scientific con-

sensus reinstates a sociological niche in the

field defined by science policy analysts on

the one hand and STS scholars on the other.

We utilize different approaches. Following

Oreskes, we seek consensus in scientific in-

scriptions; following Latour and Collins, we

model consensus as black boxing and show
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that internal divisions are observable in cita-

tion networks as competing communities.

Noting the unified structural implication of

Merton’s and Latour’s theories of citations,

we offer a structural measure of real-time sci-

entific consensus, with a minimal latency

period induced mostly by journal response

time. We depart from ANT and SSK’s quali-

tative empirical orientation and subject their

insights to quantitative modeling, enabling

us to evaluate consensus within arcane scien-

tific fields.

The utility of our approach is evident

merely by considering the scope of the scien-

tific issues considered, covering a century of

research in several different disciplines. Mod-

ularity trends not only identify transition peri-

ods but also show that scientific literatures

adapt to new findings quickly. In cases previ-

ously considered by science scholars, the

quantitative trends fit the narrative reports.

Scientific findings such as modularity

never completely speak for themselves. A

new method cannot be calibrated without

external judgments. Our validation of the

analysis presented here has two potential sour-

ces of bias. The first is minor: the choice of

the IARC and the IPCC as calibration meas-

ures. Other benchmarks may exist. The sec-

ond source of bias is more challenging:

populating the dataset by analyst’s keywords

selection. As discussed earlier, this has the

advantage of defining a cognitive domain

through its substance. It is also robust across

different formulations (see the online supple-

ment), but like any method it is at risk to mal-

feasance. The deepest challenge arises from

the fact that a change in science induces

change in nomenclature. For scientific contes-

tation dynamics operating over the long term,

sensitivity to shifting keywords is critical.

Public Understanding and the

Sociology of Science

One of the many virtues of contemporary

STS and Public Understanding of Science

(PUS) studies is their attention to different

mechanisms that may limit the scope of our

strategy. Consensus may emerge if one side

of a controversy strategically changes its lan-

guage (Simon 2002), or consensus may veil

contestation by actors with no access to

peer-reviewed journals (Wynne 1996). For

PUS scholars, scrutinizing science is only

a part of scrutinizing the public engagement

with science (Nelkin 1995). Our strategy is

limited to peer-reviewed journals. It is by

no means a panacea to scrutinizers of sci-

ence. It could, however, help PUS scholars

evaluate the academic side of their story.

For example, for issues such as climate

change and smoking, where scholars argue

that a minority of hired experts created a dis-

torted view of the scientific literature, our

strategy may offer a precautionary com-

ment.15 Future studies might implement our

strategy for the blogosphere, extending it

beyond peer-reviewed papers.

Determining scientific consensus without

relying on structural tools typically required

expert knowledge. We do not aim at rendering

experts obsolete; rather, we offer a comple-

mentary strategy designed to help experts

and their audiences. In the future, our

approach could be refined, implemented in

online search engines, and used by everyone.

By allowing anyone to define a literature

and assess its dynamics quantitatively, sociol-

ogy can partake in the effort to make science

public and more democratic.

Patterns of Consensus Formation

Assessing consensus, of course, has nothing

to do with ‘‘the truth.’’ It is thus encouraging

to find that when consensus is achieved, net-

works grow exponentially. More studies are

published in peer-reviewed journals that use

the keywords attached to the recent consen-

sus. Evans (2007a) shows that discursive

consensus increases scientific production.

This anti-intuitive claim comes into clear

focus here: If consensus was obtained with
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fragile evidence, it will likely dissolve with

growing interest, which is what happened at

the onset of gravitational waves research. If

consensus holds, it opens secondary ques-

tions for scrutiny. This observation gives

rise to the three different trajectories of sci-

entific propositions—what we call flat, spi-

ral, and cyclical.

It seems trivial that some people do not

drink coffee for fear of cancer, even though

the scientific community considers coffee to

be a non-carcinogen (see Figure 4, Panel A);

the belief that MMR vaccinations cause

autism (see Figure 5, Panel B), however,

which leads some people to reject vaccination

for their children, is not trivial. Despite this

difference, both cases show no epistemic

rivalry. The world of flat science can mean

two main things. In the coffee case there is

no coherent research agenda. The coincidence

of coffee and cancer in papers is largely the

accidental byproduct of large research efforts

in cancer and coffee respectively. Contention

around the carcinogenicity of coffee does

not arise (IARC 1991), and articles cite other

articles seemingly at random. By contrast, the

scientific flatness around vaccinations and

autism is different—here science speaks with

a single voice in opposition to a lay critique.

The drive to new studies arises exogenously,

but there is no real debate. Articles that refute

the connection cite other similar articles. Here

too, as a consequence, communities of conten-

tion within science fail to arise.

The propositions that the sun causes can-

cer, people cause climate change, and mobile

phones do not cause cancer unfold in a spiral

trajectory. In spiral trajectories, initially

intense contestation generates rapid settlement

and induces a spiral of new questions to which

scientists become oriented. Here the settle-

ments of earlier contestation provide scaffold-

ing for new communities of research.

Consequently, the modularity of the founda-

tional question—do people cause climate

change, for example—remains low because

the communities of contestation organized

around secondary issues are bridged through

citation to a historically evolving core of

accepted knowledge. This spiral conforms to

our cultural ideal of science in which scien-

tists are left to their own devices. The drive

to new research arises endogenously, as if

a Kuhnian machine were operating just as it

should.

The case of smoking and cancer looks like

Abbott’s (2001) description of the social sci-

ences—a constant return to initial states.

Each reduction in contestation levels was fol-

lowed by reoccurring contestation—on the

same plane, reformulating the same issue of

public interest. In cyclic trajectories, refram-

ing requires new consensus formation, align-

ments, and goal settings. This trajectory—in

the case of smoking and cancer it was sus-

tained for years around the controversial quest

for safer cigarettes—eventually transitioned to

a spiral pattern around secondhand smoke in

the 1980s.

One further sociological insight that our

analysis emphasizes is unanticipated differen-

ces between cases—for example, between

tobacco’s carcinogenicity and climate change.

Qualitative analyses of each in tandem are

rare because of the expertise required to ana-

lyze them. The few attempts at comparison

frame both cases similarly—as cases in which

powerful groups created public doubts in oth-

erwise consensual science (Michaels 2006;

see also Proctor and Schiebinger 2008). Our

analysis, by contrast, clearly shows that the

formation of consensus took different paths:

Climate change followed a spiral trajectory,

while tobacco research was (for most of its

history) trapped in a cycle of persistent repeti-

tion. Scientific consensus in this literature was

solidified only in the late 1980s, more than

half a century after initial evidence was pub-

lished. Early consensus on tobacco’s carcino-

genicity formed in 1959 to 1964 and led to the

controversial search for a safer cigarette. Sci-

entific consensus on climate change, on the

other hand, formed in the early 1990s as evi-

dence was still being gathered. Our findings

suggest that commentators on these cases

should be aware of the different pathways
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agnotology takes. Tobacco firms directly in-

vested in scientific research (Bero 2003),

while climate change skeptics used the media

and political office holders to cultivate doubt

(Jacques, Dunlap, and Freeman 2008). Both

strategies are effective in creating contestation

—in the short run.

Our research strategy first asked the ques-

tion—are the dynamics of consensus forma-

tion the same across these hotly contested

propositions—and then answered it. Hope-

fully, development of approaches like ours

within the sociology of science will lead us

out of the cycle of persistent repetition by

identifying new problems and new answers.
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Notes

1. The distinction between benign contestation and

epistemic rivalries harkens back to Kuhn’s (1970)

distinction between normal science and periods of

crisis/revolution. Whereas Kuhn’s focus is on dif-

ferent periods, we distinguish between forms of

contestation that co-exist temporally.

2. At this time, consensus holds that smoking and solar

radiation cause cancer and that humans are causing

climate change. In Sleeper (1973), Woody Allen

wakes up in a future where the consensus is that

smoking improves health. This article is concerned

with understanding when scientific consensus is es-

tablished, not if it is true in some absolute way.

3. Merton (1957) suggests that citations are acts of

debt payment, following a market metaphor. Latour

(1987) argues that citations are rhetorical acts of

mobilization, following a military metaphor. For

current purposes, both lead to the same conclusion:

citations are more likely to signal agreement (shown

empirically in Hanney et al. 2005).

4. Of course, papers have a life of their own. For

example, while Merton never explicitly argued

that sociology of science should avoid analyzing

knowledge, his 1973 book was read in this manner,

and the string ‘‘Merton (1973)’’ was used to assert

this (Hargens 2004). Reducing knowledge to its

practitioners is not solely the vice of Mertonians.

SSK added knowledge to the study of scientists,

but they accept knowledge only as a property of

a human actor. This view prevails in contemporary

studies of expertise as Collins and Evans (2007) and

Weinel (2008) indicate.

5. Community salience is also low when papers do not

promote the same views but discuss different things

and have little to do with each other. The nature of

the data suggests that this too signals consensus.

6. While we reached this idea via Latour, it can be

framed in Kuhnian (1970) terms, as the emergence

of a paradigm, or in Lakatosian (1970) terms, that

is, in new research programs that have yet to develop

a core, auxiliary hypotheses form separate communi-

ties. When science matures, practitioners agree on

a core and community demarcations dissolve.

7. Ending a word with a * means that all characters

following the previous string are accepted. Key-

words are connected by OR within parentheses

and AND between parentheses, so that a paper

needs at least one word from each parentheses to

be included in the dataset.

8. At the 100th percentile, the network is the cumula-

tive network. At the 1st percentile, the network is

similar to a sliding window with a width of 1.

The median is akin to citation half-life, which is

not only an intuitive cutoff point but also provides

intuitive widths, usually of 3 to 6 years with outliers

of 2 and up to 11.

9. Authority is a centrality measure for directed net-

works, assigning nodes with an authority score

based on in-degree and a hub score based on out-

degree. Each score’s calculation weighs neighbors’

scores on the other measure. This calculates papers’

importance not only by their citation counts but by

considering who is citing them.

10. Initial periods of fluctuating authorities occur when

networks are very small. The slopes obtained by the

cumulative approach converge to 1 when networks

have more than 17 papers.

11. Experts’ reports are not the only mechanism for

consensus declaration, but they are the most
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authoritative and frequently used mechanism, and

the one most often cited as proof.

12. Because the IARC was founded in 1965, we also

note the first U.S. Surgeon General (1964) report

on smoking. We also note the 1992 EPA report

because of its importance (see Kabat 2008).

13. See also the online supplement.

14. Collins’s detailed review of the field starts at 1966.

We grayed out the earlier years that our data covers.

15. As one reviewer noted, if everyone used our strat-

egy it may be subjected to Goodhart’s law: inter-

ested parties who in the past needed only to hire

a well-respected scholar may attempt to publish pa-

pers and manipulate citations to create a false sense

of consensus. We should be so fortunate. The fact

that a useful measure may be manipulated in the

future provides little reason to abandon it.
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