The Tensor Product of Triples as Multilinear Product*

Jose L. Freire Nistal and Miguel A. Lopez Lopez

Abstract

In this paper we introduce a notion of multilinear product for triples in Set, which if it is given by a distributive law then coincides with the one given by Bunge. We also demonstrate that the tensor product of two triples, if there exist, is an initial object in a suitable category of multilinear products.

INTRODUCTION

In "Producto de triples" ([8]) the definition that is given of the product of triples generalizes the notion of distributive law, according to Beck ([2]). The tensor product is studied by E. Manes in various articles ([10], [11], [12]), for triples in the category Set, of sets and maps.
M. Bunge, in ([3]), studies the relationship between composition triple and tensor product of triples, for triples in Set. In this paper, it is given the definition of distributive multilinear law, which is the

[^0][^1]distributive law in which each algebra over the composition triple is also a bialgebra.

The aim of the present paper is to introduce a notion of muttilinear product for triples in Set, which if it is given by a distributive law then coincides with the one given by Bunge, and to demonstrate that the tensor product of two triples \mathbf{T} and \mathbf{S}, if there exist, is an initial object in the category whose objects are multilinear products $\mathbf{R}=(\mathbf{T S})_{r}$, and whose morphisms $\alpha: \mathbf{R} \rightarrow \mathbf{R}$ ' are morphisms of triples that make the following diagram commutative

ϕ_{T} and ϕ_{S} being the morphisms of triples asociated to every product ([8]).

1. PRODUCT OF TRIPLES AND DISTRIBUTIVE LAWS

1.1 If $\mathbf{T}=\left(T, \eta_{T}, \mu_{\mathrm{T}}\right)$ and $\mathbf{S}=\left(\mathrm{S}, \eta_{\mathrm{s}}, \mu_{\mathrm{S}}\right)$ are triples in a category \mathbf{A}, a product $\mathbf{R}=(\mathbf{T S})_{\mathrm{r}}$ is a triple $\mathbf{R}=(\mathrm{R}, \eta, \mathrm{m})$, where $\eta=\mathrm{r} \circ\left(\eta_{\mathrm{T}} * \eta_{\mathrm{S}}\right)$ and where the natural tramformation r : $T S \Rightarrow R$ verifies the following axioms:

i.e.: $r \circ\left(\mu_{T} * S\right)=m \circ(r * r) \circ\left(T * \eta_{S} * T S\right)$

i.e.: $r \circ\left(T{ }_{\star} \mu_{S}\right)=m \circ\left(r_{\star} r\right) \circ\left(T S * \eta_{T} S\right)([8], 1.1)$.
1.2 If $\mathbf{R}=(\mathbf{T S})_{\mathrm{r}}$ is a product, then $\phi_{\mathrm{T}}:=\mathrm{r} \circ\left(\mathrm{T}_{\star} \eta_{\mathrm{S}}\right): \mathbf{T} \Rightarrow \mathbf{R}$ and $\phi_{\mathrm{S}}:=$ $r \circ\left(\eta_{\mathrm{T}} * S\right): \mathbf{S} \Rightarrow \mathbf{R}$ are morphisms of triples.

Conversely, if $\phi_{T}: \mathbf{T} \Rightarrow \mathbf{R}$ and $\phi_{S}: S \Rightarrow \mathbf{R}$ are morphisms of triples, with $\mathbf{R}=\left(\mathrm{R}, \eta_{\mathrm{R}}, \mathrm{m}\right)$ then $\mathbf{R}=(\mathbf{T S})_{\mathrm{r}}$ with $\mathrm{r}:=\mathrm{m} \circ\left(\phi_{\mathrm{T}} \star \phi_{\mathrm{S}}\right)$: TS $\Rightarrow \mathrm{R}$.

Moreover, if $\mathbf{R}=(\mathbf{T S})_{\mathbf{r}}$ is a product, then $\mathbf{R}=(\mathbf{S T})_{\mathrm{r}}$, is also a product, where $r^{\prime}=m \circ\left(\phi_{S} * \phi_{T}\right)([8], 1.2,1.3,1.5)$.
1.3 If $\mathbf{T}=\left(\mathrm{T}, \eta_{\mathrm{T}}, \mu_{\mathrm{T}}\right)$ and $\mathbf{S}=\left(\mathrm{S}, \eta_{\mathrm{S}}, \mu_{\mathrm{S}}\right)$ are triples in \mathbf{A}, a distributive law of \mathbf{T} over \mathbf{S} is a natural transformation τ : TS \Rightarrow ST which verifies:
D.L. 1) $\tau \circ\left(\eta_{T} * S\right)=S * \eta_{T}$
D.L. 2) $\tau \circ\left(T * \eta_{S}\right)=\eta_{S} * T$
D.L. 3) $\left(\mathrm{S}{ }_{\star} \mu_{\mathrm{T}}\right) \circ(\tau \star \mathrm{T}) \circ(\mathrm{T} * \tau)=\tau \circ\left(\mu_{\mathrm{T}} \star \mathrm{S}\right)$
D.L. 4) $\left(\mu_{S} \star T\right) \circ(S * \tau) \circ(\tau * S)=\tau \circ\left(T * \mu_{S}\right)$
([2], 1).
1.4 A distributive law τ of \mathbf{T} over \mathbf{S} makes a product $\mathbf{R}=(\mathbf{T S})_{\mathrm{T}}$ with $\mathbf{r}=$ $\tau, \mathbf{R}=\left(\mathrm{ST}, \eta_{\mathrm{S}} \star \eta_{\mathrm{T}},\left(\mu_{\mathrm{S}} \star \mu_{\mathrm{T}}\right) \circ\left(\mathrm{S}_{\star} \tau_{\star} \mathrm{T}\right)\right.$ and $\mathrm{r}^{\prime}=1_{\mathrm{ST}}$ ("half unitary law") ([8], 2.2).
1.5 Conversely if $\mathbf{R}=(\mathbf{T S})_{r}$ is a product with $\mathrm{R}=\mathrm{ST}$ and verifies the half unitary law, $r^{\prime}=1_{S T}$, then r is a distributive law of \mathbf{T} over \mathbf{S} ([8], 2.3).
1.6 Taking one of the examples given in [2], we obtain a product (TS) ${ }_{r}$, in which r is not a distributive law. In fact, if T and S are graduated rings, $\mathrm{R}=\mathrm{S} \otimes \mathrm{T}$ is a ring with the product operation:

$$
\left(s_{1} \otimes t_{1}\right)\left(s_{2} \otimes t_{2}\right)=(-1)^{2 s_{1}, t_{2}} s_{1} s_{2} \otimes t_{1} t_{2}
$$

(∂ indicates the degree), being $1 \otimes 1$ the unity element. Moreover, the maps

$$
\begin{aligned}
& \phi_{\mathrm{T}}: \mathrm{T} \rightarrow \mathrm{~T} \otimes \mathrm{~S}, \phi_{\mathrm{T}}(\mathrm{t})=1 \otimes \mathrm{t} \\
& \phi_{\mathrm{S}}: \mathrm{S} \rightarrow \mathrm{~S} \otimes \mathrm{~T}, \phi_{\mathrm{S}}(\mathrm{~s})=\mathrm{s} \otimes 1
\end{aligned}
$$

are homomorphisms of rings.
The rings T, S and R give the triples $T=\left(-\otimes T, \eta_{T}, \mu_{T}\right), S=(-\otimes S$, $\left.\eta_{S}, \mu_{\mathrm{S}}\right)$ and $\mathbf{R}=\left(-\otimes R, \eta_{R}, \mu_{R}\right)$ in the category \mathbf{A} of abelians groups (the natural transformations η and μ are the ones induced by the unities and the multiplications of the rings). The homomorphisms ϕ_{T} and ϕ_{S} induce morphisms of triples

$$
\phi_{\mathrm{T}}: \mathbf{T} \Rightarrow \mathbf{R} \text { and } \phi_{\mathrm{S}}: \mathbf{S} \Rightarrow \mathbf{R}
$$

$\mathbf{R}=(\mathbf{T S})_{r}$, being $\mathrm{r}=\mu_{\mathrm{R}}{ }^{\circ}\left(\phi_{\mathrm{T}} * \phi_{S}\right)(1.2)$. However, in this case r is not a distributive law, because the half unitary law is not verified, that is, $r^{\prime} \neq 1$.

2. TENSOR PRODUCT OF TRIPLES

2.1 Let $\mathrm{n} \in 1$ Set and $(-)^{\mathrm{n}}:$ Set \longrightarrow Set be the functor $\operatorname{Hom}(\mathrm{n},-)$. If $\mathrm{T}=\left(\mathrm{T}, \eta_{\mathrm{T}}, \mu_{\mathrm{T}}\right)$ is a triple in Set, a n-ary operation over T is a natural transformation (-) $\Rightarrow \mathrm{T}$.

If (X, ξ) is a T-algebra, each n-ary operation g over T induces an operation, $\xi^{g}=\xi^{\circ}(\mathrm{g} \mathrm{X}): \mathrm{X}^{\mathrm{n}} \rightarrow \mathrm{X}$, over the set X

Moreover, a T-morphism $\mathrm{f}:(\mathrm{X}, \boldsymbol{\xi}) \rightarrow(\mathrm{Y}, \boldsymbol{\theta})$ is a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ which is a morphism in the classic sense, commuting with each operation, that is, for each $\mathrm{g}:(-)^{\mathrm{n}} \Rightarrow \mathrm{T}$

i.e.: $f \circ \xi^{g}=f \circ \xi \circ(g X)=\theta \circ\left(g{ }_{*} f\right)=\theta \circ(g Y) \circ f^{n}=\theta^{g} \circ f^{n}$ ([3], 1).
2.2 If \mathbf{T} and S are triples in Set, a S-T-bialgebra is a 3-triple (X, σ, ξ), with (X, σ) and S -algebra and $(\mathrm{X}, 5)$ a T -algebra such that for all $\mathrm{n}, \mathrm{m} \in$ ISet, $\mathrm{g}:(-)^{\mathrm{n}} \Rightarrow \mathrm{T}$ and $\mathrm{h}:(-)^{\mathrm{m}} \Rightarrow \mathrm{S}$ the following holds true:

i.e.: $\sigma \circ\left(\mathrm{S}_{\star} \xi\right) \circ\left(\left(\mathrm{h}_{\star} \mathrm{g}\right) \mathrm{X}\right) \circ\left(\gamma_{\mathrm{m}}^{\mathrm{n}} \mathrm{X}\right)=\xi \circ\left(\mathrm{T}_{\star} \sigma\right) \circ\left(\left(\mathrm{g}_{\star} \mathrm{h}\right) \mathrm{X}\right)$, where

$$
\gamma_{m}^{n}:(-)^{n}(-)^{m} \Rightarrow(-)^{m}(-)^{n}
$$

is the canonical isomorphism.
This is equivalent to, for every $\mathrm{g}:(-)^{\mathrm{n}} \Rightarrow \mathrm{T}, \xi^{\mathrm{g}}$ is an S -morphism, or equivalently, for every $h:(-)^{m} \Rightarrow \mathrm{~S}, \sigma^{\mathrm{h}}$ is a T-morphism ([3], 1).

This defines the category Set $^{[\mathrm{S}, \mathrm{T}]}$ of S-T-bialgebras as a full subcategory of the category Set ${ }^{(\mathbf{S T T})}$ whose objects are triples ($\mathrm{X}, \mathrm{\sigma}, \xi$) with ($\mathrm{X}, \boldsymbol{\sigma}$) an S -algebra and (X, ξ) a \mathbf{T}-algebra, and whose morphisms $\mathrm{f}:(\mathrm{X}, \sigma, \xi) \longrightarrow(\mathrm{Y}, \tau, \theta)$ are maps $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, being f an S -morphism and T-morphism.

If the forgetful functor $\mathrm{U}^{[\mathrm{S}, \mathrm{T}]}:$ Set $^{[\mathrm{S}, \mathrm{T}]} \rightarrow$ Set is tripleable, it makes a triple $\mathbf{S} \otimes \mathbf{T}$ that is called tensor product (symmetrically, $\mathbf{T} \otimes \mathbf{S}$) ([3], [10], [11], [12]).

The existence of tensor product of triples is, in general, an open question.

3. MULTILINEAR PRODUCTS

3.1 Let $T=\left(T, \eta_{T}, \mu_{T}\right)$ and $S=\left(T, \eta_{S}, \mu_{S}\right)$ be triples in Set and $\mathbf{R}=$ $(\mathbf{T S})_{\mathrm{r}}$ a product, $\mathbf{R}=\left(\mathrm{R}, \mathrm{r} \circ\left(\eta_{\mathrm{T} *} \eta_{\mathrm{S}}\right), \mathrm{m}\right)$.

We will say that \mathbf{R} is a multilinear product if for whatever $\mathrm{g}:(-)^{\mathrm{n}} \Rightarrow$ T and $\mathrm{h}:(-)^{\mathrm{m}} \Rightarrow \mathrm{S}$ it are verified

i.e.: $r^{\prime} \circ\left(h_{\star} g\right)=r \circ\left(g_{\star} h\right) \circ \gamma_{n}^{\prime \prime}$.
3.2 If $\mathbf{R}=$ (TS) $)_{r}$ is a product, the morphisms of triples $\phi_{S}: \mathbf{S} \Rightarrow \mathbf{R}$ and $\phi_{\mathrm{T}}: \mathbf{T} \Rightarrow \mathbf{R}(1.2)$ give functors (change of triple) $\mathrm{Set}^{6 s:} \mathrm{Set}^{\mathrm{R}} \rightarrow \mathrm{Set}^{s}$ and $\mathrm{Set}^{4}: \mathrm{Set}^{\mathrm{R}} \rightarrow$ Set $^{\mathrm{T}}$, respectively, that commute with the forgetful functors to Set. As a result, each \mathbf{R}-algebra (\mathbf{X}, τ) gives an \mathbf{S}-algebra ($\mathrm{X}, \sigma_{\tau}$) $=$ $\left(X, \tau \circ\left(\phi_{S} X\right)\right.$) and a T-algebra $\left(X, \xi_{\tau}\right)=\left(X, \tau \circ\left(\phi_{T} X\right)\right)$. Moreover, it is verified

i.e.: $\xi_{\tau} \circ\left(T_{*} \sigma_{\tau}\right)=\tau_{*}(r X)$, and

i.e.: $\sigma_{\tau} \circ\left(S_{\star} \xi_{\tau}\right)=\tau \circ\left(r^{\prime} X\right)$ [12], proposition 2.9, page 210).

We will say that an \mathbf{R}-algebra (X, τ) is a bialgebra if the S -algebra ($\mathrm{X}, \sigma_{\tau}$) and the T-algebra (X, ξ_{τ}) make an S-T-bialgebra ($\mathrm{X}, \sigma_{v}, \xi_{\tau}$), i.e.:

i.e.: $\sigma_{\tau} \circ\left(S_{\star} \xi_{\tau}\right) \circ\left(\left(h_{\star} g\right) X\right) \circ\left(\gamma_{m}^{n} X\right)=\xi_{\tau} \circ\left(T_{\star} \sigma_{\imath}\right) \circ\left(\left(g_{*} h\right) X\right)$, for all operations $\mathrm{g}:(-)^{\mathrm{n}} \Rightarrow \mathrm{T}$ and $\mathrm{h}:(-)^{\mathrm{m}} \Rightarrow \mathrm{S}$.

It is immediately proved that the last equality is equivalent to:

i.e.: $\tau \circ\left(r^{\prime} X\right) \circ\left(\left(h_{\star} g\right) X\right) \circ\left(\gamma_{m}^{n} X\right)=\tau \circ(r X) \circ\left(\left(g_{\star} h\right) X\right)$.
3.3 From former definitions we can conclude, trivially, that for a multilinear product \mathbf{R}, every \mathbf{R}-algebra is a bialgebra. Its reciprocal result is also true. If \mathbf{R} is a product and every \mathbf{R}-algebra is a bialgebra, then \mathbf{R} is multilinear as a consequence of the following result:

If \mathbf{T} is a triple in Set and $\alpha, \beta:(-)^{k} \Rightarrow \mathrm{~T}$ are k -ary operations over T , then $\alpha=\beta$ if and only if $\tau^{\alpha}=\tau^{\beta}$ for every T-algebra (X, τ) ([3], lemma 2.5 , page 145).

To obtain our result, it is enough to take

i.e.: $\alpha=r \circ\left(h_{*} g\right) \circ \gamma_{m}^{n}$ and $\beta=r \circ\left(g_{*} h\right)$.

4. THE TENSOR PRODUCT AS MULTILINEAR PRODUCT

4.1 Let $T=\left(T, \eta_{T}, \mu_{T}\right)$ and $S=\left(T, \eta_{S}, \mu_{S}\right)$ be triples in Set. Let us suppose that the tensor product $\mathbf{S} \otimes \mathbf{T}=\mathbf{R}=\left(\mathrm{R}, \eta_{\mathrm{R}}, \mathrm{m}\right)$ exist, i.e., the following diagram

is commutative, ϕ being an isomorphism.
For the inclusion functor i: Set ${ }^{\left[\mathrm{S}, \mathrm{T}_{\mathrm{T}}\right.} \rightarrow$ Set $^{\mathrm{S}}$,

$$
\left.\mathrm{i}\left(\mathrm{f}:(\mathrm{X}, \varepsilon, \delta) \longrightarrow\left(\mathrm{X}^{\prime}, \varepsilon^{\prime}, \delta^{\prime}\right)\right)=\mathrm{f}:(\mathrm{X}, \varepsilon) \longrightarrow\left(\mathrm{X}^{\prime}, \varepsilon^{\prime}\right)\right)
$$

the following diagram of functors is commutative:

Since i o ϕ^{-1} commutes with the forgetful functors, a natural transformation exists σ : $\mathrm{SR} \Rightarrow \mathrm{R}$ such that $\phi_{\mathrm{S}}=\sigma \circ\left(\mathrm{S}_{\star} \eta_{\mathrm{R}}\right): \mathbf{S} \Rightarrow \mathbf{R}$ is a morphism of triples ($\mathrm{i} \circ \phi^{-1}=\mathrm{Set}^{\phi^{*}}$ is the change of triple functor). For $X \in \mid$ Sett, and ($R X, m X$) being the free \mathbf{R}-algebra over X , $\left(i \circ \phi^{-1}\right)(R X, m X)=(R X, \sigma X)$. For any R-algebra (X, τ), $\left(i \circ \phi^{-1}\right)(X, \tau)=\left(X, \tau \circ\left(\phi_{S} X\right)\right)$.

In the same way, for the triple \mathbf{T}, a natural transformation exists $\xi: \mathrm{TR} \Rightarrow \mathbf{R}$, such that $\phi_{\mathrm{T}}=\xi \circ\left(\mathrm{T}_{\star} \eta_{\mathrm{R}}\right): \mathbf{T} \Rightarrow \mathbf{R}$ is a morphism of triples.

If (X, τ) is an R-algebra, $\phi^{-1}(X, \tau)=\left(X, \tau \circ\left(\phi_{S} X\right), \tau \circ\left(\phi_{T} X\right)\right.$. In particular, $\phi^{-1}(R X, m X)=(R X, \sigma X, \xi X)$.
4.2 From all this and from (1.2) it follows that \mathbf{R} is a product, $\mathbf{R}=(\mathbf{T S})_{r}$ with $\mathrm{r}=\mathrm{m} \circ\left(\phi_{\mathrm{T}} \phi_{\mathrm{S}}\right)=\xi \circ\left(\mathrm{T}_{*} \sigma\right) \circ\left(\mathrm{TS}_{*} \eta_{\mathrm{R}}\right)$ (this last equality is true since $m X:(R R X, \sigma R X, \xi R X) \rightarrow(R X, \sigma X, \xi X)$ is a morphism of S algebras and of T-algebras).

If (X, τ) is an R-algebra, $\phi^{-1}(X, \tau)=\left(X, \tau \circ\left(\phi_{S} X\right), \tau \circ\left(\phi_{T} X\right)\right)=(X$, $\sigma_{v}, \xi_{\mathfrak{v}}$) is an \mathbf{S}-T-algebra and, by (3.2) and (3.3), \mathbf{R} is a multilinear product.

5. THE CATEGORY OF MULTILINEAR PRODUCTS

5.1 Let T and S be triples in Set. Taking as objects the multilinear products $\mathbf{R}=(\mathbf{T S})_{r}$ and as morphisms, $\alpha: \mathbf{R}=(\mathbf{T S})_{\mathbf{r}} \rightarrow \mathbf{R}^{\prime}=(\mathbf{T S})_{\mathbf{r}^{\prime}}$, those morphisms of triples $\alpha: \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ that make the diagram commutative

we obtain the category of multilinear products of T and S.
5.2 In the category of multilinear products of T and $S, S \otimes T$ is an initial object. Let us write $\mathbf{S} \otimes \mathbf{T}=\mathbf{R}=\left(\mathbf{R}, \eta_{\mathbf{R}}, \mathrm{m}\right)=(\mathbf{T S})_{\mathbf{r}}$.

Let $\mathbf{R}^{\prime}=\left(\mathbf{R}^{\prime}, \eta_{\mathbf{R}^{\prime}}, \mathrm{m}^{\prime}\right)=(\mathbf{T S})_{\mathbf{r}^{\prime}}$, be an arbitrary multilinear product and $\phi_{\mathrm{S}}: \mathbf{S} \Rightarrow \mathbf{R}^{\prime}, \phi_{\mathrm{T}}^{\prime}: \mathbf{T} \Rightarrow \mathbf{R}^{\prime}$ the corresponding morphisms of triples. If (X, τ^{\prime}) is an \mathbf{R}^{\prime}-algebra, $\left(\mathbf{X}, \sigma_{\tau}, \xi_{\tau}\right)=\left(X, \tau^{\prime} \circ\left(\phi_{S}^{\prime} X\right), \tau^{\prime} \circ\left(\phi_{T}^{\prime} X\right)\right)$ is an S-T-bialgebra.

If j is the functor $\mathrm{j}: \operatorname{Set}^{\mathbf{R}^{\prime}} \rightarrow \operatorname{Set}^{[\mathbf{S}, \mathbf{T}]}$ such that $\mathrm{j}\left(\mathrm{X}, \tau^{\prime}\right)=\left(\mathrm{X}, \sigma_{\tau^{\prime},}, \xi_{\tau}{ }^{\cdot}\right)$, then the following diagram of functors is commutative:

Thus, a natural transformation exists $\lambda: R^{\prime} \Rightarrow R^{\prime}$, so that $\alpha=\lambda \circ\left(\mathbf{R}_{\star} \eta_{\mathbf{R}}\right): \mathbf{R} \Rightarrow \mathbf{R}$ ' is a morphism of triples, being $\phi \circ \mathrm{j}=\mathrm{Set}^{\alpha}$ the change of triple functor. Moreover, $(\phi \circ j)\left(X, \tau^{\prime}\right)=\left(X, \tau^{\prime} \circ(\alpha, X)\right)$ and, in particular, $(\phi \circ j)\left(R^{\prime} X, m^{\prime} X\right)=\left(R^{\prime} X, \lambda X\right)=\left(R^{\prime} X,\left(m^{\prime} X\right) \circ\right.$ $\left(\alpha R^{\prime} X\right)$). Then,

$$
\left(R^{\prime} X,\left(m^{\prime} X\right) \circ\left(\phi_{S}^{\prime} R^{\prime} X\right),\left(m^{\prime} X\right) \circ\left(\phi_{T}^{\prime} R^{\prime} X\right)\right)=\phi^{-1}\left(\left(\phi^{\circ} \circ j\right)\left(R^{\prime} X, m^{\prime} X\right)=\right.
$$

$$
=\phi^{-1}\left(R^{\prime} X,\left(m^{\prime} X\right) \circ\left(\alpha R^{\prime} X\right)\right)=\left(R^{\prime} X,\left(m^{\prime} X\right) \circ\left(\alpha R^{\prime} X\right) \circ\left(\phi_{S} R^{\prime} X\right),\left(m^{\prime} X\right)\right.
$$

$\left.\circ\left(\alpha R^{\prime} X\right) \circ\left(\phi_{T} R^{\prime} X\right)\right)$ from which we can obtain

$$
\begin{aligned}
& m^{\prime} \circ\left(\phi_{S \star}^{\prime} R^{\prime}\right)=m^{\prime} \circ\left(\left(\left(\alpha \circ \phi_{S}\right)_{\star} R^{\prime}\right) \Leftrightarrow \phi_{S}^{\prime}=\alpha \circ \phi_{S}\right. \\
& m^{\prime} \circ\left(\phi_{T *}^{\prime} R^{\prime}\right)=m^{\prime} \circ\left(\left(\alpha \circ \phi_{T}\right) \star R^{\prime}\right) \Leftrightarrow \phi_{T}^{\prime}=\alpha \circ \circ \phi_{T}
\end{aligned}
$$

that is, there is a morphism in the category of multilinear products $\alpha: \mathbf{R} \rightarrow \mathbf{R}^{\prime}$.
5.3 Let us see the uniqueness of α. Let $\beta: \mathbf{R} \rightarrow \mathbf{R}$ ' be a morphism of triples such that $\beta \circ \phi_{\mathrm{T}}=\phi_{\mathrm{T}}{ }_{\mathrm{T}}$ and $\beta \circ \phi_{\mathrm{S}}=\phi^{\prime}{ }_{S}$. $\operatorname{Set}^{\beta}: \operatorname{Set}^{\mathbf{R}^{\prime}} \rightarrow \operatorname{Set}^{\mathbf{R}}$ is the change of triple functor corresponding to β (note that $\phi \mathrm{j}^{\mathrm{j}}=\operatorname{Set}^{\alpha}$). Then

$$
\alpha=\beta \Leftrightarrow \operatorname{Set}^{\alpha}=\operatorname{Set}^{\beta} \Leftrightarrow \operatorname{Set}^{\alpha}\left(\mathrm{R}^{\prime} X, \mathrm{~m}^{\prime} \mathrm{X}\right)=\operatorname{Set}^{\beta}\left(\mathrm{R}^{\prime} \mathrm{X}, \mathrm{~m}^{\prime} \mathrm{X}\right) \text { for }
$$ every free \mathbf{R}^{\prime}-algebra ($\mathrm{R}^{\prime} \mathrm{X}, \mathrm{m}^{\prime} \mathrm{X}$) ([12], prop. 2.9, page 210). Also

$$
\begin{aligned}
& \beta \circ \phi_{T}=\phi_{T}^{\prime}=\alpha^{\circ} \circ \phi_{T} \Leftrightarrow m^{\prime} \circ\left(\beta_{\star} R^{\prime}\right) \circ\left(\phi_{T_{\star}} R^{\prime}\right)=m^{\prime} \circ\left(\alpha_{\star} R^{\prime}\right)^{\circ}\left(\phi_{T^{*}} R^{\prime}\right) \\
& \beta \circ \phi_{S}=\phi_{S}^{\prime}=\alpha \alpha^{\circ} \phi_{S} \Leftrightarrow m^{\prime} \circ\left(\beta_{\star} R^{\prime}\right) \circ\left(\phi_{S} R^{\prime} R^{\prime}\right)=m^{\prime} \circ\left(\alpha_{\star} R^{\prime}\right)^{\circ}\left(\phi_{S \star} R^{\prime}\right)
\end{aligned}
$$

But, $j\left(R^{\prime} X, m^{\prime} X\right)=\left(R^{\prime} X,\left(m^{\prime} X\right) \circ\left(\alpha R^{\prime} X\right) \circ\left(\phi_{s} R^{\prime} X\right),\left(m^{\prime} X\right) \circ\left(\alpha R^{\prime} X\right)\right.$

References

[1] BARR, M. Coequalizers and free triples. Math. Z. 116 (1970), 307-322.
[2] BECK, J. Distributive laws. Lect. Notes in Math. 80. Springer (1969), 119-140.
[3] BUNGE, M. On the relationship between composite and tensor product triples. Journal of Pure and Applied Algebra 13 (1978), 139-156.
[4] CARUNCHO CASTRO, J.R. Teoría de triples. Alxebra 5. Dpto. Álgebra y Fundamentos. Santiago (1971).
[5] FREIRE NISTAL, J.L. Propiedades universales de triples de grado superior. Tesis. Alxebra 11. Dpto. Algebra y Fundamentos. Santiago (1971).
[6] FREYD, P. Algebra-valued functors in general and tensor products in particular. Colloq. Mathem. XIV (1966), 89-106.
[7] LOPEZ LOPEZ, M.A. Algebras de Hopf respecto a un cotriple. Tesis. Alxebra 17, Dpto. Álgebra y Fundamentos. Santiago (1976).
[8] LOPEZ LOPEZ, M.A. y VILLANUEVA NOVOA, E. Producto de triples. Rev. Mat. Hisp.-Amer. T. 38 (1978), 61-70.
[9] LOPEZ LOPEZ, M.A. y BARJA PEREZ, J.M. El triple Hom(M,-) en conjuntos. Alxebra 26. Dpto. Álgebra y Fundamentos. Santiago (1980), 51-61.
[10] MANES, E. A triple miscellany. Thesis. Wesleyan University (1967).
[11] MANES, E. A triple theoretic construction of compact algebras. Lect. Not. in Math. 80. Springer (1969), 91-118.
[12] MANES, E. Algebraic Theories. Springer (1976).

[^0]: * Supported by grant TIC91-0404 of Comisión Interministerial de Ciencia y Tecnología (Spain).

[^1]: 1991 Mathematics Subject Classification: 18C15.
 Editorial Complutense. Madrid, 1993.

