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Abstract

We find that average returns to currency carry trades decrease significantly as the ma-

turity of the foreign bonds increases, because investment currencies tend to have small local

bond term premia. The downward term structure of carry trade risk premia is informa-

tive about the temporal nature of risks that investors face in currency markets. We show

that long-maturity currency risk premia only depend on the domestic and foreign permanent

components of the pricing kernels, since transitory currency risk is automatically hedged by

interest rate risk for long-maturity bonds. Our findings imply that there is more cross-border

sharing of permanent than transitory shocks.
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In this paper, we show that the term structure of currency carry trade risk premia is

downward-sloping: the returns to the currency carry trade are much smaller for bonds with

longer maturities than for Treasury bills. We derive a preference-free condition that links for-

eign and domestic long-term bond returns, expressed in a common currency, to the permanent

components of the pricing kernels. The downward-sloping term structure of average carry trade

returns is therefore informative about the temporal nature of risks that investors face in currency

markets. While most of the risk priced in securities markets is very persistent, a large fraction

of this risk is shared between countries. Currency markets only price unshared shocks and those

are mostly transitory.

Carry trades at the short end of the maturity curve are akin to selling Treasury bills in

funding currencies and buying Treasury bills in investment currencies. The exchange rate is

here the only source of risk. The set of funding and investment currencies can be determined

by the level of short-term interest rates or the slope of the yield curves, as noted by Ang and

Chen (2010) and Berge, Jordà, and Taylor (2011). Likewise, carry trades at the long end of the

maturity curve are akin to selling long-term bonds in funding currencies and buying long-term

bonds in investment currencies. Each leg of the trade is subject to exchange rate and interest

rate risk. The log return on a foreign bond position (expressed in U.S. dollars) in excess of the

domestic (i.e., U.S.) risk-free rate is equal to the sum of the log excess bond return in local

currency plus the return on a long position in foreign currency. Therefore, average foreign bond

excess returns converted in domestic currency are the sum of a local bond term premium and

a currency risk premium. Market completeness has clear theoretical implications for those two

risk premia.

On the one hand, at the short end of the maturity curve, currency risk premia are high when

there is less overall risk, be it temporary or permanent, in foreign countries’ pricing kernels

than at home (Bekaert, 1996; Bansal, 1997; and Backus, Foresi, and Telmer, 2001). High

foreign interest rates and/or a flat slope of the yield curve mean less overall risk in the foreign

pricing kernel. On the other hand, at the long end of the maturity curve, local bond term

premia compensate investors for the risk associated with temporary innovations to the pricing
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kernel (Bansal and Lehmann, 1997; Hansen and Scheinkman, 2009; Alvarez and Jermann, 2005;

Hansen, 2012; Hansen, Heaton, and Li, 2008; and Bakshi and Chabi-Yo, 2012).

In this paper, we combine those two insights to derive three preference-free theoretical results

under the assumption of complete financial markets. First, the difference between domestic and

foreign long-term bond risk premia, expressed in domestic currency terms, is pinned down by the

difference in the entropies of the permanent components of the domestic and foreign stochastic

discount factors (SDF). The long-term bond risk premia, expressed in domestic currency, are

higher on foreign bonds than on domestic bonds when there is less permanent risk in foreign

countries’ pricing kernels than at home. The temporary components of SDFs do not account for

this difference because the currency exposure completely hedges the exposure of the long-short

strategy in long-term bonds to the ‘unshared’ temporary pricing kernel shocks. Second, when

permanent shocks are fully shared across countries and therefore exchange rates are driven by

temporary innovations and thus stationary, bond returns in dollars are identical across countries,

date by date. We refer to this condition as the long-term uncovered bond return parity condition

and test it in the data. Testing for long-term uncovered bond return parity, using the information

encoded in long-term bonds, is an alternative to unit root tests of exchange rate stationarity,

which have low power in small samples (Campbell and Perron, 1991). Third, we derive a

lower bound on the covariance between the domestic and foreign permanent components of the

pricing kernels when they are lognormal. The lower bound depends on the difference between the

maximum log return and the return on a long-term bond in the domestic and foreign countries,

as well as the volatility of the permanent component of exchange rate changes.

Before confronting these theoretical results to the data, we illustrate them in simple reduced-

form models. Building on Backus, Foresi, and Telmer (2001), Lustig, Roussanov, and Verdelhan

(2011) show that asymmetric exposure to global innovations to the pricing kernel are key to

understanding the global currency carry trade premium at short maturities. They identify in-

novations in the volatility of global equity markets as candidate shocks, while Menkhoff, Sarno,

Schmeling, and Schrimpf (2012) propose the volatility in global currency markets instead. How-

ever, these risk premia disappear at longer maturities unless the global risk priced in currency
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markets is permanent: building on the reduced-form model of Lustig, Roussanov, and Verdelhan

(2011), we show that the foreign term premium in U.S. dollars is the same as the U.S. term

premium if there is no asymmetry in the loadings on the permanent global shocks.

Turning to the data, we study the term structure of currency carry trade risk premia and

the long-term uncovered bond return parity condition both in the cross-section and in the time-

series of foreign bond returns. The theoretical results pertain to risk-free zero-coupon bonds

with infinite maturity: those characteristics are not available in practice, and thus we rely on

long-term government bonds of developed countries. Our data pertain to either long time-series

of G10 sovereign coupon bond returns over the 12/1950–12/2012 sample, or a shorter sample

(12/1971–12/2012) of G10 sovereign zero-coupon yield curves. Although we do not observe

infinite maturity bonds in either case, we find significant differences in carry trade returns

across maturities.

Using zero-coupon bonds, Figure 1 offers a first glimpse at the term structure of currency

carry trade risk premia. The figure, which is studied in details later in the paper, shows the

dollar log excess returns as a function of the bond maturities, using the same set of funding and

investment currencies. Investing in short-term bills of countries with flat yield curves (mostly

high short-term interest rate) while borrowing at the same horizon in countries with steep yield

curves (mostly low short-term interest rate countries) leads to positive excess returns on average.

This is the classic carry trade, whose average excess return is represented here on the left hand

side of the graph. Investing and borrowing in long-term bonds of the same countries, however,

deliver negative excess returns on average. As the maturity of the bonds increases, the average

excess return decreases.

Between 12/1950 and 12/2012, the portfolio of flat-slope (mostly high short-term interest

rate) currencies yields a one-month currency risk premium of 3.0% and a local term premium of

−1.8% per annum (which sum to a bond premium of 1.2%). Over the same period, the portfolio

of steep-slope (mostly low short-term interest rate) currencies yields a currency risk premium

of 0.05% and a local term premium of 4.0% (which sum to a bond premium of 4.05%). The

average spread in dollar Treasury bill returns between the low slope and high slope portfolios
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Figure 1: Term Structure of Dollar Bond Risk Premia — The figure shows the dollar log excess returns as
a function of the bond maturities. Dollar excess returns correspond to the holding period returns expressed in U.S. dollars
of investment strategies that go long and short foreign bonds of different countries. The unbalanced panel of countries
consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. At each date t,
the countries are sorted by the slope of their yield curves into three portfolios. The first portfolio contains countries with
flat yield curves (mostly high interest rate) while the last portfolio contains countries with steep yield curves (mostly low
interest rate countries). The first portfolio correspond to the investment currencies while the third one corresponds to the
funding currencies. The slope of the yield curve is measured by the difference between the 10-year yield and the 3-month
interest rate at date t. The holding period is one quarter. The returns are annualized. The shaded areas correspond
to two standard deviations above and below each point estimates. Standard deviations are obtained by bootstrapping.
Zero-coupon data are monthly, and the sample window is 4/1985–12/2012.

is thus 2.95% (3.0% − 0.05%) for Treasury bills, but it is −2.85% (1.2% − 4.05%) for the 10-

year bond portfolios. Countries with a high currency risk premium tend to have a low bond

term premium. The profitable bond strategy therefore involves shorting the usual carry trade

investment currencies and going long in the funding currencies. High foreign interest rates or

a flat slope signal less transitory risk abroad, but not less permanent risk. We obtain similar

results when sorting countries by the level of their short-term interest rates: the risk premia

at the long end of the maturity curve are significantly smaller that those at the short end, as
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the difference in local currency bond term premia largely offsets the currency risk premium.

As a result, the average returns on foreign long-term bonds, once converted into U.S. dollars

are small and rarely statistically different from the average return on U.S. long-term bonds,

consistent with the long-term uncovered bond return parity condition.

The long-run uncovered bond parity condition, however, is a better fit in the cross-section

than in the time series. In the post-Bretton Woods period, an 1% increase in U.S. long-term

bond returns increases foreign bond returns in dollars by an average of 0.4%, not 1% as the

bond parity condition implies. The exchange rate exposure accounts for almost a third of this

effect: the dollar appreciates on average against a basket of foreign currencies when the U.S.

bond returns are lower than average, and vice-versa, except during flight-to-liquidity episodes.

While we reject the long-run uncovered bond return parity condition in the time series, we do

find a secular increase in the sensitivity of foreign long-term bond returns to U.S. bond returns

over time, consistent with an increase in the correlation of permanent shocks in international

financial markets. After 1991, an 1% increase in U.S. long-term bond returns increases foreign

bond returns in dollars by 0.5% on average. Since bond returns expressed in dollars do not move

one for one in the time-series, permanent shocks to the foreign and domestic pricing kernels must

not be perfectly shared.

To shed additional light on the correlation of pricing kernels across countries, we there-

fore decompose exchange rates into their permanent and transitory components. Hansen and

Scheinkman (2009), Alvarez and Jermann (2005), Hansen, Heaton, and Li (2008), and Bak-

shi and Chabi-Yo (2012) have explored the implications of such a decomposition of domestic

pricing kernels for asset prices. Given that exchange rates express differences in pricing kernels

across countries, the pricing kernel decomposition implies that exchange rate changes can be

also broken into two components, one that encodes cross-country differences in the permanent

SDF components and one that reflects differences in the transitory components. Data on long-

maturity bond returns allow us to extract the time series for two exchange rate components for

a cross-section of exchange rates. The characteristics of the permanent components of exchange

rates are then a key ingredient to compute our lower bound on the covariance between the
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domestic and foreign permanent components of the pricing kernels.

We find that the two exchange rate components contribute about equally to the volatility of

exchange rate changes, implying that internationally unshared pricing kernel transitory shocks

are equally important to unshared permanent shocks for exchange rate determination. This

finding contrasts with previous results obtained on domestic markets. From the relative size of

the equity premium (large) and the term premium (small), Alvarez and Jermann (2005) infer

that almost all the variation in stochastic discount factors arises from permanent fluctuations.

Since permanent fluctuations are an order of magnitude larger than transitory fluctuations, the

similar volatilities of the permanent and transitory components of exchange rates imply that

permanent shocks are much more correlated across countries than transitory shocks. Indeed,

we find that the implied correlation of the transitory stochastic discount factor components,

although positive, is much lower than the implied correlation of state prices, as calculated in

Brandt, Cochrane, and Santa-Clara (2006). Using our theoretical lower bound, we show that

the correlation between the permanent components of SDFs is at least equal to 0.9.

The high correlation of SDFs can be interpreted in terms of risk-sharing if and only if the

domestic and foreign agents consume the same baskets of goods and participate in complete

financial markets. To the contrary, variation in relative prices of different consumption baskets

can drive a wedge between the pricing kernels even in the case of perfect risk sharing across

borders. Likewise, when markets are segmented, as in Alvarez, Atkeson, and Kehoe (2002,

2009), the correlation of SDFs does not imply risk-sharing of the non-participating agents.

Therefore, under the additional assumptions that agents consume the same goods and participate

in financial markets, our findings that permanent components of the SDFs are highly correlated

across countries imply that the bulk of permanent shocks are shared across countries.

Finally, we also find that the two exchange rate components are negatively correlated with

each other: permanent innovations that raise the state price of a given country relative to that

of a foreign country tend to be partly offset by unshared transitory innovations. This is line with

the results from statistical decompositions of the underlying fundamentals. For example, Morley,

Nelson, and Zivot (2003) find a strong, negative correlation in the trend and cycle component

6



of U.S. GDP. Using only exchange rates and bond prices, we document the same result in the

country-specific part of marginal utility.

Our paper is related to three large strands of the literature: the international correlation of

SDFs, the carry trade returns, and the term premia across countries.

The high correlation of the SDF permanent components extends previous results in a key

dimension. Brandt, Cochrane, and Santa-Clara (2006) show that the combination of relatively

smooth exchange rates (10% per annum) and much more volatile stochastic discount factors

(50% per annum) implies that state prices are highly correlated across countries. It is important

to show that the permanent, not the temporary, SDF components are correlated because the

welfare gains from removing all aggregate consumption uncertainty come almost exclusively

from the low frequency component in consumption, not the business cycle component (Alvarez

and Jermann, 2004). Recently, Chabi-Yo and Colacito (2013) generalize the lower bound on the

comovement of domestic and foreign permanent SDFs to pricing kernels that are not necessarily

lognormal, study the term structure of this comovement, and consider the ability of several

international finance models to address the empirical properties of that SDF decomposition.

Our paper builds on the vast literature on uncovered interest rate parity condition (UIP)

and the currency carry trade [Engel (1996) and Lewis (2011) provide recent surveys]. We are the

first to derive general conditions under which long-run unconditional UIP follows simply from

market completeness: if all permanent shocks to the pricing kernel are common, then foreign

and domestic yield spreads in dollars on long maturity bonds will be equalized, regardless of the

properties of the pricing kernel.

Our focus is on the cross-sectional relation between the slope of the yield curve, interest

rates and exchange rates. We study whether investors earn higher returns on foreign bonds

from countries in which the slope of the yield curve is higher than the cross-country average.

Prior work, from Campbell and Shiller (1991) to Bekaert and Hodrick (2001) and Bekaert, Wei,

and Xing (2007), focus mostly on the time series, testing whether investors earn higher returns

on foreign bonds from a country in which the slope of the yield curve is currently higher than

average for that country. Chinn and Meredith (2004) document some time-series evidence that

7



supports a conditional version of UIP at longer holding periods, while Boudoukh, Richardson,

and Whitelaw (2013) show that past forward rate differences predict future changes in exchange

rates.

The rest of the paper is organized as follows. In Section 1, we derive the no-arbitrage,

preference-free theoretical restrictions imposed on currency and term risk premia. In Section 2,

we provide three simple theoretical examples. In Section 3, we examine the cross-section of bond

excess returns in local currency and in U.S. dollars and we contrast it with the cross-section

of currency excess returns. In Section 4, we test the uncovered bond return parity condition

in the time-series. In Section 5, we decompose exchange rate changes into a permanent and

a temporary component and we link their properties to the extent of risk-sharing. In Section

6, we present concluding remarks. The Appendix contains all proofs and an Online Appendix

contains supplementary material not presented in the main body of the paper.

1 The Term Premium and the Currency Risk Premium

We begin by defining notation and then deriving our main theoretical results.

1.1 Notation

In order to state our main results, we first need to introduce the domestic and foreign pricing

kernels, stochastic discount factors, and bond holding period returns.

Pricing Kernel, Stochastic Discount Factor, and Bond Return The nominal pricing

kernel is denoted Λt($); it corresponds to the marginal value of a dollar delivered at time

t in some state of the world $. The nominal SDF is the growth rate of the pricing kernel:

Mt+1 = Λt+1/Λt. The price of a zero-coupon bond that matures k periods into the future is

given by:

P
(k)
t = Et

(
Λt+k
Λt

)
.

The one-period return on the zero-coupon bond with maturity k is R
(k)
t+1 = P

(k−1)
t+1 /P

(k)
t . The

log excess returns, denoted rx
(k)
t+1, is equal to logR

(k)
t+1/R

f
t , where the risk-free rate is Rft =
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R
(0)
t+1 = 1/P

(1)
t . The expected log excess return on the zero-coupon bond with maturity k, or

term premium, is:

Et

[
rx

(k)
t+1

]
= Et

[
logR

(k)
t+1/R

f
t

]
.

The yield spread is the log difference between the yield of the k-period bond and the risk-free

rate: y
(k)
t = − log

(
Rft /(P

(k)
t )1/k

)
.

Entropy Bond returns and SDFs are volatile, but not necessarily normally distributed. In

order to measure the time-variation in their volatility, it is convenient to use entropy.1 The

conditional volatility of any random variable Xt+1 is thus measured through its conditional

entropy Lt, defined as:

Lt (Xt+1) = logEt (Xt+1)− Et (logXt+1) .

The conditional entropy of a random variable is determined by its conditional variance, as well

as its higher moments; if vart (Xt+1) = 0, then Lt (Xt+1) = 0, but the reverse is not generally

true. If Xt+1 is conditionally lognormal, then the entropy is simply the half variance of the log

variable: Lt (Xt+1) = (1/2)vart (logXt+1). The relative entropy of the permanent and transitory

components of the domestic and foreign SDFs turns out to be key to understanding the term

structure of carry trade risk.

Permanent and Transitory Innovations Following Alvarez and Jermann (2005), Hansen,

Heaton, and Li (2008), and Hansen and Scheinkman (2009), we decompose each pricing kernel

into a transitory (ΛT
t ) component and a permanent (ΛP

t ) component with:

Λt = ΛP
t ΛT

t , where ΛT
t = lim

k→∞

δt+k

P
(k)
t

.

The constant δ is chosen to satisfy the following regularity condition: 0 < lim
k→∞

P
(k)
t

δk
<∞ for all

t. We also assume that, for each t+ 1, there exists a random variable xt+1 with finite Et(xt+1)

1Backus, Chernov, and Zin (2014) make a convincing case for the use of entropy in assessing macro-finance
models.
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such that a.s. Λt+1

δt+1

P
(k)
t+1

δk
≤ xt+1 for all k. Under those regularity conditions, the infinite maturity

bond return is then:

R
(∞)
t+1 = lim

k→∞
R

(k)
t+1 = lim

k→∞
P

(k−1)
t+1 /P

(k)
t =

ΛT
t

ΛT
t+1

.

The permanent component, ΛP
t , is a martingale.2 It is an important component of the pricing

kernel. Alvarez and Jermann (2005) derive a lower bound on its volatility, and, given the size of

the equity premium relative to the term premium, conclude that the permanent component of

the pricing kernel is large and accounts for most of the risk.3 In other words, a lot of persistence

in the pricing kernel is needed to deliver a low term premium and a high equity premium. In the

absence of arbitrage, Alvarez and Jermann (2005) show that the local term premium in local

currency is given by:

Et

[
rx

(∞)
t+1

]
= lim

k→∞
Et

[
rx

(k)
t+1

]
= Lt

(
Λt+1

Λt

)
− Lt

(
ΛP
t+1

ΛP
t

)
.

Hansen, Heaton, and Li (2008), Hansen and Scheinkman (2009), and Borovicka, Hansen,

Hendricks, and Scheinkman (2011) provide examples of similar factorizations in affine models.

The SDF decomposition defined here is subject to important limitations that need to be high-

lighted. Hansen and Scheinkman (2009) point out that this decomposition is not unique in

general and provide parametric examples in which uniqueness fails. In addition, the temporary

(or transient) and permanent components are potentially highly correlated, which complicates

their interpretation.4 Despite these limitations, we show that this decomposition proves to be

particularly useful when analyzing foreign bond returns at longer maturities.

2Note that ΛP
t is equal to:

ΛP
t = lim

k→∞

P
(k)
t

δt+k
Λt = lim

k→∞

Et(Λt+k)

δt+k
.

The second regularity condition ensures that the expression above is a martingale.
3Alvarez and Jermann (2005) derive the following lower bound:

Lt

(
ΛP
t+1

ΛP
t

)
≥ Et (logRt+1)− Et

(
logR

(∞)
t+1

)
,

where Rt+1 denotes any positive return and R
(∞)
t+1 is the return on a zero-coupon bond of infinite maturity.

4The authors thank Lars Hansen for a detailed account of these issues.
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Exchange Rates The nominal spot exchange rate in foreign currency per U.S. dollar is de-

noted St. When S increases, the U.S. dollar appreciates. Similarly, Ft denotes the one-period

forward exchange rate, and ft its log value. When markets are complete, the change in the

exchange rate corresponds to the ratio of the domestic to foreign SDFs:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

,

where ∗ denotes a foreign variable. The no-arbitrage definition of the exchange rate comes

directly from the Euler equations of the domestic and foreign investors, for any assetR∗ expressed

in foreign currency: Et[Mt+1R
∗
t+1St/St+1] = 1 and Et[M

∗
t+1R

∗
t+1] = 1. When markets are

complete, the SDF is unique, and thus the change in exchange rate is the ratio of the two SDFs.

The log currency excess return corresponds to:

rxFXt+1 = log

[
St
St+1

Rf,∗t

Rft

]
= (ft − st)−∆st+1,

when the investor borrows at the domestic risk-free rate, Rft , and invests at the foreign risk-

free rate, Rf,∗t , and where the forward rate is defined through the covered interest rate parity

condition: Ft/St = Rf,∗t /Rft . As Bekaert (1996) and Bansal (1997) show, in a lognormal model,

the log currency risk premium equals the half difference between the conditional volatilities of the

log domestic and foreign SDFs. Higher order moments are critical for understanding currency

returns.5 When higher moments matter and markets are complete, the currency risk premium

is equal to the difference between the entropy of the domestic and foreign SDFs (Backus, Foresi,

and Telmer, 2001):

Et
[
rxFXt+1

]
= (ft − st)− Et(∆st+1) = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
.

5The literature on disaster risk in currency markets concurs. In earlier work, Brunnermeier, Nagel, and
Pedersen (2009) show that risk reversals increase with interest rates. Jurek (2008) provides a comprehensive
empirical investigation of hedged carry trade strategies. Gourio, Siemer, and Verdelhan (2013) study a real
business cycle model with disaster risk. Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2013) estimate a
no-arbitrage model with crash risk using a cross-section of currency options. Chernov, Graveline, and Zviadadze
(2011) study jump risk at high frequencies. Gavazzoni, Sambalaibat, and Telmer (2012) show that lognormal
models cannot account for the cross-country differences in carry returns and interest rate volatilities.
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Following the decomposition of the pricing kernel discussed above, exchange rate changes

can also be decomposed into a permanent and a transitory component, defined below:

St+1

St
=

(
ΛP
t+1

ΛP
t

ΛP,∗
t

ΛP,∗
t+1

)(
ΛT
t+1

ΛT
t

ΛT,∗
t

ΛT,∗
t+1

)
=
SP
t+1

SP
t

ST
t+1

ST
t

.

Exchange rate changes capture the differences in both the transitory and the permanent compo-

nent of the two countries’ SDFs. In this paper, we use returns on long term bonds to implement

this decomposition in the data.

Term Premium on Foreign Bonds The log return on a foreign bond position (expressed

in U.S. dollars) in excess of the domestic (i.e., U.S.) risk-free rate is denoted rx
(k),$
t+1 . It can be

expressed as the sum of the log excess return in local currency plus the return on a long position

in foreign currency:

rx
(k),$
t+1 = log

[
R

(k),∗
t+1

Rft

St
St+1

]
= log

[
R

(k),∗
t+1

Rf,∗t

Rf,∗t

Rft

St
St+1

]
= rx

(k),∗
t+1 + rxFXt+1.

The first component of the foreign bond excess return is the excess return on a bond in foreign

currency, while the second component represents the log excess return on a long position in

foreign currency, given by the forward discount minus the rate of depreciation. Taking expecta-

tions, the total term premium in dollars thus consists of a foreign bond risk premium, Et[rx
(k),∗
t+1 ],

plus a currency risk premium, (ft − st)− Et∆st+1.

1.2 Main Theoretical Results

In this section, we present our four key theoretical results on (i) the term structure of carry trade

premia; (ii) the decomposition of exchange rates into permanent and transitory components;

(iii) the long-term bond return parity condition; and (iv) a lower bound on the risk-sharing of

permanent shocks.

Carry Trade Term Premia We begin with a characterization of carry trade risk premia at

long maturities.
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Proposition 1. The foreign term premium in dollars is equal to the domestic term premium

plus the difference between the domestic and foreign entropies of the permanent components of

the pricing kernels:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] = Et

[
rx

(∞)
t+1

]
+ Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
.

In case of an adverse temporary innovation to the foreign pricing kernel, the foreign currency

appreciates, but this is exactly offset by the capital loss suffered on the longest maturity zero-

coupon bond, as a result of the increase in foreign interest rates. Hence, interest rate exposure

completely hedges the temporary component of the currency risk exposure, and the only source

of priced currency risks in the foreign bond positions are the permanent innovations.

In order to produce a currency risk premium at longer maturities, entropy differences in

the permanent component of the pricing kernel are required. If there are no such differences

and domestic and foreign pricing kernels are identically distributed, then high local currency

term premia coincide with low currency risk premia and vice-versa and dollar term premia are

identical across currencies.

The unconditional version of this result is equivalent to uncovered interest rate parity for very

long holding periods. Note that the k-period holding return in excess of the U.S. risk-free rate

on a foreign k-period bond denoted in dollars is k(yk,∗t )−∆st→t+k+k(ft−st). The unconditional

version of long-run UIP implies that, as k →∞, E[yk,∗t ]−E[limk→∞
1
k

∑k
j=1 ∆st+j ]+E[ft−st] =

E[ykt ].

Corollary 1. The average foreign yield minus the average rate of depreciation equals the average

domestic yield at very long horizons plus the average difference between the domestic and foreign

entropies of the permanent components of the pricing kernels:

E[y
(∞),∗
t ]− E[ lim

k→∞

1

k

k∑
j=1

∆st+j ] + E[ft − st] = E[y
(∞)
t ] + E

[
Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)]
.
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On average, deviations from long-run uncovered interest rate parity are driven only by dif-

ferences in entropy of the permanent components. If there are no differences, then no arbitrage

implies that long-run UIP holds but only unconditionally. Examining the conditional moments

of one-period holding period returns on long maturity bonds, the focus of our paper, is not

equivalent to studying the moments long bond yields.

Permanent Component of Exchange Rates The valuation of long-maturity bonds thus

encodes information about the nature of shocks that drive the changes in exchange rates. Using

the prices of long-maturity bonds in the domestic and foreign countries, under the regularity

conditions defined previously, we can decompose the changes in the bilateral spot exchange rate

into two parts: a part that captures cross-country differences in the transitory components of the

pricing kernel and a part that encodes differences in the permanent components of the pricing

kernel.

Proposition 2. When markets are complete, the ratio of the domestic and foreign infinite

maturity bond returns, expressed in the same currency, measures the permanent component of

exchange rate changes:

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

=
ΛP,∗
t+1

ΛP,∗
t

ΛP
t

ΛP
t+1

=
SP
t

SP
t+1

.

The left-hand side of this equality can be approximated by long term bonds, thus leading to

a measure of the permanent component of exchange rates. Since exchange rates are observed,

the temporary component of the exchange rates can also be easily obtained.

Long-Term Bond Return Parity Condition The exchange rate decomposition above im-

plies an uncovered long-bond return parity condition when countries share permanent innova-

tions to their SDFs. In this polar case, even if most of the innovations to the pricing kernel are

highly persistent, the shocks that drive exchange rates are not, because the persistent shocks

are shared across countries. When bond parity holds, the exchange rate is a stationary process.
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Corollary 2. If the domestic and foreign pricing kernels have common permanent innovations,

ΛP
t+1/Λ

P
t = ΛP,∗

t+1/Λ
P,∗
t for all states, then the one-period returns on the foreign longest maturity

bonds in domestic currency are identical to the domestic ones: R
(∞),∗
t+1

St
St+1

= R
(∞)
t+1 for all states.

Hau and Rey (2006) and Pavlova and Rigobon (2007) propose and test uncovered equity

parity conditions in specific models in international economics. Our novel international parity

condition pertains instead to the bond markets and is model-free. This condition can be used

to revisit the purchasing power parity and international risk-sharing literatures.

Purchasing Power Parity So far we have discussed the implications for nominal bonds,

nominal exchange rates and the nominal pricing kernel, but we can re-interpret these results in

real terms, introducing the returns on long-term real bonds and the real exchange rate instead. If

the permanent components of the real pricing kernels are common across countries, then the log

of the real exchange rate equals the difference of the temporary components of the real pricing

kernels. As a result, the real exchange rate is stationary and a weak version of the purchasing

power parity condition (PPP) holds in the long run (see, e.g., Rogoff [1996] for a survey of the

PPP literature).

Hence, our result suggests a test of exchange rate stationarity that simply uses the returns

on (long) indexed bonds and (real) exchange rates, without resorting to unit root tests of (real)

exchange rates which have low power in short samples (Enders, 1988). Instead, we learn about

the anticipated long-run behavior of (real) exchange rates from the information encoded in

long-term (real) bonds. The real version of this test is a test of PPP.

Risk-Sharing The nature and magnitude of international risk sharing is an important and

open question in macroeconomics (see, for example, Cole and Obstfeld, 1991; van Wincoop,

1994; Lewis, 2000; Gourinchas and Jeanne, 2006; Lewis and Liu, 2012; Coeurdacier, Rey, and

Winant, 2013; Didier, Rigobon, and Schmukler, 2013; as well as Colacito and Croce, 2011, and

Stathopoulos, 2012, on the high international correlation of state prices). The exchange rate

decomposition also sheds light on the nature of cross-country risk-sharing, but only under the
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assumption that domestic and foreign agents have identical consumption baskets and participate

in complete financial markets. Again, in a multi-good world, variation in the relative prices of

these goods drives a wedge between the pricing kernels, even in the case of perfect risk sharing

(Cole and Obstfeld, 1991).

Brandt, Cochrane, and Santa-Clara (2006) show that the combination of relatively smooth

exchange rates and much more volatile SDFs implies that state prices are very highly correlated

across countries. A 10% volatility in exchange rate changes and a volatility of marginal utility

growth rates of 50% imply a correlation of at least 0.98. We can derive a specific bound on the

covariance of the permanent component across different countries.

Proposition 3. If the permanent SDF component is unconditionally lognormal, the cross-

country covariance of the SDF’ permanent components is bounded below by:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1

R
(∞),∗
t+1

)
+ E

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
.

for any positive returns Rt+1 and R∗t+1. A conditional version of the expression holds for con-

ditionally lognormal permanent pricing kernel components.

We can compute the variance of the permanent component of exchange rates, var
(

log
SP
t+1

SP
t

)
,

in the data; the contribution of the last term will typically be on the order of 1% or less — this

value will be discussed in our empirical work. Given the large size of the equity premium

compared to the term premium (a 7.5% difference according to Alvarez and Jermann, 2005),

and the relatively small variance of the permanent component of exchange rates, this bound

implies a large correlation of the permanent components. In Figure 2, we plot the implied

correlation of the permanent component against the volatility of the permanent component in

the symmetric case for two different scenarios. The dotted line is for Std
(
logSP

t /S
P
t+1

)
= 10%,

and the diamond line is for Std
(
logSP

t /S
P
t+1

)
= 16%. In both cases, the implied correlation of

the permanent components of the domestic and foreign pricing kernels is clearly above 0.9.

Our results extend the insights of Brandt, Cochrane, and Santa-Clara (2006) and, given the

assumption of identical consumption baskets across countries and market participation, directly
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Figure 2: Permanent Risk Sharing — In this figure, we plot the implied correlation of the domestic and
foreign permanent components of the SDF against the standard deviation of the permanent component of the
SDF. The dotted line is for Std

(
logSP

t /S
P
t+1

)
= 10%. The straight line is for Std

(
logSP

t /S
P
t+1

)
= 16%. Following

Alvarez and Jermann (2005), we assume that the equity minus bond risk premia are 7.5% in the domestic and
foreign economies.

speak to the properties of international risk sharing. Earlier papers have studied cross-country

SDF properties, but have not focused on either risk sharing or the decomposition of the SDF.

1.3 Special Case: No Permanent Innovations

Let us now consider the special case in which the pricing kernel is not subject to permanent

innovations, i.e., limk→∞
Et+1[Λt+k]
Et[Λt+k] = 1. For example, the Markovian environment recently

considered by Ross (2013) to derive his recovery theorem satisfies this condition. Building on

this work, Martin and Ross (2013) derive closed-form expressions for bond returns in a similar

environment. Alvarez and Jermann (2005) show that this case has clear implications for domestic
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returns: if the pricing kernel has no permanent innovations, then the term premium on an infinite

maturity bond is the largest risk premium in the economy.6

The absence of permanent innovations also has a strong implication for the term structure

of the carry trade risk premia. When the pricing kernels do not have permanent innovations,

the foreign term premium in dollars equals the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] = Et

[
rx

(∞)
t+1

]
.

The proof here is straightforward. In general, the foreign currency risk premium is equal to

the difference in entropy. In the absence of permanent innovations, the term premium is equal

to the entropy of the pricing kernel, so the result follows. More interestingly, a much stronger

result holds in this case. Not only are the risk premia identical, but the returns on the foreign

bond position are the same as those on the domestic bond position state-by-state, because the

foreign bond position automatically hedges the currency risk exposure. As already noted, if the

domestic and foreign pricing kernels have no permanent innovations, then the one-period returns

on the longest maturity foreign bonds in domestic currency are identical to the domestic ones:

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

= 1.

In this class of economies, the returns on long-term bonds expressed in domestic currency are

equalized:

lim
k→∞

rx
(k),∗
t+1 + (ft − st)−∆st+1 = rx

(k)
t+1.

In countries that experience higher marginal utility growth, the domestic currency appreciates

but is exactly offset by the capital loss on the bond. For example, in a representative agent

economy, when the log of aggregate consumption drops more below trend at home than abroad,

the domestic currency appreciates, but the real interest rate increases, because the representative

agent is eager to smooth consumption. The foreign bond position automatically hedges the

6If there are no permanent innovations to the pricing kernel, then the return on the bond with the longest
maturity equals the inverse of the SDF: limk→∞R

(k)
t+1 = Λt/Λt+1. High marginal utility growth translates into

higher yields on long maturity bonds and low long bond returns, and vice-versa.
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currency exposure.

2 Three Theoretical Lognormal Examples

This section provides three lognormal examples of the theoretical results derived above. We start

with a simple homoscedastic SDF suggested by Alvarez and Jermann (2005), and then turn to

a heteroscedastic SDF like the one proposed by Cox, Ingersoll, and Ross (1985). Building on

these two preliminary examples and on Lustig, Roussanov, and Verdelhan (2011), the section

ends with a model featuring global permanent and transitory shocks. This model illustrates the

necessary conditions for the cross-sections of carry and term premia.

2.1 Homoskedastic SDF

Alvarez and Jermann (2005) propose the following example of an economy without permanent

shocks: a representative agent economy with power utility investors in which the log of aggregate

consumption is a trend-stationary process with normal innovations.

Example 1. Consider the following pricing kernel (Alvarez and Jermann, 2005):

log Λt =

∞∑
i=0

αiεt−i + β log t,

with ε ∼ N(0, σ2), α0 = 1. If limk→∞ α
2
k = 0, then the SDF has no permanent component. The

foreign SDF is defined similarly.

In this example, Alvarez and Jermann (2005) show that the term premium equals one half of

the variance: Et

[
rx

(∞)
t+1

]
= σ2/2, the highest possible risk premium in this economy, because the

returns on the long bond are perfectly negatively correlated with the stochastic discount factor.

When marginal utility is [temporarily] high, the representative agent would like to borrow,

driving up interest rates and lowering the price of the long-term bond.

In this case, we find that the foreign term premium in dollars is identical to the domestic
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term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
σ2 = Et

[
rx

(∞)
t+1

]
.

This result is straightforward to establish: recall that the currency risk premium is equal to

the half difference in the domestic and foreign SDF volatilities. Currencies with a high local

currency term premium (high σ2) also have an offsetting negative currency risk premium, while

those with a small term premium have a large currency risk premium. Hence, U.S. investors

receive the same dollar premium on foreign as on domestic bonds. There is no point in chasing

high term premia around the world, at least not in economies with only temporary innovations

to the pricing kernel. Currencies with the highest local term premia also have the lowest (i.e.,

most negative) currency risk premia.

Building on the previous example, Alvarez and Jermann (2005) consider a log-normal model

of the pricing kernel that features both permanent and transitory shocks.

Example 2. Consider the following pricing kernel (Alvarez and Jermann, 2005):

log ΛP
t+1 = −1

2
σ2
P + log ΛP

t + εPt+1,

log ΛT
t+1 = log βt+1 +

∞∑
i=0

αiε
T
t+1−i,

where α is a square summable sequence, and εP and εT are i.i.d. normal variables with mean

zero and covariance σTP . A similar decomposition applies to the foreign SDF.

In this case, Alvarez and Jermann (2005) show that the term premium is given by the

following expression: Et

[
rx

(∞)
t+1

]
= σ2

T /2 +σTP . Only the transitory risk is priced in the market

for long bonds. When marginal utility is temporarily high, interest rates increase because the

representative agent wants to borrow, and long bonds suffer a capital loss. Permanent shocks

to marginal utility do not have this effect. In this economy, the foreign term premium in dollars

is:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2

(
σ2 − σ2,∗

P

)
.
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Provided that σ2,∗
P = σ2

P , the foreign term premium in dollars equals the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
σ2
T + σTP = Et

[
rx

(∞)
t+1

]
.

2.2 Heteroskedastic SDFs

We turn now to a workhorse model in the term structure literature: the Cox, Ingersoll, and Ross

(1985) model (denoted CIR).

Example 3. The CIR model is defined by the following two equations:

− logMt+1 = α+ χzt +
√
γztut+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1.

In this model, log bond prices are affine in the state variable z: p
(n)
t = −Bn

0 − Bn
1 zt, where

Bn
0 and Bn

1 are the solution to difference equations. The expected log excess return of an infinite

maturity bond is then:

Et

[
rx

(∞)
t+1

]
=

[
−1

2
(B∞1 )2 σ2 + σ

√
γB∞1

]
zt =

[
B∞1 (1− φ)− χ+

1

2
γ

]
zt,

where B∞1 is defined implicitly in the following second-order equation: B∞1 = χ− γ/2 +B∞1 φ−

(B∞1 )2 σ2/2+σ
√
γB∞1 . The first component, − (B∞1 )2 σ2/2, is a Jensen term. The term premium

is driven by the second component, σ
√
γB∞1 zt. In the CIR model, there are no permanent

innovations to the pricing kernel provided that B∞1 (1 − φ) = χ. In this case, the permanent

component of the pricing kernel is constant:

ΛP
t+1

ΛP
t

= β−1e−α−χθ.

In the case of no permanent innovations in the CIR model, the expected long-run term premium

is simply Et

[
rx

(∞)
t+1

]
= γzt/2, one half of the variance of the SDF. Hence, in the symmetric case,
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the foreign term premium in dollars is equal to the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
γzt = Et

[
rx

(∞)
t+1

]
.

Naturally, this implies that, on average, U.I.P holds at long holding periods:

E[y
(∞),∗
t ] + E[ft − st]− E[ lim

k→∞

1

k

k∑
j=1

∆st+j ] = E[y
(∞)
t ]

Lustig, Roussanov, and Verdelhan (2011) show that the CIR model with (i) global shocks

and (ii) heterogeneity in the SDFs’ loadings on those global shocks can replicate the empirical

evidence on currency excess returns.7 Building on their work, we turn now to a version of the

CIR model with two global components: a persistent component and a transitory component.

We show that heterogeneity in the SDFs’ loadings on the permanent global shocks is key to

obtaining a cross-section of foreign term premia expressed in U.S. dollars.

Example 4. The LRV (2011) model is defined by the following set of equations:

− logMt+1 = α+ χzt +
√
γztut+1 + τzPt +

√
δzPt u

P
t+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

zPt+1 = (1− φP)θP + φPzPt − σP
√
zPt u

P
t+1,

where zt is the transitory factor, and zPt is the permanent factor.

Note that the model abstracts from the country-specific shocks and state variables; they can

be added easily as in Lustig, Roussanov, and Verdelhan (2011).

The nominal log zero-coupon n-month yield of maturity in local currency is given by the

standard affine expression y
(n)
t = − 1

n

(
An +Bnzt + Cnz

P
t

)
, where the coefficients satisfy second-

order difference equations. The nominal log risk-free interest rate is an affine function of the

persistent and transitory factors: rft = α+
(
χ− 1

2γ
)
zt+

(
τ − 1

2δ
)
zpt . In this model, the expected

7The model parameters must satisfy the two following constraints: interest rates must be pro-cyclical with
respect to the state variables, and high interest rate countries must load less on the global shocks than low interest
rate countries.

22



log excess return on an infinite maturity bond is:

Et[rx
(∞)
t+1 ] =

[
B∞(1− φ)− χ+

1

2
γ

]
zt −

[
C∞(1− φp) + τ − 1

2
δ

]
zPt .

To give content to the notion that zt is transitory, we impose that B∞(1 − φ) = χ. This

restriction implies that the permanent component of the pricing kernel is not affected by the

transitory factor zt, as can easily be verified. In this case, the permanent component of the SDF

reduces to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χθe
−C∞

[
(φP−1)(zPt−θP)−σP

√
zPt ut+1

]
,

which does not depend on zt. Given this restriction, the bond risk premium is equal to:

Et[rx
(∞)
t+1 ] =

1

2
γzt −

[
τ − 1

2
δ + C∞(1− φP)

]
zPt .

Both factors are common across countries, but, following Lustig, Roussanov, and Verdelhan

(2011), we allow for heterogeneous loadings on these common factors. The foreign SDF is

therefore defined as:

− logM∗t+1 = α+ χzt +
√
γ∗ztut+1 + τzPt +

√
δ∗zPt u

P
t+1.

The log currency risk premium is equal to: Et[rx
FX
t+1] = (γ−γ∗)zt/2 + (δ− δ∗)zPt /2. This implies

that the expected foreign log holding period return on a foreign long bond converted into U.S.

dollars is equal to:8

Et[rx
(∞),$
t+1 ] = Et[rx

(∞),∗
t+1 ] + Et[rx

FX
t+1] =

1

2
γzt −

[
τ − 1

2
δ + C∞,∗(1− φP)

]
zPt .

Hence, the difference between the foreign and the domestic term premium is driven by: (C∞,∗ − C∞)(1−

φP)zPt . In the symmetric case in which δ = δ∗, then C∞,∗ = C∞, and the foreign term premium

8The coefficient C∞,∗ is defined by the following second-order equation: C∞,∗ = − (τ − δ∗/2) +

C∞,∗
(
φp + σp

√
δ∗
)

+ (C∞,∗σ
p)2 /2. Therefore, if δ = δ∗, then C∞,∗ = C∞.
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in dollars equals the domestic term premium. In this case, a cross-section of currency risk pre-

mia exists, but term premia in dollars are all the same across countries. If γ > γ∗, there is

a large positive foreign currency risk premium (equal here to Et[rx
FX
t+1] = (γ − γ∗)zt/2), but

that is exactly offset by a smaller foreign term premium. This model thus illustrates our main

theoretical findings: chasing high currency risk premia does not necessarily imply high term

premia. If there is no heterogeneity in the loadings of the permanent global component of the

SDF, then the foreign term premium, once converted to U.S. dollars is the same as the U.S.

term premium.

Since carry trade returns are base-currency-invariant, heterogeneity in the exposure of the

pricing kernel to a global component of the pricing kernel is required to explain the carry trade

premium (Lustig, Roussanov, and Verdelhan, 2011). Clearly, a carry trade premium at longer

maturities exists only with heterogeneous exposure to a permanent global component.

3 The Cross-Section of Long-Term Bond Returns

The empirical experiment is guided by the main theoretical results presented in Section 1. For

the reader’s convenience, we summarize them here in the following three equations:

Et
[
rxFXt+1

]
= (ft − st)− Et(∆st+1) = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
(1)

Et

[
rx

(∞),∗
t+1

]
= lim

k→∞
Et

[
rx

(k),∗
t+1

]
= Lt

(
Λ∗t+1

Λ∗t

)
− Lt

(
Λ∗,Pt+1

Λ∗,Pt

)
(2)

Et

[
rx

(∞),∗
t+1

]
+ Et

[
rxFXt+1

]
= Et

[
rx

(∞)
t+1

]
+ Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
. (3)

Equation (1) shows that the currency risk premium is equal to the difference between the entropy

of the domestic and foreign SDFs (Backus, Foresi, and Telmer, 2001). Equation (2) shows that

the term premium is equal to the difference between the total entropy of the SDF and the

entropy of its permanent component (Alvarez and Jermann, 2005). Equation (3) shows that the

foreign term premium in dollars is equal to the domestic term premium plus the difference in

the entropy of the permanent component of the pricing kernel of the domestic and the foreign
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country. Our empirical work thus focuses on three average excess returns: the currency risk

premium, the term premium in foreign currency, and the term premium in U.S. dollars. To test

the predictions of the theory, we sort currencies into portfolios based on variables that can be

used to predict bond and currency returns: the slope of the yield curve and then the level of

short-term interest rates. The slope of the yield curve is a natural measure of the local term

premium, governed by the entropy of the transitory shocks to the pricing kernel. Returns are

computed over horizons of one, three, and twelve months. In all cases, portfolios formed at date

t only use information available at that date. Portfolios are rebalanced monthly.

In closely related work on the cross-section, Koijen, Moskowitz, Pedersen, and Vrugt (2012)

and Wu (2012) examine the currency-hedged returns on ‘carry’ portfolios of international bonds,

sorted by a proxy for the carry on long-term bonds, but they do not examine the interaction

between currency and term risk premia, the topic of our paper. We focus on portfolios sorted

by interest rates, as well as yield spreads, since it is well-know since Campbell and Shiller (1991)

that yield spreads can predict excess returns on bonds. Ang and Chen (2010) and Berge, Jordà,

and Taylor (2011) have shown that yield curve variables can also be used to forecast currency

excess returns. These authors do not examine the returns on foreign bond portfolios. On the

other hand, Dahlquist and Hasseltoft (2013) study international bond risk premia in an affine

asset pricing model and find evidence for local and global risk factors. Jotikasthira, Le, and

Lundblad (2012) report similar findings. Our paper revisits the empirical evidence on bond

returns without committing to a specific term structure model.

3.1 Samples

The benchmark sample consists of a small homogeneous panel of developed countries with rea-

sonably liquid bond markets. This G-10 panel includes Australia, Canada, Japan, Germany,

Norway, New Zealand, Sweden, Switzerland, and the U.K. The domestic country is the United

States. It only includes one country from the eurozone, Germany. For robustness checks, we

consider two additional sets of countries: first, a larger sample of 20 developed countries (Aus-

tralia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy,
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Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, and the

U.K.), and second, a large sample of 30 developed and emerging countries (Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Greece, India, Ireland, Italy, Japan,

Mexico, Malaysia, the Netherlands, New Zealand, Norway, Pakistan, the Philippines, Poland,

Portugal, South Africa, Singapore, Spain, Sweden, Switzerland, Taiwan, Thailand, and the

U.K.).

In order to build the longest time-series possible, we obtain data from Global Financial

Data. The dataset includes a 10-year government bond total return index for each of our target

countries in dollars and in local currency and a Treasury bill total return index. The 10-year

bond returns are a proxy for the bonds with the longest maturity. The log excess returns on

currency (rxFX) and the log returns on the bond portfolio in local currency (rx(10),∗) and in

U.S. dollars (rx(10),$) are first obtained at the country level. Then, the portfolio-level excess

returns are obtained by averaging these log excess returns across all countries in a portfolio.

The benchmark sample is summarized by three portfolios while the other two samples are

summarized by four and five portfolios. For each set of countries, we report averages over

the 12/1950–12/2012 and 12/1971–12/2012 periods. The main text focuses on the benchmark

sample, while the Online Appendix reports detailed results for the robustness checks.

While Global Financial Data offers, to the best of our knowledge, the longest time-series

of government bond returns available, the series have three key limits. First, they pertain to

discount bonds, while the theory pertains to zero-coupon bonds. Second, they include default

risk, while the theory focuses on default-free bonds. Third, they only offer 10-year bond returns,

not the entire term structure of bond returns. To address these issues, we use zero-coupon

bonds obtained from the estimation of term structure curves using government notes and bonds

and interest rate swaps of different maturities; the time-series are shorter and dependent on

the term structure estimations. In contrast, bond return indices, while spanning much longer

time-periods, offer model-free estimates of bond returns. Our results turn out to be similar in

both samples.

Our zero-coupon bond dataset consists of a panel of the benchmark sample of countries from
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12/1971 to 12/2012. To construct our sample, we use the entirety of the dataset in Wright (2011)

and complement the sample, as needed, with sovereign zero-coupon curve data sourced from

Bloomberg. The panel is unbalanced: for each currency, the sample starts with the beginning

of the Wright (2011) dataset.9 Yields are available at maturities from 3 months to 15 years, in

3-month increments. We also construct an extended version of this dataset which, in addition

to the countries of the benchmark sample, includes the following countries: Austria, Belgium,

the Czech Republic, Denmark, Finland, France, Hungary, Indonesia, Ireland, Italy, Malaysia,

Mexico, the Netherlands, Poland, Portugal, Singapore, South Africa, and Spain. The data for

the aforementioned extra countries are sourced from Bloomberg.10

3.2 Sorting Currencies by the Slope of the Yield Curve

Let us start with portfolios of countries sorted by the slope of their yield curve. Recall that the

slope of the yield curve, a measure of the term premium, is largely determined by the entropy

of the temporary component of the pricing kernel. As this entropy increases, the local term

premium increases as well. However, the dollar term premium only compensates investors for the

relative entropy of the permanent component of the U.S. and the foreign pricing kernel, because

the interest rate risk associated with the temporary innovations is hedged by the currency risk.

In the extreme case in which all permanent shocks are common, the dollar term premium should

equal the U.S. term premium.

Benchmark Sample In the data, there is substantial turnover in the portfolios, more so than

in the usual interest rate-sorted portfolios, but the typical currencies in Portfolio 1 (flat yield

curve currencies) are the Australian and New Zealand dollar and the British pound, whereas

the typical currencies in Portfolio 3 (steep yield curve currencies) are the Japanese yen and the

9The starting dates for each country are as follows: 2/1987 for Australia, 1/1986 for Canada, 1/1973 for Ger-
many, 1/1985 for Japan, 1/1990 for New Zealand, 1/1998 for Norway, 12/1992 for Sweden, 1/1988 for Switzerland,
1/1979 for the U.K., and 12/1971 for the U.S. For New Zealand, the data for maturities above 10 years start in
12/1994.

10The starting dates for the additional countries are as follows: 12/1994 for Austria, Belgium, Denmark, Finland,
France, Ireland, Italy, the Netherlands, Portugal, Singapore, and Spain, 12/2000 for the Czech Republic, 3/2001
for Hungary, 5/2003 for Indonesia, 9/2001 for Malaysia, 8/2003 for Mexico, 12/2000 for Poland, and 1/1995 for
South Africa.
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German mark. Table 1 reports the annualized moments of log returns on the three slope-sorted

portfolios.

We start by discussing the results obtained at the one-month horizon over the whole sample

(12/1950–12/2012). Clearly, the uncovered interest rate parity condition fails in the cross-

section. For example, in Portfolio 1 the foreign interest rate exceeds the U.S. interest rate

by 3.03%, but the USD appreciates only by 0.01%. Average currency excess returns decline

from 3.02% per annum on Portfolio 1 to 0.06% per annum on the Portfolio 3. Therefore,

a long-short position of investing in steep-yield-curve currencies and shorting flat-yield-curve

currencies delivers an excess return of −2.97% per annum and a Sharpe ratio of −0.47. Our

findings basically confirm those of Ang and Chen (2010). The slope of the yield curve predicts

currency excess returns very well. The entropy of the temporary component plays a large role in

determining currency risk premia. Turning to the returns on local bonds, as expected, Portfolio

3 produces large bond excess returns of 4% per annum, compared to −1.82% per annum on

Portfolio 1. Hence, a long-short position produces a spread of 5.82% per annum.

A natural question is whether U.S. investors can “combine” the bond risk premium with the

currency risk premium. To answer this question, we compute the dollar bond excess returns

rx(10),$ by adding the currency excess returns rxFX and the local currency bond returns rx(10),∗.

In dollars, the aforementioned 5.82% spread is reduced to 2.85%, because of the partly offsetting

pattern in currency risk premia. What is driving these results? The low slope currencies tend

to be high interest rate currencies, while the high slope currencies tend to be low interest rate

currencies: Portfolio 1 has an interest rate difference of 3.03% relative to the U.S., while Portfolio

3 has a negative interest rate difference of −0.77% per annum. Thus, the flat slope currencies are

the investment currencies in the carry trade, whereas the steep slope currencies are the funding

currencies.

For long maturities, global bond investors want to reverse the standard currency carry trade.

They can achieve a return of 2.85% per annum by investing in the (low interest rate, steep curve)

funding currencies and shorting the (high interest rate, flat slope) carry trade currencies. This

difference is statistically significant. Importantly, this strategy involves long positions in bonds
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Table 1: Slope-Sorted Portfolios: Benchmark Sample

Portfolio 1 2 3 3− 1 1 2 3 3− 1 1 2 3 3− 1

Horizon 1-Month 3-Month 12-Month
Panel A: 12/1950–12/2012

−∆s Mean -0.01 0.77 0.83 0.84 0.01 0.39 1.18 1.17 -0.09 0.55 1.09 1.18
f − s Mean 3.03 0.41 -0.77 -3.81 2.96 0.42 -0.71 -3.68 2.76 0.46 -0.55 -3.31

rxFX Mean 3.02 1.18 0.06 -2.97 2.97 0.81 0.47 -2.50 2.67 1.01 0.54 -2.13
s.e. [0.97] [0.94] [0.94] [0.81] [1.08] [1.03] [0.95] [0.87] [1.14] [1.07] [1.13] [0.86]
Std 7.59 7.37 7.36 6.30 8.25 7.75 7.60 6.84 9.05 8.31 8.39 6.65
SR 0.40 0.16 0.01 -0.47 0.36 0.10 0.06 -0.37 0.30 0.12 0.06 -0.32
s.e. [0.13] [0.13] [0.13] [0.13] [0.14] [0.13] [0.13] [0.15] [0.14] [0.13] [0.13] [0.14]

rx(10),∗ Mean -1.82 1.61 4.00 5.82 -0.86 1.33 3.33 4.19 -0.22 1.20 2.79 3.01
s.e. [0.50] [0.46] [0.51] [0.54] [0.58] [0.51] [0.58] [0.60] [0.62] [0.69] [0.65] [0.58]
Std 3.97 3.67 4.09 4.29 4.60 4.24 4.65 4.67 5.10 4.88 5.29 4.90
SR -0.46 0.44 0.98 1.35 -0.19 0.31 0.72 0.90 -0.04 0.25 0.53 0.61
s.e. [0.12] [0.12] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.15] [0.11]

rx(10),$ Mean 1.21 2.79 4.06 2.85 2.12 2.14 3.80 1.68 2.45 2.21 3.33 0.88
s.e. [1.09] [1.07] [1.12] [0.99] [1.19] [1.17] [1.18] [1.08] [1.28] [1.18] [1.31] [1.12]
Std 8.61 8.36 8.84 7.76 9.34 8.98 9.42 8.14 10.45 9.57 10.29 8.67
SR 0.14 0.33 0.46 0.37 0.23 0.24 0.40 0.21 0.23 0.23 0.32 0.10
s.e. [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.12] [0.14] [0.13] [0.13] [0.12]

rx(10),$ − rx(10),US Mean -0.30 1.28 2.55 2.85 0.60 0.62 2.28 1.68 0.91 0.66 1.79 0.88
s.e. [1.28] [1.14] [1.21] [0.99] [1.42] [1.29] [1.14] [1.08] [1.51] [1.25] [1.37] [1.12]

Panel B: 12/1971–12/2012
−∆s Mean -0.08 1.21 1.03 1.11 -0.08 0.61 1.51 1.60 -0.30 0.76 1.47 1.77
f − s Mean 3.40 0.54 -1.02 -4.42 3.31 0.54 -0.94 -4.25 3.08 0.57 -0.72 -3.80

rxFX Mean 3.32 1.75 0.01 -3.32 3.23 1.15 0.58 -2.65 2.78 1.33 0.75 -2.03
s.e. [1.45] [1.41] [1.37] [1.16] [1.65] [1.55] [1.44] [1.26] [1.71] [1.62] [1.66] [1.22]
Std 9.29 8.95 8.80 7.40 10.09 9.38 9.16 8.15 11.04 10.05 10.12 7.95
SR 0.36 0.20 0.00 -0.45 0.32 0.12 0.06 -0.32 0.25 0.13 0.07 -0.26
s.e. [0.16] [0.16] [0.16] [0.16] [0.17] [0.16] [0.16] [0.18] [0.17] [0.16] [0.16] [0.17]

rx(10),∗ Mean -1.68 1.94 4.56 6.24 -0.52 1.70 3.64 4.16 0.10 1.71 2.98 2.87
s.e. [0.74] [0.69] [0.72] [0.76] [0.85] [0.75] [0.81] [0.85] [0.88] [1.02] [0.91] [0.83]
Std. Dev. 4.67 4.37 4.63 4.84 5.45 5.03 5.20 5.26 5.95 5.73 5.86 5.54
SR -0.36 0.44 0.98 1.29 -0.10 0.34 0.70 0.79 0.02 0.30 0.51 0.52
s.e. [0.15] [0.15] [0.17] [0.15] [0.16] [0.16] [0.17] [0.15] [0.16] [0.17] [0.20] [0.12]

rx(10),$ Mean 1.64 3.69 4.56 2.93 2.70 2.85 4.22 1.51 2.88 3.04 3.73 0.84
s.e. [1.63] [1.59] [1.62] [1.41] [1.81] [1.74] [1.73] [1.56] [1.89] [1.77] [1.91] [1.63]
Std 10.45 10.13 10.46 8.97 11.30 10.79 11.15 9.59 12.54 11.33 12.15 10.23
SR 0.16 0.36 0.44 0.33 0.24 0.26 0.38 0.16 0.23 0.27 0.31 0.08
s.e. [0.16] [0.16] [0.16] [0.15] [0.16] [0.16] [0.16] [0.15] [0.17] [0.17] [0.17] [0.15]

rx(10),$ − rx(10),US Mean -0.87 1.18 2.06 2.93 0.17 0.32 1.69 1.51 0.32 0.47 1.16 0.84
s.e. [1.85] [1.63] [1.69] [1.41] [2.09] [1.88] [1.62] [1.56] [2.23] [1.87] [1.98] [1.63]

Notes: The table reports the average change in exchange rates (∆s), the average interest rate difference (f −s), the average
log currency excess return (rxFX), the average log foreign bond excess return on 10-year government bond indices in
foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average foreign bond log
excess return in U.S. dollars and the average U.S. bond log excess return (rx(10),$ − rxUS). For the excess returns, the
table also reports their annualized standard deviation (denoted Std) and their Sharpe ratios (denoted SR). The annualized
monthly log returns are realized at date t+k , where the horizon k equals 1, 3, and 12 months. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The countries are sorted
by the slope of their yield curves into three portfolios. The slope of the yield curve is measured by the difference between the
10-year yield and the one-month interest rate at date t. The standard errors (denoted s.e. and reported between brackets)
were generated by bootstrapping 10,000 samples of non-overlapping returns.
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issued by countries like Germany and Japan. These are countries with fairly liquid bond markets

and low sovereign credit risk. As a result, credit and liquidity risk differences are unlikely

candidate explanations for the return differences. Of course, at the one-month horizon, this

strategy involves frequent trading. At the 12-month horizon, these excess returns are essentially

gone. The local term premium almost fully offsets the carry trade premium.

Our findings confirm that currency risk premia are driven to a large extent by temporary

shocks to the pricing kernel. When we sort currencies by the yield curve slope, an approximate

measure of the entropy of the temporary SDF component, we find large differences in currency

risk premia: the largest currency risk premia correspond to the lowest bond risk premia. This

finding is consistent with the theory, as total SDF entropy is negatively related to currency risk

premia, but positively related to bond risk premia. However, those differences in temporary

pricing kernel risk do not appear to produce significant cross-sectional differences in the quan-

tity of permanent risk: carry trade premia at the 10-year maturity, which are associated with

differences in the entropy of the permanent SDF component, are modest. Notably, the behavior

of long-maturity dollar bond returns suggests that local investors in carry trade countries are

less exposed to temporary risk than those in funding currencies, but more exposed to permanent

risk.

We get similar findings when we restrict our analysis to the post-Bretton Woods sample.

More generally, as can be verified from Figure 3, the difference in slope-sorted bond returns is

rather stable over time, although the difference in local bond premia is smaller in the last part

of the sample. For example, between 1991 and 2012, the difference in currency risk premia at

the one-month horizon between Portfolio 3 and Portfolio 1 is −4.20% per annum, compared to

a 3.29% spread in local term premia. This adds up to a −0.91% return on a long position in

the steep-sloped bonds and a short position in the flat-sloped bonds. However, this difference is

not statistically significant, as the standard error is 1.52% per annum.

Robustness Checks: Developed Countries and Whole Sample In the sample of devel-

oped countries, the steep-slope (low yielding) currencies are typically countries like Germany, the

Netherlands, Japan, and Switzerland, while the flat-slope (high-yielding) currencies are typically
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Figure 3: The Carry Trade and Term Premia: Conditional on the Slope of the Yield Curve –
The figure presents the cumulative one-month log returns on investments in foreign Treasury bills and foreign
10-year bonds. The benchmark panel of countries includes Australia, Canada, Japan, Germany, Norway, New
Zealand, Sweden, Switzerland, and the U.K. Countries are sorted every month by the slope of their yield curves
into three portfolios. The slope of the yield curve is measured by the spread between the 10-year bond yield and
the one-month interest rate. The returns correspond to an investment strategy going long in Portfolio 3 and short
in the Portfolio 1. The sample period is 12/1950–12/2012.
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Australia, New Zealand, Denmark and the U.K. At the one-month horizon, the 2.42% spread in

currency excess returns obtained in this sample is more than offset by the 5.90% spread in local

term premia. This produces a statistically significant 3.48% return on a position that is long

in the low yielding, high slope currencies and short in the high yielding, low slope currencies.

These results are essentially unchanged in the post-Bretton-Woods sample. At longer horizons,

the currency excess returns and the local risk premia almost fully offset each other.

In the entire sample of countries, including the emerging market countries, the difference in

currency risk premia at the one-month horizon is 6.11% per annum, which is more than offset

by a 11.45% difference in local term premia. As a result, investors earn 5.33% per annum on a

long-short position in foreign bond portfolios of slope-sorted currencies. As before, this involves

shorting the flat-yield-curve currencies, typically high interest rate currencies, and going long in

the steep-slope currencies, typically the low interest rate ones. The annualized Sharpe ratio on

this long-short strategy is 0.60.

3.3 Sorting Currencies by Interest Rates

Let us turn now to portfolios of countries sorted by their short-term interest rates. To save

space and because the results are very similar to those obtained on slope-sorted portfolios, we

summarize our findings rapidly here; detailed results are presented in the Online Appendix.

In our benchmark sample, as in our large samples, average currency excess returns increase

from low- to high-interest-rate portfolios. But local currency bond risk premia decrease from low-

to high-interest-rate portfolios. The decline in the local currency bond risk premia partly offsets

the increase in currency risk premia. As a result, the average excess return on the foreign bond

expressed in U.S. dollars measured in the high-interest-rate portfolio is only slightly higher than

the average excess returns measured in the low-interest-rate portfolio. As the holding period

increases from 1 to 3 and 12 months, the differences in local bond risk premia between portfolios

shrink, but so do the differences in currency risk premia. Even at the 12-month horizon, there is

no evidence of statistically significant differences in dollar bond risk premia across the currency

portfolios.
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Overall, our findings suggest that investors in high interest rate countries are less exposed to

overall pricing kernel risk than those in low interest countries, but these differences are mostly

about temporary pricing kernel risk, not persistent pricing kernel risk.

3.4 The Term Structure of Currency Carry Trade Risk Premia

The previous results focus on the 10-year maturity and show that currency risk premia offset

local currency term premia for coupon bond returns. We now turn to a full set of returns in

the maturity spectrum, using the zero-coupon bond dataset. Table 2 reports summary statistics

on one-quarter holding period returns on zero-coupon bond positions with maturities from 4 (1

year) to 60 quarters (15 years).

The term structure of currency carry trade risk premia is downward sloping: currency carry

trade strategies that yield positive risk premia for short-maturity bonds yield lower (or even

negative) risk premia for long-maturity bonds. This is due to the offsetting relationship between

currency premia and term premia. As we move from the 4-quarter maturity to the 60-quarter

maturity, the difference in the dollar term premium between Portfolio 1 (flat yield curve) cur-

rencies and Portfolio 3 (steep yield curve) currencies decreases from 2.69% to −1.77%. While

investing in flat yield curve currencies and shorting steep yield curve currencies provides signif-

icant gains in the short end of the term structure, it yields negative returns in the long end.

Figure 4 shows the local currency excess returns (in logs) in the top panel, and the dollar

excess returns (in logs) in the bottom panel. The top panel in Figure 4 shows that countries

with the steepest local yield curves (Portfolio 3, center) exhibit local bond excess returns that

are higher, and increase faster with the maturity than the flat yield curve countries (Portfolio

1, on the left-hand side). This effect is strong enough to undo the effect of the level differences

in yields at the short end: the steep-slope currencies are typical funding currencies with low

yields in levels at the short end of the maturity curve while the flat-slope currencies typically

have high yields at the short end. At the 4-quarter maturity, Table 2 reports a −0.31% interest

rate difference with the U.S. in Portfolio 3, compared to a 3.15% interest rate difference with

the U.S. in Portfolio 1. Thus, ignoring the effect of exchange rates, investors should invest in
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the short-term and long-term bonds of steep yield curve currencies.

However, considering the effect of currency fluctuations by focusing on dollar returns radically

alters the results. Figure 4 shows that the dollar excess returns of Portfolio 1 are higher than

those of Portfolio 3 at the short end of the yield curve, consistent with the carry trade results

of Ang and Chen (2010). Yet, an investor that would attempt to replicate the short-maturity

carry trade strategy at the long end of the maturity curve would incur losses on average: the

long-maturity excess returns of flat yield curve currencies are lower than those of steep yield

curve currencies, as currency risk premia more than offset term premia. This result is apparent

in the lower panel on the right, which is the same as Figure 1 in the introduction. The term

structure of currency carry trade risk premia slopes downwards.
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Figure 4: Term Structure of Dollar Bond Risk Premia — The figure shows the local currency log excess
returns in the top panel, and the dollar log excess returns in the bottom panel as a function of the bond maturities. The
left panel focuses on Portfolio 1 (flat yield curve currencies) excess returns, while the middle panel reports Portfolio 3
(steep yield curve currencies) excess returns. The middle panels also report the Portfolio 1 excess returns in dashed lines
for comparison. The right panel reports the difference. Data are monthly, from the zero-coupon dataset, and the sample
window is 4/1985–12/2012. The unbalanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand,
Sweden, Switzerland, and the U.K. The countries are sorted by the slope of their yield curves into three portfolios. The
slope of the yield curve is measured by the difference between the 10-year yield and the 3-month interest rate at date t.
The holding period is one quarter. The returns are annualized. The shaded areas correspond to two standard deviations
above and below each point estimates. Standard deviations are obtained by bootstrapping.
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Finally, we check the robustness of our findings by repeating our analysis using the extended

zero-coupon dataset. The detailed results are reported in the separate Appendix. It can be

easily seen that considering a large cross-section of countries does not change our main result.

An investor who buys the one-year bonds of flat-yield curve currencies and shorts the one-

year bonds of steep-yield-curve currencies realizes a dollar excess return of 4.10% per year on

average. However, at the long end of the maturity structure this strategy generates negative

excess returns: the average annualized dollar excess return of an investor who pursues this

strategy using 15-year bonds is −0.42%. The term structure of currency carry trade risk premia

remains downward-sloping. We turn now to time-series tests of the uncovered bond return

parity.

4 Time-Series Tests of the Uncovered Bond Return Parity

We first examine the correlation and volatility of foreign bond returns and then test the uncov-

ered bond return parity condition.

4.1 The Correlation and Volatility of Dollar Bond Returns

If international risk sharing is mostly due to countries sharing their permanent pricing kernel

fluctuations, holding period returns on zero-coupon bonds, once converted to a common cur-

rency (the U.S. dollar, in particular), should become increasingly similar as bond maturities

approach infinity. To determine whether this hypothesis has merit, Figure 5 reports the cor-

relation coefficient between three-month returns on foreign zero-coupon bonds (either in local

currency or in U.S. dollars) and corresponding returns on U.S. bonds for bonds of maturity

ranging from 1 year to 15 years. All foreign currency yield curves exhibit the same pattern:

correlation coefficients for U.S. dollar returns start from very low (often negative) values and

increase monotonically with bond maturity, tending towards one for long-term bonds. The clear

monotonicity is not observed on local currency returns. The local currency three-month return

correlations do not exhibit any discernible pattern with maturity, implying that the convergence

of U.S. dollar return correlations towards the value of one results from exchange rate changes
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that partially offset differences in local currency bond returns. Similar results hold true for

volatility ratios (instead of correlations); we report those in the Online Appendix.
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Figure 5: The Maturity Structure of Bond Return Correlations — The figure presents the correlation
of foreign bond returns with U.S. bond returns. The time-window is country-dependent. Data are monthly. The holding
period is three-months.

In sum, the behavior of U.S. dollar bond returns and local currency bond returns differs

markedly as bond maturity changes. While U.S. dollar bond returns become more correlated

and roughly equally volatile across countries as the maturity increases, the behavior of local

currency returns does not appear to change when bond maturity changes.

4.2 Testing Uncovered Bond Return Parity in the Time-Series

We now turn to tests of the bond return parity condition in the time series. To the extent the

10-year bond is a reasonable proxy for the infinite-maturity bond, uncovered long-bond parity
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implies that the domestic and foreign 10-year bond returns are not statistically different across

countries, once converted into a common currency. To determine whether exchange rate changes

completely eliminate differences in countries’ permanent SDF components, nominal U.S. dollar

holding period returns on 10-year foreign bonds are thus regressed on the corresponding U.S.

dollar returns on 10-year U.S. bonds:

r
(10),$
t+1 = α+ βr

(10)
t+1 + εt+1,

where small letters denote the log of their capital letter counterpart. Uncovered long bond parity

implies α = 0 and β = 1. Table 3 reports the regression results, as well as those obtained with

each component of the foreign bonds’ dollar return, i.e., the local currency bond return r
(10),∗
t+1

and the change in the log exchange rate. The sum of the local currency bond return beta and

the exchange change beta equals the total dollar bond return beta. Section I of Table 3 uses

discount bonds, while Section II uses zero-coupon bonds.

Individual Countries Panel A of Table 3 reports the results for the benchmark sample of

discount bonds. The slope coefficient for dollar returns is positive and, with the exception of

New Zealand, statistically significant for all the countries in the benchmark sample. The slope

coefficient ranges from 0.08 (New Zealand) to 0.69 (Canada); on average, it is 0.38. The cross-

sectional average of the exchange rate coefficient is 0.11, so it accounts for almost one-third of the

overall effect. Hence, exchange rates actively enforce long-run uncovered bond return parity:

when U.S. bond returns are high, the dollar tends to depreciate relative to other currencies,

whereas when dollar returns are low, the U.S. dollar tends to appreciate. The exceptions are the

Australian dollar and the New Zealand dollar: we find negative slope coefficients for those two

currencies. These are positive carry currencies (with high average interest rates) of countries

that are commodity exporters. To the extent that high U.S. bond returns are associated with

a run to quality in times of global economic stress, the depreciation of the Australian and New

Zealand dollars is consistent with the model of Ready, Roussanov, and Ward (2013), which

illustrates the relative riskiness of the currencies of commodity-producing countries.
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Currency Portfolios Panels B and C of Table 3 report the regression coefficients for slope-

sorted and interest-rate-sorted currency portfolios, respectively. There are interesting differences

in the slope coefficient across these portfolios. As evidenced in Panel B, the bond returns of

countries with flat yield curves have lower dollar betas than the returns of steep yield curve

countries. Furthermore, Panel C reveals that the long-maturity bond returns of low interest rate

countries comove more with U.S. bond returns than the returns of high interest rate countries.

Thus, it looks like that there is more sharing of permanent innovations between the U.S. and

countries with low interest rates and steep yield curves.

Time Variation To understand the time-variation in the regression coefficients, we expand

the sample period. Specifically, we consider an equally-weighted portfolio of all the currencies in

the developed country sample and regress its dollar return and its components on the U.S. bond

return from 12/1950 to 12/2012. We run the following regressions of local returns, exchange

rate changes and dollar returns on U.S. bond returns over rolling 60-month windows:

1

N

∑
i

r
(10),∗
i,t+1 = α+ βlocalr

(10)
t+1 + εt+1,

1

N

∑
i

−∆si,t+1 = α+ βfxr
(10)
t+1 + εt+1,

1

N

∑
i

r
(10),$
i,t+1 = α+ βdollarr

(10)
t+1 + εt+1.

Figure 6 plots the 60-month rolling window of the regression coefficients. We note large

increases in the dollar beta after the demise of the Bretton-Woods regime, mostly driven by

increases in the exchange rate betas. The same is true around the early 1990s. Furthermore,

there is a secular increase in the local return beta over the entire sample.

The exchange rate coefficient is positive during most of our sample period, providing evidence

that the currency exposure hedges the interest rate exposure of the foreign bond position. There

are two main exceptions: the Long Term Capital Management (LTCM) crisis in 1998 and

the recent financial crisis. During these episodes, the dollar appreciated, despite the strong

performance of the U.S. bond market, weakening the comovement between foreign and local

39



Table 3: Tests of the Uncovered Bond Return Parity Condition

Return in dollars (r$) Return in local currency (r∗) Change in exchange rate (−∆s) Obs.

β s.e. R2(%) β s.e. R2(%) β s.e. R2(%)

Section I: Discount Bonds

Panel A: Individual Countries

Australia 0.32 [0.08] 3.77 0.37 [0.06] 16.93 -0.05 [0.07] -0.08 493

Canada 0.69 [0.06] 31.19 0.68 [0.04] 57.58 0.01 [0.04] -0.19 493

Germany 0.62 [0.08] 14.16 0.38 [0.03] 25.97 0.23 [0.07] 2.61 493

Japan 0.51 [0.09] 8.09 0.24 [0.04] 8.46 0.27 [0.06] 3.55 493

New Zealand 0.08 [0.10] -0.02 0.16 [0.05] 1.87 -0.08 [0.08] 0.11 493

Norway 0.19 [0.07] 1.83 0.11 [0.03] 3.06 0.08 [0.06] 0.23 493

Sweden 0.28 [0.08] 3.55 0.16 [0.04] 5.25 0.12 [0.07] 0.63 493

Switzerland 0.43 [0.08] 7.39 0.15 [0.02] 15.97 0.28 [0.08] 3.21 493

United Kingdom 0.29 [0.07] 4.02 0.18 [0.03] 8.81 0.11 [0.07] 0.62 493

Panel B: Slope-sorted Portfolios

Portfolio 1 0.27 [0.07] 4.45 0.21 [0.03] 14.38 0.06 [0.06] 0.05 493

Portfolio 2 0.45 [0.06] 13.79 0.30 [0.03] 30.02 0.15 [0.06] 1.82 493

Portfolio 3 0.42 [0.06] 11.05 0.30 [0.03] 28.31 0.12 [0.05] 1.04 493

Panel C: Interest-rate-sorted Portfolios

Portfolio 1 0.47 [0.07] 11.98 0.27 [0.02] 28.97 0.20 [0.06] 2.89 493

Portfolio 2 0.39 [0.05] 11.90 0.29 [0.03] 29.92 0.10 [0.05] 0.77 493

Portfolio 3 0.28 [0.07] 4.48 0.25 [0.03] 16.13 0.03 [0.06] -0.15 493

Section II: Zero-Coupon Bonds

Panel A: Individual Countries

Australia 0.54 [0.11] 12.39 0.77 [0.10] 37.78 -0.23 [0.07] 2.96 308

Canada 0.72 [0.09] 33.56 0.81 [0.06] 65.07 -0.10 [0.05] 1.30 321

Germany 0.63 [0.08] 24.21 0.46 [0.04] 37.57 0.17 [0.06] 2.79 477

Japan 0.69 [0.12] 20.00 0.36 [0.06] 21.76 0.33 [0.09] 7.36 333

New Zealand 0.77 [0.10] 21.76 0.84 [0.07] 45.21 -0.08 [0.10] -0.03 273

Norway 0.38 [0.12] 5.81 0.44 [0.07] 18.70 -0.06 [0.14] -0.37 177

Sweden 0.61 [0.11] 15.39 0.68 [0.09] 34.34 -0.07 [0.10] -0.09 238

Switzerland 0.61 [0.09] 18.43 0.37 [0.05] 25.79 0.23 [0.10] 3.01 297

United Kingdom 0.58 [0.08] 18.44 0.52 [0.07] 28.97 0.06 [0.06] 0.22 405

Panel B: Slope-sorted Portfolios

Portfolio 1 0.68 [0.11] 21.22 0.56 [0.07] 32.98 0.12 [0.08] 0.96 333

Portfolio 2 0.53 [0.07] 21.03 0.51 [0.06] 39.19 0.02 [0.07] -0.24 333

Portfolio 3 0.74 [0.07] 35.03 0.57 [0.06] 47.61 0.17 [0.08] 3.35 333

Panel C: Interest-rate-sorted Portfolios

Portfolio 1 0.70 [0.09] 28.34 0.44 [0.05] 40.44 0.26 [0.07] 6.81 333

Portfolio 2 0.70 [0.07] 32.73 0.60 [0.07] 51.72 0.10 [0.09] 0.88 333

Portfolio 3 0.60 [0.09] 20.76 0.60 [0.07] 39.94 0.00 [0.08] -0.30 333

Notes: The table reports regression results obtained when regressing the log return on foreign bonds (expressed
in U.S. dollars) r$, or the log return in local currency r∗, or the log change in the exchange rate ∆s on the log
return on U.S. bonds in U.S. dollars. Section I uses discount bonds. Returns are monthly and the sample period is
12/1971–12/2012. Standard errors are obtained with a Newey-West approximation of the spectral density matrix
with two lags. Section II uses zero-coupon bonds. Returns are quarterly (sampled monthly) and the sample
period is 12/1971–12/2012 (or available subsample) for individual currencies and 4/1985–12/2012 for currency
portfolios. Standard errors are obtained with a Newey-West approximation of the spectral density matrix with
six lags.
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Figure 6: Foreign Bond Return Betas — This figure presents the 60-month rolling window estimation of beta
with respect to US bond returns for the equal-weighted average of log bond returns in local currency, the log change in
the exchange rate and the log dollar bond returns for the benchmark sample of countries. The panel consists of Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, the Netherlands, New
Zealand, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. The sample is 12/1950–12/2012. The
dark shaded areas represent the 1987 crash, the 1998 LTCM crisis and the 2007-2008 U.S. financial crisis.

Robustness Check To check the robustness of our results, we run the bond return parity

regressions on zero-coupon bonds. The results are reported in the Section II of Table 3. They

are broadly consistent with the previous findings. Specifically, the cross-sectional average of

the dollar return slope is 0.61, implying significant comovement between foreign and U.S. dollar

bond returns. This is due to the fact that the dataset is biased towards the recent period, when

dollar betas are historically high, as shown in Figure 6.

41



5 The Properties of Exchange Rate and SDF Components

The rejection of the long-term bond parity in the time-series implies that the permanent com-

ponent of exchange rate changes exists and is volatile. In this section, we decompose exchange

rate changes into their transitory and permanent components and report their properties. The

volatilities and correlation of these components provide insights on the SDF components. The

decomposition offers a new perspective on international risk-sharing.

5.1 The Properties of Exchange Rate and SDF Components

Alvarez and Jermann (2005) show that asset prices are almost exclusively determined by the

properties of the permanent SDF component, which accounts for almost all of the variation of

the nominal SDF. Our results indicate that this is not true for exchange rates. Table 4 shows

that the internationally unshared parts of the two components of the nominal SDF contribute

roughly equally to the volatility of the nominal SDF. The annualized volatility of the 3-month

exchange rate changes ranges from 7% to 12%. Although the two exchange rate components

contribute to exchange rate volatility about equally, the transitory component tends to be the

relatively smoother component, with its volatility ranging from 6% to 12%. The permanent

component is slightly more volatile than the overall exchange rate, ranging in volatility from

10% to 16%.

The two components are negatively correlated for all exchange rates. Across the countries

of the benchmark sample, the unconditional correlation of the two exchange rate components

ranges from -0.38 to -0.73. In unreported results, a similar decomposition of 6-month and 12-

month exchange rate changes produces quantitatively similar results. This implies that changes

in the unshared part of the permanent, asset-pricing component of the SDF are partly offset by

changes in the unshared part of the transitory component. This offsetting does not affect asset

prices, since the permanent SDF component is an order of magnitude larger than the transitory

component. However, it can potentially have large effects in the behavior of exchange rates,

as the size of the internationally non-shared parts of the two SDF components does not differ

much.
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Table 4: Properties of SDF and Exchange Rate Components

Moment DEM GBP JPY CAD AUD CHF NZD SEK NOK

Panel A: Exchange rate changes, ∆s

Mean -0.02 0.01 -0.04 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02

Std 0.12 0.11 0.12 0.07 0.12 0.12 0.12 0.12 0.12

Skewness 0.08 0.65 -0.39 0.30 1.02 0.15 0.34 0.64 1.03

Kurtosis 3.02 5.53 3.35 7.20 8.99 2.75 5.30 4.99 7.04

AR(1) coef. 0.70 0.72 0.70 0.66 0.72 0.70 0.76 0.69 0.70

Panel B: Transitory exchange rate changes, ∆sT

Mean -0.00 0.01 -0.04 0.00 0.02 -0.04 0.01 0.01 -0.01

Std 0.10 0.12 0.09 0.06 0.09 0.08 0.08 0.09 0.09

Skewness 0.24 0.55 0.39 -0.12 0.70 -0.10 0.14 -0.22 0.37

Kurtosis 4.30 5.48 5.11 3.44 4.92 3.41 4.16 4.52 3.75

AR(1) coef. 0.63 0.55 0.58 0.55 0.59 0.64 0.64 0.68 0.56

Panel C: Permanent exchange rate changes, ∆sP

Mean -0.01 -0.00 0.00 -0.02 -0.04 0.02 -0.02 -0.02 -0.01

Std 0.14 0.16 0.14 0.10 0.14 0.12 0.13 0.13 0.14

Skewness -0.01 -0.09 -0.40 0.56 0.08 0.32 0.36 0.13 0.35

Kurtosis 3.23 4.68 4.56 4.22 3.96 3.03 3.33 3.15 4.10

AR(1) coef. 0.65 0.65 0.63 0.62 0.62 0.63 0.67 0.66 0.65

Panel D: Exchange Rate Correlations

corr(∆s,∆sT) 0.15 0.00 0.13 -0.14 0.15 0.30 0.18 0.18 0.14

corr(∆s,∆sP) 0.74 0.68 0.75 0.81 0.74 0.77 0.78 0.75 0.75

corr(∆sT,∆sP) -0.55 -0.73 -0.55 -0.70 -0.55 -0.38 -0.48 -0.52 -0.55

Panel E: Transitory SDF

Std 0.09 0.12 0.08 0.10 0.12 0.07 0.11 0.11 0.09
s.e. [0.00] [0.01] [0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01]

corr(mT,US ,mT,∗) 0.61 0.54 0.47 0.81 0.62 0.51 0.67 0.59 0.44
s.e. [0.04] [0.06] [0.07] [0.02] [0.05] [0.06] [0.04] [0.07] [0.07]

Notes: The table reports the mean, standard deviation, skewness, kurtosis, and autocorrelation of three-month
changes in exchange rates, as well as the moments of the transitory and permanent components of exchange
rates. 10-year zero-coupon nominal bonds are used as proxy of infinite-maturity bonds in order to decompose
nominal exchange rate changes into their permanent and transitory components. Means and standard deviations
are annualized. The last panel reports the standard deviations of the transitory component of the nominal SDF,
along with its correlation with the transitory component of the U.S. SDF. Standard errors are obtained from
block bootstrapping with blocks of four periods (10,000 replications). Monthly zero-coupon data from 12/1971
to 12/2012, or subset available.
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This negative correlation between the cyclical and trend components of the exchange rate

is sensible based on what we know about the dynamics of GDP growth. Morley, Nelson, and

Zivot (2003) study the correlation of the cyclical (temporary) and trend component in U.S.

GDP growth. They document that there is a strong, negative correlation of the cycle and trend

component. That is not surprising. Suppose the arrival of a new technology (e.g., the internet)

raises the trend of GPP growth upon arrival, but not actual GDP. Then the cyclical component

will initially be negative and slowly revert back to the mean. In a standard, representative

agent asset pricing model, the pricing kernel would inherit the same properties as aggregate

consumption growth. Of course, we document these properties of the country-specific cyclical

and trend component using only asset pricing data, not a statistical decomposition of the under-

lying fundamentals.11 To illustrate the difference of our decomposition, which aims to capture

differences in the trend and cycle components of pricing kernels across countries using bond re-

turns, with standard statistical decompositions of the nominal exchange rate time-series, we also

perform a Beveridge and Nelson (1981) trend-cycle decomposition of nominal exchange rates.

In unreported results, we find that the trend and cycle components of nominal exchange rates

are negatively correlated; notably, the trend component of nominal exchange rates is positively

correlated with the permanent component of our decomposition (with the average correlation

coefficient being around 0.5), whereas the cyclical component is uncorrelated with the transitory

component of our decomposition.

Cross-sectionally, the correlation between overall exchange rate changes and their transitory

component ranges from -0.14 to 0.30, whereas the correlation between exchange rate changes

and their permanent component is much higher, ranging from 0.68 to 0.81.

5.2 The Implications for International Risk Sharing

Our findings imply that fluctuations in the permanent SDF component are internationally shared

to a significantly larger extent than fluctuations in the transitory SDF component. For each

country’s transitory SDF component, we calculate the annualized standard deviation and the

11We would like to thank Ian Dew-Becker for pointing out this connection to us.
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correlation coefficient with the transitory component of the U.S. SDF and report the results in

Table 4. We also report the bootstrap standard error for each moment.

Table 4 shows that for all countries, the annualized standard deviation of the transitory

SDF component is significantly smaller than the typically calculated Hansen-Jagannathan lower

bound of total SDF volatility. For the 3-month pricing kernel changes, the volatility ranges from

7% (for Switzerland) to 12% (for a number of countries), whereas conventional estimates of the

SDF lower bound exceed 50%. Those results are consistent with the Alvarez and Jermann (2005)

findings that the transitory SDF component is second-order. However, by Brandt, Cochrane, and

Santa-Clara (2006) logic, the much smaller volatility of the transitory SDF component, coupled

with the fact that the transitory component of exchange rate changes is about as volatile as the

total exchange rate changes, implies that the cross-country correlation of the transitory SDF

component is significantly lower than the cross-country correlation of the overall SDF. Indeed,

the last panel of Table 4 reports that, for 3-month pricing kernel changes, correlations range from

0.44 (between the U.S. and Norway) to 0.81 (between the U.S. and Canada). Those correlation

coefficients represent much smaller common variation than the almost perfectly correlated SDFs

reported in Brandt, Cochrane, and Santa-Clara (2006). It follows that there is much more

internationally common variation regarding the permanent SDF component than the transitory

SDF component. In unreported results, we find that our conclusions are robust for six-month

and 12-month pricing kernel changes.

5.3 Real Exchange Rate Decomposition

In order to understand whether our results on the decomposition of nominal exchange rate

changes reflect the dynamics of real variables or are primarily driven by inflation, we also study

the components of real exchange rate changes. To do so requires estimates of the returns on

real bonds. We either proxy real bonds by inflation-indexed bonds, or synthetically construct

real bonds by hedging the inflation exposure of nominal bonds using inflation swaps. Due to the

limited data availability of inflation-indexed bond and inflation swap data, our analysis spans a

limited set of currencies (the U.S. dollar, the U.K pound, the Euro and the Japanese yen) and
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sample periods. We focus here on the main results and report the details in the Appendix.

Our findings are quantitatively similar with those on nominal exchange rates. The main

quantitative differences are that the two components of real exchange rate changes are more

negatively correlated than those of nominal exchange rate changes and that the transitory com-

ponents of real stochastic discount factors are less correlated across countries than their nominal

SDF counterparts.

The similarity of the real and nominal exchange rate change decompositions is due to the

relatively small size of inflation swap rate changes. To illustrate this point, we derive the

following mapping from the nominal to the real exchange rate decomposition, based on the

k-period zero-coupon inflation swap rates f
(k)
t .

Proposition 4. The transitory component of real exchange rate changes equals the transitory

component of nominal exchange rate changes scaled by the relative change in the inflation swap

rates:

Sreal,Tt+1

Sreal,Tt

=
ST
t+1

ST
t

lim
k→∞

(
(1 + f

∗,(k−1)
t+1 )k−1

(1 + f
∗,(k)
t )k

(1 + f
(k)
t )k

(1 + f
(k−1)
t+1 )k−1

)
.

At long horizons, the changes in foreign inflation swap rates relative to the U.S. are too small

to modify the properties of the transitory and permanent changes in nominal exchange rates.

6 Conclusion

In this paper, we derive a novel theoretical uncovered bond return parity condition. If permanent

shocks to the pricing kernels are perfectly shared, then long-term bond returns, once expressed

in a common currency, should be equalized across countries. If permanent shocks are not

perfectly shared, then the difference between the domestic and foreign long-term bond risk

premia, again expressed in a common currency, reflects the difference in the entropy of the

permanent components of the stochastic discount factor. We decompose exchange rate changes

into a component that reflects cross-country differences in permanent pricing kernel innovations

and one that encodes differences in transitory innovations. This decomposition is informative
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on the correlation of the permanent components of stochastic discount factors. Our results are

preference-free and rely only on market completeness.

In the cross-section, we find that the term structure of currency risk premia is downward

sloping. While carry trade strategies based on the three-month Treasury bills are highly prof-

itable, carry trade strategies using long-maturity bonds are not. In the time-series, bond excess

returns expressed in a common currency appear highly correlated, albeit not perfectly. While

Alvarez and Jermann (2005) find that domestic equity and bond markets’ risk premia imply

that the pricing kernels are mostly driven by permanent shocks, we find that the permanent

components of the stochastic discount factors are highly correlated across countries.
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Appendix

Section A reports the proofs of the theoretical results presented in the main text. Section B details the
decomposition of the SDF in two affine term structure models.

A Proofs

This Section gathers all the proofs of the theoretical results in the paper.

• Proof of Proposition 1:

Proof. The proof builds on some results in Backus, Foresi, and Telmer (2001) and Alvarez and Jermann
(2005). Specifically, Backus, Foresi, and Telmer (2001) show that the foreign currency risk premium is
equal to the difference between domestic and foreign total SDF entropy:

(ft − st)− Et[∆st+1] = Lt

(
Λt+1

Λt

)
− Lt

(
Λ∗t+1

Λ∗t

)
.

Furthermore, Alvarez and Jermann (2005) establish that total SDF entropy equals the sum of the entropy
of the permanent SDF component and the expected log term premium:

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
log

R
(∞)
t+1

Rft

)
.

Applying the Alvarez and Jermann (2005) decomposition to the Backus, Foresi, and Telmer (2001) expres-
sion yields the desired result.

To derive the Backus, Foresi, and Telmer (2001) expression, consider a foreign investor who enters a forward
position in the currency market with payoff St+1 − Ft. The investor’s Euler equation is:

Et

(
Λ∗t+1

Λ∗t
(St+1 − Ft)

)
= 0.

In the presence of complete, arbitrage-free international financial markets, exchange rate changes equal the
ratio of the domestic and foreign stochastic discount factors:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

,

Dividing the investor’s Euler equation by St and applying the no arbitrage condition, the forward discount
is:

ft − st = logEt

(
Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
.

The second component of the currency risk premium is expected foreign appreciation; applying logs and
conditional expectations to the no arbitrage condition above leads to:

Et[∆st+1] = Et

(
log

Λt+1

Λt

)
− Et

(
log

Λ∗t+1

Λ∗t

)
.

Combining the two terms of the currency risk premium leads to:

(ft − st)− Et[∆st+1] = logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1

Λt

)
− logEt

(
Λ∗t+1

Λ∗t

)
+ Et

(
log

Λ∗t+1

Λ∗t

)
Applying the definition of conditional entropy in the equation above yields the Backus, Foresi, and Telmer
(2001) expression.

54



To derive the Alvarez and Jermann (2005) result, first note that since the permanent component of the
pricing kernel is a martingale, its conditional entropy can be expressed as follows:

Lt

(
ΛP
t+1

ΛP
t

)
= −Et

(
log

ΛP
t+1

ΛP
t

)
.

The definition of conditional entropy implies the following decomposition of total SDF entropy:

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

ΛT
t+1

ΛT
t

ΛP
t+1

ΛP
t

)
or, using the above expression for the conditional entropy of the permanent SDF component:

Lt

(
Λt+1

Λt

)
= − logRft − Et

(
log

ΛT
t+1

ΛT
t

)
+ Lt

(
ΛP
t+1

ΛP
t

)
.

The Alvarez and Jermann (2005) result hinges on:

lim
k→∞

R
(k)
t+1 = ΛT

t /Λ
T
t+1.

Under the assumption that 0 < lim
k→∞

P
(k)
t

δk
<∞ for all t, one can write:

lim
k→∞

R
(k)
t+1 = lim

k→∞

Et+1

(
Λt+k

Λt+1

)
Et
(

Λt+k

Λt

) =
lim
k→∞

Et+1(Λt+k/δ
t+k)

Λt+1

lim
k→∞

Et(Λt+k/δ
t+k)

Λt

=

ΛP
t+1

Λt+1

ΛP
t

Λt

= ΛT
t /Λ

T
t+1.

Thus, the infinite-maturity bond is exposed only to transitory SDF risk.

• Proof of Corollary 1:

Proof. Start from Proposition 1. The proof from there relies on Proposition 5 in Alvarez and Jermann
(2005). They show that, when the limits of the k-period bond risk premium and the yield difference between
the k-period discount bond and the one-period riskless bond (when the maturity k tends to infinity) are well
defined and the unconditional expectations of holding returns are independent of calendar time, then the

average term premium E
[
limk→∞ rx

(k),∗
t+1

]
equals the average yield spread E[limk→∞ y

(k),∗
t ]. Substituting

for the term premiums in this equation leads to:

E[y
(∞),∗
t ] + E(ft − st)− E[∆st+1] = E[y

(∞),∗
t ] + E

[
Lt

(
ΛP
t+1

ΛP
t

)
− Lt

(
ΛP,∗
t+1

ΛP,∗
t

)]
.

Under regularity conditions, E[limk→∞
1
k

∑k
j=1 ∆st+j ] = limk→∞

1
k

∑k
j=1 E[∆st+j ] converges to E[∆st+1].

Using this result produces the corollary.

• Proof of Proposition 2:

Proof. As shown inAlvarez and Jermann (2005) (see the proof of Proposition 1), the return of the infinite
maturity bond reflects the transitory SDF component:

lim
k→∞

R
(k)
t+1 = ΛT

t /Λ
T
t+1.

The result of Proposition 2 follows directly from the no-arbitrage expression for the spot exchange rate
when markets are complete:

St+1

St
=

Λt+1

Λt

Λ∗t
Λ∗t+1

.
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In this case,

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

=
St
St+1

lim
k→∞

R
(k),∗
t+1

lim
k→∞

R
(k)
t+1

=
St
St+1

ΛT
t

ΛT
t+1

ΛT,∗
t+1

ΛT,∗
t

=
ΛP,∗
t+1

ΛP,∗
t

ΛP
t

ΛP
t+1

=
SP
t

SP
t+1

,

using the decomposition of exchange rate changes into a permanent and a transitory component:

St+1

St
=

(
ΛP
t+1

ΛP
t

ΛP,∗
t

ΛP,∗
t+1

)(
ΛT
t+1

ΛT
t

ΛT,∗
t

ΛT,∗
t+1

)
=
SP
t+1

SP
t

ST
t+1

ST
t

.

The exposure of the domestic and foreign infinite-maturity bonds to transitory risk fully offsets the tran-
sitory component of exchange rate changes, so only the exposure to the permanent part remains.

• Proof of Proposition 3

Proof. Alvarez and Jermann (2005) establish that the lower bound of the entropy of the permanent com-
ponent of the SDF is given by the distance of the expected return of the infinite-maturity bond from the
maximum expected return in the economy:

Lt

(
ΛP
t+1

ΛP
t

)
≥ Et (logRt+1)− Et

(
logR

(∞)
t+1

)
.

Intuitively, the larger the difference between the maximum risk premium in the economy (which compen-
sates investors for exposure to all shocks) and the term premium (which compensates investors only for
transitory shocks), the larger the significance of permanent fluctuations.
To construct this bound, first use the concavity of the logarithmic function to show that for any return
Rt+1:

Et

(
log

Λt+1

Λt

)
+ Et (logRt+1) = Et

(
log

Λt+1

Λt
Rt+1

)
≤ logEt

(
Λt+1

Λt
Rt+1

)
= 0,

where the last equality follows from the assumption of no arbitrage. Using the definition of conditional
entropy, this inequality implies that the maximum risk premium in the economy establishes a lower bound
for total SDF entropy:

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1

Λt

)
≥ Et (logRt+1)− logRft .

To understand the implications of that bound for the amount of permanent risk in the economy, decompose
total SDF entropy. Recall that (see the proof of Proposition 1) total SDF entropy can be decomposed into
the sum of permanent SDF entropy and the term risk premium:

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
logR

(∞)
t+1

)
− logRft .

Since the infinite-maturity bond is solely exposed to transitory SDF fluctuations, ceteris paribus a large term
premium implies significant transitory risk. Applying this decomposition to the total SDF entropy bound
above yields the Alvarez and Jermann (2005) bound on the entropy of the permanent SDF component.

The Alvarez and Jermann (2005) bound is used to construct a bound for the covariance of the log per-
manent component of two countries’ stochastic discount factors. First, by the definition of the permanent
component of exchange rates, its variance reflects the variance of the difference of the two countries’ log
permanent SDF components:

vart

(
log

ΛP
t+1

ΛP
t

− log
ΛP,∗
t+1

ΛP,∗
t

)
= vart

(
SP
t+1

SP
t

)
.
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The variance of the difference of two random variables implies that:

covt

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
=

1

2

[
vart

(
log

ΛP,∗
t+1

ΛP,∗
t

)
+ vart

(
log

ΛP
t+1

ΛP
t

)
− vart

(
log

SP
t+1

SP
t

)]
.

Given the assumption of conditional lognormality of the permanent component of pricing kernels, this
expression can be rewritten in terms of conditional entropy as follows:

covt

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
= Lt

(
ΛP,∗
t+1

ΛP,∗
t

)
+ Lt

(
ΛP
t+1

ΛP
t

)
− 1

2
vart

(
log

SP
t+1

SP
t

)
.

In effect, this expression applies the logic of the Brandt, Cochrane, and Santa-Clara (2006) decomposition
to permanent SDF components: the implied covariance of the log permanent SDF components is increas-
ing in the permanent SDF entropy of the two countries and decreasing in the variance of the permanent
component of exchange rate changes.
Finally, the covariance above relates to risk premia by using the Alvarez and Jermann (2005) bound for

Lt

(
Λ
P,∗
t+1

Λ
P,∗
t

)
and Lt

(
ΛP
t+1

ΛP
t

)
. This yields the expression in Proposition 3.

For the unconditional version of Proposition 3, first follow Alvarez and Jermann (2005) and establish a
bound for the unconditional entropy of the permanent SDF component:

L

(
ΛP
t+1

ΛP
t

)
≥ E (logRt+1)− E

(
logR

(∞)
t+1

)
.

Applying unconditional expectations on the two sides of the previously established conditional SDF entropy
bound leads to:

Lt

(
Λt+1

Λt

)
≥ Et (logRt+1)− logRft ,

using the following property of entropy: for any admissible random variable X, it holds that

E [Lt(Xt+1)] = L(Xt+1)− L [Et(Xt+1)] .

After some algebra, the following bound for the unconditional entropy of the SDF is obtained:

L

(
Λt+1

Λt

)
≥ L

(
1

Rft

)
+ E

(
log

Rt+1

Rft

)
.

To derive an expression for the unconditional entropy of the permanent SDF component, one needs to
decompose the unconditional SDF entropy. To do so, start with the decomposition of the conditional SDF
entropy:

Lt

(
Λt+1

Λt

)
= Lt

(
ΛP
t+1

ΛP
t

)
+ Et

(
logR

(∞)
t+1

)
− logRft ,

and apply unconditional expectations on both sides of the expression in order to obtain:

L

(
Λt+1

Λt

)
= L

(
ΛP
t+1

ΛP
t

)
+ L

(
1

Rft

)
+ E

(
log

R
(∞)
t+1

Rft

)
,

using the fact that the permanent component of the pricing kernel is a martingale:

L

(
Et

ΛP
t+1

ΛP
t

)
= 0.

Using the above decomposition of unconditional SDF entropy, the unconditional entropy bound can be
written as follows:

L

(
ΛP
t+1

ΛP
t

)
+ L

(
1

Rft

)
+ E

(
log

R
(∞)
t+1

Rft

)
≥ L

(
1

Rft

)
+ E

(
log

Rt+1

Rft

)
.
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The Alvarez and Jermann (2005) unconditional bound follows immediately by rearranging the terms in the
expression above. Considering the unconditional covariance of the domestic and foreign permanent SDF
components and using this bound yields the unconditional expression of Proposition 3:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1

R
(∞),∗
t+1

)
+ Et

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
.

This result relies on the assumption that
ΛP
t+1

ΛP
t

and
Λ
P,∗
t+1

Λ
P,∗
t

are unconditionally lognormal and the entropy

property

L(X) =
1

2
var(logX)

for any lognormal random variable X.

• Proof of Proposition 4:

Proof. Consider the pricing equation for an inflation swap

0 = Et

[
Λt+k
Λt

(
CPIt+k
CPIt

− (1 + f
(k)
t )k

)]
= Et

[
Λrealt+k

Λrealt

]
− (1 + f

(k)
t )kEt

[
Λt+k
Λt

]

where f
(k)
t is the inflation swap rate at t for k periods into the future. Rearranging the pricing equation, the

conditional expectation of the nominal pricing kernel is derived as a function of the conditional expectation
of the real pricing kernel, the price level and the inflation swap rate:

Et [Λt+k] =
Λt

Λrealt

1

(1 + f
(k)
t )k

Et
[
Λrealt+k

]
=

Et
[
Λrealt+k

]
CPIt(1 + f

(k)
t )k

. (4)

The relative USD holding period return of foreign and domestic nominal bonds with maturity k periods
into the future is given by:

St
St+1

R
(k),∗
t+1

R
(k)
t+1

=
Et+1 (Λ∗t+k)

Et
(
Λ∗t+k

) Et (Λt+k)

Et+1 (Λt+k)

Using Equation (4) then leads to:

St
St+1

R
(k),∗
t+1

R
(k)
t+1

=
(1 + f

∗,(k)
t )k

(1 + f
∗,(k−1)
t+1 )k−1

(1 + f
(k−1)
t+1 )k−1

(1 + f
(k)
t )k

CPI∗t
CPI∗t+1

CPIt+1

CPIt

Et+1

[
Λ∗,realt+k

]
Et
[
Λ∗,realt+k

] Et
[
Λrealt+k

]
Et+1

[
Λrealt+k

]
Given the relationship between the nominal and the real exchange rate,

Srealt

Srealt+1

=
St
St+1

CPI∗t+1

CPI∗t

CPIt
CPIt+1

,

the ratio of holding period returns is:

R
(k),∗
t+1

R
(k)
t+1

=
(1 + f

∗,(k)
t )k

(1 + f
∗,(k−1)
t+1 )k−1

(1 + f
(k−1)
t+1 )k−1

(1 + f
(k)
t )k

Srealt+1

Srealt

Et+1

[
Λ∗,realt+k

]
Et
[
Λ∗,realt+k

] Et
[
Λrealt+k

]
Et+1

[
Λrealt+k

]


and since the terms inside the brackets equal the relative USD return of foreign and domestic real bonds,

given by
Sreal
t

Sreal
t+1

R
real,(k),∗
t+1

R
real,(k)
t+1

, the ratio of holding period returns can be rewritten as:

R
(k),∗
t+1

R
(k)
t+1

=
(1 + f

∗,(k)
t )k

(1 + f
∗,(k−1)
t+1 )k−1

(1 + f
(k−1)
t+1 )k−1

(1 + f
(k)
t )k

R
real,(k),∗
t+1

R
real,(k)
t+1

Therefore, the relative return of nominal bonds (in terms of their local currency) equals the relative local
currency return of real bonds scaled by a term that reflects swap rates. Rearranging the expression above
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and focusing on returns of infinite maturity bonds leads to the link between the transitory components of
real and nominal exchange rate changes:

lim
k→∞

(
R
real,(k),∗
t+1

R
real,(k)
t+1

)
= lim
k→∞

(
R

(k),∗
t+1

R
(k)
t+1

)
lim
k→∞

(
(1 + f

∗,(k−1)
t+1 )k−1

(1 + f
∗,(k)
t )k

(1 + f
(k)
t )k

(1 + f
(k−1)
t+1 )k−1

)
.

B Factorization in Affine Term Structure Models

This Section focuses on the Cox, Ingersoll, and Ross (1985) and Lustig, Roussanov, and Verdelhan (2011) models.

B.1 Cox, Ingersoll, and Ross (1985) Model

The Cox, Ingersoll, and Ross (1985) model (denoted CIR) is defined by the following two equations:

− logMt+1 = α+ χzt +
√
γztut+1, (5)

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

where M denotes the stochastic discount factor.

Bond Prices Log bond prices are affine in the state variable z:

p
(n)
t = −Bn0 −Bn1 zt.

The price of a one period-bond is:

P (1) = Et(Mt+1) = e−α−(χ− 1
2
γ)zt .

Bond prices are defined recursively by the Euler equation: P
(n)
t = Et(Mt+1P

(n−1)
t+1 ). Thus the bond price coeffi-

cients evolve according to the following second-order difference equations:

Bn0 = α+Bn−1
0 +Bn−1

1 (1− φ)θ, (6)

Bn1 = χ− 1

2
γ +Bn−1

1 φ− 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 .

Decomposition The temporary pricing component of the pricing kernel is:

ΛT
t = lim

n→∞

βt+n

P
(n)
t

= lim
n→∞

βt+neB
n
0 +Bn

1 zt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005):

0 < lim
n→∞

P
(n)
t

βn
<∞.

The limit of Bn0 − Bn−1
0 is finite: limn→∞B

n
0 − Bn−1

0 = α + B∞1 (1 − φ)θ, where B∞1 is defined implicitly in a
second-order equation above. As a result, Bn0 grows at a linear rate in the limit. We choose the constant β to
offset the growth in Bn0 as n becomes very large. Setting

β = e−α−B
∞
1 (1−φ)θ

guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied. The temporary pricing component of
the SDF is thus equal to:

ΛT
t+1

ΛT
t

= βeB
∞
1 (zt+1−zt) = βeB

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1].
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As a result, the martingale component of the SDF is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1]. (7)

Bond Risk Premia The holding period return on a zero-coupon bond of maturity n between date t and
t+ 1 is R

(n)
t+1 = P

(n−1)
t+1 /P

(n)
t . Let r

(n)
t+1 denote the corresponding log holding period return.

r
(n)
t+1 = Bn0 −Bn−1

0 −Bn−1
1 zt+1 +Bn1 zt,

= Bn0 −Bn−1
0 −Bn−1

1 (1− φ)θ

+ [χ− 1

2
γ − 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt

+ Bn−1
1 σ

√
ztut+1.

Hence it follows that the log holding period return in excess of the risk-free rate is given by:

rx
(n)
t+1 = r

(n)
t+1 − α− (χ− 1

2
γ)zt,

= [−1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt +Bn−1
1 σ

√
ztut+1.

The expected log excess return is thus given by:

Et[rx
(n)
t+1] = [−1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt.

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = [−1

2
(B∞1 )2 σ2 + σ

√
γB∞1 ]zt,

= [B∞1 (1− φ)− χ+
1

2
γ]zt.

The − 1
2

(B∞1 )2 σ2 is a Jensen term. The term premium is driven by σ
√
γB∞1 zt, where B∞1 is defined implicitly

in the second order equation B∞1 = χ− 1
2
γ +B∞1 φ− 1

2
(B∞1 )2 σ2 + σ

√
γB∞1 .

No Permanent Shocks Consider the special case of B∞1 (1 − φ) = χ. In this case, the expected term

premium is simply Et[rx
(∞)
t+1 ] = 1

2
γzt, which is equal to one-half of the variance of the log stochastic discount

factor.

Foreign Pricing Kernel Suppose that the foreign pricing kernel is specified as in Equation (6) with the
same parameters. However, the foreign country has its own factor z?. As a result, the difference between the
domestic and foreign log term premia is equal to the log currency risk premium, which is given by Et[rx

FX
t+1] =

1
2
γ(zt − z∗t ). In other words, the expected foreign log holding period return on a foreign long bond converted into

U.S. dollars is equal to the U.S. term premium: Et[rx
(∞),∗
t+1 ] + Et[rx

FX
t+1] = 1

2
γzt.

This special case corresponds to the absence of permanent shocks to the SDF: when B∞1 (1 − φ) = χ, the
permanent component of the stochastic discount factor is constant. To see this result, let us go back to the
implicit definition of B∞1 in Equation (7):

0 =
1

2
(B∞1 )2 σ2 + (1− φ− σ√γ)B∞1 − χ+

1

2
γ,

0 =
1

2
(B∞1 )2 σ2 − σ√γB∞1 +

1

2
γ,

0 = (σB∞1 −
√
γ)2 .

In this special case, B∞1 =
√
γ/σ. Using this result in Equation (7), the permanent component of the SDF reduces
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to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1] = β−1e−α−χθ,

which is a constant.
The same structure exists in the foreign economy. All foreign variables are denoted with a ∗. We do not

impose the parameters to be the same. We define the log changes in exchange rates as the log difference in the
SDFs.

B.2 Lustig, Roussanov, and Verdelhan (2011) Model

Suppose we have a version of the CIR model with two common components: a persistent and a transitory
component. This model is defined by the following set of equations:

− logMt+1 = α+ χzt +
√
γztut+1 + τzPt +

√
δzPt u

P
t+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

zPt+1 = (1− φP)θP + φpzPt − σP
√
zPt u

P
t+1,

where zt is the transitory factor, and zPt is the permanent factor.

Bond Prices The nominal log zero-coupon yield of maturity n months in the currency of country i is given
by the standard affine expression:

y
(n),$
t = − 1

n

(
Ãn + B̃nzt + C̃nz

P
t

)
,

where the coefficients satisfy the second-order difference equation:

Ãn = −α+ Ãn−1 + B̃n−1 (1− φ) θ + C̃n−1

(
1− φP

)
θP, (8)

B̃n = −
(
χ− 1

2
γ

)
+ B̃n−1 (φ+ σ

√
γ) +

1

2

(
B̃n−1σ

)2

,

C̃n = −
(
τ − 1

2
δ

)
+ C̃n−1

(
φP + σP√δ

)
+

1

2

(
C̃n−1σ

p
)2

.

The nominal log zero-coupon price of maturity n months in the currency of country i is given by the standard
affine expression

p
(n),$
t =

(
Ãn + B̃nzt + C̃nz

P
t

)
.

Bond prices are defined recursively by the Euler equation: P
(n)
t = Et(Mt+1P

n−1
t+1 ), and the price of a one period-

bond is given by:

P (1) = Et(Mt+1) = e−α−(χ− 1
2
γ)zt−(τ− 1

2
δ)zPt ,

which implies that the nominal risk-free interest rate (in logarithms) is given by this affine function of the persistent
component and the transitory component:

rft = α+

(
χ− 1

2
γ

)
zt +

(
τ − 1

2
δ

)
zPt .

61



Bond Risk Premia The log of the holding period return on a zero-coupon bond of maturity n between
date t and t+ 1 is :

r
(n)
t+1 = −An +An−1 +Bn−1zt+1 −Bnzt + Cn−1z

P
t+1 − CnzPt

= −An +An−1 +Bn−1[(1− φ)θ + φzt − σ
√
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√
zPt ut+1]
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2
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√
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1

2
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(
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2
δ

)
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(
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)
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1

2

(
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2
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√
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2
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)2
]
zt,

+
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2
δ
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− 1

2

(
C̃n−1σ

p
)2
]
zpt

− Bn−1σ
√
ztut+1 − Cn−1σ

P
√
zpt u

P
t+1.

Thus, the log holding period return minus the risk-free rate is:
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(n)
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(
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2
γ

)
zt +

(
τ − 1

2
δ

)
zPt ),

= −An +An−1 +Bn−1(1− φ)θ + Cn−1(1− φP)θP − α

−
[
B̃n−1 (σ

√
γ) +

1

2

(
B̃n−1σ

)2
]
zt − Cn−1

1 σ
√
ztut+1,

−
[
C̃n−1

(
σP√δ

)
+

1

2

(
C̃n−1σ

p
)2
]
zPt − Cn−1

1 σ
√
zPt u

P
t+1.

The expected log excess return on an n-maturity zero coupon bond is thus:

Et[rx
(n)
t+1] = −

[
1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1

]
zt,

−
[

1

2

(
Cn−1

1

)2
(σP)2 + σ

√
γCn−1

1

]
zPt .

The expected log excess return on an infinite maturity bond is thus:

Et[rx
(∞)
t+1 ] = −

[
1

2
(B∞1 )2 σ2 + σ

√
γB∞1

]
zt,

−
[

1

2
(C∞1 )2 (σP)2 + σ

√
γC∞1

]
zPt .

Using the expression for B∞1 and C∞1 implicit in (9), this equation can be restated as follows:

Et[rx
(∞)
t+1 ] = −

[
(B∞1 ) (1− φ) + χ− 1

2
γ

]
zt,

−
[
(C∞1 ) (1− φP) + τ − 1

2
δ

]
zPt .

To give content to the notion that zt is transitory, we impose that B∞1 (1− φ) = χ. This restriction implies that
the permanent component of the pricing kernel is not affected by the transitory factor zt, as can easily be verified:
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Using this result in expression 7, the permanent component of the stochastic discount factor reduces to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χzt−
√
γztut+1−τzPt−

√
δz

p
t u

P
t+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1]

× e
−C∞1

[
(φP−1)(zPt−θ

P)−σP
√
zPtut+1

]

= β−1e−α−χθe
−C∞1

[
(φP−1)(zPt−θ

P)−σP
√
zPtut+1

]
,

which does not depend on zt. Given this restriction, the bond risk premium is given by:

Et[rx
(∞)
t+1 ] =

1

2
γzt −

[
τ − 1

2
δ + (C∞1 ) (1− φp)

]
zPt .

Foreign Pricing Kernel Both factors are common across countries, but we allow for heterogeneous factor
loadings on these common or global factors following Lustig, Roussanov, and Verdelhan (2011). The foreign SDF
is given by:

− logM∗t+1 = α+ χzt +
√
γ∗ztut+1 + τzPt +

√
δ∗zPt u

P
t+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

zPt+1 = (1− φP)θP + φPzPt − σP
√
zPt u

P
t+1

where zt is the transitory factor, and zPt is the permanent factor. As can easily be verified, the log currency risk
premium is given by: Et[rx

FX
t+1] = 1

2
(γ − γ∗)zt + 1

2
(δ − δ∗)zPt . This implies that the expected foreign log holding

period return on a foreign long bond converted into U.S. dollars is :

Et[rx
(∞),$
t+1 ] = Et[rx

(∞),∗
t+1 ] + Et[rx

FX
t+1],

=
1

2
γzt −

[
τ − 1

2
δ + (C∞,∗1 ) (1− φP)

]
zPt

where C̃∞,∗ is defined by the following equation C̃∞,∗ = −
(
τ − 1

2
δ∗
)
+C̃∞,∗

(
φP + σP√δ∗

)
+ 1

2

(
C̃∞,∗σ

P
)2

. Hence,

the difference between the foreign and the domestic term premium is given by: (C∞,∗1 − C∞1 ) (1 − φP)zPt . In the
symmetric case in which δ = δ∗, the foreign term premium in dollars equals the domestic term premium. If
γ > γ∗, there is a large positive foreign currency risk premium Et[rx

FX
t+1] = 1

2
(γ − γ∗)zt, but that is exactly offset

by a smaller foreign term premium.
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Online Appendix for “The Term Structure
of Currency Carry Trade Risk Premia”

—Not For Publication—

This online appendix describes additional empirical results on the cross-section of currency and term risk
premia. Section A reports additional results on portfolios of countries sorted by the slope of the yield curves.
Section B reports similar results for portfolios of countries sorted by the short-term interest rates. Section C
reports additional time-series tests of the uncovered bond return parity condition. Section D focuses on the
decomposition of real exchange rates into a permanent and a temporary component.

A Sorting Currencies by the Slope of the Yield Curve

Figure 7 presents the composition over time of portfolios of the 9 currencies of the benchmark sample sorted by
the slope of the yield curve.
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Figure 7: Composition of Slope-Sorted Portfolios — The figure presents the composition of portfolios of the
currencies in the benchmark sample sorted by the slope of their yield curves. The portfolios are rebalanced monthly. The
slope of the yield curve is measured as the 10-year interest rate minus the one-month Treasury bill rates. Data are monthly,
from 12/1950 to 12/2012.

Table 5 reports the results of sorting on the yield curve slope on the sample of developed countries, whereas
Table 6 reports the results obtained from using the entire cross-section of countries, including emerging countries.
The results are commented in the main text.

64



T
ab

le
5:

S
lo

p
e

S
or

te
d

P
or

tf
ol

io
s:

D
ev

el
op

ed
sa

m
p

le

P
o
rt

fo
li
o

1
2

3
4

4
−

1
1

2
3

4
4
−

1
1

2
3

4
4
−

1
H

o
ri

zo
n

1
-m

o
n
th

3
-m

o
n
th

1
2
-m

o
n
th

P
a
n

el
A

:
1
9
5
0
-2

0
1
2

−
∆
s

M
ea

n
-0

.7
8

0
.1

4
0
.0

5
0
.6

7
1
.4

5
-0

.9
4

0
.2

5
-0

.0
6

0
.6

8
1
.6

2
-0

.7
9

0
.1

3
-0

.0
1

0
.4

8
1
.2

8
f
−
s

M
ea

n
3
.6

9
1
.6

4
0
.8

2
-0

.1
8

-3
.8

7
3
.6

0
1
.6

3
0
.8

5
-0

.1
2

-3
.7

1
3
.3

3
1
.6

2
0
.9

0
0
.0

6
-3

.2
7

r
x
F
X

M
ea

n
2
.9

1
1
.7

8
0
.8

7
0
.4

9
-2

.4
2

2
.6

6
1
.8

8
0
.7

9
0
.5

6
-2

.1
0

2
.5

4
1
.7

4
0
.8

9
0
.5

4
-1

.9
9

s.
e.

[0
.9

6
]

[1
.0

1
]

[1
.0

5
]

[1
.0

3
]

[0
.6

3
]

[1
.0

9
]

[1
.0

7
]

[1
.1

1
]

[1
.0

5
]

[0
.6

4
]

[1
.2

2
]

[1
.0

7
]

[1
.2

3
]

[1
.1

5
]

[0
.6

5
]

S
td

7
.6

2
7
.9

2
8
.1

6
8
.0

8
5
.0

3
8
.3

3
8
.0

8
8
.5

9
8
.0

9
4
.9

5
9
.3

2
8
.6

8
9
.4

4
8
.6

7
4
.8

8
S

R
0
.3

8
0
.2

2
0
.1

1
0
.0

6
-0

.4
8

0
.3

2
0
.2

3
0
.0

9
0
.0

7
-0

.4
2

0
.2

7
0
.2

0
0
.0

9
0
.0

6
-0

.4
1

s.
e.

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

5
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

5
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

4
]

r
x

(1
0
),
∗

M
ea

n
-1

.9
6

0
.2

7
2
.2

7
3
.9

5
5
.9

0
-1

.2
9

0
.9

5
1
.8

8
3
.1

5
4
.4

4
-0

.3
3

1
.0

8
1
.6

0
2
.2

0
2
.5

2
s.

e.
[0

.5
1
]

[0
.5

2
]

[0
.5

1
]

[0
.7

4
]

[0
.8

4
]

[0
.6

1
]

[0
.5

8
]

[0
.6

1
]

[0
.7

8
]

[0
.8

6
]

[0
.6

8
]

[0
.8

6
]

[0
.6

7
]

[1
.0

8
]

[1
.0

1
]

S
td

4
.0

5
4
.0

8
4
.0

2
5
.8

4
6
.6

0
4
.8

9
4
.7

2
4
.6

7
6
.4

3
7
.0

1
5
.8

6
5
.8

2
5
.6

8
6
.8

7
6
.9

7
S

R
-0

.4
8

0
.0

7
0
.5

6
0
.6

8
0
.8

9
-0

.2
6

0
.2

0
0
.4

0
0
.4

9
0
.6

3
-0

.0
6

0
.1

9
0
.2

8
0
.3

2
0
.3

6
s.

e.
[0

.1
3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

4
]

[0
.1

6
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

4
]

[0
.1

5
]

[0
.1

3
]

[0
.1

4
]

[0
.1

3
]

[0
.1

3
]

[0
.1

8
]

r
x

(1
0
),

$
M

ea
n

0
.9

5
2
.0

5
3
.1

4
4
.4

4
3
.4

8
1
.3

7
2
.8

3
2
.6

7
3
.7

1
2
.3

4
2
.2

1
2
.8

2
2
.4

9
2
.7

4
0
.5

3
s.

e.
[1

.0
9
]

[1
.1

5
]

[1
.1

5
]

[1
.3

9
]

[1
.1

0
]

[1
.2

2
]

[1
.1

8
]

[1
.2

8
]

[1
.4

0
]

[1
.1

2
]

[1
.3

6
]

[1
.3

5
]

[1
.3

7
]

[1
.5

9
]

[1
.3

0
]

S
td

8
.5

9
9
.0

6
8
.9

7
1
0
.9

1
8
.7

2
9
.5

1
9
.2

3
9
.7

2
1
1
.2

7
9
.0

9
1
0
.8

6
1
0
.3

7
1
1
.1

8
1
1
.3

6
9
.4

5
S

R
0
.1

1
0
.2

3
0
.3

5
0
.4

1
0
.4

0
0
.1

4
0
.3

1
0
.2

7
0
.3

3
0
.2

6
0
.2

0
0
.2

7
0
.2

2
0
.2

4
0
.0

6
s.

e.
[0

.1
3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

2
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

3
]

[0
.1

4
]

r
x

(1
0
),

$
−
r
x

(1
0
),
U
S

M
ea

n
-0

.5
6

0
.5

3
1
.6

3
2
.9

3
3
.4

8
-0

.1
5

1
.3

1
1
.1

5
2
.1

9
2
.3

4
0
.6

7
1
.2

8
0
.9

5
1
.2

0
0
.5

3
s.

e.
[1

.2
5
]

[1
.2

3
]

[1
.1

9
]

[1
.4

6
]

[1
.1

0
]

[1
.4

0
]

[1
.2

4
]

[1
.2

6
]

[1
.4

2
]

[1
.1

2
]

[1
.4

7
]

[1
.3

5
]

[1
.4

3
]

[1
.6

3
]

[1
.3

0
]

P
a
n

el
B

:
1
9
7
1
-2

0
1
2

−
∆
s

M
ea

n
-0

.9
6

0
.1

8
0
.2

9
0
.8

4
1
.8

0
-1

.2
0

0
.3

7
0
.0

0
0
.8

3
2
.0

3
-1

.1
8

0
.2

7
0
.0

5
0
.5

4
1
.7

3
f
−
s

M
ea

n
4
.2

9
1
.8

9
1
.0

3
-0

.2
0

-4
.4

9
4
.1

8
1
.8

7
1
.0

6
-0

.1
1

-4
.2

9
3
.8

7
1
.8

6
1
.1

2
0
.1

3
-3

.7
4

r
x
F
X

M
ea

n
3
.3

3
2
.0

7
1
.3

2
0
.6

4
-2

.6
9

2
.9

8
2
.2

4
1
.0

6
0
.7

2
-2

.2
6

2
.6

9
2
.1

3
1
.1

8
0
.6

8
-2

.0
1

s.
e.

[1
.4

4
]

[1
.5

1
]

[1
.5

2
]

[1
.5

5
]

[0
.9

4
]

[1
.6

1
]

[1
.6

0
]

[1
.6

2
]

[1
.5

8
]

[0
.9

5
]

[1
.8

2
]

[1
.6

2
]

[1
.8

2
]

[1
.7

5
]

[0
.9

5
]

S
td

9
.2

2
9
.7

1
9
.7

5
9
.9

0
5
.9

9
1
0
.1

3
9
.8

7
1
0
.3

5
9
.9

0
5
.9

4
1
1
.3

5
1
0
.5

5
1
1
.4

3
1
0
.6

1
5
.9

0
S

R
0
.3

6
0
.2

1
0
.1

4
0
.0

7
-0

.4
5

0
.2

9
0
.2

3
0
.1

0
0
.0

7
-0

.3
8

0
.2

4
0
.2

0
0
.1

0
0
.0

6
-0

.3
4

s.
e.

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

7
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

7
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

8
]

r
x

(1
0
),
∗

M
ea

n
-1

.8
9

0
.7

5
2
.5

6
4
.7

6
6
.6

5
-1

.1
0

1
.7

2
2
.3

2
3
.5

0
4
.6

0
0
.0

7
1
.8

1
2
.0

3
2
.1

7
2
.1

0
s.

e.
[0

.7
4
]

[0
.7

3
]

[0
.7

5
]

[1
.0

9
]

[1
.2

2
]

[0
.8

9
]

[0
.8

6
]

[0
.8

7
]

[1
.1

4
]

[1
.2

6
]

[0
.9

5
]

[1
.2

6
]

[0
.9

5
]

[1
.6

2
]

[1
.5

2
]

S
td

4
.7

7
4
.7

5
4
.7

7
6
.9

2
7
.7

9
5
.7

7
5
.5

8
5
.5

0
7
.6

1
8
.3

3
6
.8

5
6
.7

7
6
.6

9
8
.1

2
8
.3

3
S

R
-0

.4
0

0
.1

6
0
.5

4
0
.6

9
0
.8

5
-0

.1
9

0
.3

1
0
.4

2
0
.4

6
0
.5

5
0
.0

1
0
.2

7
0
.3

0
0
.2

7
0
.2

5
s.

e.
[0

.1
6
]

[0
.1

6
]

[0
.1

5
]

[0
.1

7
]

[0
.1

8
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

7
]

[0
.1

7
]

[0
.1

6
]

[0
.1

8
]

[0
.1

7
]

[0
.1

6
]

[0
.1

9
]

r
x

(1
0
),

$
M

ea
n

1
.4

4
2
.8

2
3
.8

7
5
.4

0
3
.9

6
1
.8

8
3
.9

6
3
.3

8
4
.2

1
2
.3

4
2
.7

6
3
.9

4
3
.2

1
2
.8

5
0
.0

9
s.

e.
[1

.6
0
]

[1
.7

0
]

[1
.6

6
]

[2
.0

9
]

[1
.6

3
]

[1
.7

7
]

[1
.7

5
]

[1
.8

5
]

[2
.0

7
]

[1
.6

6
]

[1
.9

7
]

[1
.9

7
]

[1
.9

7
]

[2
.4

0
]

[1
.9

5
]

S
td

1
0
.2

9
1
0
.9

8
1
0
.6

7
1
3
.2

4
1
0
.3

5
1
1
.4

0
1
1
.1

4
1
1
.6

0
1
3
.6

1
1
0
.8

7
1
2
.9

1
1
2
.2

7
1
3
.2

9
1
3
.6

7
1
1
.3

8
S

R
0
.1

4
0
.2

6
0
.3

6
0
.4

1
0
.3

8
0
.1

6
0
.3

6
0
.2

9
0
.3

1
0
.2

2
0
.2

1
0
.3

2
0
.2

4
0
.2

1
0
.0

1
s.

e.
[0

.1
6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

[0
.1

7
]

[0
.1

6
]

[0
.1

6
]

[0
.1

6
]

r
x

(1
0
),

$
−
r
x

(1
0
),
U
S

M
ea

n
-1

.0
6

0
.3

1
1
.3

7
2
.9

0
3
.9

6
-0

.6
6

1
.4

3
0
.8

5
1
.6

8
2
.3

4
0
.1

9
1
.3

7
0
.6

4
0
.2

8
0
.0

9
s.

e.
[1

.7
6
]

[1
.7

4
]

[1
.6

6
]

[2
.1

4
]

[1
.6

3
]

[2
.0

1
]

[1
.7

9
]

[1
.8

0
]

[2
.0

8
]

[1
.6

6
]

[2
.1

5
]

[1
.9

6
]

[2
.0

6
]

[2
.4

3
]

[1
.9

5
]

A
n
n
u
a
li
ze

d
m

o
n
th

ly
lo

g
re

tu
rn

s
re

a
li
ze

d
a
t
t

+
k

o
n

1
0
-y

ea
r

B
o
n
d

In
d
ex

a
n
d

T
-b

il
ls

fo
r
k

fr
o
m

1
m

o
n
th

to
1
2

m
o
n
th

s.
P

o
rt

fo
li
o
s

o
f

2
1

cu
rr

en
ci

es
so

rt
ed

ev
er

y
m

o
n
th

b
y

th
e

sl
o
p

e
o
f

th
e

y
ie

ld
cu

rv
e

(1
0
-y

ea
r

y
ie

ld
m

in
u
s

T
-b

il
l

ra
te

)
a
t
t.

T
h
e

u
n
b
a
la

n
ce

d
p
a
n
el

co
n
si

st
s

o
f

A
u
st

ra
li
a
,

A
u
st

ri
a
,

B
el

g
iu

m
,

C
a
n
a
d
a
,

D
en

m
a
rk

,
F

in
la

n
d
,

F
ra

n
ce

,
G

er
m

a
n
y,

G
re

ec
e,

Ir
el

a
n
d
,

It
a
ly

,
J
a
p
a
n
,

th
e

N
et

h
er

la
n
d
s,

N
ew

Z
ea

la
n
d
,

N
o
rw

ay
,

P
o
rt

u
g
a
l,

S
p
a
in

,
S
w

ed
en

,
S
w

it
ze

rl
a
n
d
,

a
n
d

th
e

U
n
it

ed
K

in
g
d
o
m

.

65



T
ab

le
6:

S
lo

p
e

S
or

te
d

P
or

tf
ol

io
s:

W
h

ol
e

sa
m

p
le

P
o
rt

fo
li
o

1
2

3
4

5
5
−

1
1

2
3

4
5

5
−

1
1

2
3

4
5

5
−

1
H

o
ri

zo
n

1
-m

o
n
th

3
-m

o
n
th

1
2
-m

o
n
th

P
a
n

el
A

:
1
9
5
0
-2

0
1
2

−
∆
s

M
ea

n
-2

.1
5

-0
.7

1
-0

.1
8

0
.2

7
-0

.4
7

1
.6

7
-2

.4
7

-0
.5

3
0
.0

2
-0

.1
1

-0
.3

2
2
.1

4
-2

.1
9

-0
.5

9
-0

.1
5

0
.0

2
-0

.5
5

1
.6

4
f
−
s

M
ea

n
4
.6

3
2
.0

6
1
.2

8
0
.5

2
-0

.0
8

-4
.7

1
4
.4

5
2
.0

4
1
.3

0
0
.5

4
0
.5

0
-3

.9
5

4
.1

2
1
.9

9
1
.3

0
0
.7

4
0
.2

7
-3

.8
5

r
x
F
X

M
ea

n
2
.4

9
1
.3

5
1
.1

0
0
.7

9
-0

.5
5

-3
.0

4
1
.9

9
1
.5

1
1
.3

2
0
.4

3
0
.1

8
-1

.8
1

1
.9

3
1
.4

0
1
.1

5
0
.7

6
-0

.2
8

-2
.2

1
s.

e.
0
.9

4
0
.9

1
0
.9

8
1
.0

3
0
.8

2
0
.7

2
1
.0

4
0
.9

7
1
.0

5
1
.0

8
0
.8

4
0
.7

3
1
.1

6
1
.0

2
1
.1

1
1
.1

8
0
.8

9
0
.8

1
S

td
7
.4

8
7
.1

0
7
.7

0
8
.0

0
6
.3

7
5
.6

5
8
.1

1
7
.6

6
7
.9

2
8
.1

4
8
.9

1
8
.5

6
8
.9

0
8
.1

6
8
.7

6
9
.7

0
6
.8

7
6
.0

6
S

R
0
.3

3
0
.1

9
0
.1

4
0
.1

0
-0

.0
9

-0
.5

4
0
.2

4
0
.2

0
0
.1

7
0
.0

5
0
.0

2
-0

.2
1

0
.2

2
0
.1

7
0
.1

3
0
.0

8
-0

.0
4

-0
.3

6
s.

e.
0
.1

4
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

6
0
.1

4
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

6
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

4

r
x

(1
0
),
∗

M
ea

n
-3

.3
2

-0
.8

2
1
.4

6
2
.5

6
5
.0

5
8
.3

7
-2

.5
6

-0
.0

3
1
.4

3
2
.1

1
3
.8

3
6
.3

8
-1

.3
2

0
.3

2
1
.5

0
1
.5

5
3
.0

7
4
.4

0
s.

e.
0
.5

3
0
.4

9
0
.4

6
0
.4

9
0
.6

6
0
.8

1
0
.6

2
0
.5

4
0
.5

6
0
.5

9
0
.6

8
0
.8

2
0
.5

8
0
.6

9
0
.7

5
0
.6

6
0
.9

6
0
.8

9
S

td
4
.1

4
3
.8

8
3
.6

5
3
.9

1
5
.2

0
6
.3

1
4
.8

7
4
.4

2
4
.4

0
4
.6

2
8
.4

6
9
.1

8
5
.0

5
5
.4

2
5
.5

7
6
.8

0
6
.0

6
6
.3

6
S

R
-0

.8
0

-0
.2

1
0
.4

0
0
.6

6
0
.9

7
1
.3

3
-0

.5
3

-0
.0

1
0
.3

2
0
.4

6
0
.4

5
0
.7

0
-0

.2
6

0
.0

6
0
.2

7
0
.2

3
0
.5

1
0
.6

9
s.

e.
0
.1

1
0
.1

2
0
.1

3
0
.1

4
0
.1

5
0
.1

5
0
.1

1
0
.1

3
0
.1

3
0
.1

3
0
.1

5
0
.1

6
0
.1

4
0
.1

4
0
.1

4
0
.1

4
0
.1

2
0
.1

7

r
x

(1
0
),

$
M

ea
n

-0
.8

3
0
.5

3
2
.5

6
3
.3

5
4
.5

0
5
.3

3
-0

.5
7

1
.4

8
2
.7

4
2
.5

4
4
.0

0
4
.5

7
0
.6

1
1
.7

2
2
.6

5
2
.3

1
2
.8

0
2
.1

9
s.

e.
1
.0

9
1
.0

6
1
.0

8
1
.1

7
1
.1

6
1
.1

4
1
.2

4
1
.0

7
1
.1

6
1
.2

8
1
.1

8
1
.1

8
1
.2

8
1
.1

6
1
.3

8
1
.3

4
1
.3

3
1
.2

0
S

td
8
.8

0
8
.2

3
8
.5

3
9
.1

7
9
.0

8
8
.9

5
9
.8

4
8
.7

1
9
.0

4
9
.7

3
9
.3

5
9
.6

3
1
0
.7

0
9
.5

9
1
0
.7

3
1
0
.8

3
9
.2

9
9
.3

2
S

R
-0

.0
9

0
.0

6
0
.3

0
0
.3

7
0
.5

0
0
.6

0
-0

.0
6

0
.1

7
0
.3

0
0
.2

6
0
.4

3
0
.4

7
0
.0

6
0
.1

8
0
.2

5
0
.2

1
0
.3

0
0
.2

3
s.

e.
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

4
0
.1

2
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

2
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

3
0
.1

3

r
x

(1
0
),

$
−
r
x

(1
0
),
U
S

M
ea

n
-2

.3
4

-0
.9

9
1
.0

4
1
.8

4
2
.9

9
5
.3

3
-2

.0
9

-0
.0

4
1
.2

2
1
.0

2
2
.4

8
4
.5

7
-0

.9
4

0
.1

8
1
.1

1
0
.7

6
1
.2

5
2
.1

9
s.

e.
1
.3

2
1
.1

9
1
.1

9
1
.1

9
1
.3

3
1
.1

4
1
.5

0
1
.2

1
1
.2

2
1
.2

7
1
.3

3
1
.1

8
1
.5

3
1
.2

1
1
.5

1
1
.3

0
1
.4

5
1
.2

0
P

a
n

el
B

:
1
9
7
1
-2

0
1
2

−
∆
s

M
ea

n
-2

.9
1

-0
.6

2
-0

.1
0

0
.1

3
-0

.9
6

1
.9

5
-3

.3
0

-0
.4

3
-0

.0
7

-0
.0

8
-0

.8
5

2
.4

5
-2

.7
3

-0
.6

5
0
.0

3
-0

.0
8

-1
.0

5
1
.6

8
f
−
s

M
ea

n
5
.5

4
2
.3

7
1
.5

3
0
.6

6
-0

.1
1

-5
.6

5
5
.3

0
2
.3

5
1
.5

5
0
.6

8
0
.0

5
-5

.2
5

4
.9

4
2
.2

9
1
.5

5
0
.7

4
0
.3

3
-4

.6
1

r
x
F
X

M
ea

n
2
.6

3
1
.7

5
1
.4

4
0
.7

9
-1

.0
6

-3
.7

0
2
.0

1
1
.9

1
1
.4

9
0
.6

0
-0

.8
0

-2
.8

1
2
.2

0
1
.6

5
1
.5

8
0
.6

6
-0

.7
2

-2
.9

3
s.

e.
1
.3

9
1
.3

2
1
.4

1
1
.3

7
1
.1

3
1
.0

6
1
.5

3
1
.4

1
1
.4

5
1
.4

8
1
.1

6
1
.1

3
1
.6

0
1
.5

0
1
.5

5
1
.6

7
1
.2

4
1
.1

1
S

td
8
.9

5
8
.3

9
9
.0

2
8
.7

4
7
.2

7
6
.8

0
9
.7

2
9
.0

7
9
.3

8
9
.1

1
7
.2

5
7
.1

9
1
0
.4

9
9
.7

5
1
0
.3

7
1
0
.2

4
7
.8

0
7
.0

2
S

R
0
.2

9
0
.2

1
0
.1

6
0
.0

9
-0

.1
5

-0
.5

4
0
.2

1
0
.2

1
0
.1

6
0
.0

7
-0

.1
1

-0
.3

9
0
.2

1
0
.1

7
0
.1

5
0
.0

6
-0

.0
9

-0
.4

2
s.

e.
0
.1

7
0
.1

6
0
.1

6
0
.1

6
0
.1

6
0
.2

0
0
.1

6
0
.1

6
0
.1

6
0
.1

6
0
.1

6
0
.1

8
0
.1

7
0
.1

6
0
.1

6
0
.1

6
0
.1

6
0
.1

7

r
x

(1
0
),
∗

M
ea

n
-3

.7
3

-0
.5

6
1
.4

0
3
.8

1
6
.1

3
9
.8

5
-2

.7
3

0
.4

7
1
.5

4
2
.9

3
5
.1

5
7
.8

7
-1

.1
9

0
.7

2
2
.0

4
2
.2

0
3
.5

4
4
.7

3
s.

e.
0
.7

7
0
.7

2
0
.6

6
0
.7

0
0
.9

0
1
.1

1
0
.8

9
0
.7

8
0
.8

4
0
.8

0
0
.9

3
1
.1

5
0
.8

2
1
.0

0
1
.1

2
0
.8

9
1
.3

2
1
.2

3
S

td
4
.9

0
4
.6

1
4
.3

0
4
.5

1
5
.8

1
7
.1

0
5
.7

2
5
.2

9
5
.3

6
5
.3

4
6
.1

8
7
.5

5
5
.8

5
6
.3

1
6
.6

4
6
.4

9
6
.6

8
7
.1

0
S

R
-0

.7
6

-0
.1

2
0
.3

3
0
.8

5
1
.0

6
1
.3

9
-0

.4
8

0
.0

9
0
.2

9
0
.5

5
0
.8

3
1
.0

4
-0

.2
0

0
.1

1
0
.3

1
0
.3

4
0
.5

3
0
.6

7
s.

e.
0
.1

4
0
.1

5
0
.1

6
0
.1

6
0
.1

8
0
.1

8
0
.1

4
0
.1

6
0
.1

6
0
.1

6
0
.1

8
0
.1

8
0
.1

6
0
.1

8
0
.1

9
0
.1

8
0
.1

6
0
.2

0

r
x

(1
0
),

$
M

ea
n

-1
.1

0
1
.1

9
2
.8

4
4
.6

0
5
.0

6
6
.1

6
-0

.7
2

2
.3

9
3
.0

3
3
.5

3
4
.3

5
5
.0

7
1
.0

2
2
.3

7
3
.6

2
2
.8

6
2
.8

2
1
.8

0
s.

e.
1
.6

3
1
.5

2
1
.5

6
1
.5

9
1
.6

0
1
.6

1
1
.8

0
1
.5

5
1
.6

1
1
.7

7
1
.6

3
1
.7

2
1
.7

7
1
.7

0
1
.9

4
1
.8

9
1
.8

7
1
.7

4
S

td
1
0
.4

9
9
.7

4
1
0
.0

3
1
0
.1

7
1
0
.3

1
1
0
.2

5
1
1
.6

9
1
0
.3

3
1
0
.6

6
1
1
.0

9
1
0
.4

9
1
1
.1

6
1
2
.5

6
1
1
.2

5
1
2
.5

3
1
2
.6

2
1
0
.3

8
1
0
.6

6
S

R
-0

.1
0

0
.1

2
0
.2

8
0
.4

5
0
.4

9
0
.6

0
-0

.0
6

0
.2

3
0
.2

8
0
.3

2
0
.4

1
0
.4

5
0
.0

8
0
.2

1
0
.2

9
0
.2

3
0
.2

7
0
.1

7
s.

e.
0
.1

5
0
.1

6
0
.1

6
0
.1

6
0
.1

7
0
.1

5
0
.1

5
0
.1

6
0
.1

6
0
.1

6
0
.1

6
0
.1

5
0
.1

6
0
.1

7
0
.1

6
0
.1

7
0
.1

6
0
.1

7

r
x

(1
0
),

$
−
r
x

(1
0
),
U
S

M
ea

n
-3

.6
0

-1
.3

2
0
.3

3
2
.0

9
2
.5

6
6
.1

6
-3

.2
5

-0
.1

4
0
.5

0
1
.0

0
1
.8

2
5
.0

7
-1

.5
5

-0
.2

0
1
.0

6
0
.2

9
0
.2

5
1
.8

0
s.

e.
1
.8

9
1
.6

3
1
.6

5
1
.5

6
1
.7

8
1
.6

1
2
.1

7
1
.6

8
1
.6

4
1
.7

4
1
.7

7
1
.7

2
2
.1

7
1
.7

2
2
.1

2
1
.7

8
2
.0

0
1
.7

4

A
n
n
u
a
li
ze

d
m

o
n
th

ly
lo

g
re

tu
rn

s
re

a
li
ze

d
a
t
t

+
k

o
n

1
0
-y

ea
r

B
o
n
d

In
d
ex

a
n
d

T
-b

il
ls

fo
r
k

fr
o
m

1
m

o
n
th

to
1
2

m
o
n
th

s.
P

o
rt

fo
li
o
s

o
f

3
0

cu
rr

en
ci

es
so

rt
ed

ev
er

y
m

o
n
th

b
y

th
e

sl
o
p

e
o
f

th
e

y
ie

ld
cu

rv
e

(1
0
-y

ea
r

y
ie

ld
m

in
u
s

T
-b

il
l

ra
te

)
a
t
t.

T
h
e

u
n
b
a
la

n
ce

d
p
a
n
el

co
n
si

st
s

o
f

A
u
st

ra
li
a
,

A
u
st

ri
a
,

B
el

g
iu

m
,

C
a
n
a
d
a
,

D
en

m
a
rk

,
F

in
la

n
d
,

F
ra

n
ce

,
G

er
m

a
n
y,

G
re

ec
e,

In
d
ia

,
Ir

el
a
n
d
,

It
a
ly

,
J
a
p
a
n

M
ex

ic
o
,

M
a
la

y
si

a
,

th
e

N
et

h
er

la
n
d
s,

N
ew

Z
ea

la
n
d
,

N
o
rw

ay
,

P
a
k
is

ta
n
,

th
e

P
h
il
ip

p
in

es
,

P
o
la

n
d
,

P
o
rt

u
g
a
l,

S
o
u
th

A
fr

ic
a
,

S
in

g
a
p

o
re

,
S
p
a
in

,
S
w

ed
en

,
S
w

it
ze

rl
a
n
d
,

T
a
iw

a
n
,

T
h
a
il
a
n
d
,

a
n
d

th
e

U
n
it

ed
K

in
g
d
o
m

.

66



Figure 8hows the local currency log excess returns in the top panel, and the dollar log excess returns in the
bottom panel as a function of the bond maturities for zero-coupon bonds of our extended sample of developed
countries. The results are also commented in the main text.
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Figure 8: Term Structure of Dollar Bond Risk Premia: Extended Sample — The figure shows the
local currency log excess returns in the top panel, and the dollar log excess returns in the bottom panel as a function of
the bond maturities. The left panel focuses on Portfolio 1 (flat yield curve currencies) excess returns, while the middle
panel reports Portfolio 5 (steep yield curve currencies) excess returns. The middle panels also report the Portfolio 1 excess
returns in dashed lines for comparison. The right panel reports the difference. Data are monthly, from the zero-coupon
dataset, and the sample window is 5/1987–12/2012. The unbalanced sample includes Australia, Austria, Belgium, Canada,
the Czech Republic, Denmark, Finland, France, Germany, Hungary, Indonesia, Ireland, Italy, Japan, Malaysia, Mexico, the
Netherlands, New Zealand, Norway, Poland, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, and the U.K.
The countries are sorted by the slope of their yield curves into five portfolios. The slope of the yield curve is measured by
the difference between the 10-year yield and the 3-month interest rate at date t. The holding period is one quarter. The
returns are annualized.

B Sorting Currencies by Interest Rates

Benchmark Sample Figure 9 plots the composition of the three interest rate-sorted portfolios of the
currencies of the benchmark sample, ranked from low to high interest rate currencies. Typically, Switzerland and
Japan (after 1970) are funding currencies in Portfolio 1, while Australia and New Zealand are the carry trade
investment currencies in Portfolio 3. The other currencies switch between portfolios quite often.

Table 7 reports the annualized moments of log returns. The structure of the table is the same as of Table 1.
As expected [see Lustig and Verdelhan (2007) for a detailed analysis], the average excess returns increase from
Portfolio 1 to Portfolio 3. The average excess return on Portfolio 1 is −0.24% per annum, while the average
excess return on Portfolio 3 is 3.26%. The spread between Portfolio 1 and Portfolio 3 is 3.51% per annum. The
volatility of these returns increases only slightly from the first to the last portfolio. As a result, the Sharpe ratio
(annualized) increases from −0.03 on Portfolio 1 to 0.40 on the Portfolio 3. The Sharpe ratio on a long position
in Portfolio 3 and a short position in the Portfolio 1 is 0.49 per annum. The results for the post-Bretton-Woods
sample are very similar. Hence, the currency carry trade is profitable at the short end of the maturity spectrum.
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Table 7: Interest Rate-Sorted Portfolios: Benchmark Sample

Portfolio 1 2 3 3− 1 1 2 3 3− 1 1 2 3 3− 1

Horizon 1-Month 3-Month 12-Month
Panel A: 12/1950–12/2012

−∆s Mean 1.43 0.35 -0.18 -1.62 1.65 0.23 -0.28 -1.93 1.78 0.22 -0.42 -2.20
f − s Mean -1.68 0.78 3.45 5.13 -1.64 0.81 3.39 5.03 -1.55 0.91 3.19 4.74

rxFX Mean -0.24 1.13 3.26 3.51 0.00 1.03 3.11 3.10 0.23 1.12 2.77 2.54
s.e. [1.00] [0.84] [1.03] [0.92] [1.02] [0.91] [1.20] [1.03] [1.10] [1.03] [1.25] [0.98]
Std 7.92 6.64 8.10 7.22 8.29 6.91 8.74 7.97 9.20 7.32 9.59 8.03
SR -0.03 0.17 0.40 0.49 0.00 0.15 0.36 0.39 0.03 0.15 0.29 0.32
s.e. [0.13] [0.13] [0.14] [0.14] [0.13] [0.13] [0.14] [0.15] [0.13] [0.13] [0.14] [0.15]

rx(10),∗ Mean 2.39 1.67 -0.21 -2.60 2.17 1.31 0.41 -1.76 1.98 1.07 0.85 -1.13
s.e. [0.45] [0.47] [0.57] [0.57] [0.50] [0.53] [0.64] [0.61] [0.58] [0.65] [0.72] [0.65]
Std 3.50 3.65 4.50 4.47 4.01 4.34 5.10 4.72 4.41 5.22 5.67 5.05
SR 0.68 0.46 -0.05 -0.58 0.54 0.30 0.08 -0.37 0.45 0.20 0.15 -0.22
s.e. [0.13] [0.13] [0.13] [0.13] [0.14] [0.13] [0.13] [0.12] [0.15] [0.14] [0.13] [0.12]

rx(10),$ Mean 2.15 2.81 3.06 0.91 2.17 2.34 3.52 1.35 2.21 2.19 3.62 1.41
s.e. [1.18] [0.98] [1.16] [1.09] [1.22] [1.06] [1.31] [1.21] [1.26] [1.14 ] [1.42] [1.23]
Std 9.33 7.70 9.21 8.61 10.00 8.22 9.94 9.32 10.64 8.83 11.08 9.95
SR 0.23 0.36 0.33 0.11 0.22 0.28 0.35 0.14 0.21 0.25 0.33 0.14
s.e. [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.13] [0.14] [0.14]

rx(10),$ − rx(10),US Mean 0.63 1.30 1.55 0.91 0.65 0.82 2.00 1.35 0.67 0.65 2.08 1.41
s.e. [1.22] [1.09] [1.32] [1.09] [1.16] [1.18] [1.51] [1.21] [1.33] [1.22] [1.61] [1.23]

Panel B: 12/1971–12/2012
−∆s Mean 2.16 0.30 -0.29 -2.45 2.39 0.14 -0.49 -2.89 2.61 0.05 -0.74 -3.35
f − s Mean -2.03 1.07 3.87 5.90 -1.99 1.11 3.80 5.78 -1.89 1.23 3.60 5.49

rxFX Mean 0.13 1.38 3.57 3.44 0.41 1.25 3.30 2.90 0.72 1.28 2.86 2.14
s.e. [1.52] [1.26] [1.50] [1.35] [1.56] [1.37] [1.75] [1.52] [1.67] [1.55] [1.82] [1.42]
Std 9.66 8.11 9.57 8.46 10.12 8.42 10.46 9.52 11.22 8.88 11.59 9.68
SR 0.01 0.17 0.37 0.41 0.04 0.15 0.32 0.30 0.06 0.14 0.25 0.22
s.e. [0.16] [0.16] [0.16] [0.16] [0.16] [0.16] [0.17] [0.17] [0.16] [0.17] [0.17] [0.18]

rx(10),∗ Mean 2.82 2.12 -0.13 -2.95 2.60 1.66 0.56 -2.05 2.48 1.30 1.01 -1.47
s.e. [0.64] [0.68] [0.81] [0.79] [0.72] [0.77] [0.92] [0.87] [0.84] [0.94] [1.01] [0.87]
Std 4.12 4.33 5.17 5.09 4.69 5.12 5.85 5.33 5.17 6.06 6.31 5.45
SR 0.68 0.49 -0.02 -0.58 0.55 0.32 0.10 -0.38 0.48 0.21 0.16 -0.27
s.e. [0.16] [0.16] [0.16] [0.16] [0.17] [0.16] [0.16] [0.15] [0.19] [0.18] [0.16] [0.15]

rx(10),$ Mean 2.95 3.49 3.45 0.50 3.01 2.90 3.86 0.85 3.20 2.58 3.87 0.67
s.e. [1.78] [1.46] [1.71] [1.59] [1.85] [1.60] [1.89] [1.77] [1.91] [1.66] [2.03] [1.75]
Std 11.33 9.34 10.82 10.06 12.09 9.91 11.68 10.95 12.85 10.44 13.01 11.70
SR 0.26 0.37 0.32 0.05 0.25 0.29 0.33 0.08 0.25 0.25 0.30 0.06
s.e. [0.16] [0.16] [0.16] [0.16] [0.16] [0.16] [0.17] [0.16] [0.16] [0.17] [0.18] [0.16]

rx(10),$ − rx(10),US Mean 0.44 0.99 0.94 0.50 0.48 0.37 1.33 0.85 0.64 0.01 1.31 0.67
s.e. [1.77] [1.55] [1.88] [1.59] [1.70] [1.71] [2.16] [1.77] [1.99] [1.78] [2.32] [1.75]

Notes: The table reports the average change in exchange rates (∆s), the average interest rate difference (f −s), the average
currency excess return (rxFX), the average foreign bond excess return on 10-year government bond indices in foreign
currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average foreign bond excess return in
U.S. dollars and the average U.S. bond excess return (rx(10),$ − rxUS). For the excess returns, the table also reports their
annualized standard deviation (denoted Std) and their Sharpe ratios (denoted SR). The annualized monthly log returns
are realized at date t + k , where the horizon k equals 1, 3, and 12 months. The balanced panel consists of Australia,
Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The countries are sorted by the level
of their short term interest rates into three portfolios. The standard errors (denoted s.e. and reported between brackets)
were generated by bootstrapping 10,000 samples of non-overlapping returns.
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Figure 9: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of
portfolios of 9 currencies sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are
monthly, from 12/1950 to 12/2012.

Recall that the absence of arbitrage implies a negative relationship between the equilibrium risk premium
for investing in a currency and the SDF entropy of the corresponding country. Therefore, given the pattern in
currency risk premia, high interest rate currencies have low entropy and low interest rate currencies have high
entropy. As a result, sorting by interest rates (from low to high) seems equivalent to sorting by pricing kernel
entropy (from high to low). In a log-normal world, entropy is just one half of the variance: high interest rate
currencies have low pricing kernel variance, while low interest rate currencies have volatile pricing kernels.

Table 7 shows that there is a strong decreasing pattern in local currency bond risk premia. The average excess
return on Portfolio 1 is 2.39% per annum and its Sharpe ratio is 0.68. The excess return decreases monotonically
to −0.21% on Portfolio 3. Thus, there is a 2.60% spread per annum between Portfolio 1 and Portfolio 3.

If all of the shocks driving currency risk premia were permanent, then there would be no relation between
currency risk premia and term premia. To the contrary, we find a very strong negative association between
local currency bond risk premia and currency risk premia. Low interest rate currencies tend to produce high local
currency bond risk premia, while high interest rate currencies tend to produce low local currency bond risk premia.
The decreasing term premia are consistent with the decreasing entropy of the total SDF from low (Portfolio 1)
to high interest rates (Portfolio 3) that we had inferred from the foreign currency risk premia. Furthermore, it
appears that these are not offset by equivalent decreases in the entropy of the permanent component of the foreign
pricing kernel.

The decline in the local currency bond risk premia partly offsets the increase in currency risk premia. As
a result, the average excess return on the foreign bond expressed in U.S. dollars measured in Portfolio 3 is only
0.91% per annum higher than the average excess returns measured in Portfolio 1. The Sharpe ratio on a long-short
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Figure 10: The Carry Trade and Term Premia – The figure presents the cumulative one-month log returns
on investments in foreign Treasury bills and foreign 10-year bonds. The benchmark panel of countries includes
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. Countries are
sorted every month by the level of their one-month interest rates into three portfolios. The returns correspond to
a strategy going long in the Portfolio 3 and short in Portfolio 1. The sample period is 12/1950–12/2012.

position in bonds of Portfolio 3 and Portfolio 1 is only 0.11. U.S. investors cannot simply combine the currency
carry trade with a yield carry trade, because these risk premia roughly offset each other. Interest rates are great
predictors of currency excess returns and local currency bond excess returns, but not of dollar excess returns.
To receive long-term carry trade returns, investors need to load on differences in the quantity of permanent risk,
as shown in Equation (3). The cross-sectional evidence presented here does not lend much support to these
differences in permanent risk.

Table 7 shows that the results are essentially unchanged in the post-Bretton-Woods sample. The Sharpe
ratio on the currency carry trade is 0.41, achieved by going long in Portfolio 3 and short in Portfolio 1. However,
there is a strong decreasing pattern in local currency bond risk premia, from 2.82% per annum in Portfolio 1 to
−0.13% in the Portfolio 3. As a result, there is essentially no discernible pattern in dollar bond risk premia.

Figure 10 presents the cumulative one-month log returns on investments in foreign Treasury bills and foreign
10-year bonds. Most of the losses are concentrated in the 1970s and 1980s, and the bond returns do recover in the
1990s. In fact, between 1991 and 2012, the difference is currency risk premia at the one-month horizon between
Portfolio 1 and Portfolio 3 is 4.54%, while the difference in the local term premia is only 1.41% per annum. As a
result, the un-hedged carry trade in 10-year bonds still earn about 3.13% per annum over this sample. However,
this difference of 3.13% per annum has a standard error of 1.77% and, therefore, is not statistically significant.
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As we increase holding period k from 1 to 3 and 12 months, the differences in local bond risk premia between
portfolios shrink, but so do the differences in currency risk premia. Even at the 12-month horizon, there is no
evidence of statistically significant differences in dollar bond risk premia across the currency portfolios.

Robustness Checks: Developed Countries and Whole Sample In the robustness tests,
very similar patterns of risk premia emerge using larger sets of countries. In the sample of developed countries,
we sort currencies in four portfolios. Figure 12 plots the composition of the four interest rate-sorted currency
portfolios. Finally, Table 9 reports the results of sorting all the currencies in our sample, including those of
emerging countries, into portfolios according to the level of their interest rate, ranked from low to high interest
rate currencies. Switzerland and Japan (after 1970) are funding currencies in Portfolio 1, while Australia and New
Zealand are carry trade investment currencies in Portfolio 4. Credit risk seems to be concentrated in Portfolios 3
and 4.

Table 8 reports the results of sorting the developed country currencies into portfolios based on the level of their
interest rate, ranked from low to high interest rate currencies. Essentially, the results are very similar to those
obtained on the benchmark sample of developed countries. There is no economically or statistically significant
carry trade premium at longer maturities. The 2.98% spread in the currency risk premia is offset by the negative
3.03% spread in local term premia at the one-month horizon against the carry trade currencies.

In the sample of developed and emerging countries, the pattern in returns is strikingly similar, but the
differences are larger. At the one-month horizon, the 6.66% spread in the currency risk premia is offset by a
5.15% spread in local term premia. A long-short position in foreign bonds delivers an excess return of 1.51% per
annum, which is not statistically significantly different from zero. At longer horizons, the differences in local bond
risk premia are much smaller, but so are the carry trade returns.

As in the previous samples, the rate at which the high interest rate currencies depreciate (2.99% per annum)
is not high enough to offset the interest rate difference of 6.55%. Similarly, the rate at which the low interest
rate currencies appreciate (0.43% per annum) is not high enough to offset the low interest rates (3.52% lower
than the U.S. interest rate). Uncovered interest rate parity fails in the cross-section. However, the bond return
differences (in local currency) are closer to being offset by the rate of depreciation. The bond return spread is
4.63% per annum for the last portfolio, compared to an annual depreciation rate of 6.55%, while the spread on
the first portfolio is −0.29%, compared to depreciation of −0.43%. In Figure 11, we plot the rate of depreciation
against the interest rate (bond return) differences with the U.S. The vertical distance from the 45-degree line is an
indication of how far exchange rates are from the uncovered interest rate parity or long-run uncovered bond parity.
The size of the marker indicates the number of the portfolio. Especially for the first and last portfolios, long-run
uncovered bond parity is a much better fit for the data than the uncovered interest rate parity. The currency
exposure hedges the interest rate exposure in the bond position. High returns are offset by higher depreciations.
As a result, foreign bond portfolios are almost hedged against foreign country-specific interest rate risk, while
Treasury bill portfolios are not.

The Term Structure of Currency Carry Trade Risk Premia At the short end of the maturity
spectrum, it is profitable to invest in flat-yield-curve currencies and short the currencies of countries with steep
yield curves: the annualized dollar excess return on that strategy using 1-year bonds is 4.10%. However, this
excess return monotonically declines as the bond maturity increases: it is 2.33% using 5-year bonds and only
0.52% using 10-year bonds. At the long end of the maturity spectrum, this strategy delivers negative dollar
excess returns: an investor who buys the 15-year bond of flat-yield-curve currencies and shorts the 15-year bond
of steep-yield-curve currencies loses 0.42% per year on average. The term structure of currency carry trade risk
premia is downward-sloping.

C Time-Series Tests of the Uncovered Bond Return Parity

To further test whether USD bond returns of different countries become increasingly similar as bond matu-
rity increases, Figure 13 reports the ratio of foreign to domestic U.S. dollar bond returns; the k-year matu-

rity volatility ratio is given by: V olR(k),$ = σ
(
r

(k),∗
t+1 −∆st+1

)
/σ
(
r

(k)
t+1

)
obtained on three-month returns.

For comparison, Figure 13 reports also the corresponding volatility ratio for local currency returns, given by

V olR(k) = σ
(
r

(k),∗
t+1

)
/σ
(
r

(k)
t+1

)
for k = 1, 2, ...15 years. The pattern is unambiguous: the unconditional volatility

of the U.S. dollar 3-month foreign returns is much higher than that of the corresponding volatility of U.S. bond
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Figure 11: Uncovered Interest Rate Parity and Uncovered Bond Return Parity: All Sample
Countries Sorted by Interest Rates – This figure presents, with red dots, the average exchange rate changes
in five portfolios against the average interest rate differences between the foreign country and the U.S. for the same five
portfolios. The figure also presents, with blue diamonds, the average exchange rate changes in five portfolios against the local
currency bond return spread with the US, defined as the difference between the average bond return in foreign currency and
the U.S. bond return in U.S. dollars. The lines indicate two standard errors around the point estimate. Countries are sorted
by their short-term interest rates and allocated into five portfolios. The portfolios are rebalanced every month. The monthly
returns are annualized. The sample period is 12/1950–12/2012. The sample includes developed and emerging countries:
Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, India, Ireland, Italy, Japan, Mexico,
Malaysia, the Netherlands, New Zealand, Norway, Pakistan, the Philippines, Poland, Portugal, South Africa, Singapore,
Spain, Sweden, Switzerland, Taiwan, Thailand, and the U.K.

returns for small maturities, but the volatility ratio falls sharply for higher maturities and is close to one for
15-year bonds. In contrast with the observed pattern for V olRk, the local currency volatility ratio V olR

(k)
k is

virtually flat with maturity, implying that the convergence in U.S. dollar return bond volatility is due to the
properties of the nominal exchange rate. Of course, even if exchange rates followed a random walk and exchange
rate innovations are uncorrelated with returns, we could still observe this pattern, simply the exchange rates
account for a smaller share of overall return volatility at longer maturities. However, we show that exchange rates
actually hedge interest rate risk.

The results are robust to an increase of the holding period. Specifically, in unreported results, 6-month and
12-month returns produce the same patterns: for both holding periods and for virtually all currencies, there
is an almost monotonic relationship between correlation coefficients of U.S. dollar returns and bond maturity.
Furthermore, 6-month and 12-month local currency return correlations are not sensitive to maturity, the U.S.
dollar return volatility ratio is very high for short maturities, but quickly converges towards one, and the local
currency return volatility ratio is flat with maturity.
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Figure 12: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of
portfolios of 20 currencies sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are
monthly, from 12/1950 to 12/2012.

D Real Exchange Rate Decomposition

We decompose real exchange rate changes using returns on real bonds. In the first part of our analysis, we proxy
real bonds by inflation-indexed bonds. In the second part, we synthesize real bonds by coupling nominal bonds
with inflation swaps.

D.1 Results using inflation-indexed bonds

Due to the scarcity of available data on inflation-indexed bonds, our sample includes only two countries, the
United States and the United Kingdom. In particular, we use monthly sovereign zero-coupon yield curve data for
annual maturities from 01/1999 to 12/2012, sourced from the Federal Reserve Board and the Bank of England.
To construct the time-series for the end-of-month real exchange rate between the two countries, we multiply the
nominal exchange rate by the ratio of the non-seasonally adjusted monthly price indices of the two countries. For
each country, we use the reference index for the inflation-indexed sovereign bonds: the city-average, all items CPI
for the United States and the RPI for the United Kingdom.

Our decomposition of real exchange rate changes is similar to our nominal exchange rate change decomposi-
tion. In particular, we rely on the observation that the one-period return of a real zero-coupon bond that matures
k periods into the future is given by

R
real,(k)
t+1 =

P
real,(k−1)
t+1

P
real,(k)
t

=
Et+1

(
Λrealt+k

)
Λrealt+1

Λrealt

Et
(
Λrealt+k

) .
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Figure 13: The Maturity structure of Bond Return Volatility — Volatility of Foreign and U.S. bond
returns. The time-window is country-dependent. Data are monthly. The holding period is 3-months.

Thus the ratio of the USD holding period returns of two countries’ infinite maturity real bonds is identically equal
to the permanent component of their real exchange rate:

lim
k→∞

(
Srealt

Srealt+1

R
real,(k),∗
t+1

R
real,(k)
t+1

)
=
Srealt

Srealt+1

(
Λreal,∗,Tt

Λreal,∗,Tt+1

Λreal,Tt+1

Λreal,Tt

)
=
Sreal,Pt

Sreal,Pt+1

.

Table 11 presents the properties of real exchange rate change components and real stochastic discount factors
retrieved using real bond returns, with the holding period set equal to a year. For comparison, we also report
the corresponding statistics resulting from the decomposition of nominal exchange rate changes. Notably, our
findings on the decomposition of nominal exchange rate changes carry through to real exchange rate changes.
This is due to the fact that inflation rate differentials contribute very little to the fluctuations of the nominal
USD/GBP exchange rate. In particular, we find that the two components of real exchange rate changes have the
same volatility as the nominal exchange rate components and are similarly negatively correlated. Real exchange
rate changes have slightly lower skewness and kurtosis than their nominal counterparts, which is also true for their
permanent component. On the other hand, the transitory component of real exchange rate changes is more skewed
and fat-tailed than its nominal counterpart. Finally, the transitory component of the UK real SDF is slightly less
volatile and less correlated with the transitory component of the US SDF than its nominal counterpart.

77



Table 11: Properties of SDF and Exchange Rate Components Using Inflation-Indexed Bonds

Moment GBP nominal GBP real

Panel A: Exchange rate changes, ∆s

Mean 0.00 0.00

Std 0.10 0.10

Skewness 1.21 1.13

Kurtosis 4.84 4.51

AR(1) coef. 0.94 0.94

Panel B: Transitory exchange rate changes, ∆sT

Mean -0.02 -0.03

Std 0.04 0.05

Skewness 0.16 0.23

Kurtosis 2.21 3.16

AR(1) coef. 0.84 0.85

Panel C: Permanent exchange rate changes, ∆sP

Mean 0.02 0.02

Std 0.10 0.10

Skewness 1.09 0.87

Kurtosis 4.33 3.24

AR(1) coef. 0.90 0.92

Panel D: Exchange Rate Correlations

corr(∆s,∆sT) 0.34 0.31

corr(∆s,∆sP) 0.90 0.90

corr(∆sT,∆sP) -0.10 -0.13

Panel E: Transitory SDF

Std 0.06 0.05
s.e. [0.01] [0.01]

corr(mT,US ,mT,∗) 0.75 0.64
s.e. [0.05] [0.11]

Notes: The table reports the mean, standard deviation, skewness, kurtosis, and autocorrelation of annual changes
in exchange rates, as well as the moments of the transitory and permanent components of exchange rates. 10-year
zero-coupon nominal (inflation-indexed) bonds are used as proxy of infinite-maturity nominal (real) bonds in
order to decompose nominal (real) exchange rate changes into their permanent and transitory components. The
last panel reports the standard deviations of the transitory component of the SDF, along with its correlation with
the transitory component of the U.S. SDF. Standard errors are obtained from block bootstrapping with blocks of
14 periods (10,000 replications). Monthly zero-coupon bond data from 1/1999 to 12/2012.
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D.2 Results using inflation swaps

In addition to using using inflation-indexed bonds as a proxy for real bonds, we also synthetically construct real
bonds by hedging the inflation exposure of nominal bonds using inflation swaps. In particular, we use inflation
swaps for three foreign currencies (EUR, GBP and JPY) and the USD. Our data are monthly, from July 2004
(March 2007 for the JPY) to December 2012. Inflation swap data are available for annual maturities; in order to
calculate quarterly returns, we generate a grid of quarterly inflation swap rates using linear interpolation of the
inflation discount factors.

Table 12 presents the decomposition of quarterly real exchange rate changes. In particular, we present two
sets of results, fixing the sample period for each currency. The first three columns present the decomposition of
nominal exchange rate changes, while the last three columns decompose real exchange rate changes. Furthermore,

we present the properties of the relative inflation swap rate change
(1+f

∗,(k−1)
t+1 )k−1

(1+f
∗,(k)
t )k

(1+f
(k)
t )k

(1+f
(k−1)
t+1 )k−1

in Panel D.
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Table 12: Properties of SDF and Exchange Rate Components Using Inflation Swaps

Nominal FX changes Real FX changes

Moment EUR GBP JPY EUR GBP JPY

Panel A: Exchange rate changes, ∆s

Mean -0.01 0.01 -0.07 0.00 0.00 -0.05

Std 0.11 0.11 0.11 0.11 0.11 0.11

Skewness 0.85 1.22 -0.10 0.65 1.01 -0.36

Kurtosis 4.32 7.17 2.96 3.68 6.09 3.40

AR(1) coef. 0.70 0.80 0.63 0.67 0.79 0.65

Panel B: Transitory exchange rate changes, ∆sT

Mean -0.01 0.00 -0.06 -0.01 -0.01 -0.03

Std 0.05 0.05 0.08 0.06 0.06 0.10

Skewness 0.49 0.42 -0.51 1.22 0.26 -1.33

Kurtosis 4.87 3.32 3.67 7.20 6.13 6.08

AR(1) coef. 0.51 0.51 0.57 0.54 0.55 0.70

Panel C: Permanent exchange rate changes, ∆sP

Mean 0.00 0.02 0.00 0.00 0.01 -0.01

Std 0.11 0.11 0.09 0.10 0.12 0.12 0

Skewness 0.16 0.90 -0.30 0.18 1.90 0.45

Kurtosis 3.15 6.99 3.94 3.03 11.79 5.39

AR(1) coef. 0.68 0.75 0.51 0.61 0.70 0.58

Panel D: Relative inflation swap rate changes

Mean - - - 0.00 -0.01 0.03

Std - - - 0.04 0.05 0.07

Skewness - - - -0.23 -0.56 -2.37

Kurtosis - - - 4.61 5.12 13.12

AR(1) coef. - - - 0.49 0.53 0.52

Panel E: Exchange Rate Correlations

corr(∆s,∆sT) 0.30 0.10 0.52 0.38 0.09 0.40

corr(∆s,∆sP) 0.88 0.91 0.71 0.85 0.84 0.63

corr(∆sT,∆sP) -0.18 -0.31 -0.23 -0.17 -0.46 -0.47

Panel F: Transitory SDF

Std 0.07 0.08 0.03 0.06 0.08 0.06
s.e. [0.01] [0.01] [0.00] [0.00] [0.01] [0.02]

corr(mT,US ,mT,∗) 0.80 0.85 0.72 0.67 0.65 0.19
s.e. [0.05] [0.04] [0.06] [0.06] [0.08] [0.18]

Notes: The table reports the mean, standard deviation, skewness, kurtosis, and autocorrelation of quarterly
changes in exchange rates, as well as the moments of the transitory and permanent components of exchange rate
changes. 10-year zero-coupon nominal bonds are used as proxy of infinite-maturity nominal bonds in order to
decompose nominal exchange rate changes into their permanent and transitory components. For the decomposition
of real exchange rate changes, 10-year zero-coupon nominal bonds hedged by inflation swaps are used. Means and
standard deviations are annualized. The last panel reports the standard deviations of the transitory component of
the SDF, along with its correlation with the transitory component of the U.S. SDF. Standard errors are obtained
from block bootstrapping with blocks of four periods (10,000 replications). Monthly data from 7/2004 to 12/2012
(JPY from 3/2007).
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