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Abstract

This paper develops an equilibrium model in which agents’ heterogeneous investment hori-

zons determine the dynamics of the real term structure of interest rates. The model endogenizes

agents’ decisions on consumption and investment with short and long term horizons. There are

two production technologies that generate a time-varying market price of risk, one that is short

term and fully reversible and one that is a long term time-to-build technology. The model is

calibrated with U.S. data from 1970 to 2007 using Simulated Method of Moments and cap-

tures several results and stylized facts, such as: (i) the excess returns on short and long term

investments together with a low volatility of consumption using a reasonably low risk aversion

parameter; (ii) a low correlation between long term investments (e.g. direct investments in real

estate) and short term investments; and (iii) the slightly positive slope of the real term structure

of interest rates.
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1 Introduction

Similar to all the prices in a market economy, interest rates are determined by an equilibrium of

supply and demand forces. Particularly, interest rates are the rates that equilibrate the supply

and the demand for credit. If the demand of credit rises relative to the supply, the interest rates

will tend to increase as borrowers compete for obtaining scarce funds. The main source of the

demand for credit arises from the willingness of individuals, firms, and governments to consume

and invest in the short run. If the supply of credit from lenders rises relative to the demand from

borrowers, interest rates will tend to decrease as lenders compete for allocating these funds. The

main source of the supply of credit arises from savings, or the willingness to delay consumption

and investments1.

The time to maturity of credit adds a new dimension to this analysis. The equilibrium interest

rates for lending and borrowing at short maturities can be different from the rates for lending and

borrowing at long maturities because the main sources of demand and supply of credit at different

maturities may be different. The term structure of interest rates is the curve of interest rates

with respect to the time to maturity of the debt and, therefore, it contains information on the

main sources of demand and supply of credit (e.g. consumption, and investments at different time

horizons).

This paper proposes and develops a general equilibrium model to study the relationship among

consumption, investments and the real term structure of interest rates. In this model, the role of

heterogeneous investment horizons (e.g. short versus long term investment) is an essential deter-

minant of the joint dynamics of consumption, investments and the term structure of interest rates.

Specifically, the term structure of interest rates is endogenously determined from the representative

agent’s decisions on consumption of real assets and investment (e.g. production of real assets) with

short and long term horizons.

1.1 Introduction to the model and the economic intuition

The model developed in this paper is a fundamental extension of the Cox, Ingersoll and Ross (CIR,

1985a and 1985b) model. It introduces several production technologies associated with different

investment horizons. For simplicity, I consider the problem with just two investment horizons:

short and long term. Consequently, there are two production technologies in this economy2: (i) a

short term fully reversible technology that offers constant returns to scale as in the CIR model;

and (ii) a long term technology that requires multiple periods (say τ years) to build new capital

goods, as in Kydland and Prescott (1982). There is one real asset that can be produced by any of

1The Federal Reserve and depository institutions (e.g. banks, credit unions) have an important influence in the
supply of credit. In this paper, I will abstract from this influence and focus on the real interest rates that comes from
the equilibrium between supply and demand for credit providing the set of consumption and investment opportunities
that the economic agents face.

2Hirshleifer (1972) and Diamond and Dybvig (1983) are two antecedents to my model that present a similar two
production technologies setup.
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these two production technologies3.

I assume that capital is the only input used in both production technologies 4. Consequently, I

define short (long) term investments as the investments made in the production of the assets through

the short (long) production technologies. I also define returns on short (long) term investments as

the returns associated with short (long) term investments. Note that short term investments are

fully reversible. However, the capital allocated to long term investment at time t is illiquid for τ

years and, therefore, this capital cannot be consumed or reinvested in any of the technologies until

time t+ τ .

The source of illiquidity in the model is related to the length of the period to maturity τ of

the assets produced using the long term technology. I assume that these assets present a ”point-

input point-output” payment pattern 5. Prototypical examples of these assets are trees grown for

timber, but not trees grown for fruit. Several types of assets (e.g. assets that require time to build

such as buildings) can be simplified to a ”point-input point-output” payment pattern6: there is an

investment made at time t or ”point-input” (e.g. payment of the construction costs on the first

day of construction of the building) and all the stochastic returns on the investment are collected

at time t + τ or ”point-output” (e.g. the new building pays off the present value of all the future

rents). As a result, in my model, illiquidity is the inability to rebalance past consumption and

investment plans when more accurate information becomes available.

I assume an infinitely lived representative agent with preferences for consumption. At each

period, the agent has to reassess how much capital he consumes, how much capital he allocates to

short term investments (e.g. short term ”reversible” production) and how much capital he allocates

to long term investments (e.g. long term ”time to build” production). I study the equilibrium

implications of these decisions on the endogenously generated term structure of interest rates. The

model and supporting empirical calibration suggest that investors demand high risk premia for

holding long term investments for three reasons. First, physical irreversibility in the long term

production technology prevents the agents from incorporating new available information about the

economy over time. Therefore, undertaking a long term production project requires that the agents

3Therefore, I do not consider the research and development (R&D) associated to the short term technology, but
the production of the good given the available technology. In my model, R&D would be a long term technology that
provides a new asset. R&D needs τ periods to develop this new asset. Although R&D is an important part of the
economy, I am not accounting for it because of the unavailability of consistent data.

4I make two important assumptions regarding the short term and the long term production technologies. Firstly,
I consider constant returns to scale. Secondly, I assume that there is a permanent labor surplus rate or, alternatively,
that labor is unnecessary in production. The study can be expanded to include nonlinear technologies or labor inputs
without any fundamental complications.

5Imagine that we are studying real estate assets. A building is a long term asset that can be ”physically” illiquid
but ”market” liquid at the same time. A building under construction can be a very ”physically” illiquid asset in
the sense that the physical benefits (e.g. capital from rents or from selling apartments or offices) will be obtained
several years from now. However, the owner of this building can issue securities on the building and sell them for
cash. The total price of these securities is the discounted value of the future value of the building at maturity, that
is, the present value of all the future rents. When these securities exist, the long term asset is ”market” liquid.

6The concept of equity duration developed in Cornell (2000), Dechow, Sloan, and Soliman (2004), Santa-Clara
(2004) and Lettau and Wachter (2007a, 2007b) may be applied here. They define zero-coupon equity as equity with
the cash flow pattern of a zero-coupon bond. Equity duration is the duration (maturity) of its equivalent zero-coupon
equity. This literature uses this concept to study the response of stock returns to interest rate shocks.
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give up the option value of delaying the decision, and the rate of return must be high enough to

compensate them for giving up that option value. Second, returns on investments in the long

term production technology are higher than returns on investments in the short term production

technology. Hence, the representative agent is willing to pay a higher interest rate on long term

borrowing because the returns on long term investments are higher. Third, investors are risk averse

and care about consumption in the long run.

Finally, I focus on the main type of long term investments: real estate investments. The capital

invested in real estate (both residential and nonresidential) represents, on average, 84.1% of the

total long term investments in the U.S. in the period 1970-20077. Real estate depreciates slowly,

has a long service life and represents the canonical time-to-build production technology8. The

model proposed in this paper provides a setup to study the dynamics of real estate investments as

long term investments. It is different from previous models in the literature because consumption,

investments in real estate and the term structure of interest rates are all endogenously determined.

1.2 Calibration of the model and the results

The model is calibrated with U.S. data from 1970 to 2007 using the Simulated Method of Moments

to obtain estimates of short and long term fixed assets and investments, the level of consumption,

and the term structure of interest rates. I use economic aggregate U.S. data for: (i) fixed assets

(stocks of capital) from the Fixed Asset Tables of the National Economic Accounts; (ii) consumption

and investments (flows of capital) from the National Income and Product Accounts (NIPA); (iii)

the yield curve from the Federal Reserve; and (iv) data on inflation measured by the CPI in order

to deflate nominal units to real units.

I separate the fixed assets and the investment accounts provided by the Fixed Asset Tables

and the NIPA accounts into short and long term accounts by using the estimations of economic

depreciation in Hulten and Wykoff (1981a, 1981b) and Fraumeni (1997)9. Then, I aggregate the

various classes of short accounts into a short term capital account and the various classes of long

accounts into a long term capital account. In the model, the short term capital account contains the

liquid capital (the capital that is available for consumption and any kind of investment) and the long

term capital account contains the illiquid capital (the capital locked into long term investments).

[Compare empirical results to Ang, Bekaert and Wei(2008) here!]

The calibration of the model captures several stylized facts of the literature.

Firstly, the model captures the fact that long term interest rates are comprised of investors’

assumptions about future interest rates and a premium for holding long-term bonds, called the

liquidity premium. This premium rewards investors for the additional risk of having their money

7It ranges from 75% in 1981Q4 to 88.6% in 2005Q3.
8These physical characteristics make the elasticity of real estate supply low in response to a decline in real estate

demand (see Glaeser and Gyourko (2005)).
9Private investments in fixed assets with high rates of depreciation (e.g. information processing equipment and

software) have been included in the short term accounts. Private investments in fixed assets with low rates of
depreciation (e.g. residential structures) have been included in the long term accounts. Note that this classification
implicitly assumes that there is a strong relation between time to build and depreciation
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tied up for a longer period. Investors show a preference for liquidity over illiquidity and, therefore,

short term rates tend to be lower than long term rates and the term structure slopes upward on

average10.

Secondly, the model provides estimated excess returns on investments in short and long term

technologies that are comparable to historical excess returns on investments using a reasonably

low risk aversion parameter. Traditionally, equilibrium models of consumption need very high

values of the risk aversion parameter to generate the high excess returns that we see in the data.

However, recently, Bekaert, Engstrom and Grenadier (2004), Wachter (2006) and Buraschi and

Jiltov (2007) developed consumption-based term structure models that produce realistic moments

when they are calibrated to real data on both bond and stock markets. Their models are driven

by the concept of external habit persistence introduced in Campbell and Cochrane (1999), which

generates a time-varying market price of risk11.

Furthermore, there are other significant issues that the model addresses. First, in contrast to

the reduced-form term structure models (See Dai and Singleton (2002); Duffee (2002); Ang and

Piazzesi (2003); and Lettau and Wachter (2007)) that impose statistical structures on the market

price of risk, in this model the time-varying market price of risk is solved for endogenously without

imposing any arbitrary structure on the stochastic discount factor12. By endogenizing the market

price of risk, my model provides rich economic intuition concerning the channels by which short

and long term investments and consumption jointly determine the dynamics of the term structure

of interest rates.

Finally, the model suggests that the short term and long term capital outstanding in the econ-

omy plays an important role in determining the dynamics of the term structure of interest rates.

Figures 1 and 2 show why it might be interesting to use short and long term investments as well

as consumption in order to study the dynamics of the term structure of interest rates. Panel A

of Figure 1 shows that quarterly changes in consumption are very smooth compared to the real

short interest rate suggesting that purely consumption based models would be unlikely to generate

reasonable excess returns and interest rates patterns using low risk aversion parameters. Panel B

of Figure 1 shows the dynamics of the quarterly changes in short term investments compared to

the real short interest rate. Comparing panels A and B of Figure 1, we can see that the short term

investment channel is more volatile than consumption13. Panel A of Figure 2 shows that periods

of low consumption are related to recessions and decreases of the slope of the term structure. Re-

10Note this is a supply-side argument due to the uncertainty in aggregate consumption. Lenders prefer to lend
short term at lower rates so they can adjust to consumption shocks. This is consistent with the earlier demand-
side argument: borrowers get higher rates of return by investing in long term real projects, and thus are willing to
pay higher interest rates for long term borrowing. The equilibrium model accounts for both supply and demand
arguments.

11For more details on a related literature that attempts to simultaneously explain bond and equity returns, see
also Bakshi and Chen (1996), Gabaix (2007) and Bansal and Shaliastovich (2007).

12The affine term structure models introduced by Duffie and Kan (1996) are the most widely used type of reduced-
form model. The common assumption in the affine term structure literature is that the market price of risk is
affine.

13Note that all the periods of decreasing short term investments (e.g the periods with negative percentage change
in short term investments) precede recession periods and/or anticipate decreases of the real short interest rate.
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markably, periods of decreasing long term investments appear to be strongly related to periods in

which the term structure is downward sloping (see Panel B of Figure 2). Furthermore, Panel B

of Figure 2 suggests that periods of decreasing long term investments anticipate recession periods

and usually last until the recession is over. Note also that long term investment appears to be the

most volatile channel of the model.

1.3 Literature related to short and long term investments

The idea of distinguishing among different investment horizons goes back to Marshall (See Marshall

(1926) and Schumpeter (1941)). Based on this distinction, Culbertson (1957) proposed the market

segmentation hypothesis that posited that the market supply and demand for short and long

terms instruments is determined independently. Although this theory provided an intuitive setup

to illustrate the dynamics of the slope of the term structure, it failed to explain the empirical

regularity that short and long term interest rates tend to move together.

Modigliani and Sutch (1965) proposed the preferred habitat theory that was formalized by

Wachter (2003) and Vayanos and Vila (2007). This approach requires that, in addition to interest

rate expectations, investors have different investment horizons and require a meaningful premium

to buy bonds outside their preferred habitat or maturity. Different from the above, the investors

in my model do not decide whether they are committed to either short or long terms investments,

nor ex ante must they select their preferred maturity affiliation. Instead, they make their decisions

about how much capital they allocate to short and long term investments over time14.

There is also a large body of literature that studies illiquidity and asset pricing15. Although

it does not focus on the term structure of interest rates, it is related to the key assumption of

different investment horizons, in the sense that either long term investments cannot be liquidated

in certain periods of time or liquidation is costly. My model is built upon the idea of liquid short

term investments and illiquid long term investments, and uses some of the intuition provided by

this literature.

The remainder of the paper is organized as follows. Section 2 specifies the model. First, a

simple version of the central planner’s problem for τ = 2 is presented in order to illustrate the main

mechanics of the model. The general model will be developed in the second part of this section.

Section 3 studies the equilibrium first order conditions (FOCs) of the model and their economic

implications. Section 4 uses the equilibrium results in Section 3 to provide intuition behind the

dynamics of the term structure. Section 5 explains the details about the data and the calibration

14Diamond and Dybvig (1983) exploit a similar mechanism based on short and long term technologies in a model
to explain bank runs. Subsequent literature such as Postlewaite and Vives (1987), Chari and Jagannathan (1988),
Wallace (1988) and Jacklin (1993) adapted Diamon and Dybvig’s model to the study of why bank runs, information
in the banking industry, illiquidity and the bank deposits, respectively. Although the goals of this literature are
different than the objectives of my paper, the setup of their models provides interesting insights to any equilibrium
model with short and long term technologies.

15For example, Amihud and Mendelson (1986) used bid-ask spreads as a measure of illiquidity and found that agents
with different investment horizons trade assets with different bid-ask spreads. Similarly, Brennan and Subrahmanyam
(1996) and Novy-Marx (2007) considered different levels of illiquidity of assets to price the compensation for illiquidity
in stock returns. Their empirical results show that this compensation is not very high on average.
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and shows the empirical results. Finally, section 6 concludes.

2 The Model

The goal of this section is to set up the central planner’s problem, which will be the basic frame-

work to model the term structure of interest rates. This problem is formally motivated by the

general equilibrium production economy presented in Appendix A1. The definition of competitive

equilibrium for this economy is shown in Appendix A2. This general equilibrium setup is necessary

because, in models with perfect financial markets, we can use the solution of the central planner’s

problem to build upon the competitive equilibrium in a decentralized production economy as in

Lucas and Prescott [51], and Prescott and Mehra [52], as shown in Appendix A3.

2.1 General model of the central planner’s problem

First, I present the model in discrete time that illustrates the mechanics of the model. I will

characterize the problem of the optimal allocation of resources subject to technological constraints,

the central planner’s problem, for short and long term investments. In this model, it takes τ periods

to produce goods using the long term (time to build) technology and obtain the returns on these

long term investments. Alternatively, it takes just one period for goods to be produced by the short

term (reversible) technology and obtain the returns on these short term investments. Therefore,

there are two production technologies to produce the capital good: (i) a short term production

technology K that allows the agent to instantaneously produce the good, and (ii) a long term

”time-to-build” production technology I that requires τ units of time to complete production.

Let us consider a representative agent who maximizes his expected utility of intertemporal

consumption, and has time separable utility U(ct) and a patience rate of time preference parameter

given by ρ. At each period, he must decide: (i) how much capital stock ct he consumes16, and (ii)

how much capital stock Ψt he allocates to long term investments. The capital that is not consumed

or invested in the long term is allocated to short term investments. The agent solves the following

problem:

max
ct,x1t,x2t,Ψt

{
E0

[
∞∑

t=0

e−ρtU(ct)

]}
(1)

such that:

∆Kt = x1tfK (Kt) + x2tKtrt∆t+ (1 − x1t − x2t)Kt
∆Bt
Bt

− ct∆t− Ψt∆t+ Ψ
(0)
t ∆t (2)

16In this model, consumption goods are capital goods. In classical economics, capital is usually one of the three
traditional factors of production. The others are land and labor. Goods are considered capital if: (i) they can be
used in the production of other goods (they are a factor of production), and (ii) they were produced (e.g. they are
not natural resources such as land and minerals).
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Ψ
(τ)
t = Ψt (3)

Ψ
(τ−i)
t = fI

(
Ψ

(τ−i+1)
t−1

)
for i = 1, ..., τ (4)

Furthermore, the following non-negativity constraints are imposed:

Kt > 0, ct > 0, and Ψ
(τ−i)
t > 0 for all t and i = 1, ..., τ (5)

and the irreversibility constraint for long-term investments is:

Ψt ≥ 0 for all t . (6)

There are two types of capital accounts in this economy. First, an account Kt for the short

term capital that follows the process that is shown in equation (2). This is a liquid account that

contains the capital stock that is ready to be consumed or invested. Second, a set of τ + 1 capital

subaccounts Ψ
(τ−i)
t for the long term capital that follows the processes shown in equation (3) and

the set on τ equations in (4). Both the short and the long term production technologies only

need capital Kt and Ψt, respectively, as input. Production that comes from short and long term

technologies provides returns given by fK (Kt) and fI

(
Ψ

(τ−i+1)
t

)
, respectively17.

The long term investment mechanism operates as follows. When the agent invests an amount

of capital Ψt into the long term investment, then Ψt is transferred from the short term capital

account in equation (2) to the first long term capital account Ψ
(τ)
t in equation (3). The account

Ψ
(τ)
t contains the capital that will mature τ periods from now. The capital allocated into the long

term investment one period ago, Ψτ
t−1 is moved from the capital account Ψ

(τ)
t in equation (3) to

the capital account Ψ
(τ−1)
t in equation (4). Each account Ψ

(τ−i)
t contains the capital that will

mature τ − i periods from now. Finally the capital Ψ
(0)
t that was allocated to the long term capital

investment τ periods ago as Ψ
(τ)
t−τ has gone through the set of accounts in (4) and it is returning

now to the short term capital account Kt which process is shown in (2).

Figure 3 schematically shows how consumption ct, short term investments in equation (2) and

long term investments in (3) and the set of equations (4) evolve over time. To solve this problem,

it is necessary to break-up short term capital (top of Figure 3) and long term capital (bottom

of Figure 3) into two different types of capital accounts. The aggregated short term capital is

represented by the process Kt in equation (2) and the top half of Figure 3.

In addition to the real investment options there are financial securities. The agent is allowed to

decide how to allocate capital among the real and the financial assets. In particular, the agent can

decide the proportion of short term capital x1t to allocate to the short term production technology

fK (Kt), the proportion of short term capital x2t to allocate to the short risk free rate rt and, hence,

17For simplicity, in the continuous-time general model, I will assume that fK and fI follow geometric Brownian
motions.
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the remaining (1−x1t−x2t) is allocated to securities (e.g. bonds at different maturities) that have

price Bt. Since the financial assets are in zero net supply, equilibrium will require setting the rate

of return on the financial assets a the right level, so that the representative agent will choose not to

invest in them. This argument implies that, because of the zero net supply of the risk free bonds,

in equilibrium the following must hold: x1t = 1 and x2t = 0.

2.2 Simplified model of the central planner’s problem

In this second part of the section, I will consider three issues in order to simplify the general model

in section 2.1 and make it more tractable.

Firstly, I denote It the total amount of capital allocated in long term investments at any time

t. Therefore, It =
∑τ

i=1 Ψi
t. Using (3) and (4), and assuming that fI follows the same geometric

brownian motion fI

(
Ψ

(τ−i+1)
t−1

)
= Ψ

(τ−i+1)
t−1 (1+µI∆t+σI∆W

I
t ) for all maturities of capital i, then

it can be shown that the changes in the aggregated account It are determined by18

∆It = It − It−1 = It−1(µI∆t+ σI∆W
I
t ) + Ψt∆t− Ψ

(0)
t ∆t (7)

Secondly, I assume that there exists a constant λ such that Ψ
(0)
t = λIt. This means that the

capital amount Ψ
(0)
t can be approximated as a fraction λ of the total amount of capital allocated

in long term investments It.

Thirdly, I generalize the discrete-time setup in section 2.1 to a continuous-time model. Consider

an infinite horizon production economy with just one type of nondurable good.

When taking into account these three issues, the model described by (1)-(6) becomes the fol-

lowing simple model in which the representative agent solves the problem:

max
ct,x1t,x2t,Ψt

{
E0

[∫
∞

0
e−ρtU(ct)dt

]}
(8)

such that

dKt = x1tKt

(
µKdt+ σKdW

K
t

)
+ x2tKtrtdt+ (1 − x1t − x2t)Kt

dBt
Bt

− ctdt− Ψtdt+ λItdt (9)

dIt = It
(
µIdt+ σIdW

I
t

)
+ Ψtdt− λItdt (10)

with the non-negativity and irreversibility constraints for all t:

Kt > 0, ct > 0, It > 0, and Ψt ≥ 0. (11)

Notice that with this simplification, the model is pure Markov and, therefore, I do not have to

18For simplicity, I assume constant returns-to-scale risky production technologies and that capital (but not labor)
is needed as an input to produce the good. Therefore, fK and fI are characterized by their drifts, µK and µI and
volatilities, σK and σI , respectively. This simple characterization will be useful later in the paper in order to provide
economic intuition.
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keep track of all the investments made in the past τ periods. I just have to keep track of the two

state variables Kt and It.

3 Equilibrium

This section studies the equilibrium of the representative agent problem described by (8)-(11).

The term structure of the economy described in Section 2 will be obtained in equilibrium. In this

section, I will calculate the first order conditions (FOCs) and provide economic intuition about

consumption, investment decisions, and the term structure of interest rates

3.1 Preliminary implications in equilibrium

The central planner’s problem that I develop in section 2 is motivated by the general equilibrium

production economy developed in Appendixes A1 and A2. Appendix A3 sketches the implications

for the competitive equilibrium. The main equilibrium results in this appendix are summarized in

the following two lemmas.

Lemma 1 There exists a competitive equilibrium with dynamically complete markets. The set of

stochastic processes {K∗

t , I
∗

t , c
∗

t , Ψ∗

t } is determined as the solution of the central planner’s problem

in (8)-(11).

Lemma 2 The equilibrium of the economy described above by (8)-(11) is such that the optimal

portfolio of the representative agent in equilibrium is determined by x1t = 1 and x2t = 0.

Lemma 1 uses the findings in Anderson and Raimondo (2007) who give conditions to ensure

that equilibrium is dynamically complete in a related, but not identical model. Lemma 2 states

the market clearing condition in equilibrium. Therefore, the sum of the total amount of lending

and borrowing must be zero. This implication from the lemma means that all the bonds in the

economy are in zero net supply.

3.2 The value function

The problem for the economy described by (8)-(11) is Markov because the setup includes state

variables for the past τ units of time. At each time t, the problem includes τ state variables related

to long term investments from time t − τ to time t, plus one state variable related to short term

investments. Therefore, τ + 1 state variables are involved in this problem.

The simplified model described in Section 2.2 by by (8)-(11) leads to a two state variable problem

since the τ state variables related to long term investments collapse into one. Under the simplified

model setup, define the value function J for this problem as:

J = J(Kt, It, t) = max
ct,x1t,x2t,Ψt

{
E0

[∫
∞

0
e−ρtU(ct)dt

]}
. (12)

10



Note that the value function J just depends on: (i) the short term capital account K, and (ii)

the long term capital account I. The state space of the problem {Kt, It} is divided into two regions:

the no-investment and the investment region19. When the pair {Kt, It} is inside the no-investment

region, the agent consumes from the good, but makes no new long term investment. When the pair

{Kt, It} is inside the investment region, the agent consumes from the good and makes a new long

term investment. In the no-investment region, I have that JK > JI , while in the investment region

the equality JK = JI holds.

3.3 The Hamilton-Jacobi-Bellman equation

The solution of the agent’s optimal control problem defined by (8)-(11) satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation:

max

{
sup

ct,x1t,x2t,Ψt

{
E0

[
d̂J∗ + e−ρtU(ct)dt

]}

︸ ︷︷ ︸
No−investment region

, JK − JI︸ ︷︷ ︸
Investment
region

}
= 0 (13)

where JK and JI are partial derivatives of J(Kt, It, t) with respect to Kt and It respectively and

d̂J∗ is represented by the following expression:

d̂J∗ = Jt +

[
x1tKtµK + x2tKtrt + (1 − x1t − x2t)Kt

dBt
Bt

− ct + λIt

]
JKt

+
1

2

[
x2

1tK
2
t σ

2
K

]
JKtKt

+

+ [ItµI − λIt]JI + +
1

2

[
I2
t σ

2
I

]
JItIt + [x1tσLσIρLIKtIt]JKI

These no-investment and investment regions introduced in the last subsection correspond to

the two parts within the maximization function in equation (13). When the first part of this

maximization problem binds, then the pair {Kt, It} is inside the no-investment region and, therefore,

Ψt = 0. Alternatively, when the second part of this maximization problem binds, then the pair

{Kt, It} is inside the investment region and, consequently, Ψt > 0.

3.4 Obtaining the FOCs (1): Envelope condition

By taking derivatives of the HJB (Hamilton-Jacobi-Bellman) equation with respect to ct, I obtain

the following FOC:

JKt
= e−ρtUct(ct) (14)

This condition establishes the equilibrium tradeoff between consumption today and consumption

next period, meaning that there is an equilibrium between:

• the discounted marginal gain or loss in utility e−ρtUct(ct) from consuming one more unit at

time t, and

19See Kogan (2001), Mamaysky (2001), Casassus, Collin-Dufresne and Routledge (2005) and Kogan, Livdan and
Yaron (2006) for similar problems based on irreversible investments.
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• the marginal gain or loss JKt
from investing this unit either in the short term or in the long

term account and therefore, increasing the short term capital account Kt or the long term

capital account It, which will have an effect on future utilities.

Consequently, in equilibrium, the representative agent must be indifferent among the following

decisions: (i) consuming an extra unit of capital today; (ii) investing an extra unit of capital into

the short term technology (and, therefore, being able to consume some extra capital next period

which amount will depend on the shock dWK
t and the parameters µK , and σK); and (iii) investing

an extra unit of capital into the long term technology (and, therefore, being able to consume some

extra capital next period which amount will depend on the shock dW I
t and the parameters µI , σI ,

and λ).

Using the expression of stochastic discount factor (SDF) of this economy studied in Appendix

A3 and given by Mt,s = e−ρ(s−t)Uc(c∗s)
Uc(c∗t ) , for s > t, we can obtain the following Euler equation:

Et

{
e−ρ(s−t)

Uct(cs)

Uct(ct)
Rt,s

}
= 1 . (15)

where Rt,s denotes the return at time t of a security that matures at time s, with s > t. Note that

this equation is equivalent to the condition e−ρsEt {Uct(cs)Rt,s} = eρtUct(ct), which means that

there is an equilibrium between:

• the marginal gain or loss in utility e−ρtUct(ct) from consuming one more unit at time t,

discounted at time zero, and

• the expected discounted marginal gain or loss in utility e−ρsEt {Uct(cs)Rt,s} from investing

this unit in a security associated to a maturity of t − s and, therefore, being able to enjoy

extra consumption at time s when this long term investment pays off.

3.5 Obtaining the FOCs (2): Equilibrium short term interest rate

By taking derivatives of the HJB (Bellman) equation with respect to x1t, I obtain the following

FOC:

0 = JKt
Kt

(
µK −

dBt
Bt

)
+ JKtKt

x1tK
2
t σ

2
K + JKtItKtItσKσIρKI . (16)

Considering that in equilibrium x1t = 1 and x2t = 0 for all t (from Lemma 2), then I can obtain

the following expression for the equilibrium short term interest rate:

rt = µK + σ2
K

[
JKtKt

JKt

Kt

]

︸ ︷︷ ︸
Risk aversion

+ σKσIρKI

[
JKtIt

JKt

It

]

︸ ︷︷ ︸
Hedging term for

long term investments

. (17)

Let us define the following variables for notational purposes:

ΘK = JKt
Kt

12



ΘKK = JKtKt
K2
t

ΘKI = JKtItKtIt .

Therefore, the expression (17) for the short interest rate (level of the term structure) becomes:

rt = µK︸︷︷︸
Drift in the short
term process.

+ σ2
K

ΘKK

ΘK︸ ︷︷ ︸
Risk

aversion

+ σKσIρKI
ΘKI

ΘK︸ ︷︷ ︸
Hedging term for

long term investments

. (18)

This result is a generalization of the equilibrium interest rate in the one-dimensional Cox,

Ingersoll and Ross (CIR 1985a) term structure model. Although the variables ΘK and ΘKK in the

CIR (1985a) model are similar to the ones in this model, the variable ΘKI in CIR (1985a) does not

account for the long term investment.

In addition, this result is a generalization of the equilibrium interest rate in the Mamaysky

(2001) model of durable goods. Mamaysky (2001) presents just one source of uncertainty: shocks

in the capital stock of nondurable goods. The depreciation of the durable good in that model is

deterministic, that is, σI = ρKI = 0. Therefore, the hedging term for long term investments in (18)

is zero in that model.

From equation (18), the short interest rate rt presents the following characteristics:

• rt is a function of the drift (mean of the growth) µK of short term process, such that an

increase in µK produces an increase of the same magnitude in rt.

• rt is related to the volatility σ2
K of the short term process and the amount of short term

(liquid) capital Kt according to the hedging term σ2
K
JKtKt

JKt

Kt.

• An increase in the uncertainty in the short run σ2
K produces a decrease in rt, because JKtKt

<

0 by concavity of the value function.

•
JKtKt

JKt

Kt has a negative sign and it is a measure of risk aversion towards short term capital.

• rt is related to the standard deviations σK and σI of the short and long term processes,

respectively, and the correlation ρKI between these processes, through the following term:
JKtIt

JKt

It. This is a hedging term for the short term versus long term risk. This term is zero

when short and long term processes are uncorrelated (ρKI = 0), positive for a negative

correlation (ρKI < 0) and negative for positive correlation (ρKI > 0).

•
JKtIt

JKt

It has a negative sign and it is a measure of the risk aversion towards long term capital

investments It.
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3.6 Obtaining the FOCs (3): Equilibrium long term investment

By taking derivatives of the HJB (Bellman) equation with respect to Ψt, the following FOC will

be obtained:

JKt
> JIt (19)

Note again that the state space of the problem {Kt, It} is divided into two regions: the no-

investment region (Ψt = 0) in which JK > JI , and the investment region (Ψt > 0) in which the

equality JK = JI holds. Initially, in the investment region, the following inequality holds: JI > JL.

However, the agent allocates capital into long term investments and, therefore, the agents make the

ratio Kt

It
decrease, until JI is equal to JK . Hence, agents allocate capital into long term investments

when the ratio Kt

It
of long to short term capital becomes sufficiently high.

3.7 Equilibrium ODE and reduction in the number of state variables

Using the left part of the HJB (Hamilton-Jacobi-Bellman) equation in (13), the FOCs, and Lemma

2, I obtain the following two-dimensional ordinary differential equation (ODE) that applies to the

no-investment region:

0 = e−ρtUct(ct) + Jt + JKt
[KtµK − ct + λIt] + JIt [ItµI − λIt] (20)

+ 0.5JKtKt

[
K2
t σ

2
K

]
+ 0.5JItIt

[
I2
t σ

2
I

]
+ JKtIt [KtItσKσIρKI ]

such that the conditions in equations (14) and the equality in (19) hold.

I also introduce a further reduction in the number of state variables from two to one. First, let

us consider the utility function U(ct) = (ct)1−γ

1−γ . Because the numeraire good production function is

homogeneous of degree one and the utility function is homogeneous of degree 1− γ, then the value

function is homogeneous of degree one as well. This implies that the ratio of short term to long

term investment is sufficient to characterize this economy. Let us define g(ωt) as part of the value

function such that:

J(Kt, It, t) =
It

1−γ

1 − γ
g(ωt) (21)

where ωt is defined as ωt = log
(
Kt

It

)
. Given this state variable ωt, the no-investment region will

be given by (−∞, ω∗], where ω∗ is determined as part of the agent’s control problem20. Therefore,

agents allocate capital into long term investments when the ratio Kt

It
of short to long term capital

becomes sufficiently high.

The process for ωt is obtained using the two-dimensional version of the Ito′s Lemma:

dωt =

[
(µk − µI) − 0.5(σ2

K − σ2
I ) + λ(eωt − 1) −

ct
Kt

]
dt+ +σKdW

K
t − σIdW

I
t + Λtdt (22)

20In the investment region the following holds: JI > JK . Then the agent would allocate capital into long term
investments until JI is equal to JK . The trigger ω∗ is the value of the state variable ωt such that JI = JK .
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where Λt = −
[

Ψt

Kt
(eωt + 1)

]
. Therefore Λt is a function of the ratios Ψ̂t = Ψt/Kt and eωt = Kt/It

or, equivalently, Λt = Λt(Ψ̂t, ωt). Note that when Ψt = 0 (inside the no-investment region), then

Λt = 0.

3.8 Equilibrium conditions in terms of the long to short term ratio Kt/It

From (14) and (19), I respectively obtain the following expressions for the optimal consumption

policy ct and the smooth pasting condition at the boundary ω∗ of the investment region:

ct = It

(
g′(ωt)

(1 − γ)eωt

)−1

γ

(23)

(e−ω
∗

+ 1)g′(ω∗) = (1 − γ)g(ω∗) . (24)

Besides, the super-contact condition JKI = JKK or, equivalently JIK = JII , introduced in

Dumas (1991) is another boundary condition that must hold at the boundary of the investment

region. When the form of the value function in (21) is take in to account, then the super-contact

condition becomes:

((1 − γ)eω
∗

− 1)g′(ω∗) = (eω
∗

+ 1)g′′(ω∗) . (25)

Remarkably, the ratio ct/Kt that can be obtained from (23), the smooth pasting condition in

(24), and the super-contact condition in (25) only depend on the state variable ωt or the realization

of the state value at ωt = ω∗.

Finally, we need to find the form of the function g(ω) in order to determine the equilibrium

conditions. The following theorem describes the functional form for g(ω).

Theorem 3 The function g(ω) is the solution of the following ODE:

0 = (0.5β1) g
′′(ω) +

(
λ(1 + e−ω) + β2

)
g′(ω)+

+ (2 − γ)

(
g′(ω)

(1 − γ)eω

) γ−1

γ

+ (β3 − λ(1 − γ))g(ω) (26)

where β1, β2, β3, and β4 are the following constants that do not depend on λ nor δ:

β1 = σ2
K + σ2

I − 2σKσIρKI (27)

β2 =
(
µK − 0.5σ2

K

)
−
(
µI − 0.5(2γ − 1)σ2

I

)
+ (1 − γ)σKσIρKI (28)

β3 = −ρ+ (1 − γ)(µI − 0.5γσ2
I ) (29)

under the conditions shown in equations (24) and (25), which are conditions that must hold

at the optimal boundary ω∗. Additionally, the following boundary condition is needed in order to
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account for the states in which ω becomes very small:

lim
ω→−∞

g(ω) = +∞. (30)

Proof. See Appendix A4.

The solution of the ODE in (26) subject to (24), (25), and (30) for the constants defined in

(27)-(29) is needed in order to solve the optimal control problem. To the best of my knowledge,

there is no closed-form solution for this problem. Therefore, I will solve this ODE numerically21.

3.9 The stochastic discount factor and the short interest rate

Let Dt denote the price of the risk-free money-market account, which consequently follows the

process dDt

Dt
= −rtdt. The stochastic discount factor (SDF) of this economy M0,t is driven by the

process:
dM0,t

M0,t
=
dDt

Dt
−

[
σK

JKK
JK

Kt

]
dωK,t −

[
σI
JKI
JK

It

]
dωI,t (31)

with M0,0 = 1. Furthermore, in equilibrium, the SDF is determined by the following equation:

Mt,s =
JK(Ks, Is)

JK(Kt, It)
= e−ρ(s−t)

Uc(cs)

Uc(ct)
= e−ρ(s−t)

(
I∗s
I∗t

)
−γ g′(ω∗

s)e
ω∗

t

g′(ω∗

t )e
ω∗

s
(32)

for s > t. Taking into account the definition of ωt as the ratio of short term to long term capital,

then the expression for the SDF in (32) becomes:

Mt,s = e−ρ(s−t)
K∗

t

K∗
s

(
I∗s
I∗t

)1−γ g′(K∗

s/I
∗

s )

g′(K∗

t /I
∗

t )
(33)

By expressing the equation (18) for the short interest rate in terms of the state variable g(ωt),

we obtain that:

rt = µK + σ2
K

[
g′′(ωt) − g′(ωt)

g′(ωt)

]

︸ ︷︷ ︸
Risk aversion

+ σKσIρKI

[
(1 − γ)g′′(ωt) + g′(ωt)

g′(ωt)

]

︸ ︷︷ ︸
Hedging term for

long term investments

. (34)

The following proposition shows the differential form for the short term interest rate. As it is

discussed in Duffie and Kan (1994), most of the parametric models are of the form described in

this proposition.

Proposition 4 The short rate process for this problem is the solution of the stochastic differential

equation of the form

21By defining g1 = g(ωt) and g2 = g′

1, I will transform this second order ODE into a system of two one dimensional
ODEs. Then, I will solve this system using the Runge-Kutta iterative method. In particular, I use the forth-order
explicit Runge-Kutta method as developed in Dormand and Prince (1980), which will provide an approximation
solution of the system of ODEs. Fourth-order means that the error per iteration step is on the order of ǫ5 and the
total accumulated error has order ǫ4. By solving the system for g1 and g2, we simultaneously obtain the functions
g(ωt) and g′(ωt) since g(ωt) = g1 and g′(ωt) = g2.
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drt = [α1 + α2rt] dt+
[
αK1 + αK2 rt

]
dWK

t +
[
αI1 + αI2rt

]
dW I

t (35)

where

α1 = α1(Ψ̂t, ωt, t) = σKΥ1(Ψ̂t, ωt, t)Υ2(ωt, t) + ΓKIΥ3(ωt, t)

α2 = α2(Ψ̂t, ωt, t) = σKΥ1(Ψ̂t, ωt, t)Υ2(ωt, t) + ΓKI

(
g′′(ωt)

g′(ωt)

)2

αK1 = αK1 (ωt, t) = σKΥ2(ωt, t)

αK2 = αK2 (ωt, t) = −σK
g′′(ωt)

g′(ωt)

αI1 = αI1(ωt, t) = σIΥ2(ωt, t)

αI2 = αI2(ωt, t) = −σI
g′′(ωt)

g′(ωt)

and where Υ1(Ψ̂t, ωt, t), Υ2(ωt, t), Υ3(ωt, t), and ΓKI have been defined, for notational purposes,

as follows:

Υ1(Ψ̂t, ωt, t) = (µk − µI) − 0.5(σ2
K − σ2

I ) + λ(eωt − 1) − e−ωt

(
g′(ωt)

(1 − γ)eω

)−1

γ

+ Λt(Ψ̂t, ωt)

Υ2(ωt, t) = µk
g′′(ωt)

g′(ωt)
+ σ2

K

g′′′(ωt) − g′′(ωt)

g′(ωt)
+ σKσIρKI

(1 − γ)g′′′(ωt) − g′′(ωt)

g′(ωt)

Υ3(ωt, t) = −

(
g′′(ωt)

g′(ωt)

)2

µK + 0.5

(
g(iv)(ωt)

g′(ωt)
− 3

g′′′(ωt)g
′′(ωt)

(g′(ωt))2
+ 2

(
g′′(ωt)

g′(ωt)

)2
)
σK+

+0.5

(
(1 − γ)

(
g(iv)(ωt)

g′(ωt)
− 3

g′′′(ωt)g
′′(ωt)

(g′(ωt))2

)
− 2

(
g′′(ωt)

g′(ωt)

)2
)
σKσIρKI

ΓKI = σ2
K + σ2

I − 2σKσIρKI .

Proof. Apply Ito’s Lemma to equation (34) and rearrange terms.

Table 1 compares the forms of the short rate process for different classic term structure models.

The short rate process obtained by the model developed in this paper and shown in proposition 4

has a similar form than the two-factor Cox, Ingersoll and Ross (1985b) model and the set of two-

factor affine term structure models (ATSM) specified in Dai and Singleton (2000). However, there

are two main differences between these models and my model that must be taken into account:

1. the power θ of the diffusion terms is 0.5 in the Cox-Ingersoll-Ross model and in the ATSM,

while is 1.0 in my model as it is in Merton (1973), Vasicek (1977), Brennan and Schwartz

(1979), and Black, Derman and Toy (1990); and

2. the time-dependent coefficients α1, α2, α3, α
K
1 , αK2 , αI1, and αI2 are not deterministic nor

defined by an affine structure in my model; alternatively, these coefficients are provided by
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the optimization problem described in section 2 and solved in section 3 in order to obtain the

functional form of g(ωt) and Ψ̂t.

3.10 Bond prices and the term structure of interest rates

Denote the equilibrium bond prices B(ωt, t, T ) in this economy as the date-t securities that deliver

one unit of the consumption good at date T. The following theorem shows how to calculate the

price of any bond B(ωt, t, T ).

Theorem 5 The equilibrium price at time t of a zero-coupon bond that expires at time T , B(ωt, t, T ),

is the solution of the following partial differential equation (PDE):

0 = Bt − rtB +

[
(µK − µI) − 0.5(σ2

K − σ2
I ) −

ct
Kt

+ λ(eωt − 1) + Λt

]
Bω+

+0.5
[
σ2
K + σ2

I + ρKIσKσI
]
Bωω (36)

subject to the following boundary conditions:

B(ωT , T, T ) = 1 (37)

Bω(ω∗

T , t, T ) = 0 (38)

Bω(−∞, t, T ) = 0 (39)

Proof. See Appendix A4.

There are five remarks that arise from Theorem 5. First, the term ct
Kt

in (36) is a function of

just ωt because ct
Kt

= e−ωt

(
g′(ωt)

(1−γ)eω

)−1

γ
. Second, Λt = −

[
Ψt

Kt
(eωt + 1)

]
is zero in the no-investment

region (Ψt = 0). Third, the boundary condition (37) is necessary to impose that B(ωt, t, T ) is the

price of a security that pays $1 at time T . Fourth, the conditions (38) and (39) are necessary to

rule out arbitrage opportunities and come from imposing that the bond returns at the reflecting

boundary should be equal to the risk-free rate. Finally, the term structure of interest rates at time

t for different maturities s, with s > 0, is given by y(ωt, t, s) and the following expression:

y(ωt, t, s) = −
log (B(ωt, t, t+ s))

s
. (40)

4 Intuition behind the dynamics of the term structure

In this section, I present the details about the data and the intuition about the dynamics of the

term structure that the model may provide. Section 4.1 describes the data and how the capital

accounts have been constructed. In section 4.2, I discuss the cyclicality of the short term interest

rate and the slope of the term structure in terms of the cyclicality of the state variable ωt = log(Kt

It
).
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4.1 Data

I use data on: (i) fixed assets (stocks of capital), (ii) consumption and investments (flows of capital),

(iii) short and long interest rates, and (iv) inflation (in order to deflate nominal units to real units).

I consider data from the first quarter of 1970 to the first quarter of 2007.

My dataset for fixed assets consists of the net stock of fixed assets from the Fixed Asset Tables

(FAT) of the National Economic Accounts provided by the Bureau of Economic Analysis (BEA). I

consider both private (FAT Section 2, Tables 2.1 and 2.2) and government assets (FAT Section 7,

Tables 7.1.A, 7.1.B, 7.2.A, and 7.2.B). Residential assets are considered to be long term investments.

Non residential assets are separated into equipment and software (short term) and structures (long

term). These data provide the stock of the short term capital account Kt and the long term capital

accounts It in the model.

For consumption and investments, I use quarterly data from the National Income and Prod-

uct Accounts (NIPA) on real consumption of nondurable goods from the personal consumption

expenditures (NIPA Section 2, Tables 2.3.4 and 2.3.5), real gross private domestic fixed investment

(NIPA Section 5, Tables 5.3.4 and 5.3.5) and real government consumption expenditures and gross

investment (NIPA Section 3, Tables 3.9.4 and 3.9.5) provided by BEA.

I link each NIPA account to its equivalent type of account identified in BEA Table 3 in Fraumeni

(1997). I then use the rates of economic depreciation reported in Hulten and Wykoff (1981a, 1981b)

and Fraumeni (1997) to split the different NIPA accounts between short and long term using the

following conditions22:

• if the average rate of depreciation is more than 0.1, the investment account will be considered

a short term investment, otherwise it will be considered a long term investment;

• if the average service years is less than 20 years, the investment account will be considered a

short term investment, otherwise it will be considered a long term investment; and

• if the average declining balance rate is greater than 1, the investment account will be consid-

ered a short term investment, otherwise it will be considered a long term investment.

Table 2 shows the results of this classification of the private investment NIPA accounts between

short and long term accounts, and their corresponding rates of depreciation, service life, declining-

balance rates and Hulten-Wykoff categories. Table 3 shows these same variables for the aggregated

NIPA accounts in Table 2. As an example of the difference between short and long term accounts,

note that information processing equipment and software (e.g. computers) has a high rate of

depreciation and a short service life, while residential structures (e.g. residential real estate) has

a low rate of depreciation and a long service life. Nonresidential structures related to real estate

(e.g. commercial and health care or manufacturing) also show low rates of depreciation and a long

service life.

22Although there are some minor divergences in accounts related to nonresidential structures, the Hulten-Wykoff
categories A (long term), B (intermediate term) and C (short term) confirm this categorization.
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The NIPA data on government consumption and investment is provided as an aggregate of

consumption expenditures, gross investment in structures and gross investment in equipment and

software. I consider gross investments in structures as long term investments and gross investments

in equipment and software as short term investments. I include government consumption expendi-

tures as short term investments because the agent does not have utility for these goods. Accordingly,

I use the data on real consumption of nondurable goods as ct, data on long term investments as Ψt,

and data on short term investments as the non-invested in long term and non-consumed shared of

the account Kt.

Figure 4 shows the derivable flows of capital obtained from the NIPA accounts for the period

1970Q1 to 2007Q1. Panel A of Figure 4 shows the real consumption, short term investments and

long term investments in absolute terms. Panel B of Figure 4 shows the same time series in relative

terms. Notice that consumption has increased in real absolute terms over time (Panel A), but it

shows a slight increase over time relative to investments (Panel B). Notice also that the flow of

short term investment has increased at a lower rate than consumption (Panel A) and, in relative

terms, it remains almost constant. Finally, long term investments have remained stable over time

(Panel A) but have decreased relative to consumption and short term investments (Panel B).

Figure 5 disaggregates short and long term investments in Figure 4 into their components. Real

estate investment (residential and nonresidential) is the most important channel within long term

investments. It represents an average of 84.1% of the total long term investments in the U.S. for

the study period. Figure 5 shows that real estate drives the dynamics of long term investments,

since the remaining (non-real estate) long term investments present a flat pattern. Furthermore,

Figure 5 provides evidence of the following facts: (i) Real estate investments decrease during

recessions; (ii) government consumption expenditures (GCE) increase during recessions; and (iii)

short term investments (excluding GCE) decrease during recessions. These three variables present

an increasing trend over the period 1970Q1 to 2007Q1.

Although long term investments have decreased relative to consumption and short term invest-

ments (Panel B of Figure 4), the capital stock of long term investments has increased even though

the flow of new long term investments has been stable. Figure 6 shows the net capital stock of

fixed assets from the FAT tables and consumption from NIPA. This figure shows that the capital

stock of long term investments has increased more sharply than consumption and the capital stock

of short term investments over the period 1970-2007. The calibration of the model will show that

this is due to the higher returns provided by long with respect to short term investments, the high

rate of reinvestment of long term capital and the high depreciation of short term assets compared

to long term assets.

For the short and the long term interest rates, I use data for the term structure of interest rates

from the Federal Reserve Board. I use the 3-month rate as the short rate rt and the 5-year rate as

the long rate Rt. Note that the 5-year rate y(ωt, t, 5) in the model in equation (40) is equivalent to

this long rate Rt.

Finally, I need data on inflation in order to deflate the data on the term structure of interest
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rates. Notice that deflated data on the NIPA accounts can be directly obtained from the BEA.

Hence, I use real and not nominal data in this paper. One question may arise at this point: Is the

deflated nominal interest rate a good proxy for the real interest rate? We need long time series to

calibrate the model but the U.S. Treasury started issuing Treasury Inflation-Protected Securities

(TIPS) in 1997. Figure 7 compares the data on TIPS and real rates calculated as deflated nominal

rates for the period 2003Q1-2007Q4. It shows that the rates between TIPS and the calculated real

rates may differ (Panel A) but that the patterns of their slopes are very similar (Panel B).

4.2 The cyclical fluctuations of the short rate, the slope of the term structure,

and the state variable ωt = log
(
Kt

It

)
are jointly determined

When we analyze the time series of the real short term interest rate and the % quarterly change

in the ratio of real short term to long term investments Kt/It, we observe that they both follow

cyclical patterns. Figure 8 shows the time series for these two variables from 1970 to 2007. These

time series have been smoothed using exponential smoothing in order to show a more clear graph.

The dashed boxes represent the periods in which the % in the ratio Kt/It increases, that is the

periods in which the long term capital It decreases with respect to the short term capital Kt. The

shaded areas show the NBER recessions. The cycles of the real short interest rate and the cycles

of the % change in Kt/It are sketched below the graph and their increasing and decreasing periods

have been denoted in the graph by (+) and (-), respectively.

Similarly, we also observe that the time series of the slope of the term structure of interest rates

and the % quarterly change in the ratio of real short term to long term investments Kt/It follow

cyclical patters (see Figure 9). We may observe the following findings from the analysis of these

time series in Figures 8 and 9:

• All the NBER recessions in the period of analysis (1970-2007) happened in phases in which

the long term capital It decreased with respect to the short term capital Kt (e.g. the NBER

recessions are in the dashed areas of the graph);

• in the periods of low long term investment activity (e.g. increasing % change in Kt/It) the

real short term investment is more volatile than in the periods of high long term investment

activity (e.g. decreasing % change in Kt/It) as shown in Figure 8;

• the real slope of the term structure of interest rates presents a ”V” shape (e.g. decreasing

first, and then increasing) within the time intervals of low long term investment activity (e.g.

increasing % change in Kt/It) as shown in Figure 9;

• the time series for the real short rate and the % change in Kt/It show periodic patterns which

present an harmonic motion with the real short term rate following that of % change in Kt/It

by some delay, as shown in Figure 8; and

• the time series for the real slope of the term structure of interest rates and the % change in
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Kt/It show periodic patterns which present an harmonic motion with the real short term rate

following that of % change in Kt/It by some delay, as shown in Figure 9.

The first finding shows evidence of the link between real investments and the business cycle.

In particular, it confirms that right before or during recessions the amount of capital allocated to

long term investments with respect to the capital allocated to short term investments decreases.

The second finding suggests that there may exist two different investment regions as predicted by

the model in section 3. The model accounts for a distinction between no-investment and investment

regions. Similarly, the aggregate data in Figures 8 and 9 suggest the distinction between regions of

low levels of long term investments and regions of high levels of long term investments.

The third finding shows that the short rate and the long rate may behave differently in periods

of low long term investment activity. The slope of the real term structure of interest rates decreases

during the first quarters within this interval, that is, the real long rate decreases with respect to

the real short rate in response to a decreasing long term investments with respect to short term

investments.

Finally, the fourth and fifth findings suggest that the real investments and the first two com-

ponents of the real term structure of interest rates (e.g. real short interest rate and real slope)

follow the dynamics of a predator-prey system. Proposition 6 states the connection between this

empirical finding and the model proposed in section 3 through a system of first order, non-linear,

differential equations that is equivalent to the predator-prey equations.

Proposition 6 The dynamics of the state variable of the problem ωt = log
(
Kt

It

)
, the real short

term rate rt, and the real long term (s-year) rate yt,s = y(ωt, t, s) are described by a system of three

non-linear differential equations of the form:

E

[
dωt
dt

]
= f1 (ωt, rt, yt,s)ωt (41)

E

[
drt
dt

]
= f2 (ωt, rt, yt,s) rt (42)

E

[
dyt,s
dt

]
= f3 (ωt, rt, yt,s) yt,s (43)

Proof. See Appendix A4.

This system is equivalent to a generalized version of the predator-prey equations, also known

as the Lotka-Volterra equations23, for one prey (ωt) and two predators (rt and yt,s). The analogy

of the system of non-linear equations in Proposition 6 and the generalized predator-prey equations

to any number of species competing against each other is described as follows:

23Lotka and Volterra proposed a pair of differential equations to describe the dynamics of interactions between two
biological species in an ecosystem. One of the species is a predator (e.g. wolves) and the other one is a prey (e.g.
rabbits). In their model, rabbits reproduce exponentially unless wolves eat them. The more rabbits, the more the
number of rabbits will grow. The more wolves, the more predation and, therefore, less increase in the number of
rabbits. Finally, the model accounts for a natural death of the wolves in order to close the model.
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• The state variable of the problem ωt = log
(
Kt

It

)
is equivalent to the prey population;

• the short term rate rt is equivalent to a predator population; and

• the long term (s-year) rate yt,s = y(ωt, t, s) is equivalent to another predator population.

The system of differential equations has cyclical (periodic) solutions that do not present a simple

expression. If this problem is solved numerically, we obtain a simple harmonic pattern for both pop-

ulations (predators and prey) with the population of prey leading the two populations of predators

by some time interval.

5 Empirical results

In this section, I present the details about the empirical analysis of the model. Section 5.1 shows

how the model has been calibrated using the Simulated Method of Moments (SMM). Section 5.2

reports the empirical results of this calibration.

5.1 Calibration of the model

In this subsection I will study the empirical properties of the model. I will implement the Simulated

Method of Moments (SMM) of Duffie and Singleton (1993) to estimate the parameters of the model.

I want to estimate Ψ = {µK , µI , σK , σI , ρKI , λ, A, ρ}, the set of structural parameters of the model.

However, due to the high computational burden of the simulated-based approach that I implement,

I estimate only the following subset of parameters: ψ̃ = {µK , µI , σK , σI , λ} ⊂ Ψ. Because I am

mostly interested in estimating the characteristics of investments in short and long term capital,

the other parameters (ρKI , A, and ρ) are set to reasonable values according to existing studies.

I will implement the Simulated Method of Moments (SMM) of Duffie and Singleton (1993)

to estimate the parameters of the model. I have to pick parameters that minimize the weighted

distance between a set of model unconditional moments FZ(ψ̃), and their moment conditions from

the empirical data FT .

I use a vector ft of time series of the following variables as described in subsection 4.1: (i) the

real short term interest rate, (ii) the real long term interest rate, (iii) the real aggregate consumption

of nondurable goods, (iv) the real short term investments, and (v) the real long term investments.

The sample has size T = 149 quarters from 1970Q1 to 2007Q1. The summary statistics of this set

of variables is shown in Table 4. Let the set of unconditional moments be the sample averages in

the dataset: FT = 1
T

∑T
t=1ft.

Then, I simulate the economy described by my model for a particular set of parameters ψ̂. This

economy is uniquely determined by its state variable ωt defined in subsection 3.7 and endogenously

determined by the optimal consumption and investment strategy of the agent. Hence, I firstly have

to solve the optimal control problem, that is, the HJB equation (26) subject to (24), (25) and (30).

Since no analytical solution exists for this equation, I solve it numerically following the approach
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in Casassus, Collin-Dufresne and Routledge (2006). Using Monte Carlo simulations, I estimate the

implied density function of the state variable, h(ω; ψ̂) and I calculate the implied moments of the

model: FZ(ψ̂) = E
[
f(ω; ψ̂)

]
≈
∫
f(ω; ψ̂)h(ω; ψ̂)dω.

Finally, the SMM requires solving the problem:

ψ̂∗ = arg min
ψ∈ bψ

[FZ(ψ) − FT ]′WT [FZ(ψ) − FT ] (44)

where WT is the weighting matrix24. I assume WT = V −1 , where V is the asymptotic of

the unbiased estimate covariance matrix of the sample averages FT . My numerical procedure is

similar in spirit from Casassus, Collin-Dufresne and Routledge (2006) and Kogan, Livdan and

Yaron (2006), although the goals of their papers and the setup of their models are different25.

5.2 Results from the calibration

Table 5 reports the parameter estimates obtained from the calibration exercise and the values for

the parameters that have been fixed. Since I focus on the first moments of the five variables in

vector ft described above, only five parameters can be independently estimated from the data. The

growth of the long term capital process µI is higher than the growth of the short term capital

process µK . This result is consistent with the fact that long term (illiquid) assets exist if and only

if the investment in these long assets provide a compensation in productivity, in this case µI > µK .

In my model, illiquidity is the loss of flexibility that arises from the inability to rebalance past

consumption and investment plans when more accurate information becomes available. Therefore,

long term assets (illiquid assets) provide a higher rate of return than the short term assets (liquid

assets).

The modeled volatilities of the short term and the long term processes are 27.05% and 38.09%,

respectively. The range of volatilities for returns on stocks, indexes of stocks and real assets is wide

with a range of values from 8% to 45%. Table 5 also reports that the 13%, (1 − λ), of the returns

on the long term capital that mature at each period are reinvested in the long term technology.

This means that 87%, (λ), of the long term returns revert to the short term capital account and

are able to be used for short term investments, long term investments or consumption.

Table 6 shows the simulated (modeled) moments for the aggregate economy and compares them

to the moments of the data. Note that the fit of the first moments of the real short and long term

interest rates is very accurate. The model indicates that on average the term structure is upwarding,

that is, E(Rt) > E(rt). The modeled expected excess returns from short and long term investments,

µK − E(rt) and µI − E(Rt), are 10.35% and 9.66%, respectively. Although these values are high,

24This matrix gives more weight to less volatile moments, which drives the scale of each moment condition to a
similar level.

25The first paper studies spot and future oil prices, while the second one studies the term structure of futures
volatility. Like my model, these papers develop equilibrium models in which prices and/or interest rates are deter-
mined endogenously in a production economy with investments constraints (e.g. irreversibility, capacity constraint
or illiquidity). Consequently, these models can be calibrated using similar approaches.
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they are consistent with historical excess returns of 8%-10% observed in the data for indexes of

stocks and, remarkably, they are obtained with a low value of the risk aversion parameter γ = 5

(equivalently, A = 1 − γ = −4). Furthermore, the model accounts for a low correlation between

direct long term investments (e.g. direct investments in real estate) and short term investments

(ρKI = 0.15), which is consistent with the low historical correlation between the NCREIF Index

and the S&P 500 Index.

Note also that the model slightly underestimates consumption and investments. Figure 10 shows

a possible explanation for why it is hard to obtain a better estimation. This figure shows the ratio of

optimal consumption over the capital stock of long term investment ct/It, as a function of the ratio

Kt/It. First, note that, although the model slightly underestimates the value of the ratio ct/It, it

does a good job of capturing the shape of the function. Second, note that since the beginning of

the study period (1970Q1) the values of both ct/It and Kt/It have been decreasing over time. This

fact is due to the strong increase on the aggregate capital stock account It compared to moderate

increases in ct and Kt (see Figure 6). As It has increased faster than ct and Kt, then the ratios

ct/It and Kt/It have consequently decreased over time (see Figure 10). Third, note that the curve

for the real data shows evidence that there may have been at least two structural changes and,

consequently, three periods during the period of analysis 1970Q1-2007Q1: (i) period 1970-1973,

(ii) period 1974-1982, (iii) period 1983-2007. The period 1974-1982 includes three major recessions

and years with high inflation, which dropped consumption and the ratio ct/It (see Figure 10).

6 Conclusions

This paper has presented a formal theory of the real term structure of interest rates based on the

preferences of a representative agent and his decisions on how to allocate capital in investments

at heterogeneous investment horizons (e.g. short and long term). I formally study the assumption

of heterogeneous investment horizons, and show that it is a crucial component to explain the

dynamics of the term structure of interest rates as well as the dynamics of aggregate consumption

and investments.

I have developed an equilibrium model to study these dynamics and provide economic intuition.

The model endogenizes agents’ decisions on consumption and investment with short and long

term horizons. Its driving forces are a short term fully reversible and a long term time-to-build

production technologies that generate a time-varying market price of risk for this economy. In the

model, investors demand high risk premia for holding long term investments because (i) returns

on production of long term assets are higher than returns on production of short term assets, (ii)

physical irreversibility in production of long term assets prevents the agents from incorporating

new available information about the economy over time, and (iii) investors are risk averse and care

about consumption in the long run.

The model has been calibrated to U.S. data from 1970 to 2007 and accounts for several stylized

facts such as the ability to jointly generate excess returns on short and long term investments

25



comparable to historical excess returns and low volatility of consumption using a reasonably low risk

aversion parameter; a low correlation between direct long term investments (e.g. direct investments

in real estate) and short term investments; and the slightly positive slope of the real term structure

of interest rates.

Finally, the paper’s finding on the role of different investment horizons has important conse-

quences for the interpretation of the dynamics of macroeconomic variables. The model relates

the dynamics of the production of short and long term assets to macroeconomic variables such as

aggregate consumption, investments and the term structure of interest rates. It is consistent with

the findings of other production models in the literature such as Cochrane (1988, 1991), Jermann

(1998, 2007) and Tallarini (2000) that production-based factors have explanatory power for asset

prices dynamics.
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Appendix

A1. Setup of the general equilibrium economy

Production technologies

Let us consider two production technologies in the productive side of this economy: a short term

technology K and a long term technology I. The only input for production is capital (e.g. not

labor). K is a perfectly reversible technology which has constant returns to scale (with growth µK

and volatility σK) as in the CIR model. Let Kt denote the amount of short term capital good in

this economy. The amount Kt is the liquid capital available for consumption and investment in any

of the two technologies at any time t. Between times t and t+dt, ctdt units of capital are converted

into consumption good, Ψtdt units are invested in the long term technology I, and Lt,τΨt−τ units

are the output from investments made at time t − τ in the long term technology I. Note that

Ψt−τdt units were invested in the long term technology I at time t − τ and therefore, Lt,s can be

seen as the compound risky return on the long term technology at time t of an investment made

at time t− s. The stock of capital Kt evolves according to the following process:

dKt = Kt

(
µKdt+ σKdW

K
t

)
− ctdt− Ψtdt+ Lt,τΨt−τ (A-1)

Technology I is a time to build technology in the sense that a non-negative amount Ψtdt that

is invested in this production technology at time t will not provide the output provided from this

investment until time t + τ . Therefore, it takes τ units of time for technology I to produce the

good. This technology has constant returns to scale (with growth µI and volatility σI). Let It

denote the stock of long term capital in this economy. The stock of capital It is the sum of the

capital subaccounts I
(j)
t , being I

(j)
t the stock of capital ”under construction” (through the time to

build technology) that will mature j units of time from now. Therefore, It =
∫ τ
0 I

(τ−s)
t ds. The

stock of capital in each of these subaccounts I
(τ−s)
t evolves according to the following process:

dI
(τ−s)
t = I

(τ−s)
t

(
µIdt+ σIdW

I
t

)
+ Ψt−sLt,s − Ψt−(s+ε)Lt,(s+ε) (A-2)

where s takes all the values of the interval [0, τ − ε] and ε is such that ε > 0 and ε→ 0. Note that

(A-2) is a continuum of equations equivalent to the set of equations (3)-(4) in the simple model.

Furthermore, the production technologies carry the following non-negativity constraints:

Kt > 0, ct > 0, and I
(j)
t > 0 for all t and all j , (A-3)

and the irreversibility constraint for long-term investments:

Ψt ≥ 0 for all t . (A-4)

For simplicity, assume that there is only one capital good in this economy that can be produced
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by any of the two technologies described above. Hence, at each time t there are Kt units of capital

good available for consumption and for investment production in sector K, and It ”illiquid” units

of capital good that are involved in the technology I’s time to build production processes. Finally,

assume that there is no storage technology in this economy.

Firms

Let us assume that households own the entire stock of the capital good Kt and invest into the pro-

duction technology K. Therefore, firms will be not defined for this production sector. Meanwhile,

the production sector I is formed by a large number of competitive firms with identical technology

and differ only in size. In the aggregate, firms own the entire stock of capital It.

Firms decide when and how much capital Ψt to invest. Note that if we assume that markets

are dynamically complete, then it is irrelevant if the firms finance their investments with equity or

debt. For simplicity, let us assume that investments are financed with equity. Households purchase

equity of the firms in the production sector I in order to invest in the production technology of

this sector.

Firms make investment decisions {Ψt} that maximize their stock price. The stock price is the

value of the output and the investment expenses. Let us consider the representative firm in the

production sector I. This firm maximizes the present value of its future cash flows according to

the following optimization problem:

max
Ψt

{∫
∞

0
M0,tItdt−

∫
∞

0
M0,tdΨtdt

}
(A-5)

subject to equation (A-2), It > 0, and ψt > 0. Let M0,t denote the stochastic discount factor (SDF)

that the representative firm uses to discount the present value of its future cash flows. I assume

that the firm is rational. Therefore, the SDF has to be consistent with the prices observed in the

competitive market. We also assume that markets are dynamically complete, which implies that

there exists a unique SDF for this problem.

Financial markets

Let us introduce three assets of this economy. First, assume that there exists an asset that generates

an identical return to the sector K’s production technology26. If ζKt is the amount invested in this

asset at time t, then its process is determined by

dζKt
ζKt

= µKdt+ σKdW
K
t . (A-6)

Second, assume that there is an asset that is a claim on the cash flows generated by sector I.

This asset is the stock (equity) on the sector I’s representative firm. Let P̂ be the ex-dividend

26Note that there is just one good in this economy and, therefore, the price of this good in terms of itself is one at
all times. Hence, the return of this good is equivalent to the amount invested ζK

t .
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stock price. Note that the flow of dividends generated by this stock at time t is given by It minus

investment Ψt. Third, assume that there is a bond that pays off an instantaneous risk-free rate rt.

Households

The economy is populated by identical competitive households. The problem can be modeled as

a single representative agent economy. The household has utility for consumption of the capital

good ct. We assume that the utility function of the agent has the following form:

U(ct) =
c1−γt

1 − γ
. (A-7)

The household solves the following maximization problem:

max
ct,ζL

t ,αr,θP

{∫
∞

0
e−ρtU(ct)dt

}
(A-8)

subject to non-negativity consumption constraint ct > 0 and the budget constraint:

dHt = ζLt + αrrt + θt(dP̂t) − ctdt. (A-9)

Let Ht denote the wealth process of the individual representative agent (household), αr be the

amount of capital invested in the risk-free bond and θt be the stock of capital invested in the shares

of the production sector I’s representative firm. At each time, the wealth process of the agent is

given by:

Ht = ζLt + αr + θtP̂t (A-10)

where Ht > 0 for each time t in order to avoid arbitrage opportunities.
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A2. Definition of competitive equilibrium

Under the setup of the economy in subsection A.1 of the Appendix, a competitive equilibrium with

dynamically complete markets is a set of processes {c∗t , ζ
K∗

t , α∗

r , θ
∗

t ,K
∗

t , I
∗

t ,Ψ
∗

t , rt, P̂t,Mt,s} such that

the following statements hold:

1. Given Mt,s, then Ψ∗

t is the aggregate investment that solves the representative firm’s problem

in equation (A-5);

2. Given rt, P̂t and I∗t , then the set {c∗t , ζ
K∗

t , α∗

r , θ
∗

t } solves the representative household’s

problem defined in equation (A-8);

3. Given c∗t , Ψ∗

t and the initial amounts of capital goods in the economy K0 and I0, then the

amounts of short term capital K∗

t and long term capital I∗t solve the budget constraints in

equations (A-1) and (A-2); and

4. Markets clear, therefore the following clearing conditions hold at each time t:

α∗

t = 0

ζK∗

t = K∗

t

θ∗t = 1

5. The stochastic processes rt, P̂t, I
∗

t , and Ψ∗

t are such that M∗

t,s is the unique stochastic discount

factor (SDF) of this economy and the following equations hold for each time t and s, with

s > t:

P̂t = Et

[ ∫ s

t
Mt,xI

∗

xdx−

∫ s

t
Mt,xΨ

∗

xdx+Mt,sP̂s

]
(A-11)

1

1 + rt
= lim

dt→0
Et [Mt−dt,t] (A-12)

Et

[
Mt,se

(µK−σK/2)(s−t)+σ(WK
s −W I

t )

]
= 1 (A-13)
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A3. Solving for the competitive equilibrium

There exists a competitive equilibrium with dynamically complete markets27 in which the following

statements hold:

1. The optimal portfolio of the household in equilibrium is determined by {ζK∗

t , θ∗t , α
∗

r} =

(K∗

t , 1, 0). Note that this implication is equivalent to the market clearing conditions in Ap-

pendix A2.

2. The set of stochastic processes {K∗

t , I
∗

t , c
∗

t , Ψ∗

t } is determined as the solution of the central

planner’s problem developed in section 2.

3. The ex-dividend stock price is given by

P̂t = I∗t
JIt
JKt

= I∗t

JIt

(
Kt,Kt+τ , I

(τ)
t , I

(τ)
t+ε, I

(τ−ε)
t+ε , I

(τ−ε)
t+2ε , ..., I

(ε)
t+τ−ε, I

(ε)
t+τ , t

)

JKt

(
Kt,Kt+τ , I

(τ)
t , I

(τ)
t+ε, I

(τ−ε)
t+ε , I

(τ−ε)
t+2ε , ..., I

(ε)
t+τ−ε, I

(ε)
t+τ , t

) (A-14)

4. The stochastic discount factor (SDF) of this economy is given by

Mt,s = e−ρ(s−t)
Uc(c

∗

s)

Uc(c∗t )
(A-15)

27Under the definition of complete markets in Appendix A2
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A4 Proof of Theorems

Proof of Theorem 3

The ordinary differential equation (ODE) shown in (26) comes from the left part of the maxi-

mization function in equation (13) evaluated at the optimal consumption shown in (23). We know

from the HJB equation in (13) that the following ODE holds in the no-investment region:

sup
ct,x1t,x2t,Ψt

{
E0

[
d̂J∗ + e−ρtU(ct)dt

]}
= 0

where d̂J∗ is represented by the following expression:

d̂J∗ = Jt +

[
x1tKtµK + x2tKtrt + (1 − x1t − x2t)Kt

dBt
Bt

− ct + λIt

]
JKt

+
1

2

[
x2

1tK
2
t σ

2
K

]
JKtKt

+

+ [ItµI − λIt]JI + +
1

2

[
I2
t σ

2
I

]
JItIt + [x1tσLσIρLIKtIt]JKI

and JK , JKK , JI , JII , and JKI are the first and second order partial derivatives of the value

function J(Kt, It, t) with respect to Kt and It. When taking into account Lemma 2 and the fact

that in the no-investment region Ψt = 0, we obtain the following ODE:

0 = e−ρtUct(ct) + Jt + [KtµK − ct + λIt]JKt
+

1

2

[
K2
t σ

2
K

]
JKtKt

+

+ [ItµI − λIt]JI + +
1

2

[
I2
t σ

2
I

]
JItIt + [σLσIρLIKtIt]JKI .

Let us consider the utility function U(ct) = (ct)1−γ

1−γ and the functional form of the value function

defined by J(Kt, It, t) = It1−γ

1−γ g(ωt). When we plug the corresponding derivatives of U(ct) and J in

the two dimensional ODE, we obtain the following one dimensional form of the ODE:

0 = (0.5β1) g
′′(ω) +

(
λ(1 + e−ω) + β2

)
g′(ω)+

+ (2 − γ)

(
g′(ω)

(1 − γ)eω

) γ−1

γ

+ (β3 − λ(1 − γ))g(ω)

where β1, β2, β3, and β4 are the following constants that do not depend on λ nor δ:

β1 = σ2
K + σ2

I − 2σKσIρKI

β2 =
(
µK − 0.5σ2

K

)
−
(
µI − 0.5(2γ − 1)σ2

I

)
+ (1 − γ)σKσIρKI

β3 = −ρ+ (1 − γ)(µI − 0.5γσ2
I )

This ODE must hold under the boundary conditions shown in equations (24) and (25). Besides,

a third boundary condition is needed in order to account for the states in which ω becomes very
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small. We must impose that when the amount of short term capital Kt becomes very small, then

the value function is zero28, because ct = 0 when Lt goes to zero by the non-negativity constraint

for the illiquid investment Ψt. This final boundary condition is equivalent to impose that

lim
ω→−∞

g(ω) = +∞

Q.E.D.

——————————————————————————————————————

Proof of Theorem 5

The price at time t of a zero-coupon bond paying one unit at time T , T > t is

B(t, T ) = Et

[
e−

R T

t
rsds|ℑt

]

with 0 6 t 6 T in the probability space (Ω,ℑ, P̃ ). Because this problem is Markov (the processes

dKt and dIt are Markov processes) and the equilibrium interest rate rt given by (34) is a function

of the factor ωt, there must be a function f(t, ωt) such that B(t, T ) = f(t, ωt).

The price of the risk-free money-market account or discount factor Dt follows the process
dDt

Dt
= −rtdt. Iterated conditioning implies that the discounted bond priceDtB(t, T ) is a martingale

under the probability measure P̃ . I calculate the differential of DtB(t, T ) by using the Ito′s lemma:

d(Dt, B(t, T )) = d(Dt, f(t, ωt))

= −rtDtf(t, ωt)dt+Dtdf(t, ωt)

= Dt [−rtfdt+ ftdt+ fωdωt + 0.5fωωd[ωt, ωt]]

= Dt

[
−rtfdt+ ftdt+ fωdωt + 0.5fωω[σ2

Kdt+ σ2
Idt+ ρKIσKσIdt]

]

where ωt is given by equation (22).

Because DtB(t, T ) is a martingale under the probability measure P̃ , the dt term of DtB(t, T )

must be zero. If we set the dt term equal to zero, and we take into account that f = B(t, T ), then

we obtain the following PDE:

0 = Bt − rtB +

[
(µK − µI) − 0.5(σ2

K − σ2
I ) −

ct
Kt

+ λ(eωt − 1) + Λt

]
Bω+

+ 0.5
[
σ2
K + σ2

I + ρKIσKσI
]
Bωω.

Q.E.D.

28Note that we want to impose that the value function J(Kt, It, t) goes to −∞ when the ratio Kt/It goes to zero
(or equivalently, when ω → −∞). Therefore, according to equation (21), and because It > 0 and 1 − γ < 0, then
g(ωt) must go to +∞ in order to make J(Kt, It, t) go to −∞
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——————————————————————————————————————

Proof of Proposition 6

Recall the following expressions from (22) and (34), respectively:

E

[
dωt
dt

]
=

[
(µk − µI) − 0.5(σ2

K − σ2
I ) + λ(eωt − 1) −

ct
Kt

]
+ Λt (A-16)

rt = µK + σ2
K

[
g′′(ωt) − g′(ωt)

g′(ωt)

]
+ σKσIρKI

[
(1 − γ)g′′(ωt) + g′(ωt)

g′(ωt)

]
(A-17)

If we combine equations (36) and (40) we obtain the following equation:

yt = −
1

s
log

[
1

rt

[
Bt +

[
(µK − µI) − 0.5(σ2

K − σ2
I ) −

ct
Kt

+ λ(eωt − 1) + Λt

]
Bω

+ 0.5
[
σ2
K + σ2

I + ρKIσKσI
]
Bωω

]]
(A-18)

Combine equation (A-16) and (A-18), and note that B = e−s·y from (40) to find the following

expression for dωt/dt:

E

[
dωt
dt

]
=

[
rt

B

ωtBω
−

Bt
ωtBω

− 0.5
[
σ2
K + σ2

I + ρKIσKσI
] Bωω
ωtBω

]
ωt = f1(ωt, rt, B)ωt (A-19)

Note that rt is a function of t and ωt and, therefore, if we take expectations to the chain rule:

E

[
drt
dt

dt

dt
+
drt
dωt

dωt
dt

]
= 0 (A-20)

and we combine it to equation (A-19) then

E

[
drt
dt

]
= −E

[
drt
dωt

dωt
dt

]
= f2(ωt, rt, B)rt (A-21)

Finally, recall (40), take the derivative with respect to t, and combine it to (36) in order to

obtain:

E

[
dyt
dt

]
=

[
rt

log(B)
− E

[
dωt
dt

]
Bω

B · log(B)
− 0.5

[
σ2
K + σ2

I + ρKIσKσI
] Bωω
B · log(B)

]
yt

= f3(ωt, rt, B)yt (A-22)

Q.E.D.
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Table 1: Comparison to classic term structure models, indicating with ”o” the coefficients different
than zero for each case, and indicating the value of the power θ.
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Table 2: Classification of the private investments NIPA accounts between short and long term
assets using BEA Table 3.
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Table 3: Classification of the private investments NIPA accounts between short and long term
assets using BEA Table 3.

Table 4: Summary statistics of the US data. Period 1970Q1-2007Q1.
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Table 5: Parameter estimates. This table reports our parameter estimates. We use SMM to
estimate the following vector of five structural parameters Ψ̂ = {µK , µI , σK , σI , λ}. Note: Means
and standard deviations in annual units. The model is simulated at a quarterly frequency using
data from 1970Q1 to 2007Q1.

Table 6: Simulated moments for the aggregate economy. This table compares the moments from
the data to the modeled moments.
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(a) Panel A: Quarterly change in consumption vs. the ex-post real short interest rate.

(b) Panel B: Quarterly change in short term investments vs. the ex-post real short interest rate.

Figure 1: The short interest rate versus % changes in consumption and % changes in short term
investments. Quarterly data from 1970 to 2007. The shaded areas represent the NBER recessions.
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(a) Panel A: Quarterly change in consumption vs. the slope of the term structure.

(b) Panel B: Quarterly change in short term investments vs. the slope of the term structure.

Figure 2: The slope of the term structure of interest rates versus % changes in consumption and %
changes in long term investments. Quarterly data from 1970 to 2007. The shaded areas represent
the NBER recessions.
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Figure 3: Scheme of capital allocation at any time T. At time T=t, the agent must choose the
amount of capital : (i) ct that he consumes, and (ii) Ψtdt that he allocates to the long term invest-
ment. The rest is allocated in the short term investment account Kt. The long term investment
It follows a similar process than the time-to-build channel in Kydland and Prescott (1982). First,

Ψtdt goes to the long term subaccount I
(τ)
t , which is the subaccount at time T = t for the capital

that will mature τ periods from time t, that is, at time T = t+ τ At time T = t+ ǫ, this amount

Ψtdt together with the return earn in the interval [t, t + ǫ] will go to the next subaccount I
(τ−ǫ)
t+ǫ .

This long term investment moves to next subaccount over time until it gets the account I
(τ+ǫ)
ǫ at

time T = t + ǫ. Therefore, at time T = t + ǫ, the amount Ψtdt will have become Lt−τ,τΨt, where
Lt−τ,τ its compounded risky long term return. This amount Lt−τ,τΨt will revert (return) to the
short term account Kt+τ at time T = t+ τ . Note that the amount Ψt−τdt that he invested at time
T = t − τ comes back with its accrued return as Lt,τΨt−τ . Note also that all the amounts Ψt−s

that he has invested in the long term technology at any time T within the interval (t − τ, t) will
come back to the short term account with their accrued return as Lt−s+τ,τΨt−s after τ units of
time, where s scans all the values of the interval [0, τ − ǫ].
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(a) Panel A. Absolute terms.

(b) Panel B. Relative terms.

Figure 4: Historical performance of real consumption of nondurable goods (ct), short term invest-
ment and long term investment from 1970Q1 to 2007Q1 in absolute and relative terms.
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Figure 5: Historical performance in real terms of government consumption expenditure (GCE),
short term investment (excluding GCE), real estate investment (fraction of long term investment)
and the remaining non-real estate long term investment. The shaded areas represent the NBER
recessions.

Figure 6: Historical real aggregate short term assets (Kt) and long term assets (It) and real
consumption (ct) in absolute terms (in Billions of $ of year 2000).
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(a) Panel A. Comparison between TIPS rates and real rates.

(b) Panel B. Comparison between the slope of the term structures of TIPS rates and real rates.

Figure 7: Comparison between data on TIPS and real rates (calculated as deflated nominal rates).
Period 2003-2007.

49



Figure 8: Historical real short term interest rate and % quarterly change in the ratio Kt/It. The
dashed areas remark the periods in which the % change in the ratio Kt/It increases. The shaded
areas represent the NBER recessions. The cycles of the real short interest rate and the cycles of
the % change in Kt/It are shown below the graph.
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Figure 9: Historical performance of the slope of the term structure of interest rates and % quarterly
change in the ratio Kt/It. The dashed areas remark the periods in which the % change in the ratio
Kt/It increases. The shaded areas represent the NBER recessions. The cycles of the slope of the
term structure and the cycles of the % change in Kt/It are shown below the graph.
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Figure 10: Optimal consumption over capital stock of long term investment ct/It, as a function of
the ratio Kt/It. Model vs. real data.
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