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Introduction

Shortly after the development of techniques for growing cells  

in culture, “tension striae” or “stress �bers” (SFs) were detected 

by light microscopy as dark lines or �brils crossing many types 

of cells growing in culture (Lewis and Lewis, 1924). After 

some initial interest, these structures were neglected for many 

years and were even considered to be possible �xation artifacts. 

The application of electron microscopy to analyze cellular cyto-

plasmic organization renewed interest in SFs, as they were 

seen to be prominent structures in many cells in tissue culture 

(Buckley and Porter, 1967; Abercrombie et al., 1971; McNutt 

et al., 1971; Perdue, 1973). The speculation that SFs relate to 

striated muscle thin �laments composed of actin was con�rmed  

by “decoration” with heavy meromyosin (Perdue, 1973). Re-

search into SFs accelerated with the application of immuno-

�uorescence microscopy, which made it possible to compare the 

organization of SFs in thousands of cells (Lazarides and Weber, 

1974; Goldman et al., 1975; Lazarides and Burridge, 1975).  

In the nearly 100 years since they were �rst discovered, SFs 

continue to command attention. Not only are they often the most 

conspicuous cytoskeletal arrays in cultured cells (and as such 

are highly photogenic), but their ease of visualization has made 

them models for studying cytoskeletal assembly, organization, 

dynamics, and repair. SFs are load-bearing, tension-generating 

mechanosensitive structures. Their presence re�ects a cell’s  

response to the external environment, not only the soluble factors 

that drive assembly and disassembly but also the physical prop-

erties of the environment, such as its rigidity or compliance. In 

this review, we will discuss SF organization, how they assemble 

and disassemble, their dynamics, and their relationship to me-

chanical force as well as unresolved questions in the �eld.

Definitions

Initially, SFs were de�ned simply from their appearance as large 

bundles of actin �laments extending across much of a cell’s  

diameter. Further analysis revealed that most SFs are anchored 

at one or both ends by focal adhesions and that the �laments are 

cross-linked by a periodic distribution of -actinin that alternates 

with myosin II (together generating a sarcomeric appearance). 

Containing myosin, SFs were interpreted to be contractile, but 

shortening was rarely seen, leading to the interpretation that 

they are usually under isometric tension because of strong focal 

adhesion attachments preventing shortening (Burridge, 1981). 

Several types of SFs have been distinguished (Fig. 1; Small  

et al., 1998). The most commonly observed are ventral SFs; 

these are anchored at each end by focal adhesions. Ventral SFs 

are frequently many micrometers long and may extend most  

of the length of a cell. Dorsal SFs (also known as radial SFs)  

are usually shorter and anchored at just one end to a focal adhe-

sion or focal complex. They are often precursors to ventral SFs 

and form just behind the leading edge of migrating cells, extend-

ing back toward the cell nucleus. In many migrating cells, as 

well as in spreading cells, contractile bundles of actin �laments 

develop at the base of lamellipodia. These “transverse arcs” 

display a convex shape and move away from the leading edge 

(Soranno and Bell, 1982; Heath and Holi�eld, 1993). Because 

they are not directly anchored at adhesions, they were not origi-

nally classi�ed as SFs, although now they frequently are and 

Stress fibers (SFs) are often the most prominent cytoskele-
tal structures in cells growing in tissue culture. Composed 
of actin filaments, myosin II, and many other proteins, SFs 
are force-generating and tension-bearing structures that 
respond to the surrounding physical environment. New 
work is shedding light on the mechanosensitive properties 
of SFs, including that these structures can respond to me-
chanical tension by rapid reinforcement and that there 
are mechanisms to repair strain-induced damage.  
Although SFs are superficially similar in organization to 
the sarcomeres of striated muscle, there are intriguing dif-
ferences in their organization and behavior, indicating 
that much still needs to be learned about these structures.
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the Rho kinase (ROCK)–dependent phosphorylation of endo-

thelial tight junction proteins, such as occludin and claudin 5, 

which leads to blood–brain barrier breakdown (Yamamoto  

et al., 2008). Another is RhoA-associated myosin-driven contrac-

tility and SF formation; the tension transmitted to the junctions 

is an easily envisioned mechanism for enhanced permeability. 

There can often appear to be a physical connection between SFs 

of neighboring endothelial cells (Fig. 2 B). Because these SFs 

are anchored at adherens junctions, the junctions have been 

termed focal adherens junctions (Huveneers et al., 2012). Junc-

tional SFs are increased in response to permeability-enhancing 

factors, such as TNF (Millán et al., 2010; Huveneers et al., 2012). 

It is noteworthy that, in highly polarized epithelia characterized 

by very tight junctions, cortical actin belts, not SFs, are the pre-

dominant apical junction–associated F-actin structures, indica-

tive of their more static barrier properties. The interplay between 

actin �laments and cadherin-based junctions is reviewed in  

detail by Ratheesh and Yap (2012).

Myths and fallacies

The prominence of SFs in cells grown in tissue culture com-

pared with their rarity in intact tissues has raised the question of 

whether they are in vitro artifacts. Under speci�c conditions, 

however, SFs are seen in tissues. For example, they were observed 

in wound granulation tissues (Gabbiani et al., 1972; Tomasek  

et al., 2002), in which they have been implicated in the contrac-

tion of wounds and scar tissue. They have also been noted in 

will be here because, together with dorsal SFs, they give rise  

to ventral SFs (Hotulainen and Lappalainen, 2006).

Another type of SF is found in endothelial cells. These 

SFs are essentially identical to ventral SFs except that, rather 

than inserting into focal adhesions, they insert into the adherens 

junctions, linking endothelial cells together (Millán et al., 2010). 

In most resting endothelial cells, F-actin is predominantly found 

as a circumferential belt, similar to the apical belt in epithelial 

cells that associates with tight junctions and adherens junctions 

(Fig. 2 A). These cortical actin bundles generate centrifugal 

(outwardly directed) tension (Prasain and Stevens, 2009) that 

opposes the contractile forces exerted by SFs that form when, 

for example, RhoA is activated. Association of actin �laments 

with adherens and tight junctions in endothelia is critical for the 

regulation of barrier function (Lai et al., 2005). Junction-associated 

actin morphology is dynamic, thus allowing rapid permeability 

adjustments, transendothelial migration of immune cells during 

the in�ammatory response (Adamson et al., 1999), and adapta-

tion to mechanical forces, such as shear �ow and vascular 

stretch (Noria et al., 1999; Birukov et al., 2002; Birukov et al., 

2003; Wojciak-Stothard and Ridley, 2003). Barrier-enhancing 

agents, such as sphingosine-1-phosphate, cAMP analogues, and 

certain oxidized phospholipids, promote the formation of corti-

cal F-actin structures, usually in a Rac1 and/or Rap1 GTPase- 

dependent fashion (Garcia et al., 2001; Birukov et al., 2004; 

Cullere et al., 2005). In contrast, RhoA signaling triggers junc-

tional disruption. One mechanism for junctional disruption is 

Figure 1. Three types of actin SFs. U2OS human osteosar-
coma cells were plated on 10 µg/ml fibronectin-coated cover-
slips and allowed to attach and spread for 4 h before fixation 
(Hotulainen and Lappalainen, 2006). In the immunofluores-
cence image, antiphosphotyrosine was used as a marker for 
focal adhesions (red), phalloidin was used for F-actin SFs 
(green), and the nucleus (blue) was detected by DAPI. This 
single cell exhibits the three main types of actin SFs: (trans-
verse) arcs, dorsal SFs, and ventral SFs. (inset) Schematic 
drawing depicting the SF subtypes.
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within three-dimensional matrices but rather whether the physi-

cal properties of the surrounding environment result in the cells 

generating isometric tension.

What is it about rigid substrata and the resulting develop-

ment of isometric tension that leads to the assembly of SFs?  

A major factor is the activation of RhoA, which occurs when cells 

are cultured on rigid substrata (Wozniak et al., 2003; Paszek  

et al., 2005), and which, as discussed in the next section, drives 

the assembly of SFs. Integrins mediate attachment of cells  

to their underlying ECM, and although integrin-mediated adhe-

sion initially depresses RhoA activity (Ren et al., 1999; Arthur  

et al., 2000), sustained adhesion activates several guanine nucleo-

tide exchange factors (GEFs) to elevate RhoA activity (Dubash 

et al., 2007; Lim et al., 2008). Applying tension on integrins, 

as occurs with isometric tension, also induces RhoA activation 

(Zhao et al., 2007; Guilluy et al., 2011). Pursuing the mecha-

nism has led to the identi�cation of two signaling pathways, 

one involving the tyrosine kinase Fyn, resulting in activation 

of the GEF leukemia-associated Rho GEF, and the other in-

volving the tyrosine kinase FAK (but not Fyn) and resulting 

in the activation of the Ras/MEK/ERK pathway, with ERK 

phosphorylation activating GEF-H1 (Guilluy et al., 2011). 

Heck et al. (2012) similarly identi�ed GEF-H1 activation in 

cells adhering to rigid substrata but, in this situation, found 

that activation of GEF-H1 resulted from destabilization of 

microtubules and the consequent release of this GEF from 

these structures.

A role for SFs in cell migration has often been sug-

gested or assumed. However, most highly migratory cells 

lack SFs, and the presence of SFs is correlated more with 

strong adhesion than rapid migration (Burridge, 1981; Herman  

et al., 1981). Nevertheless, in order for strongly adherent 

cells to move forward, it is necessary for them to break their 

strong adhesions in the rear. So, although there is a negative 

correlation between SFs and rate of migration, in situa-

tions in which cells are strongly adherent, SFs do contrib-

ute to migration by generating the force necessary to release  

the tail of the cell and move the rear forward (Crowley and 

Horwitz, 1995).

endothelial cells, particularly those lining arteries exposed  

to high velocity �ow, such as the aorta (Wong et al., 1983), and 

were increased in endothelial cells lining vessels from hyper-

tensive animals (White et al., 1983). These different situations 

have in common that the cells are experiencing high mechanical 

forces. Supporting the idea that SFs are induced in response  

to mechanical signals, they could be experimentally induced by 

exposing cultured endothelial cells to high levels of sheer stress 

equivalent to those found in arteries but not in veins (Franke  

et al., 1984). Together, these results illustrate that although cells 

in the body rarely exhibit SFs, under appropriate conditions, 

many cells have the capacity to develop them.

A related question is whether SFs are a product of growing 

cells on two-dimensional surfaces, as it is rare to observe SFs  

in cells growing in a 3D matrix in vitro. For example, when 

�broblasts are grown in soft collagen gels, they develop thin, 

elongated morphologies and lack detectable SFs. If the collagen 

gels are free �oating, �broblasts within them will contract the 

gels by as much as 90% in a few days. However, if the gels are 

�rmly anchored to a rigid culture dish, the gels do not shrink  

in size even though tension is being generated. Under these 

conditions, the �broblasts develop isometric tension, and now, 

SFs can be discerned (Mochitate et al., 1991; Tomasek et al., 1992; 

Grinnell, 1994; Halliday and Tomasek, 1995). Detaching the 

gels from their culture dishes results in rapid gel contraction 

that is accompanied by SF disassembly (Mochitate et al., 1991; 

Tomasek et al., 1992; Grinnell, 1994). These simple but elegant 

experiments indicate the importance of matrix compliance in 

determining whether cell–matrix interactions lead to isotonic or 

isometric contraction. Similarly, the rigidity of a two-dimensional 

surface together with strong adhesions to the surface can result 

in isometric contraction, in which SFs extending between ess-

entially �xed focal adhesions generate tension but not shorten-

ing of their lengths (Burridge, 1981). The signi�cance of soft 

versus rigid two-dimensional substrata was tested by Pelham 

and Wang (1999), who showed that cells developed SFs and  

focal adhesions on rigid surfaces but not on soft substrata. Together, 

these results reveal that the presence or absence of SFs re�ects 

not whether cells are grown on two-dimensional surfaces or 

Figure 2. Endothelial cell junctional F-actin 
structures. Human umbilical vein endothelial cells 
grown as confluent monolayers were fixed and 
stained for -catenin to identify cell junctions and 
phalloidin to label F-actin. (A) Example of corti-
cal actin belts. This cell demonstrates a strong 
cortical enrichment of F-actin, arranged parallel 
to cell junctions. Bars, 15 µm. (B) Example of in-
serted junctional SFs. Another cell exhibits several 
discontinuous junctions (indicated by asterisks in 
enlarged merged image), where the insertion of 
SF ends can be observed. These junctions appear 
to physically connect SFs between two adjacent 
endothelial cells. Boxed areas show the area en-
larged below. Bars, 25 µm.
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may occur later. In parallel with the assembly of dorsal SFs, 

transverse arcs arose from the region behind the lamellipodium 

and moved centripetally toward the nucleus. They appeared  

to assemble from the annealing of short bundles of �laments 

generated in an Arp2/3 complex–dependent process within the 

lamellipodium. Some of these bundles were associated with 

myosin, whereas others were associated with -actinin. Over 

time, annealing of these bundles gave rise to a sarcomeric alter-

nating pattern of -actinin and myosin that is characteristic of 

transverse arcs and ventral SFs. Hotulainen and Lappalainen 

(2006) observed examples in which much of a transverse arc 

fused with dorsal SFs on opposite sides of a cell, resulting in an 

SF anchored at each end. Contractions of the curved, anchored 

transverse arc generated a straight ventral SF. They also pro-

vided examples in which two dorsal SFs growing from opposite 

sides of the cell fused to give rise to a ventral SF.

Since the work of Ridley and Hall (1992), RhoA has been 

recognized as a dominant factor regulating SF assembly. For 

ventral SFs, the critical pathway downstream from RhoA 

appears to be mediated by ROCK regulation of myosin light 

chain phosphorylation and consequent contractility (Amano et al., 

1996; Chrzanowska-Wodnicka and Burridge, 1996; Kimura  

et al., 1996). The inhibition of co�lin-mediated F-actin severing 

downstream from ROCK and LIM kinase may also contribute to 

SF assembly induced by RhoA (Maekawa et al., 1999). RhoA 

activation of mDia driving actin polymerization is more criti-

cal for dorsal SF assembly (Hotulainen and Lappalainen, 2006; 

Oakes et al., 2012). Watanabe et al. (1999) showed that both of 

these arms of the RhoA signaling pathway are required to 

generate a “normal” pattern of SFs. They expressed constitu-

tively active ROCK or mDia, or a ratio of these two effectors, 

in cells in which endogenous RhoA activity was inhibited. High 

ROCK activity in the absence of mDia induced large condensed 

SFs, often exhibiting a contracted starlike con�guration. In con-

trast, high mDia activity without ROCK activity induced the 

assembly of many thin �laments that were organized in a sheet-

like array with few, if any, bundles being seen (Watanabe et al., 

1999). These results demonstrate that the pattern of SFs seen 

in a particular cell re�ects not only the level of RhoA activity 

but also the ratio of these different effectors. They also con-

�rm the importance of myosin as a protein that cross-links actin 

�laments into bundles (Chrzanowska-Wodnicka and Burridge, 

1996), which has also been shown through the use of myosin 

mutants that retain actin binding but which are unable to gener-

ate force (Choi et al., 2008).

In migrating cells, dorsal SFs emerge from focal adhesions, 

but contrary to the prevailing dogma, Oakes et al. (2012) have 

provided evidence that the tension they generate is less impor-

tant in adhesion maturation than their role as structural tem-

plates. When tension was reduced by as much as 80%, adhesions 

matured as judged by their growth and accumulation of phos-

phorylated FAK and paxillin. However, inhibiting assembly of 

dorsal SFs by blocking mDia-induced actin polymerization  

or by knocking down -actinin expression resulted in adhesions 

that failed to mature even though tension on the adhesions was 

unaffected and derived from myosin activity within the lamella 

driving rearward movement of transverse arcs. These results 

SF assembly

Two model systems have been used to examine how SFs assem-

ble. In one, quiescent cells that are essentially stationary and  

often in a con�uent monolayer are stimulated with agents that 

activate RhoA. In the other, the formation of SFs is studied in 

actively migrating cells. Different results and conclusions have 

been reached, consistent with the view that the mode of assembly 

is in�uenced by the migratory state of the cell. In the �rst sys-

tem, exploited by Ridley and Hall (1992), cells, such as Swiss 

3T3 �broblasts, were starved of serum, i.e., deprived of growth 

factors, for a few hours. Under these conditions, preexisting  

SFs and focal adhesions disassembled. Synchronous reassem-

bly was triggered by the addition of serum or agents, such as  

lysophosphatidic acid, that activate RhoA (Ridley and Hall, 

1992). Using this system, in which ventral SFs are rapidly assem-

bled, it was shown that active RhoA drives assembly by stimu-

lating myosin activity (Chrzanowska-Wodnicka and Burridge, 

1996). It was suggested that active myosin induces the aggrega-

tion of actin �laments into SFs, both by generating tension and 

by cross-linking the �laments (Chrzanowska-Wodnicka and 

Burridge, 1996; Burridge et al., 1997). In turn, integrins that 

have been dispersed during the period of serum starvation and 

low RhoA activity are recruited to form the core of the focal  

adhesion. In this model, SF formation was proposed to occur  

by aggregation of preexisting actin �laments, and relatively little 

actin polymerization was anticipated. Consistent with this,  

Machesky and Hall (1997) found only low levels of polymer-

ization occurred during the formation of ventral SFs in qui-

escent cells in which RhoA had been activated. It was also 

speculated that the low af�nity of integrins for their ECM  

ligands facilitated clustering of dispersed but ECM-bound inte-

grins (Chrzanowska-Wodnicka and Burridge, 1996). Recent 

work supports this model but with an interesting twist. Evidence 

was presented that the association of the critical linker protein 

talin with integrins occurs in the focal adhesion but not in the 

dispersed state. Away from focal adhesions, other interactions 

presumably maintain the connection between integrins and  

F-actin (Rossier et al., 2012).

The second model system involves studying the formation 

of SFs as cells spread and migrate (Hotulainen and Lappalainen, 

2006; Oakes et al., 2012). Elegant analysis by Hotulainen and 

Lappalainen (2006) revealed a critical role for actin polymer-

ization in the de novo assembly of SFs in migrating cells. Using 

cells that displayed dorsal SFs, transverse arcs, and ventral SFs 

(depicted in Fig. 1), they were able to demonstrate an interplay 

between the assembly of these �lament bundles as well as con-

version of dorsal SFs and arcs into ventral SFs. Dorsal SFs grew 

by formin-mediated actin polymerization from small adhesions 

developing just behind the leading edge. As the actin bundles 

polymerized, they became associated with the �lament cross-

linking protein -actinin; myosin was incorporated later into 

regions where -actinin was depleted. Earlier work revealed 

that the region of an SF emerging from a focal adhesion is char-

acterized by unipolar actin �laments with their barbed ends 

closest to the adhesion (Cramer et al., 1997). However, in order 

for myosin to incorporate and generate force, �laments with the 

opposite polarity need to be generated. We will discuss how this 
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sarcomeres. With respect to myosin, one possibility is that the 

number of myosin molecules polymerizing into myosin �la-

ments varies and may be affected by the contractile demands 

of the cell. For -actinin, the situation must be different, as 

this protein primarily cross-links actin �laments. Curiously, in 

striated muscle, -actinin has always been depicted as cross-

linking antiparallel F-actin at the Z disk, whereas in nonmuscle 

cells, it is usually considered to be cross-linking parallel �la-

ment bundles. However, in vitro studies have revealed that it 

is a highly �exible cross-linker (Courson and Rock, 2010) and 

can cross-link parallel (Taylor et al., 2000) as well as antipar-

allel bundles (Liu et al., 2004) and even that both ends of an 

-actinin dimer can interact simultaneously with a single actin 

�lament (Hampton et al., 2007), although this may be an in vitro 

artifact. Regardless of the dimensions of the SF sarcomeres, 

whether they are long or short (stretched or contracted), the  

-actinin and myosin bands appear to maintain a complementary 

periodicity. -Actinin has a relatively high rate of exchange on 

and off SFs as determined by �uorescence recovery after photo-

bleaching (Edlund et al., 2001), and it was speculated that there 

is competition (either direct or indirect) between myosin and  

-actinin for binding to the actin �laments (Peterson et al., 2004). 

During contraction of the SF sarcomeres, it was suggested that 

myosin displaces -actinin, except from the Z disk–equivalent 

structures. Conversely, when myosin is released from F-actin, 

-actinin reassociates, generating a banding pattern that is longer  

in regions of low tension but shorter in contracted regions  

(Peterson et al., 2004).

The least understood region of an SF is where it attaches 

to a focal adhesion. Many protein–protein interactions have 

been identi�ed biochemically, with several proteins binding  

integrin cytoplasmic tails and some of these proteins also bind-

ing F-actin directly (Zaidel-Bar et al., 2007; Zaidel-Bar and 

Geiger, 2010). Most attention has focused on talin, which binds 

both integrins and actin, and its binding partner vinculin, which 

binds actin, as well as many other components in focal adhe-

sions. The very high protein density in focal adhesions has lim-

ited the value of conventional EM analysis. However, Patla  

et al. (2010) used cryo-electron tomography to reveal a strati-

�ed organization at the inner face of focal adhesions. Just above 

the plasma membrane, they visualized doughnut-shaped parti-

cles that interacted with short tangential �bers. In turn, these  

associated with SF F-actin at the highest level. This organization is 

raise questions concerning the mechanosensitivity of dorsal 

SFs. Currently, we know of no direct studies on this topic, which 

may re�ect that dorsal SFs have been much less studied than 

ventral SFs.

Organization of SFs

Although SFs have long been described as having a sarcomeric 

type of organization, there are many questions that remain about 

how the SF sarcomere is organized. Certainly, many of the 

components exhibit a periodic distribution along SFs, including 

myosin, tropomyosin, zyxin, caldesmon, and -actinin (Fig. 3).  

However, it is striking that actin rarely displays a detectable  

periodicity. This raises the question of how the actin �laments 

are organized. In general, the lack of a periodic actin distribu-

tion has been attributed to variable lengths of actin �laments, 

with many of the �laments extending more than one sarcomeric 

unit. In early work, using heavy meromyosin decoration of  

F-actin, Sanger and Sanger (1980) were able to follow individual 

�laments in SFs extending for distances of up to four sarco-

meres. They observed �laments with uniform polarity at their 

sites of attachment to membranes, but in the middle of SFs, they 

noted overlapping �laments of opposite polarity. To explain the 

apparent lack of actin periodicity, they concluded that the sar-

comeres in an SF are visualized in a contracted state. In their  

model, contraction occurs until the myosin �laments essentially 

collide with the -actinin–containing Z disk–equivalent struc-

tures. Because the actin �laments are much longer than myosin 

�laments, in this contracted state, they extend beyond the bor-

ders of a single sarcomere (Sanger and Sanger, 1980). This ex-

planation is supported by the observation that SFs are under 

tension as indicated by traction force measurements at focal 

adhesions (Balaban et al., 2001; Beningo et al., 2001) and by 

the rapid shortening of SFs commonly observed when they are 

released from their attachment to the substratum at focal adhe-

sions. However, this explanation does not account for the peri-

odicity of proteins such as tropomyosin. This usually parallels 

the distribution of myosin along the SF and has the counter peri-

odicity to -actinin (Lazarides, 1976; Gordon, 1978). In muscle 

sarcomeres, the distribution of tropomyosin essentially parallels 

the distribution of actin, except at the Z disks where -actinin 

is present.

One of the unexpected observations concerning SF or-

ganization is that the dimensions of the bands corresponding 

to myosin and -actinin vary, not only between cells but even 

along a single SF (Peterson et al., 2004). Variable dimensions 

of -actinin periodicity are visible in Fig. 3. The widths of the 

myosin and -actinin bands were noted to be shorter toward 

the periphery of the cell and longer in the middle (Peterson  

et al., 2004). Even more surprisingly, in response to factors stim-

ulating contraction, some SF sarcomeres shortened as expected 

(typically at the periphery), whereas those in the center elon-

gated. In contrast, in striated muscle, myosin thick �laments 

do not change their length during contraction or stretching. 

Similarly, -actinin appears to remain con�ned to the Z disk 

and be unaffected by the contractile state of the muscle. These 

results indicate that although their structures are similar, there 

are signi�cant differences in behavior between muscle and SF 

Figure 3. Periodicity of -actinin within SFs. Swiss 3T3 cells stably ex-
pressing GFP–-actinin (Edlund et al., 2001) were fixed and labeled with 
Texas red–phalloidin to label F-actin. Note the variable dimensions and 
spacing of the periodic fluorescence of GFP-tagged -actinin along the 
length of SFs (red). Bar, 25 µm. (inset) Enlarged view of the boxed area. 
Bar, 10 µm.
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as many alternatively spliced isoforms (Gunning et al., 2008). 

Different isoforms are recruited to different populations of  

actin �laments (Gunning et al., 2005). When some tropomyosin 

isoforms are overexpressed, SFs are induced, whereas knock-

down of all tropomyosin leads to SF disassembly (Gimona  

et al., 1996; Bryce et al., 2003; Bakin et al., 2004; Gupton et al., 

2005). Studying U2OS osteosarcoma cells, it was shown that 

different tropomyosin isoforms associated with different re-

gions of dorsal SFs. Tm2 distributed along the whole length 

of dorsal SFs, whereas Tm1 and Tm5NM1 or 2 concentrated 

in focal adhesions. In contrast, Tm3 and Tm4 were excluded 

from the ends of SFs (Tojkander et al., 2011). In this same 

study, Tm4 was implicated in recruiting myosin to transverse 

arcs and hence to ventral SFs arising from arcs. In another 

cell type, however, Tm5NM1 was found to selectively re-

cruit myosin IIA, but not IIB, to SFs (Bryce et al., 2003).  

Together these results reveal the importance of tropomyosin 

in determining the recruitment of myosin �laments to SFs but 

raise additional questions concerning the factors regulating 

tropomyosin distribution and the subtleties of tropomyosin– 

myosin interactions.

Disassembly

In comparison with the large amount of work studying how 

SFs assemble, much less attention has been paid to their dis-

assembly, even though it is equally important during dynamic 

morphological changes involving the actin cytoskeleton. Disas-

sembly occurs when cells go into mitosis, are detached from 

intriguing, but the signi�cance of the particles remains elusive, 

although they were shown to be mechanosensitive, disassem-

bling when the RhoA–ROCK pathway was inhibited. Using super-

resolution �uorescence microscopy, Kanchanawong et al. (2010) 

revealed the architecture of multiple components in focal  

adhesions in nanometer resolution. They found that the integ-

rins in the plasma membrane are vertically separated from actin 

by a zone of 40 nm. Within this zone, they identi�ed several 

layers; closest to the membrane is a signaling layer containing 

FAK, paxillin, and the integrin cytoplasmic domains, and then 

there is a layer involved in force transduction, including talin 

and vinculin, and �nally, there is a layer containing actin �la-

ments as well as vasodilator-stimulated phosphoprotein (VASP), 

-actinin, and zyxin. Interestingly, the N and C termini of talin 

were spatially separated, with the N terminus closer to the mem-

brane and the C terminus extending into the actin-rich domain, 

consistent with talin linking the cytoplasmic domains of integrins 

to F-actin in SFs. Much remains to be determined about the orga-

nization of this critical region, but these techniques provide an 

encouraging start.

Generation of sarcomeric periodicity and 

the recruitment of myosin II

Cramer et al. (1997) showed that SFs have uniformly oriented 

actin �laments emerging from focal adhesions with their barbed 

ends at the adhesion. One of the challenges is to understand how 

bundles of unipolar �laments are converted into sarcomeres with 

alternating polarity. Antiparallel arrays of F-actin are necessary 

for myosin to generate force. When Hotulainen and Lappalainen 

(2006) considered how dorsal SFs incorporate myosin and 

convert from a uniform bundle of �laments into a sarcomeric 

arrangement, they suggested that actin �laments might rotate 

through 180°. Although theoretically possible, rotation of �la-

ments seems both unlikely and energetically unfavorable. 

Here, we propose an alternative mechanism (Fig. 4). We sug-

gest that the �laments are cleaved and that the protein that sev-

ers and caps the newly exposed barbed ends either contains 

actin-nucleating activity itself or recruits a nucleating protein or 

complex that induces polymerization. The critical requirement 

is that polymerization occurs in the opposite direction of the 

preexisting �lament so that a �lament of opposite polarity is 

generated. Many proteins that nucleate actin polymerization 

have been identi�ed (Campellone and Welch, 2010), and at least 

one formin, FRL- (FRL1), has actin-severing activity (Harris 

et al., 2004), raising the possibility that a single protein may 

ful�ll the required characteristics (severing/capping/nucleation) 

for this model. Much has been learned from striated muscle  

sarcomere assembly (Sparrow and Schöck, 2009), and one of the 

actin-nucleating proteins implicated in sarcomere organization 

is leiomodin (Chereau et al., 2008). As several leiomodin family 

members exist, it will be important to determine whether any of 

these molecules function similarly in nonmuscle sarcomeres 

(Conley et al., 2001).

Related to the question of how sarcomeric organization 

is generated is the question of how myosin is recruited to SFs. 

Several studies point to the importance of tropomyosin in this 

process. Tropomyosin is an actin-binding protein that exists 

Figure 4. Proposed model for conversion of unipolar to bidirectional  
actin filaments during the maturation of SFs. Unipolar, -actinin cross-linked  
actin filament bundles oriented with their barbed ends facing the focal adhe-
sion are first severed and capped (step 1). This severing protein then either 
recruits another protein or protein complex that nucleates actin filament 
polymerization in the opposite orientation, or alternatively, a single protein 
possessing severing/capping/nucleation activity may fulfill this role (step 2). 
The final stage involves incorporation of myosin filaments into the maturing 
SF with its characteristic periodic distribution (step 3).
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the transmitted force made intuitive sense. Unexpectedly, how-

ever, a very different result was obtained by Beningo et al. 

(2001). Investigating migrating cells, they discovered that the 

highest forces were transmitted to the substrate by small adhe-

sions in the front of the cell, and these forces were greater than 

those exerted by the large focal adhesions away from the cell 

front. Similar results were also obtained by Stricker et al. (2011). 

Reconciling these opposite results has been dif�cult, but Tan  

et al. (2003) suggest a possible explanation. They cultured cells 

on �exible microneedles and measured cell-generated traction 

forces by quantifying the bending of the microneedles. For most 

adhesions, they found a linear relationship between the area of 

the adhesion and the force exerted at it, and they calculated that 

the force was 4–5 nN/µm2, similar to the values obtained by 

Balaban et al. (2001) and Schwarz et al. (2002). However, they 

also detected a set of small adhesions that did not �t this rela-

tionship between size and force; these were associated with un-

expectedly high forces. These small adhesions were <1 µm2 and 

most likely are equivalent to the high traction, force-generating 

nascent adhesions found at the front of migrating cells. The 

force transmitted by SFs will generally be proportional to the 

level of active myosin within that SF. With dorsal SFs, however, 

additional force derives from the contraction and rearward 

movement of transverse arcs that are coupled to dorsal SFs. 

This extra force generated by arcs likely accounts for the high 

forces associated with small adhesions at the front of some cells 

(Beningo et al., 2001; Stricker et al., 2011).

Remodeling, reinforcement, and repair

Although the response of SFs to mechanical force has been 

known for many years, most attention has focused on the mech-

anotransduction properties of focal adhesions, in which SFs  

interact with the ECM (Chen et al., 2004; Shemesh et al., 2005; 

Bershadsky et al., 2006; Vogel and Sheetz, 2006; Lessey et al., 

2012). As structures that are load bearing but also force gener-

ating, it is to be expected that SFs have mechanisms to adapt 

to changes in force allowing them to strengthen as the tension 

increases. As discussed earlier, mechanical force exerted on  

integrins activates RhoA (Zhao et al., 2007; Guilluy et al., 2011), 

which contributes to the cellular stiffening response (Matthews 

et al., 2006; Guilluy et al., 2011). Several pathways downstream 

from RhoA should strengthen SFs, including myosin light chain 

phosphorylation (promoting myosin �lament assembly and 

ATPase activity), actin polymerization via mDia1, and inhibi-

tion of F-actin severing by co�lin, via co�lin phosphorylation.

Cyclic stretch is a unique type of mechanical perturba-

tion that cells must adapt to in many physiological settings; an 

example is the pulsatile stretching and shear forces encoun-

tered by endothelial cells and vascular smooth muscle. The 

response to cyclic stretch involves several concurrent steps: 

SF reorganization and remodeling, ultimately leading to cell 

reorientation, and SF reinforcement and repair, as means of 

adaptation to cyclic strain. In contrast to endothelial cells ex-

posed to uniform shear forces, which reorient parallel to the 

direction of �ow (Tzima, 2006), �broblasts exposed to cyclic 

stretch rearrange their SFs perpendicular to the direction of 

force (Hayakawa et al., 2001), with the temporal dynamics of 

their adhesions, or when RhoA is inhibited. Elevating cAMP 

also causes the rapid loss of SFs (Lamb et al., 1988; Lampugnani 

et al., 1990); this is a result of inhibiting RhoA activity via 

PKA-dependent phosphorylation of RhoA, which enhances 

its binding to Rho guanine nucleotide dissociation inhibitor 

(Lang et al., 1996; Sauzeau et al., 2000; Ellerbroek et al., 2003)  

as well as PKA phosphorylation and inhibition of the myosin 

light chain kinase (Lamb et al., 1988). Most of the situations 

in which SFs disassemble are associated with a loss of tension. 

Notably, a direct effect of decreased tension on co�lin-mediated 

severing and disassembly of F-actin was recently discovered 

(Hayakawa et al., 2011). These investigators proposed that ten-

sion is sensed directly in the actin �lament protecting it from 

co�lin severing. Using laser tweezers to manipulate single 

�laments, they demonstrated that F-actin under tension bound 

less co�lin than �laments under resting conditions. Although 

relaxation-induced co�lin severing of F-actin is likely to be an 

important mechanism, we suspect that other pathways also con-

tribute to SF disassembly.

Although loss of tension and decreased myosin contrac-

tility lead to SF disassembly, complete severing of SFs with a  

laser surprisingly did not (Colombelli et al., 2009). When SFs 

were cut in the middle, there was rapid retraction away from the 

cut site. The SF sarcomeres close to the cut site shortened, but 

then, the severed SF segments stabilized, and the ends devel-

oped new adhesions. This was accompanied by loss of zyxin 

from the original focal adhesion and SF as well as redistribution 

to distinct regions along the new SF fragments. The foci of 

zyxin were immobile, suggesting that they were linked to the 

underlying ECM. Analyzing the behavior of laser-severed SFs 

led Colombelli et al. (2009) to conclude that before the severing, 

SFs were already associated along their length with the substra-

tum via integrins in adhesions too small to detect by light micro-

scopy. As the severed SFs contracted, these small preexisting 

adhesions would rapidly become reinforced in response to the 

increased tension. In turn, as they strengthened, isometric ten-

sion would be reestablished between these new adhesions, thus 

preventing continued disassembly of the severed SF.

SFs and the generation of force

Not only is tension an important factor in the assembly of SFs, 

but SFs are themselves recognized as tension-generating struc-

tures. Originating from the pioneering work of Harris et al. 

(1980) who used �exible rubber surfaces to visualize the trac-

tion forces generated by cells, many techniques have been  

developed for quantifying these forces (Lee et al., 1994;  

Galbraith and Sheetz, 1997; Pelham and Wang, 1999; Balaban 

et al., 2001; Tan et al., 2003). The resolution of these techniques 

has been developed to the point at which the force exerted  

at single focal adhesions, i.e., generated by a single SF, can be 

calculated. Balaban et al. (2001) and Schwarz et al. (2002)  

determined that the focal adhesions in their �broblasts were 

transmitting forces of 5.5 nN/µm2 and that the force at a focal 

adhesion was proportional to its area. Given that the area of a 

focal adhesion is usually related to the diameter of the SF and 

that larger SFs would be expected to contain more myosin mol-

ecules, this relationship between the area of focal adhesions and 
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opposing muscles that stretch the contracted sarcomeres. With 

SFs, there is no equivalent counteracting mechanism. One pos-

sibility is that the tension generated in an SF by one sarcomere 

shortening may be important for stretching neighboring sarco-

meres so as to counter their contracted state. Such a mechanism 

might prevent individual sarcomeres from becoming “locked” 

irreversibly into a fully contracted state and would allow repeated 

cycles of contraction to occur.

Conclusions

The adage that familiarity breeds contempt holds true for SFs; 

this familiarity obscures unresolved and fundamental questions 

about these often taken for granted cytoskeletal arrays. One key 

question concerns the organization of SF sarcomeres, which  

at �rst glance appear similar to, but which, in fact, differ in sev-

eral key aspects from the sarcomeres of striated muscle. This is  

illustrated by the unexpected shortening or lengthening of myo-

sin and -actinin bands as SF sarcomeres contract or stretch,  

a radically different behavior from muscle, in which the equiva-

lent bands remain constant regardless of sarcomere stretching 

or contraction. Understanding how new sarcomeres are added 

in regions of strain is a challenge that is only beginning to be 

approached. Already, one protein, zyxin, has been identi�ed 

contributing to this process, and it will be important to learn 

how zyxin is recruited to sites of tension and high stress where 

reinforcement and repair of SFs occur in part by the addition 

of new sarcomeres. The idea that tensional homeostasis exists 

along an SF is intriguing and deserves further investigation, as 

does the implication that adjacent sarcomeres communicate. 

Another unanswered question relates to how bundles of unipolar 

actin �laments are converted into sarcomeres with alternating 

polarity, which is necessary for myosin-based force generation. 

Although much has been learned about the pathways governing 

SF assembly, numerous questions remain about their disassem-

bly, which is equally important but rarely studied. Addressing 

questions such as these should provide a deeper understanding 

of how cells remodel and �ne tune their cytoskeletons not only 

in response to the chemical signals that cells receive but also in 

response to the physical state of their extracellular environment 

and the forces that they encounter.
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