REVISTA MATEMÁTICA de la Universidad Complutense de Madrid Volumen 6, número 1; 1993. http://dx.doi.org/10.5209/rev REMA.1993.v6.n1.17839

The Tensor Product of Triples as Multilinear Product*

JOSE L. FREIRE NISTAL AND MIGUEL A. LOPEZ LOPEZ

ABSTRACT. In this paper we introduce a notion of multilinear product for triples in Set, which if it is given by a distributive law then coincides with the one given by Bunge. We also demonstrate that the tensor product of two triples, if there exist, is an initial object in a suitable category of multilinear products.

INTRODUCTION

In "Producto de triples" ([8]) the definition that is given of the product of triples generalizes the notion of distributive law, according to Beck ([2]). The tensor product is studied by E. Manes in various articles ([10], [11], [12]), for triples in the category Set, of sets and maps.

M. Bunge, in ([3]), studies the relationship between composition triple and tensor product of triples, for triples in Set. In this paper, it is given the definition of distributive multilinear law, which is the

^{*} Supported by grant TIC91-0404 of Comisión Interministerial de Ciencia y Tecnología (Spain).

¹⁹⁹¹ Mathematics Subject Classification: 18C15. Editorial Complutense. Madrid, 1993.

14 José L. Freire Nistal and Miguel A. López López

distributive law in which each algebra over the composition triple is also a bialgebra.

The aim of the present paper is to introduce a notion of multilinear product for triples in Set, which if it is given by a distributive law then coincides with the one given by Bunge, and to demonstrate that the tensor product of two triples T and S, if there exist, is an initial object in the category whose objects are multilinear products $\mathbf{R} = (\mathbf{TS})_r$, and whose morphisms $\alpha: \mathbf{R} \rightarrow \mathbf{R}'$ are morphisms of triples that make the following diagram commutative

 ϕ_T and ϕ_S being the morphisms of triples associated to every product ([8]).

1. PRODUCT OF TRIPLES AND DISTRIBUTIVE LAWS

1.1 If $\mathbf{T} = (\mathbf{T}, \eta_{\mathsf{T}}, \mu_{\mathsf{T}})$ and $\mathbf{S} = (\mathbf{S}, \eta_{\mathsf{S}}, \mu_{\mathsf{S}})$ are triples in a category A, a *product* $\mathbf{R} = (\mathbf{TS})_{\mathsf{r}}$ is a triple $\mathbf{R} = (\mathbf{R}, \eta, \mathbf{m})$, where $\eta = \mathbf{r} \circ (\eta_{\mathsf{T}} \star \eta_{\mathsf{S}})$ and where the natural transformation r: TS \implies R verifies the following axioms:

i.e.: $\mathbf{r} \circ (\mu_T \star \mathbf{S}) = \mathbf{m} \circ (\mathbf{r} \star \mathbf{r}) \circ (\mathbf{T} \star \eta_S \star \mathbf{TS})$

i.e.: $\mathbf{r} \circ (\mathbf{T}_{\star} \mu_{s}) = \mathbf{m} \circ (\mathbf{r}_{\star} \mathbf{r}) \circ (\mathbf{TS}_{\star} \eta_{\mathsf{T}} \mathbf{s})$ ([8], 1.1).

1.2 If $\mathbf{R} = (\mathbf{TS})_r$ is a product, then $\phi_T := r \circ (T * \eta_S)$: $\mathbf{T} \implies \mathbf{R}$ and $\phi_S := r \circ (\eta_T * S)$: $\mathbf{S} \implies \mathbf{R}$ are morphisms of triples.

Conversely, if ϕ_T : $T \implies R$ and ϕ_S : $S \implies R$ are morphisms of triples, with $\mathbf{R} = (\mathbf{R}, \eta_R, \mathbf{m})$ then $\mathbf{R} = (TS)_r$ with r:= $\mathbf{m} \circ (\phi_T \star \phi_S)$: $TS \implies R$.

Moreover, if $\mathbf{R} = (\mathbf{TS})_r$ is a product, then $\mathbf{R} = (\mathbf{ST})_r$, is also a product, where $\mathbf{r}' = \mathbf{m} \circ (\phi_{\mathbf{S} \star} \phi_{\mathbf{T}})$ ([8], 1.2, 1.3, 1.5).

1.3 If $\mathbf{T} = (T, \eta_T, \mu_T)$ and $\mathbf{S} = (S, \eta_S, \mu_S)$ are triples in A, a *distributive* law of T over S is a natural transformation τ : TS \implies ST which verifies:

 $\begin{array}{l} D.L. \ 1) \ \tau \circ (\eta_{T} \ \star \ S) = S \ \star \ \eta_{T} \\ D.L. \ 2) \ \tau \circ (T \ \star \ \eta_{S}) = \eta_{S} \ \star \ T \\ D.L. \ 3) \ (S \ \star \ \mu_{T}) \circ (\tau \ \star \ T) \circ (T \ \star \ \tau) = \tau \circ (\mu_{T} \ \star \ S) \\ D.L. \ 4) \ (\mu_{S} \ \star \ T) \circ (S \ \star \ \tau) \circ (\tau \ \star \ S) = \tau \circ (T \ \star \ \mu_{S}) \end{array}$ ([2], 1).

1.4 A distributive law τ of **T** over **S** makes a product $\mathbf{R} = (\mathbf{TS})_r$ with $r = \tau$, $\mathbf{R} = (ST, \eta_S \star \eta_T, (\mu_S \star \mu_T) \circ (S \star \tau \star T)$ and $r' = 1_{ST}$ ("half unitary law") ([8], 2.2).

.

1.5 Conversely if $\mathbf{R} = (\mathbf{TS})_r$ is a product with $\mathbf{R} = \mathbf{ST}$ and verifies the half unitary law, $\mathbf{r}' = \mathbf{1}_{ST}$, then r is a distributive law of T over S ([8], 2.3).

1.6 Taking one of the examples given in [2], we obtain a product $(TS)_r$, in which r is not a distributive law. In fact, if T and S are graduated rings, $R = S \otimes T$ is a ring with the product operation:

$$(s_1 \otimes t_1)(s_2 \otimes t_2) = (-1)^{cs_1 ct_2} s_1 s_2 \otimes t_1 t_2$$

(∂ indicates the degree), being 1 \otimes 1 the unity element. Moreover, the maps

$$\phi_{T}: T \longrightarrow T \otimes S, \ \phi_{T}(t) = 1 \otimes t$$

$$\phi_{S}: S \longrightarrow S \otimes T, \ \phi_{S}(s) = s \otimes 1$$

are homomorphisms of rings.

The rings T, S and R give the triples $T = (-\otimes T, \eta_T, \mu_T)$, $S = (-\otimes S, \eta_S, \mu_S)$ and $\mathbf{R} = (-\otimes R, \eta_R, \mu_R)$ in the category A of abelians groups (the natural transformations η and μ are the ones induced by the unities and the multiplications of the rings). The homomorphisms ϕ_T and ϕ_S induce morphisms of triples

$$\phi_T$$
: $T \Longrightarrow R$ and ϕ_S : $S \Longrightarrow R$

 $\mathbf{R} = (\mathbf{TS})_r$, being $r = \mu_R \circ (\phi_T \star \phi_S)$ (1.2). However, in this case r is not a distributive law, because the half unitary law is not verified, that is, $r' \neq 1$.

2. TENSOR PRODUCT OF TRIPLES

2.1 Let $n \in |\text{Set}|$ and $(-)^n$: Set \rightarrow Set be the functor Hom(n,-). If $T = (T, \eta_T, \mu_T)$ is a triple in Set, a *n*-ary operation over T is a natural transformation $(-)^n \Longrightarrow T$.

If (X,ξ) is a T-algebra, each n-ary operation g over T induces an operation, $\xi^g = \xi \circ (g X)$: $X^n \longrightarrow X$, over the set X

Moreover, a T-morphism f: $(X,\xi) \rightarrow (Y,\theta)$ is a map f: $X \rightarrow Y$ which is a morphism in the classic sense, commuting with each operation, that is, for each g: $(-)^n \Rightarrow T$

i.e.: $f \circ \xi^g = f \circ \xi \circ (g X) = \theta \circ (g \star f) = \theta \circ (g Y) \circ f^n = \theta^g \circ f^n$ ([3], 1).

2.2 If **T** and **S** are triples in Set, a S-T-*bialgebra* is a 3-triple (X,σ,ξ) , with (X,σ) and S-algebra and (X,ξ) a T-algebra such that for all $n,m \in$ [Set], g: $(-)^n \Longrightarrow$ T and h: $(-)^m \Longrightarrow$ S the following holds true:

i.e.: $\sigma \circ (S_{\star}\xi) \circ ((h_{\star}g) X) \circ (\gamma_{m}^{n} X) = \xi \circ (T_{\star}\sigma) \circ ((g_{\star}h) X)$, where

$$\gamma_m^n$$
: $(-)^n (-)^m \Longrightarrow (-)^m (-)^n$

is the canonical isomorphism.

This is equivalent to, for every g: $(-)^n \Longrightarrow T, \xi^g$ is an S-morphism, or equivalently, for every h: $(-)^m \Longrightarrow S$, σ^h is a T-morphism ([3], 1).

This defines the category $\text{Set}^{(S,T)}$ of S-T-bialgebras as a full subcategory of the category $\text{Set}^{(S,T)}$ whose objects are triples (X,σ,ξ) with (X,σ) an S-algebra and (X,ξ) a T-algebra, and whose morphisms f: $(X, \sigma, \xi) \rightarrow (Y, \tau, \theta)$ are maps f: $X \rightarrow Y$, being f an S-morphism and T-morphism.

If the forgetful functor $U^{(S,T)}$: Set^(S,T) \rightarrow Set is tripleable, it makes a triple S \otimes T that is called tensor product (symmetrically, T \otimes S) ([3], [10], [11], [12]).

The existence of tensor product of triples is, in general, an open question.

3. MULTILINEAR PRODUCTS

3.1 Let $T = (T, \eta_T, \mu_T)$ and $S = (T, \eta_S, \mu_S)$ be triples in Set and $R = (TS)_r$ a product, $R = (R, r \circ (\eta_T * \eta_S), m)$.

18

We will say that **R** is a *multilinear product* if for whatever $g:(-)^n \Longrightarrow$ T and $h:(-)^m \Longrightarrow$ S it are verified

i.e.: $\mathbf{r}' \circ (\mathbf{h}_{\star} \mathbf{g}) = \mathbf{r} \circ (\mathbf{g}_{\star} \mathbf{h}) \circ \gamma_{\mathbf{n}}^{\mathbf{m}}$.

3.2 If $\mathbf{R} = (\mathbf{TS})_r$ is a product, the morphisms of triples $\phi_S \colon S \implies \mathbf{R}$ and $\phi_T \colon \mathbf{T} \implies \mathbf{R}$ (1.2) give functors (change of triple) Set^{ϕ_T}: Set^{\mathbf{R}} \longrightarrow Set^{\mathbf{S}} and Set^{ϕ_T}: Set^{\mathbf{R}} \longrightarrow Set^{\mathbf{T}}, respectively, that commute with the forgetful functors to Set. As a result, each **R**-algebra (X,τ) gives an S-algebra $(X,\sigma_\tau) = (X,\tau \circ (\phi_S X))$ and a **T**-algebra $(X,\xi_\tau) = (X,\tau \circ (\phi_T X))$. Moreover, it is verified

i.e.: $\xi_{\tau} \circ (T_*\sigma_{\tau}) = \tau_* (r X)$, and

. .

i.e.: $\sigma_{\tau} \circ (S_{\star}\xi_{\tau}) = \tau \circ (r' X)$ [12], proposition 2.9, page 210).

20 José L. Freire Nistal and Miguel A. López López

We will say that an R-algebra (X,τ) is a *bialgebra* if the S-algebra (X,σ_{τ}) and the T-algebra (X,ξ_{τ}) make an S-T-bialgebra $(X, \sigma_{\tau}, \xi_{\tau})$, i.e.:

i.e.: $\sigma_{\tau} \circ (S_{\star}\xi_{\tau}) \circ ((h_{\star}g)X) \circ (\gamma_{m}^{n}X) = \xi_{\tau} \circ (T_{\star}\sigma_{\tau}) \circ ((g_{\star}h)X)$, for all operations g: $(-)^{n} \Longrightarrow T$ and h: $(-)^{m} \Longrightarrow S$.

It is immediately proved that the last equality is equivalent to:

i.e.: $\tau \circ (r, X) \circ ((h_*g) X) \circ (\gamma_m^n X) = \tau \circ (r X) \circ ((g_*h) X).$

3.3 From former definitions we can conclude, trivially, that for a multilinear product \mathbf{R} , every \mathbf{R} -algebra is a bialgebra. Its reciprocal result is also true. If \mathbf{R} is a product and every \mathbf{R} -algebra is a bialgebra, then \mathbf{R} is multilinear as a consequence of the following result:

If **T** is a triple in Set and α,β : $(-)^k \implies T$ are k-ary operations over **T**, then $\alpha = \beta$ if and only if $\tau^{\alpha} = \tau^{\beta}$ for every **T**-algebra (X,τ) ([3], lemma 2.5, page 145).

To obtain our result, it is enough to take

i.e.: $\alpha = r' \circ (h_{\star}g) \circ \gamma_m^n$ and $\beta = r \circ (g_{\star}h)$.

4. THE TENSOR PRODUCT AS MULTILINEAR PRODUCT

4.1 Let $T = (T, \eta_T, \mu_T)$ and $S = (T, \eta_S, \mu_S)$ be triples in Set. Let us suppose that the tensor product $S \otimes T = R = (R, \eta_R, m)$ exist, i.e., the following diagram

is commutative, ϕ being an isomorphism. For the inclusion functor i: Set^[S,T] \rightarrow Set^S,

 $i(f: (X, \varepsilon, \delta) \rightarrow (X', \varepsilon', \delta')) = f: (X, \varepsilon) \rightarrow (X', \varepsilon'))$ the following diagram of functors is commutative:

Since $i \circ \phi^{-1}$ commutes with the forgetful functors, a natural transformation exists σ : SR \Longrightarrow R such that $\phi_s = \sigma \circ (S_*\eta_R)$: S \Longrightarrow R is a morphism of triples ($i \circ \phi^{-1} = \text{Set}^{\phi_s}$ is the change of triple functor). For $X \in |\text{Set}|$, and (RX,mX) being the free **R**-algebra over X, ($i \circ \phi^{-1}$) (RX,mX) = (RX,\sigmaX). For any **R**-algebra (X, τ), ($i \circ \phi^{-1}$) (X, τ) = (X, $\tau \circ (\phi_s X)$).

In the same way, for the triple T, a natural transformation exists ξ : TR \implies R, such that $\phi_T = \xi \circ (T_*\eta_R)$: T \implies R is a morphism of triples.

If (X,τ) is an **R**-algebra, $\phi^{-1}(X,\tau) = (X,\tau \circ (\phi_S X), \tau \circ (\phi_T X))$. In particular, $\phi^{-1}(RX, mX) = (RX, \sigma X, \xi X)$.

4.2 From all this and from (1.2) it follows that **R** is a product, $\mathbf{R}=(\mathbf{TS})_r$ with $r = m \circ (\phi_{T*}\phi_s) = \xi \circ (T_*\sigma) \circ (TS_*\eta_R)$ (this last equality is true since mX: (RRX, σ RX, ξ RX) \rightarrow (RX, σ X, ξ X) is a morphism of S-algebras and of T-algebras).

If (X,τ) is an **R**-algebra, $\phi^{-1}(X,\tau) = (X,\tau \circ (\phi_S X), \tau \circ (\phi_T X)) = (X, \sigma_{\tau}, \xi_{\tau})$ is an **S**-**T**-algebra and, by (3.2) and (3.3), **R** is a multilinear product.

5. THE CATEGORY OF MULTILINEAR PRODUCTS

5.1 Let T and S be triples in Set. Taking as objects the multilinear products $\mathbf{R} = (\mathbf{TS})_r$ and as morphisms, α : $\mathbf{R} = (\mathbf{TS})_r \longrightarrow \mathbf{R'} = (\mathbf{TS})_{r'}$, those morphisms of triples α : $\mathbf{R} \longrightarrow \mathbf{R'}$ that make the diagram commutative

we obtain the category of multilinear products of T and S.

5.2 In the category of multilinear products of T and S, S \otimes T is an initial object. Let us write S \otimes T = R = (R, η_R , m) = (TS)_r.

Let $\mathbf{R'} = (\mathbf{R'}, \eta_{\mathbf{R'}}, \mathbf{m'}) = (\mathbf{TS})_{\mathbf{r'}}$ be an arbitrary multilinear product and $\phi'_s: \mathbf{S} \Longrightarrow \mathbf{R'}, \phi'_T: \mathbf{T} \Longrightarrow \mathbf{R'}$ the corresponding morphisms of triples. If (X, τ') is an **R'**-algebra, $(X, \sigma_{\tau'}, \xi_{\tau'}) = (X, \tau' \circ (\phi'_s X), \tau' \circ (\phi'_T X))$ is an **S-T**-bialgebra.

If j is the functor j: Set^{R'} \rightarrow Set^[S,T] such that $j(X,\tau') = (X,\sigma_{\tau'},\xi_{\tau'})$, then the following diagram of functors is commutative:

Thus, a natural transformation exists λ : RR' \Rightarrow R', so that $\alpha = \lambda \circ (R_*\eta_R)$: $\mathbf{R} \Rightarrow \mathbf{R}'$ is a morphism of triples, being $\phi \circ \mathbf{j} = \operatorname{Set}^{\alpha}$ the change of triple functor. Moreover, $(\phi \circ \mathbf{j})(X,\tau') = (X,\tau' \circ (\alpha X))$ and, in particular, $(\phi \circ \mathbf{j})(\mathbf{R}'X, \mathbf{m}'X) = (\mathbf{R}'X, \lambda X) = (\mathbf{R}'X, (\mathbf{m}'X) \circ (\alpha \mathbf{R}'X))$. Then,

 $(R'X,(m'X) \circ (\phi'_S R'X),(m'X) \circ (\phi'_T R'X)) = \phi^{-1} ((\phi \circ j)(R'X,m'X) =$

= $\phi^{-1}(R'X,(m'X) \circ (\alpha R'X)) = (R'X, (m'X) \circ (\alpha R'X) \circ (\phi_S R'X), (m'X) \circ (\alpha R'X) \circ (\phi_T R'X))$ from which we can obtain

$$m' \circ (\phi'_{s*}R') = m' \circ ((\alpha \circ \phi_s)_*R') \iff \phi'_s = \alpha \circ \phi_s$$

$$m' \circ (\phi'_{\tau*}R') = m' \circ ((\alpha \circ \phi_{\tau})_*R') \iff \phi'_{\tau} = \alpha \circ \phi_{\tau}$$

that is, there is a morphism in the category of multilinear products $\alpha: \mathbf{R} \longrightarrow \mathbf{R}'$.

5.3 Let us see the uniqueness of α . Let $\beta: \mathbb{R} \longrightarrow \mathbb{R}'$ be a morphism of triples such that $\beta \circ \phi_T = \phi'_T$ and $\beta \circ \phi_S = \phi'_S$. Set^{β}: Set^{\mathbb{R}'} \longrightarrow Set^{\mathbb{R}} is the change of triple functor corresponding to β (note that $\phi \circ j = \text{Set}^{\alpha}$). Then

 $\alpha = \beta \iff \text{Set}^{\alpha} = \text{Set}^{\beta} \iff \text{Set}^{\alpha} (\text{R'X}, \text{m'X}) = \text{Set}^{\beta} (\text{R'X}, \text{m'X})$ for every free **R**'-algebra (R'X, m'X) ([12], prop. 2.9, page 210). Also

 $\beta \circ \phi_{T} = \phi'_{T} = \alpha \circ \phi_{T} \iff m' \circ (\beta_{\star} R') \circ (\phi_{T \star} R') = m' \circ (\alpha_{\star} R') \circ (\phi_{T \star} R')$ $\beta \circ \phi_{S} = \phi'_{S} = \alpha \circ \phi_{S} \iff m' \circ (\beta_{\star} R') \circ (\phi_{S \star} R') = m' \circ (\alpha_{\star} R') \circ (\phi_{S \star} R')$

But, $j(R'X, m'X) = (R'X, (m'X) \circ (\alpha R'X) \circ (\phi_s R'X), (m'X) \circ (\alpha R'X) \circ (\phi_T R'X)) = \phi^{-1} \operatorname{Set}^{\beta}(R'X, m'X)$, so $\operatorname{Set}^{\alpha}(R'X, m'X) = \operatorname{Set}^{\beta}(R'X, m'X)$,

References

- [1] BARR, M. Coequalizers and free triples. Math. Z. 116 (1970), 307-322.
- [2] BECK, J. Distributive laws. Lect. Notes in Math. 80. Springer (1969), 119-140.
- [3] BUNGE, M. On the relationship between composite and tensor product triples. Journal of Pure and Applied Algebra 13 (1978), 139-156.
- [4] CARUNCHO CASTRO, J.R. *Teoría de triples*. Alxebra 5. Dpto. Algebra y Fundamentos. Santiago (1971).
- [5] FREIRE NISTAL, J.L. Propiedades universales de triples de grado superior. Tesis. Alxebra 11. Dpto. Algebra y Fundamentos. Santiago (1971).
- [6] FREYD, P. Algebra-valued functors in general and tensor products in particular. Colloq. Mathem. XIV (1966), 89-106.
- [7] LOPEZ LOPEZ, M.A. Algebras de Hopf respecto a un cotriple. Tesis. Alxebra 17, Dpto. Álgebra y Fundamentos. Santiago (1976).
- [8] LOPEZ LOPEZ, M.A. y VILLANUEVA NOVOA, E. Producto de triples. Rev. Mat. Hisp.-Amer. T. 38 (1978), 61-70.
- [9] LOPEZ LOPEZ, M.A. y BARJA PEREZ, J.M. El triple Hom(M,-) en conjuntos. Alxebra 26. Dpto. Álgebra y Fundamentos. Santiago (1980), 51-61.
- [10] MANES, E. A triple miscellany. Thesis. Wesleyan University (1967).
- [11] MANES, E. A triple theoretic construction of compact algebras. Lect. Not. in Math. 80. Springer (1969), 91-118.
- [12] MANES, E. Algebraic Theories. Springer (1976).

Departamento de Computación Universidad de La Coruña 15071 La Coruña SPAIN Recibido: 18 de mayo de 1992 Revisado: 12 de febrero de 1993

Departamento de Álgebra Universidad de Santiago 15771 Santiago de Compostela SPAIN 25