

UNCLASSIFIED
SECuRity classification of this page (mien data Entered)
REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
T. REPORT NUMEN (R) BEFORE COMPLETING FORM TECHNICKL REPORT/ARBRL.TR-d 2072

BEFORE COMPLETING FOR

7. AUTHOR (O)

John P. Lambert rt
9. PERFORMING ORGANIZATION NAME AND ADDRESS

Abstract

7 21005
Aberdeen Proving Ground, MD 2100

15. DISTRIEUTION STATEMENT (OI this Report)

-
18. SUPPLEMENTAAY NOTES

This report presents a comprehensive documentation of experimental data generated for the ACT (Automatic Cannon Technology) Program (behind-armor data for long rod penetrators in the $20-40 \mathrm{~mm}$ sizes. an adequate kinetic energy penetrator performance data base for long rod penetrators of various designs has been established. In addition, for some of the rounds, behind-target debris has been analyzed to supply a partial basis for debris characterization. \$

TABLE OF CONTENTS

Page
I. INTRODUCTION 9
II. RESULTS AND COMMENTS 11
III. FUTURE PLANS 14
APPENDIX A. BASIC RAW DATA 15
APPENDIX B. DERIVED V_{s}, V_{r} CURVES 33
APPENDIX C. FRAGMENT DATA 57
APPENDIX D. PENETRATION SKETCHES FOR ACT 19 79
APPENDIX E. PREDICTI:D CURVES 91
DISTRIBUTION LIST 97

Figure Page

1. Nominal Penetrator Characteristics 10
2. Steel with High Inclusion Rate 13
B-1. V_{S}, V_{T} Curve and $D_{i}-z$ for ACT 1 35
B-2. V_{S}, V_{r} Curve and Data for ACT 2 36
B-3. V_{s}, V_{r} Curve and Data for ACT 3 37
B-4. V_{S}, V_{r} Curve and Data for ACT 4 38
B-5. $\quad V_{S}, V_{r}$ Curve and Data for ACT 5 39
B-6. V_{s}, V_{r} Curve and Data for ACT 6 40
B-7. V_{S}, V_{r} Curve and Data for ACT 7 41
B-8. V_{S}, V_{r} Curve and Data for ACT 8 42
B-9. V_{S}, V_{r} Curve and Data for ACT 9 43
$B-10 . V_{s}, V_{r}$ Curve and Data for ACT 10 44
B-11. V_{S}, V_{r} Curve and Data for ACT 11 45
$B-12 . V_{s}, V_{r}$ Curve and Data for ACT 12 46
B-13. V_{s}, V_{r} Curve and Data for ACT 13 47
B-14. V_{S}, V_{r} Curve and Data for ACT 14 48
B-15. V_{s}, V_{r} Curve and Data for ACT 15 49
B-16. V_{S}, V_{r} Curve and Data for ACT 16 50
B-:7. V_{s}, V_{r} Curve and Data for ACT 17 51
B-18. V_{s}, V_{r} Curve and Data for ACT 18 52
B-19. V_{S}, V_{r} Curve and Data for ACT 19 53
$B-20 . V_{S}, V_{r}$ Curve and Data for ACT 1.1 54
B-21. V_{S}, V_{r} Curve and Data for $A C T 3.1$ 35
Figure Page
B-22, V_{S}, V_{r} Curve and Data for ACT 3.2 56
C-1. Coordinate Systen Depicting Angles λ and ∞ 59
D-1. Sketch for Round 264 81
D-2. Sketch for Round 263 82
D-3. sketch fur Round $2 \dot{6} 2$ 83
Do4. Sketch for Round 261 84
D-5. Sketch for Round 265 85
D-6. Sketch for Round 260 86
D-7. Sketch for Round 259 87
D-8. Eketch for Round 258 38
D-9. Photograph of Sectioned Targets and Residual Ponetrators for ACT 19 89
E-1. Predicted V_{s}, V_{r} Curve for $A C T 16$ 93
E-2. Predicted V_{s}, V_{r} Curve for ACT i7 94
E-3. Predicted V_{s}, V_{r} Curve for ACT 18 95
E-4. Predicted V_{S}, V_{r} Curve for ACT 19 96

LIST OF TABLES

Taile Page
T. Ballistic Limir Velocities and Series Characteristics . . 12

I. INTRODUCTION

The purpose of this report is to present a comprehensive documentation of experimental data generated in a small scale firing program within the ACT Project*. Chief objectives were:

- to assure an adequate kinetic energy penetrator performance data base for farious long rod penetraior designs and
- to describe behind-target debris - mass, trajectory, speed and type of individual fragments - associated with some rounds and to thereby supply a partial basis for debris characterization.

Targets used in the firing program were single plate rolled homogeneous armor (RHA) measuring $15.24 \times 30.48 \mathrm{~cm}$ for normal impact shots and $15.24 \times 45.72 \mathrm{~cm}$ for oblique incidence with thicknesses ranging from 1.91 to 5.08 cm . Penetrators were rods (right circular cylinders with hemispherical noses) having length to diameter (L/D) ratios of 5, 10 and 20. The predominant penetrator composition was of monolithic: AISI-S7 tool steel of finished hardness $R_{c} 55$ but other designs and other materials were used to some extent; c.f. Figure 1 for penetrator characteristics. Impact obliquities were $0^{\circ}, 45^{\circ}$ and 60°.

In large part, the essence of this report is confined to the five appendices; indeed, our most compelling purpose is to disseminate, for the first time in anywhere near complete form, data that this program has been sporadically yielding over several years.

Basic raw data from the shots is provided in Appendix A and is partitioned, according to penerrator/target situation. into 23 series labelled ACT 1 through ACT 20 and ACT 1.1, ACT 3.1 and ACT 7.2. Twenty-two of these series (all but ACT 3.2, in which there is only one round with an acceptable level of yaw) were considered suitable for determination of V_{s}, V_{r} curves and limit velocities. Derived V_{s}, V_{r} curves for these 22 cases ace given in Appendix B. A summary of processed tehind-target fragmentation data for selected rounds is supplied in Appendix C. In Appendix D we attempt, in a sequence of rough sketches, to illustrate the pre-impact and residual penetrators in perspective with an appropriate target plate section for each round of ACT 19. Appendix E nrovides (for the later set of shots) for a comparison $i \in t w e e n$ derived V_{s}, V_{r} curves and a predictive modei that has been formulated for dealing with long rod penetrators.

[^0]

This program has unfolded in three phases involving distinctly different tine periods, different range personnel and practices, and different project managers; such diversity has regrettably and inescapably been adverse to an orderly, coherent, productive effort. It is, for example, exceedingly difficult now to adjudge the quality of data generated early in the program, to interpret cryptic notes on old data sheets, or retrieve misplaced information. The case for standardization in data organization and in testing is clear.

II. RESULTS AND COMMENTS

The experimental setup and multiple flash x-ray system used to record ballistic performance data are described in BRL Technical Note 1t.34!. A summary of ballistic limits and geometries for the various test series is given in Table I. Minutiae are to be found in Appendices A-E. In perusing the data, the following remarks should be kept in mind:
a. The parameters a, p, and V_{ℓ} of Table I are derived from the "good" data of the series. By a "good" round is meant a shot for which total initial penetrator yaw does not exceed 2.5°.
b. The penetrators in ACT 1 rhrough ACT 15 (including ACT 1.1, ACT 3.1 and ACT 3.2) were of monolithic AISI-S7 tool steel having finished hardness o $\subseteq R_{c} 55$. The steel for ACT 16 through ACT 20 was also of finished hardness $R_{c} 55$ and would have been AISI-S7 but for the inadvertent lack of molybdenum as an alloying agent.
c. ACT 16 and ACT 19 employed monolithic steel penetators; ACT 17 penetrators werr of two-piece steel (steel cap on stesi :tem); and, in ACT 18 and ACT 20, the penetrators were steel ($R_{c} 55$) with tungsten alloy caps ($R_{c} 42$).

1. The steel used in rounds 231 through 258 (ACT 16 through ACT i^{n}) was VIMVAR* processed. The difference made by this change in pricessing is especially noticeable when comparing data foi The suel used in some of the penctrators oi ACT li had a very higl inclussin rate (figure 2), contributing no doubt to the large scarter in the vata for this series. ACT 19 is a recreation of ACT 11 (with the slig :. difference in penctrator material noted previously and the diffe -ant processing).

[^1]

[^2]

Figure 2. Steel with High Inclusion Rate
e. Finally, we note that the V_{S}, V_{r} tests from ACT 16 on are significantly more economical of shots .. there were no shots lost (in the sense of being unsuitable for deriving a V_{s}, V_{r} curve) due to excessive yaw. Indeed, in rounds 231 through 268 , only one round (234) proved unsuitable.

III. FUTURE PLANS

Further exploitation of the data generated in the ACT program continues. A report on penetrator residual mass variation with impact energy and target geometry may be anticipated.

ACKNOWLEDGMENT

The author acknowledges the contributions of Messrs. Antonio J. Ricchiazzi and Peter G. Morfogenis, the previous principal investigators for the terminal ballistics portion of the ACT Program. Thanks are also due to Messrs. John Koval and Dale Smith under whose supervision the experimental data was generated in the Terminal Ballistics Division Small Caliber Ranges. Messrs. Frank Dubois, John Cullum and Robert Schnick, among others, assisted in the reduction of the data.

APPENDIX A
BASIC RAW DATA

1

APPENDIX A: BASIC RAW DATA

Notation:

* Round number

M Penetrator mass, grams
L Penetrator length, centimeters
D Penerrator diameter, centimeters
T Target thickness, centimeters
H Target hardness, BHN
a Vertical penetrator yaw at impact, degrees
B Horizontal penetrator yaw at impact, degrees
δ Total penetrator yaw at impact, degrees
$V_{s} \quad$ Striking penetrator velocity (speed), meters/second
$V_{r} \quad$ Residual penetrator velocity (speed), meters/second
$M_{r}^{\prime} \quad$ Recovered residual penetrator mass, grams
$M_{r}^{\prime \prime} \quad$ Estimated (from radiographs) residual penetrator mass, grams
$\Delta \quad$ Mass loss of target plate, grams
$\lambda \quad$ Cone angle of residual penetrator path, degrees
$\phi \quad$ Phase angle of residual penetrator path, degrees

- Indicates that item is not applicable; e.g., cone angle, etc. if $V_{r}=0$
\wedge Indicates that item is applicable but unknown

Key to Remarks:
1 - Total yaw exceeds $21 / 2^{\circ}$, round not used in V_{ℓ} determination
2 - Perforation but V_{r} not obtainable, round not used in V_{ℓ} determination
3 - Non-perforation, small bulge in rear target surface
4 - Non-perforation, large bulge in rear target surface
5 - Non-perforation, rear target surface fractured
6 - Rü siightly bent at launch
7 - Perforation, penetrator severely shattered
8 - Penetrator made from "dirty material"

$$
\begin{aligned}
& { }_{\boldsymbol{\Sigma}}^{\boldsymbol{H}} \boldsymbol{H} \leqslant \leqslant 1 \leqslant \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remarts }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m!} 11,1,1,1,1,1, \infty
\end{aligned}
$$

$$
\begin{aligned}
& \gg \boldsymbol{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 元 }
\end{aligned}
$$

ACT		$\theta=0$		$=1$												
\%	M	L	D	T	H	α	B	δ	$\mathrm{V}_{\mathbf{S}}$	V^{r}	$\mathrm{Mr}_{-\infty}^{\text {r }}$	${ }_{\sim}^{\text {M }}$	Δ	$\boldsymbol{\lambda}$	ϕ	Remarks
--	----*	----16	-02	2.54	380	2.0	0.0	2.0	915	0	-	-	41	-	-	3
10	63.62	10.16	1.02	2.54	340	2.0	0.0	2.0	215							
8	63.	13.16	1.02	2.54	340	2.0	5.3	5.6	330	0	-	-	33	-	-	1.3
		10.16	1.02	2.54	340	\wedge	-	*	937	0	-	-	14	-	-	1.3
11	63.60	10.16	1.02	2.54		-1.2	-0.8	1.4	955	432	23.2	25.3	50	0.1	179	
9	63.63	10.15	1.02	2.54	3.40	-1.E	-0.8	1.4								
7	63.67	10.16	2.02	2.54	340	0.8	-	\wedge	556	246	18.3	21.6	60	3.1	29	1
6	83.52	10.15	1.02	2.54	340	-0.i	8.5	4.5	984	317	24.7	24.7	48	3.4	155	i
5	G	10	1.02	2.54	340	-1.2	-1.6	2.0	1353	594	25.8	30.8	50	9.5	202	
						-0.7	1.4	1.6	1103	690	32.7	38.1	63	1.6	133	
4	63.57	10.16	1.02	2.54	340	-0.7	1.4	1.6	1103	69						
3	63.55	10.16	1.02	2.54	340	-3, ${ }^{\text {a }}$	2.8	4.2	1137	33	31.6	35.6	67	6.3	141	1
1	63.63	10.26	1.02	2.54	340	-8.?	-0.6	1.8	1219	910	\wedge	39.1	82	2.9	181	
AC	9	$\theta=0$		$=$												
\#	M	I	D	T	H	α	β	δ	V_{s}	$\mathrm{V}_{\mathbf{r}}$	M^{\prime}	$\mathrm{M}_{\mathbf{T}}^{\prime \prime}$	Δ	1	ϕ	Remarks
35	63.58	10,16	1.02	2.82	321	-8.0	0.5	1.1	1195	0	-	-	15	-	-	4,5
34	63.56	10.16	1.02	3.82	321	-2.3	-2.3	2.6	1211	128	19.0	21.0	31	12.4	290	1
33	63.63	10.16	1.03	3.81	322	-1.0	1.0	14	1237	383	12. ${ }^{\text {I }}$	15.0	30	6.0	78	
32	53.66	10.16	1.02	3.81	321	-0.5	0.7	0.8	1243	501	18.5	23.0	20	7,4	112	
31	63.68	10.17	1.02	3.81	321	-0.1	0.8	0.9	1366	907	20.5	2:.8	26	11.3	178	
30	63.61	10.15	1.02	3.81	329	5.6	2.6	6.1	1384	88%	24.4	27.2	47	12.4	1	1
30	63.62	10.85														

$$
\begin{aligned}
& \text { "4. }
\end{aligned}
$$

$$
\begin{aligned}
& \infty \mid \underset{\sim}{\underset{\sim}{j}} \boldsymbol{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { " }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 氜 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remarks }
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 11,1, \leqslant, \leqslant, \leqslant, \leqslant, \leqslant, \leqslant, \leqslant \leqslant \leqslant \leqslant \leqslant \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& >\boldsymbol{H}^{0} 00 \text { 品 } \\
& \gg \boldsymbol{\gamma} \boldsymbol{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 二! 芯 (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remarks }
\end{aligned}
$$

$$
\begin{aligned}
& \theta 11 \quad 1 \ll 1 \ll
\end{aligned}
$$

$$
\begin{aligned}
& <111<1<1<1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\overrightarrow{3} \\
1 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 둔 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remarks }
\end{aligned}
$$

$$
\begin{aligned}
& <\mid 1 \underset{O}{0} \boldsymbol{O}
\end{aligned}
$$

$$
\begin{aligned}
& =\mid \vec{N} \underset{\sim}{N} \dot{\sim}
\end{aligned}
$$

$\lambda \mathrm{CT}$	19	$e=00$		$\mathrm{I}=1$												
\＃	M	L	D	T	H	α	β	δ	V_{5}	V_{r}	$M_{r}{ }^{\prime \prime}$	$\mathrm{M}_{\mathrm{I}}{ }^{\circ}$	\triangle	λ	ϕ	Remarks
264	64．30	10．25	1.02	2.54	364	-0.4	－0．4	0.5	1201	0	－	－	14	－	－	
263	64.43	10.26	2.02	2.53	364	0.0	0.1	0.1	－22？	204	8.6	8.5	6	39.3	0	
262	64．29	10.26	1.02	2.56	$35:$	0.0	0.6	0.6	129	509	13.6	15.0	97	37.3	0	
$26:$	64.06	10，25	1.02	2.53	364	0.4	0.7	0.8	$\$ 360$	768	20.7	22.4	9	23.0	1	
265	64.04	10.22	1.02	2.54	364	0.1	－0．2	0.2	147：	997	18.5	20.2	88	16.1	2	
280	64.34	10.25	1.02	2.55	340	－0．5	0.4	0.7	1489	903	19.6	20.1	118	11.7	2	
359	64．20	20.26	1.02	2.54	351	－0．8	0.1	0.8	1647	1145	16.8	18.3	156	5.2	6	
258	64.75	10.25	1.02	2.53	364	ヘ	ヘ	1.5	1800	1285	13.6	ヘ	171	\cdots	\wedge	
ACT	20	$\theta=6 J$		$=10$												
4	M	L	D	T	H	α	β	δ	$\mathrm{V}_{\text {S＿－}}$	V_{r}	${ }_{\sim}^{\text {M }}$	$\mathrm{M}_{\underline{\prime \prime}}$	Δ	$\boldsymbol{\lambda}$	ϕ	Remarks
268	84.35	9.65	0.97	2.54	387	－0．8	0.5	c． 9	：201	\bigcirc	－	－	59	－	－	
266	64.45	9.70	c．97	2.53	364	－C． 1	0.1	0.2	：33：	898	21.4	22.6	91	16.1	1	
267	64.42	9.89	0.97	2.53	364	－1．1	0.5	1.2	1758	1399	22.9	24.0	176	2.6	350	
ACT	1.1	$\theta=0$		$0=20$												
\＃	M	L	D	T	H	a	B	δ	V_{5}	$\mathrm{V}_{\boldsymbol{r}}$	$\mathrm{Mr}_{-\sim}^{\text {r }}$	$\xrightarrow[\sim]{\text { M }}$	Δ	λ	ϕ	Remarks
89	64．84	16.19	0.82	1.91	354	0.0	0.5	0.5	856	0	－	－	a	－	－	4
92	64.57	16.19	0.81	！．91	364	0.5	0.8	0.9	865	0	－	－	128	－	－	
$9:$	64．98	16.19	0.81	1.91	364	－1．9	1.1	2．2	882	445	＂	24.4	34	5.2	93	6
93	64.65	16.19	0．81	1.91	364	-0.8	0.6	1.0	886	555	\wedge	33.7	\wedge	4.1	i7？	

$$
\begin{aligned}
& \gamma \left\lvert\, \begin{array}{lllllllllll}
n & \infty & m & n & 0 \\
i & \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} & 0 & 0 & 0 & r & 0 \\
i & i & \vdots & \dot{0} & \dot{0}
\end{array}\right.
\end{aligned}
$$

APPENDIX B
 DERIVED V_{s}, v_{r} CURVES

APPENDIX B: DERIVED V_{s}, V_{r} CURVES

This section is comprised of the V_{s}, V_{r} curves derived from the experimental data of Appendix A. The standard form used to represent dependence of residual velocity on striking velocity is

$$
v_{r}=\left\{\begin{array}{l}
0, \text { if } 0 \leq v_{s} \leq v_{\ell} \\
a\left(v_{s}^{p}-v_{\ell} p^{p}\right)^{1 / p}, \text { if } v_{s}>v_{\ell}
\end{array}\right.
$$

with the constraints, $p>1$ and $0 \leq a \leq 1$.
Values for the limit velocity, V_{ℓ}, and the other parameters, a and p, are derived via a non-1inear least squares algorithm which extracts an optimal adaptation of the form to the data. For an elaboration on the above form and related methodology, see BRL Report 1852^{2}. There is available at the Terminal Ballistics Division of the BRL a program in BASIC, called "Inpact", which contains the algorithm and provides graphic capability; we have used this program to derive parameters for our various data sets and to generate the following figures. V_{s}, V_{r} data corresponding to rounds for which the total yaw of the penetrator at impact exceeded $21 / 2^{\circ}$ was excluded from this analysis. In each figure "S" denotes the root mean square error associated with the fit of form to data.

[^3]

FIGURE B-2. $V_{G} \mathbf{V}_{\mathbf{R}}$ CURVE AND DATA FDR RCT 2

θ
品

FIGURE B-11. $V_{5}{ }^{\prime} V_{R}$ CURVE AND DATA FAR RKT 11

STRIKINE VELICITY (M/5)
FIGURE B-12. $V_{S} \mathbf{V}_{\mathbf{R}}$ CURVE RND DATA FDR RCT 12

(2008
striking velacity (h/5)
FIGURE B-14. $v_{5} \mathbf{V}_{\mathrm{R}}$ CLIRVE RND DATA FIR RCT 14

STRIKINg VELdCity (m/5)

FIgure b-20. $V_{5}, V_{\text {R }}$ CuRVE RND DATA FDR ACT 27

APPENDIX C
FRAGMENT DATA

Sunmary of processed ${ }^{3}$ behind-target fragmentation data for 29 selected rounds.

Notation

Type - P: penetrator fragment

- T: target fragment (spall particle)

Cone - Cone angle of fragment trajectory: the acute angle between the fragment path and the initial penetrator path. c.f., Figure C-1.

Phase - Phase angle of fragment trajectory: the angle, between 0 and 360 degrees and measured clockwise as perceived from the target hole, between the vertical upward direction and the projection of the fragment path on a plane behind the target orthogonal to the initial penetrator path. c.f., Figure C-1.

[^4]

\[

$$
\begin{aligned}
& \text { 1r…… } \\
& \text { pト…… }
\end{aligned}
$$
\]

 5

 p10.................................

置以…

$$
\begin{aligned}
& \text { 1トット․․․․․․…........ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 钓 }
\end{aligned}
$$

閶
Fr
見トット・•••••••

 Y B w

$$
\begin{aligned}
& \text { !ト………...... } \\
& \text { 1F… }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 蓈谓: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1FOM }
\end{aligned}
$$

 E

$$
\begin{aligned}
& \text { 县以… } \\
& \text { 1ト・••••••••••••• }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 品••• }
\end{aligned}
$$

APPENDIX D: PENETRATION SKETCHES FOR ACT 19

Ne attempt, in a sequence of rough sketches, to illustrate the preimpact and residual penetrator (and/or "plug") and target plate section for rounds 258 through 265 (which constitute ACT 19). Figures are (roughly) $3 / 4$ of actual size and the attempt is to convey approxinate positioning and shape. In each sketch the initial penetrator position (with respect to the target plate) is representative of the situation $50 \mu \mathrm{sec}$ before impact and (except for Round 264) the residual penetrator suggests the situation $50 \mu s e c$ after perforation is complete (i.e., after the tail of the penetrator clears the rear target surface).

We recall that ACT 19 involves L/D of 10 monolithic steel penetrators impacting $1^{\prime \prime}$ RHA at 60° obliquity. M_{r} is used to denote recovered residual penetrator mass. Ordering of the sketches reflects an increasing sequence of striking velocities.

Following the sketches is a photograph of the sectioned target plates for these shots together with a representative original penetrator and recovered residual penetrators. In the photograph Δ is used to denote mass loss of the target plate. In a few cases there is a small discrepancy between the velocities given in the sketches and those on the photograph - those in the sketches are derived from a later, presumably more careful "reading" of the radiographs and are regarded as the official values. The sequence of rounds in the photograph is as follows:
top row, left to right - Rounds 264, 263, 262, 261
bottom row, left to right - Rounds 265, 260, 259, 258

Remarks: Each plate shows an indention on the upper front ourface these "lips" were formed by pusher plates impacting the targets and are not consequent to penetrator/target interaction.

81

5

APPENDIX E
PREDICTED CURVES

APPENDIX E: PREDICTED CURVES

A predictive scheme has been formulated for obtaining limit velocity and V_{s}, V_{r} curve estimates for situations involving long rod penerrators and single plate RHA targets ${ }^{4}$; pertinent equations are given below. For the final phase of this firing program, these equations were used to generate initial estimates of limit velocity (and of the full V_{s}, V_{r} relationship). Figures on the following pages provide for graphic comparison between the V_{S}, V_{r} curve predicted for the nominal situation and that derived from the experimental data for each of ACTS $16,17,18$ and 19. In each case the data and predicted curve are graphed, and the derived curve, which also appears in Appendix B, is plotted as a dashed curve.

The predictive scheme is specified by:

$$
v_{r}=\left\{\begin{array}{l}
0, \text { if } 0 \leq v_{s} \leq v_{\chi} \\
a\left(v_{s}^{p}-V_{i}^{p}\right)^{1 / p}, \text { if } v_{s}>v_{\ell}
\end{array}\right.
$$

where

$$
\begin{aligned}
& a=\frac{M}{M+M / 3}: p=7+z / 3, \\
& \text { and } V_{\ell}=4000\left(\frac{L}{D}\right) \quad \ln 5 \sqrt{f(z) \cdot \frac{D^{3}}{M}} \text {, } \\
& z=\frac{T}{\mathrm{D}} \sec ^{75} \mathrm{e}, \mathrm{f}(z)=z+e^{-2}-1 . \\
& M^{4}=\frac{\rho \pi}{4} D^{3} \cdot z, p=7.8,
\end{aligned}
$$

and wherc L, D, T are $i n$ centimeters, M in grams, V_{l} in m / s.

[^5]

Figure E-4. Predicted V_{S}, V_{r} Curve for ACT 19

DISTRIBUTION LIST

No. of Copies\quad Organization	No. of Copies	Organization

12 Commander
Defense Documentation Center
ATTN: DDC-TCA
Cameron Station
Alexandria, VA 22314
1 Director
Defense Nuclear Agency
A'TN: MAJ Spangler
Arlington, VA 22209
1 Director
Defense Advanced Research
Projects Agency
ATTN: Tech Info 1400 Wilson Boulevard Arlington, VA 22209

2 Commander
US Army Missile Research and Development Command
ATTN: DRDMI-R DRDMI-RBL
Redstone Arsenal, AL 35809
1 Commander
US Arrfy Tank Automotive
Reskarch \& Development Cmd
ATTN: DRDTA-RWL
Warren, MI 48090
1 Compander
US Army Mobility Equipment Research \& Development Cmd ATIN: DRDME-WC
Fort Belvoir, VA 22060
1 Oommander
US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib
Rock Island, iL 61299
2 Commander
US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801

4 Commander
US Army Armament Research and Development Command
ATTN: Mr. V. Guadagno
Mr. R. Davitt
B. Knutelsky
G. Demitrak

Dover, NJ 07801
1 Comander
US Army Watervliet Arsena:
ATTN: SARWV-RJD-SE, P.Vottis Watervliet, NY 12189

DISTRIBUTION LIST

No, of Copies

1 Commander
US Army Harry Diamond Labs ATTN: DRXDO-TI
2800 Powder Mill Road
Adelphi, MD 20783
5 Commander
US Army Materials and
Mechanics Research Center
ATTN: DRXMR-T, Mr. J. Bluhm DRXMR-T, Dr. D.Roylance DRXMK-T, Dr. A.F.Wilde DRXMR-T, Dr. J.Mescall DRXMR-ATL
Watertown, MA 02172
1 Director
US Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL, Tech Lib
White Sands Missile Range NM 88002

1 Deputy Assistant Secretary of the Army (RGD)
Department of the Army
Washington, DC 20310
1 HQDA (DAMA-ARP)
Washington, DC 20310
1 HQDA (DAMA-MS)
Washington, DC 20310
1 Commander
US Army Research Office
ATTN: Dr. E. Saibel
P. \cap. Box 12211

Research Triangle Park
NC 27709
1 Chief of Naval Research ATTN: Code ONR 439
N. Perrone

Washington: DC 20360

No. of
Copies Organization
3 Commander
Naval Air Systems Command
ATTN: AIR-604
Washington, DC 20360
3 Commander
Naval Ordnance Systems Command
ATTN: ORD-9132
Washington, DC 20350
2 Commander
Naval Air Development Center, Johnsville
Warminster, PA 18974
1 Commander
Naval Missile Center
Point Mugu, CA 93041
1 Commander \& Director David W. Taylor Naval Ship Research \& Development Ctr Bethesda, MD 20084

1 Commander
Naval Surface Weapons Center ATTN: Code TX, Dr. W.G.Soper
Dahlgren, VA 22448
2 Commander
Naval Surface Weapons Center Silver Spring, MD 20910

3 Commander
Naval Weapons Center
ATTN: Code 4057
Code 4011, Dr.E.Lundstrom
Code 3813, Mr.M.Backman
China Lake, CA 93555
4 Commander
Naval Research Laboratory
ATTN: Mr. W. J. Fergusori
Mr. J. Baker
Dr. H. Pusey
Dr. T. Rosenthal
Washington, DC 20375

DISTRIBUTION LIST

No. of
Copies
Organization
1 Superintendent Naval Postgraduate School ATTN: Dir of Lib Monterey, CA 93940

2 ADTC/DLJW (MAJ D. Matuska, LTC J. Osborn)
Eglin AFB, FL 32542
1 AFFDL (FDT) Wright-Patterson AFB, OH 45433

1 AFML (Dr. T. Nicholas) Wright-Patterson AFB, OH 45433

3 ASD (YH/EX, John Rievley; XROT, Gerald Bennett; ENFTV, Matt Kolleck) Wright-Patterson AFB, OH 45433

1 Headcuarters
National Aeronautics and Space Administration Washington, DC 20546

4 Director
National Aeronautics and Space Administration Langley Research Center Langley Station Hampton, VA 23365

1 Director
National Aeronautics and Space Administration Manned Spacecraft Center ATTN: Lib Houston, TX 77058

1 Director
Jet Propulsion Laboratory
ATTN: Lib (TD)
4800 Oak Grove Drive
Pasadena, CA 91103

No. of
Copies Organization
1 Director
Lawrence Livermore Laboratory
ATTN: Dr.R.H. Toland, L-424
P. O. Box 808

Livermore, CA 94550
1 Aeronautical Research Assoc. of Princeton, Inc.
50 Washington Road Princeton, NJ 08540

2 Aerospace Corporation ATTN: Mr. L. Rubin Mr. L. G. King 2350 E. El Segundo Blvd El Segundo, CA 90009

1 Boeing Aerospace Company ATIN: Mr. R. G. Blaisdell
(M.S. 40-25)

Seattle, WA 98124
1 Dupont Experimental Labs
ATTN: Mr. J. Lupton
Wilmington, DE 19801
1 Effects Technology Inc. 5383 Hollister Avenue P. O. Box 30400

Santa Barbara, CA 93105
1 Falcon Rq0
ATTN: Mr. R. Miller
1225 S. Huron Street
Denver, C0 80223
2 Falcon Red
Thor Facility
ATTN: Mr. D. Malick
Mr. J. Wilson
696 Fairmount Avenue
Baltimore, MD 21204

No. of Copies

Organization
1 FMC Corporation Ordnance Engineering Div San Jose, CA 95114

1 General Electric Company Armament Systems Dept Burlington, YT 05401

1 President General Research Corporation ATTN: Lib McLean, VA 22101

1 Goodyear Aerospace Corp 1210 Massillon Road Akron, OH 44315

1 H. P. White Laboratory Bel Air, MD 21014

3 Honeywell, Inc. Government \& Aerospace

Products Division
ATTN: Mr. J. Blackburn
Dr. G. Johnson
Mr. R. Simpson
600 Second Street, NE Hopkins, $\mathbb{M} \mathbf{5 5 3 4 3}$

1 Lockheed Corporation ATTN: Dr. C. E. Vivian Department 8114 Sunnyvale, CA 94087

1 Materials Research Lab., Inc. 1 Science Road Glenwood, IL 60427

1 McDonnell-Douglas
Astronautics Company
ATTN: Mail Station 21-2
Dr. J. Wall
5301 Bolsa Avenue Huntingron Beach, CA 92647

No. of
Copies
Organization

1 Pacific Technical Corp. ATTN: Dr. F. K. Feldmann 460 Ward Drive Santa Barbara, CA 93105

1 Philco-Ford Corporation Capistrano Test Facility San Juan Capistrano, CA 92675

3 Physics International Company
ATTN: Dr. D. Orphal
Dr. E. T. Moore
Dr. M. Chawla
2700 Merced Street
San Leandro, CA 94577
3 Sandia Laboratories
ATTN: Dr. W. Herrmann
Dr. L. Bertholf
Dr. J. W. Nunziato
Albuquerque, $N M 87115$
1 Science Ảpplications, Inc.
101 Continental Blvd, Suite 310
E1 Segundo, CA 90245
1 Science Applications, Inc.
ATTN: G. Burghart 201 W. Dyer Rd (Unit B)
Santa Ana, CA 92707
2 Systems, Science \& Software, Inc.
ATTN: Dr. R. Seugwick
Ms. L. Hageman
P. O. Box 1620

La Jolla, CA ؟2038
1 US Steel Corporation
Research Center
125 Jamison Lane
Monroeville, PA 15146

DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	f Organization	
	Drexel University	1	University of Dayton	
	Dept of Mechanical Engineering		Univ, of Dayton Research Inst	
	ATTN: Dr. P. C. Chou		ATTN: Mr. H. F. Swift	
	32nd and Chestnut Streets		Dayton, OH 45405	
	Pniladelphia, PA 19104			
		$2 \begin{aligned} & 2 \\ & \\ & \\ & \\ & \\ & \end{aligned}$	University of Delaware Dept of Mechanical Engineering	
1	New Mexico Institute of			
	Mining and Technology		ATTN: Prof. J. Vinson	
	Terra Group		Dean I. Greenfield	
	Socorro, NM 87801		Newark, DE 19711	
1	Forrestal Research Center	2	University of Denver	
	Aeronautical Engineering Lab		Denver Research Institute	
	Princeton University		ATIN: Mr. R. F. Recht	
	ATTN: Dr. A. Eringen		Mr. T. W. Ipson 2390 S. University Boulevard	
	Princeton, NJ 08540			
			Denver, CO 80210	
	Southwest Research Institu:e	2		
	Dept of Mechanical Sciences		University of Florida	
	ATTN: Dr. U. Lindholm Dr. W. Baker		Dept of Engineering Science and Mechanics	
	Dr. P. H. Francis		ATTN: Dr. C. A. Sciammarella	
	8500 Culebra Road		Dr. L. MalvernGainesville, FL 32601	
	San Antonio, TX 78228			
	Stanford Research Institute	Aberdeen Proving Ground		
	Poulter Laboratory			
	333 Ravenswood Avenue			
	Menlo Park, CA 94025		Merine Corps Ln Ofc Dir, USAMSAA	
3	University of Arizona		Cdr, USATECOM	
	Civil Engineering Department		ATIN: Mr. W. Pless	
	ATTN: Dr. D. A. DaDeppo		Mr. S. Keithley	
	Dr. R. Richard			
	Dr. R. C. Neff			
	Tucson, AZ 85721			
4	University of California			
	Los Alamos Scientific Lab			
	ATTN: Dr. R. Karpp			
	Dr. J. Dienes			
	Dr. L. Germain			
	Dr. B. Germain			
	P. 0. Box 808			
	Livermore, CA 94550			

[^0]: FThe wide-ranging "Auturnatic Cannon Technology" project of which the effort of concern here was but a small part.

[^1]: ${ }^{1}$ Grabarek, 1 : anä Herr, L., "X-Ray Multi-Flash Systern for Measurement of Projectile :"rformance at the Target", BRL TN 1c34, September' 1966 (AD 377657).
 iVacurm Indur: inn Melt, Vacuum Arc Remelt.

[^2]: $\begin{array}{ll}M & \text { - penetrator mass }(\mathrm{g}) \\ \mathrm{D} & \text { - penetrator diameter }(\mathrm{cm}) \\ \mathrm{L} & \text { - penetrator length }(\mathrm{cm}) \\ \theta & \text { - obliquity } \\ \mathrm{T} & \text { - target thickness }(\mathrm{cm}) \\ H & \text { - target hardness }(B H N) \\ V_{\chi,}, a, & \text { p- parameters derived from } V_{S}, V_{Y} \text { data and defined in Appendix } B\end{array}$

[^3]: ${ }^{2}$ Lombert, J. P. and Jonas, G. H., "Towards Standardization in Terminal Bal.listic Testing: Velocity Representation", BRL Report 1852, Tanuary 1976 (AD RO21389).

[^4]: ${ }^{3}$ Arbuckie, A. L., Herr, E. L. and Ricchiazzi, A. J., "A Computerized Method of Obtaining Behind-the-Target Data from Orthogonal Flash Radiographs" BRL Memorandum Report 2264, January 1973 (AD 9083ô2L).

[^5]: ${ }^{4}$ Lambert, J. P., "4 Reoidual Veiocity Prodistive Hoáei for Long Rod Fenetrators", to appecr.

