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THE TERNARY GOLDBACH PROBLEM WITH TWO

PIATETSKI-SHAPIRO PRIMES AND A PRIME WITH A

MISSING DIGIT

HELMUT MAIER AND MICHAEL TH. RASSIAS

Abstract. Let

γ˚ “
8

9
`

2

3

logp10{9q

log 10
p« 0.919 . . .q .

Let γ˚ ă γ0 ď 1, c0 “ 1{γ0 be fixed. Let also a0 P t0, 1, . . . , 9u.
We prove on assumption of the Generalized Riemann Hypothesis that each
sufficiently large odd integer N0 can be represented in the form

N0 “ p1 ` p2 ` p3 ,

where the pi are of the form pi “ rnc0

i
s, ni P N, for i “ 1, 2 and the decimal

expansion of p3 does not contain the digit a0.
The proof merges methods of J. Maynard from his paper on the infinitude
of primes with restricted digits, results of A. Balog and J. Friedlander on
Piatetski-Shapiro primes and the Hardy-Littlewood circle method in two vari-
ables. This is the first result on the ternary Goldbach problem with primes of
mixed type which involves primes with missing digits.

Key words. Ternary Goldbach problem; Generalized Riemann Hypothesis;
Hardy-Littlewood circle method; Piatetski-Shapiro primes; primes with miss-
ing digit.
2010 Mathematics Subject Classification: 11P32, 11N05, 11A63.

1. Introduction and statement of result

The ternary Goldbach problem was treated by Vinogradov [28] (see also [25]):
Let

(1.1) RpN0q “
ÿ

pp1,p2,p3q
p1`p2`p3“N0

plog p1qplog p2qplog p3q

(Here and in the sequel the letter p denotes primes).
Then

(1.2) RpN0q “
1

2
SpN0qN2

0 ` OA

ˆ
N2

0

logA N0

˙
,

for arbitrary A ą 0, where SpN0q is the singular series

(1.3) SpN0q “
ź

p|N0

ˆ
1 ´

1

pp ´ 1q2

˙ ź

p∤N0

ˆ
1 `

1

pp ´ 1q3

˙
.
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The relation (1.2) implies that each sufficiently large odd integer is the sum of three
primes.
Helfgott [15] recently showed that this is true for all odd N ě 7. Later on, solutions
of

p1 ` p2 ` p3 “ N0

with the pi taken from special sets Si were investigated.
Piatetski-Shapiro [24] proved that for any fixed c0 P p1, 12{11q the sequence prnc0sqnPN

contains infinitely many prime numbers. The interval for c0 was sebsequently im-
proved many times (cf. [7], [14], [18], [26]). Balog and Friedlander [1] considered
the ternary Goldbach problem with variables restricted to Piatetski-Shapiro primes.
They proved that for any fixed c0 with 1 ă c0 ă 21{20 every sufficiently large odd
integer N0 can be represented in the form

N0 “ p1 ` p2 ` p3 , with pi “ rnc0
i s ,

for any ni P N.
For other combinations of the sets Si, cf. [1], [17], [20], [27]. Additionally, the
authors in [21] proved that under the assumption of the Generalized Riemann Hy-
pothesis each sufficiently large odd integer can be expressed as the sum of a prime
and two isolated primes.
The other type of primes entering our hybrid theorem are primes with missing dig-
its.
In many papers numbers with restricted digits have been investigated (cf. [2], [3],
[4], [5], [8], [9], [6], [10], [11], [12], [19], [23]). These investigations culminated in
the work of Maynard [22], who proved the existence of infinitely many primes with
restricted digits. In [22] Maynard proved the following:
Let a0 P t0, 1, . . . , 9u. Then there are infinitely many primes, whose decimal expan-
sion does not contain the digit a0.
Our result merges methods of J. Maynard from [22], results of A. Balog and J. Fried-
lander on Piatetski-Shapiro primes [1] and the Hardy-Littlewood circle method in
two variables. This is the first result on the ternary Goldbach problem with primes
of mixed type which involves primes with missing digits. We shall prove the fol-
lowing:

Theorem 1.1. Assume the Generalized Riemann Hypothesis (GRH). Let

γ˚ “
8

9
`

2

3

logp10{9q

log 10
p« 0.919 . . .q .

Let γ˚ ă γ0 ď 1, c0 “ 1{γ0 be fixed. Let also a0 P t0, 1, . . . , 9u.
Then each sufficiently large odd integer N0 can be represented in the form

N0 “ p1 ` p2 ` p3 ,

where the pi are of the form pi “ rnc0
i s, ni P N, for i “ 1, 2 and the decimal expan-

sion of p3 does not contain the digit a0.

2. Outline and some basic definitions

Our argument is closely related to the work of Maynard [22]. Important ideas
use a sieve decomposition of the counting function #tp P Au, which is based on
ideas of Harman [13], as well as the discrete circle method.
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We recall the following definitions from [22] which we complement by a few new
definitions.

Definition 2.1. Let a0 P t0, 1, . . . , 9u, k P N and let

A :“

#
ÿ

0ďiďk

ni10
i : ni P t0, 1, . . . , 9uzta0u

+

,

X :“ 10k , B :“ tn ď X, n P Nu ,

P the set of prime numbers,

SApθq :“
ÿ

aPA

epaθq , SPpθq :“
ÿ

pďx

eppθq , SAXPpθq :“
ÿ

pPAXP

eppθq .

Let C be a set of integers. We define the characteristic function 1C by

1Cpnq :“

#
1 , if n P C

0 , if n R C .

For d P N we set

Cd :“ tc : cd P Cu.

The sifted set UpC, zq is defined by

UpC, zq :“ tc P C : p | c ñ p ą zu .

The sieving function SpC, zq - the counting function of UpC, zq - is given by

SpC, zq :“ #UpC, zq “ #tc P C : p | c ñ p ą zu .

We let

wn :“ 1Apnq ´
κA#A

#B
, κA :“

$
’’&

’’%

10pΦp10q ´ 1q

9Φp10q
, if p10, a0q “ 1

10

9
, otherwise ,

Sdpzq :“
ÿ

năX{d
p|n ñ pąz

wnd “ SpAd, zq ´
κA#A

X
SpBd, zq ,

1Apnq is called the A´part of wn ,

SpAd, zq is called the A´part of Sdpzq ,

the B-parts are defined analogously.
We also define the exponential sums

SpC, z, θq :“
ÿ

nPUpC,zq

epnθq ,

Sdpz, θq :“
ÿ

năX{d
p|n ñ pąz

wndepnθq “ SpAd, z, θq ´
κA#A

X
SpBd, z, θq , pθ P Rq .
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The essential idea of Harman’s sieve is contained in Harman [13], Theorem 3.1
from [13] (The Fundamental Theorem).
Suppose that for any sequences of complex numbers, am, bn, that satisfy |am| ď 1,
|bn| ď 1 we have for some λ ą 0, α ą 0, β ď 1{2, M ě 1 that

(3.3.1)
ÿ

mnPA
mďM

am “ λ
ÿ

mnPB
mďM

am ` OpY q

and

(3.3.2)
ÿ

mnPA
XαďmďXα`β

ambn “ λ
ÿ

mnPB

ambn ` OpY q ,

where Y is a suitably chosen constant.
Let cr be a sequence of complex numbers, such that |cr| ď 1, and if cr ‰ 0, then

(3.3.3) p | r ñ p ą xǫ , for some ǫ ą 0.

Then, if Xα ă M , 2R ă minpXα,Mq and M ą X1´α, if 2R ą Xα`β, we have

(3.3.4)
ÿ

r„R

crSpAr, X
βq “ λ

ÿ

r„R

crSpBr, X
βq ` OpY log3 Xq .

The equation (3.3.1) is known as type I information, whereas as (3.3.2) is known
as type II information.
In the application of Theorem 3.1, information about a (complicated) set A is
obtained from that of a (simple) set B.
In Maynard’s paper [22] the sets A and B are those from Definition 2.1. In a first
step of the sieve decomposition the counting-function of interest #tp P Au is broken
up as follows:

#tp P Au “ #tp P A : p ą X1{2u ` OpX1{2q

“ S1pz4q ` p1 ` op1qq
κA#A

logX
(here z4 “ X1{2) .

The function S1 is now replaced in a series of steps by other terms of the form Sd.
These steps consist in the application of Buchstab’s recursion:
Let u1 ă u2. Then

(2.1) SpC, u2q “ SpC, u1q ´
ÿ

u1ăpďu2

SpCp, pq .

In the transformation of the form

Sdpzq “ SpAd, zq ´
κA#A

logX
SpBd, zq ,

(2.1) is now applied separately with C “ Ad and C “ Bd and we get the recursion:

S1pu2q “ S1pu1q ´
ÿ

u1ăpďu2

Spppq .

An important observation is that “the counting function version” of the Buchstab
recursion is linked to a “characteristic function version”.

(2.2) 1UpC,u2qpnq “ 1UpC,u1qpnq ´
ÿ

u1ăpďu2

1UpCp,pqpnq .
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In our paper the discrete circle method is applied and therefore we multiply (2.2)
with the exponential function epnθq p“ e2πinθq, to obtain:

(2.3) 1UpC,u2qpnqepnθq “ 1UpC,u1qpnqepnθq ´
ÿ

u1ăpďu2

1UpCp,pqpnqepnθq .

We get the following version of Buchstab’s recursion, which we state as

Lemma 2.2. Let u1 ă u2. Then

(2.4) SpC, u2, θq “ SpC, u1, θq ´
ÿ

u1ăpďu2

SpCp, p, θq .

We introduce another modification in our paper. Instead of considering all the
integers in A as possible candidates for our representation of N0 we now only choose
the integers from a subset A˚ of A, which are contained in a short subinterval of
B.

Definition 2.3. Let H P N, H ď k. For

n “
kÿ

j“1

nj10
j, pnj P t0, . . . , 9uq

we write

nH,1 :“
kÿ

j“k´H`1

nj10
j “: ñH ¨ 10k´H`1

and

nH,2 :“
k´Hÿ

j“0

nj10
j .

Lemma 2.4. Let n “ ñH ¨ 10k´H`1 as in Definition 2.3. Then

(2.1) n P A if and only if ñH P A and nH,2 P A

There is an integer ñH P A X r0, 10H´1s such that for n˚
H :“ ñH10k´H`1 we have

the following:

(2.2)
ˇ̌
n˚
H ´ 5 ¨ 10k´1

ˇ̌
ď

3

2
10k´2

and for nH,2 P B˚ :“ rn˚
H , n˚

H ` 10k´Hq the following holds:

(2.3) n˚
H ` nH,2 P A ñ nH,2 P A .

Proof. (2.1) is obvious. To show (2.2) and (2.3) we consider the following cases:
Case 1 : a0 “ 5, Case 2 : a0 “ 4, Case 3 : a0 R t4, 5u.
Specifically we have:
Case 1 : Let nk´i P t0, . . . , 9uzta0u for 2 ď i ď H ´ 1. Then we may take

n˚ “ 4, 9 ¨ 10k `
k´2ÿ

j“k´H`1

nj10
j .

Case 2 : Let nk´i P t0, . . . , 9uzta0u for 3 ď i ď H ´ 1. Then we may take

n˚ “ 5, 09 ¨ 10k `
k´3ÿ

j“k´H`1

nj10
j .

Case 3 : The choices for n˚ in cases 2 and 3 are both possible. �
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Convention: In the sequel we have many estimates and definitions containing
positive constants C1, C2, . . . (actually powers plogXqCi ). The Ci must satisfy
certain conditions, which will be described. However, it will always be possible to
choose the Ci, such that the miniCi is arbitrarily large. An estimate containing
O

`
DpxqplogXq´A

˘
(Dpxq a certain function of X) means that A ą 0 may be taken

arbitrarily large if miniCi is sufficiently large.

Definition 2.5. We define X by 2X ď N0 ă 20X. We then define

(2.4) IntpN0q “

„
N0 ´ n˚

H

2
´

X

8
,
N0 ´ n˚

H

2
`

X

8


,

Sc0pθq :“
1

γ

ÿ

pPIntpN0q

p“rn1{γ s

plog pq1´γeppθq .

Let S Ď r1, Xs be a set of positive integers and vpnq be a sequence of real
numbers. For the exponential sum

(2.5) Epθq :“
ÿ

nPS

vpnqepnθq

we define

(2.6) JpEq :“
1

X

ÿ

1ďaďX

E
´ a

X

¯
S2
c0

´ a

X

¯
e

´
´N0

a

X

¯

JpE, τq :“
1

X

ÿ

a
X

PT

E
´ a

X

¯
S2
c0

´ a

X

¯
e

´
´N0

a

X

¯

for a subset T Ď r0, 1s and the mean-value

MpEq :“
ÿ

pm,p2,p3q
mPS,p2,p3PPc0

,piPIntpN0q
m`p2`p3“N0

p
1´γ
2 p

1´γ
3 plog p2qplog p3qvpmq ,

The evaluation of JpEq is also called the a-variable circle method.

Lemma 2.6. We have JpEq “ MpEq.

Proof. This follows by orthogonality. �

Instead of wn, Sdpzq from Definition 2.1 we now consider the expression given in

Definition 2.7. We determine H by 10H “ rplogXqC1s. Let n˚ “ n˚
H , which has

been constructed in Lemma 2.4, B˚ as in Lemma 2.4 and A˚ “ A X B˚.
We let

w˚
n :“ 1A˚pnq ´

κA#A˚

#B˚

S˚
d pzq :“

ÿ

năX{d
p|n ñpąz

w˚
nd “ SpA˚

d , zq ´
κA#A˚

#B˚
SpB˚

d , zq

1A˚
d

pnq is called the A-part of w˚
n.

SpA˚
d , zq is called the A-part of S˚

d pzq.
6



The B-parts are defined analogously. The analogue of Lemma 2.2 leads to an iden-
tity.

SA˚XPpθq “
ÿ

j

Ejpθq ,

where the exponential sums Ejpθq are extended over integers n “ p1 . . . pl, defined
by linear inequalities to be satisfied by the vector

ˆ
log p1

logX
, . . . ,

log pl

logX

˙
.

We also define the exponential sums

S˚
d pz, θq “

ÿ

nPB˚

p|n ñ pąz

w˚
nd “ SpA˚

d , z, θq ´
κA#A˚

#B˚
SpB˚

d , z, θq .

For the evaluation of the sums JpEq from (2.6) by the a-variable circle method we
partition the set t a

X
: 1 ď a ď Xu into the two subsets of the major arcs and the

minor arcs.

Definition 2.8. We set Q0 “ plogXq3. For q ď X, 1 ď c ď q, pc, qq “ 1 and
L P r1,8q we set:

Ic,qpLq :“

„
c

q
´ q´1X´1L,

c

q
` q´1X´1L


.

We let L0 “ plogXqC1 , L1 “ X1{5. The major arcs M are defined as

M :“
ď

qďQ0

pc,qq“1

Ic,qpL0q .

The minor arcs m are defined as

m :“ r0, 1szM .

For the evaluation of Sc0

´
c
q

` ξ
¯

we apply the approach of Balog and Friedlander

[1].
We now obtain a local version of the result of Maynard [22]. Instead of considering
the sets Cd with C “ A and B appearing in the Buchstab recursion in Lemma 2.2
we now consider the sets Cd with

C˚ “ Cq,s :“ tm P C : m ” s mod qu ,

where C “ A˚ or B˚ as defined in Definition 2.7.
We carry out the type I and type II estimates closely following Maynard [22], ob-
taining the contributions to JpEq of the major arcs of the a-variable circle method.
These type II estimates are based on the b-variable circle method:
Let R be a subset of B˚, J “ A˚ X R. Then we have

SJ pθq “
1

X

ÿ

1ďbďX

SA

ˆ
b

X

˙
SR

ˆ
´

ˆ
b

X
´ θ

˙˙
.

The minor arcs of the a-variable circle method finally are treated by estimates of
Large Sieve type and by estimates of exponential sums over prime numbers.
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3. Structure of the paper

In Section 4 we carry out the sieve decomposition of the local version of Maynard
[22] involving the exponential sums instead of counting functions and the sets A˚

and B˚ contained in short intervals.
We shall reduce the proof of Theorem 1.1 to the proof of three Propositions:
Proposition 4.2 our type I estimate, Proposition 4.3 our type II estimate and Propo-
sition 4.5 in which the A-part is estimated trivially. All these propositions contain
convolutions of the sums appearing in the Buchstab iterations with the Piatetski-
Shapiro sums.
In Section 6 we reduce Propositions 4.2, 4.3 and 4.5 to the local version of May-
nard’s result, Propositions 6.3 and 6.4, which do not involve the Piatetski-Shapiro
sum.
Proposition 6.3 is handled by a method from combinatorial sieve theory, replacing
the Möbius function by functions with smaller support and Fourier analysis to fix
locations and residue-classes.
The proof of Proposition 4.3 is carried out by the Classical Circle Method.
In Section 7 the ranges of summation are partitioned in small boxes.
These are now handled by the b-variable Circle Method, closely following Maynard
[22]. The dependency graph between the main statements is as follows:

Prop. 8.1

Prop. 8.2

Prop. 8.3

Prop. 7.2 Prop. 6.4 Prop. 4.3

Prop. 4.5

Prop. 4.2Prop. 6.3

Theorem 1.1

4. Sieve decomposition and proof of Theorem 1.1

Here we carry out the modification of Maynard’s method of Sieve Decomposition
as described in the outline and reduce the proof of Theorem 1.1 to the proof of
Propositions 4.2, 4.3 and 4.5.
Proposition 4.2 deals with convolutions of exponential sums of type I, Proposition
4.3 with those of exponential sums of type II, whereas Proposition 4.5 gives a result
in the case in which neither type I nor type II information is available.

Definition 4.1. Let η P p0, 1q. Let vpn, ηqnPS be a family of sequences of real
numbers, indexed by the parameter η, S finite. The family of exponential sums

Epθ; ηq :“
ÿ

nPS

vpn, ηqepnθq

is called negligible, if

lim
ηÑ0

lim sup
kÑ8

|JpEq| logX

p#A˚qX
“ 0

the term “negligible” will also be applied to an individual exponential sum Epθq of
the family Epθ, ηq.

8



Proposition 4.2. (Sieve asymptotic terms)
Let ǫ ą 0, 0 ă η0 ď θ2 ´ θ1, l “ lpη0q be fixed, where

θ1 “
9

25
` 2ǫ and θ2 “

17

40
´ 2ǫ.

Let L be a set of Oη0
p1q affine linear functions, L : Rl Ñ R. Let

E0 :“ E0pθ, η0q “
„ÿ

Xη0ďp1ď¨¨¨ďpl

S˚
p1¨¨¨pl

pXη0 , θq ,

where
ř„

indicates that the summation is restricted by the condition

L

ˆ
log p1

logX
, . . . ,

log pl

logX

˙
ě 0 ,

for all L P L.
Then E0 is negligible.

Proposition 4.3. (Type II terms)
Let l “ lpη0q, θ1, θ2,L, be as in Proposition 4.2 and let I “ t1, . . . , lu and j P t1, . . . , lu,

E1pθ, η0q :“
„ÿ

Xη0ďp1ď¨¨¨ďpl

Xθ1ď
ś

iPI piďXθ2

p1¨¨¨plďX{pj

S˚
p1¨¨¨pl

ppj , θq ,

E2pθ, η0q :“
„ÿ

Xη0ďp1ď¨¨¨ďpl

X1´θ2ď
ś

iPI piďX1´θ1

p1¨¨¨plďX{pj

S˚
p1¨¨¨pl

ppj , θq ,

where
ř„

indicates the same restriction as in Proposition 4.2.
Then E1 and E2 are negligible.

Definition 4.4. The Buchstab function ω is defined by the delay-differential equa-
tion

ωpuq “
1

u
, 1 ď u ď 2 ,

ω1puq “ ωpu ´ 1q ´ ωpuq , u ą 2 .

For ~p “ pp1, . . . , plq, pi primes for 1 ď i ď l, let

Logp~pq “

ˆ
log p1

logX
, . . . ,

log pl

logX

˙
.

Let C be a set of Op1q affine linear functions. Let the polytope R be defined by

R “ tpu1, . . . , ulq P r0, 1sl : Lpu1, . . . , ulq ě 0 for all L P Lu .

Let

Πp~pq “ p1 ¨ ¨ ¨ pl ,

SpN0q “
ź

p∤N0

ˆ
1 `

1

pp ´ 1q3

˙ ź

p|N0

ˆ
1 ´

1

pp ´ 1q2

˙
.

9



Proposition 4.5. Let l P N, δ ą 0,

z : r0, 1sl Ñ rδ, 1 ´ δs, ~u “ pu1, . . . , ulq Ñ zp~uq “ zpu1, . . . , ulq

be continuous. Let

Epθq :“
ÿ

~p : Logp~pqPR

SpBś̊
p~pq, X

zpLogp~pqq, θq .

Then

JpEpθqq “
Xp#B˚q

4 logX
S0pN0q

ż
¨ ¨ ¨

ż

R

ωp1 ´ u1 ´ ¨ ¨ ¨ ´ ulq

u1 ¨ ¨ ¨ulzpu1, . . . , ulq
du1 . . . dul p1 ` op1qq .

We now closely follow Maynard [22] to decompose the exponential sum

SAXPpθq “ E˚pθq :“
ÿ

pPA

eppθq .

We recall the following notations from [22]. We let

z1 ď z2 ď z3 ď z4 ď z5 ď z6

be given by

z1 :“ Xθ2´θ1 , z2 :“ Xθ1 , z3 :“ Xθ2

z4 :“ X1{2 , z5 :“ X1´θ2 , z6 :“ X1´θ1 .

We write Ni for negligible sums, Pi for sums with JpPiq ě 0 and, given a positive
constant I :“ EipI, θq for an exponential sum with

JpEipI, θqq “ Γ ¨ Ip1 ` op1qq .

We have by Lemma 2.6

SAXPpθq “
ÿ

pąX1{2

eppθq ` N1pθq “ S1pz4, θq `
κA#A

logX
SBpθq ` N1pθq .

By Buchstab’s identity we have:

S1pz4, θq “ S1pz1, θq ´
ÿ

z1ăpďz2

Sppp, θq .

S1pz, θq is negligible by Proposition 4.2. We split the sum over p into ranges
pzi, zi`1q and see that all the terms with p P pz2, z3q are also negligible by Proposi-
tion 4.3. This gives

S˚
1 pz4, θq “ ´

ÿ

z1ăpďz2

S˚
p pp, θq ´

ÿ

z3ăpďz4

S˚
p pp, θq ` N2pθq .

We wish to replace S˚
p pp, θq by

S˚
p

˜

min

˜

p,

ˆ
X

p

˙1{2
¸

, θ

¸

.

We note, that these are the same, when p ď X1{3, but if p ą X1{3, then there are
additional terms in

S˚
p

˜ˆ
X

p

˙1{2

, θ

¸

.
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The existence of two primes q1, q2 with

ˆ
x

p

˙1{2

ă q1 ă q2 ď p

leads to the contradiction pq1q2 ą X .
Thus we have with δ :“ 1{plogXq1{2

´P1pθq `
ÿ

păX1{2

˜

S

˜

Ap,min

˜

p,

ˆ
X

p

˙1{2
¸

, θ

¸

´ S˚pAp, p, θq

¸

“
ÿ

păX
1

2
´δ

ÿ

pX
p q1{2

ăqďp

qpPA

eppqθq `
ÿ

X
1

2
´δďpďX

1

2

S˚pAp, z1, θq ´ P2pθq

“ N3pθq ,(4.1)

by Lemma 2.6.
Similarly, we get corresponding bounds for

S˚

˜

Bp,min

˜

p,

ˆ
X

p

˙1{2
¸

, θ

¸

and so we can replace S˚
p pp, θq by

S˚
p

˜

min

˜

p,

ˆ
X

p

˙1{2

, θ

¸¸

at the cost of negligible sum.
Using this, and applying Buchstab’s identity again, we have:

S˚
1 pz4, θq “ ´

ÿ

z1ăpďz2

S˚
p

˜

min

˜

p,

ˆ
X

p

˙1{2

, θ

¸¸

´
ÿ

z3ăpďz4

S˚
p

˜

min

˜

p,

ˆ
X

p

˙1{2

, θ

¸¸

` N4pθq

“ ´
ÿ

z1ăpďz2

S˚
p pz1, θq ´

ÿ

z3ăpďz4

S˚
p pz1, θq `

ÿ

z1ă1ďpďz2

qďpX
q q

1{2

S˚
pqpq, θq

`
ÿ

z3ă1ďpďz4

z1ăqďpX
q q1{2

S˚
pqpq, θq ` N5pθq .

The first two terms above are asymptotically negligible by Proposition 4.2 and
so this simplifies to

(4.2) S˚
1 pz4, θq “

ÿ

z1ăqďpďz2

qďp X
p q1{2

S˚
pqpq, θq `

ÿ

z3ăqďpďz4

z1ăqďp X
p q1{2

S˚
pqpq, θq ` N6pθq .

We perform further decompositions to the remaining terms in (6.5). We first con-
centrate on the first term on the right hand side. Splitting the ranges of pq into

11



intervals, and recalling those with a pq in the interval rz2, z3s or rz5, z6s make a
negligible contribution by Proposition 4.3, we obtain

ÿ

z1ăqďpďz2

qďpX
p q

1{2

S˚
pqpq, θq “

ÿ

z1ăqďpďz2

qďp X
p q

1{2

z0ăpq

S˚
pqpq, θq `

ÿ

z1ăqďpďz2

qďp X
p q

1{2

z3ďpqăz5

S˚
pqpq, θq

`
ÿ

z1ăqďpďz2
z1ďpqăz2

S˚
pqpq, θq ` N6pθq .(4.3)

Here we have dropped the condition q ď pX{pq1{2 in the final sum, since this is
implied by q ď p and pq ď z2. On recalling the definition of wn, we can write:

ÿ

z1ăqďpďz2

qďp X
p q1{2

z6ăpq

S˚
pqpq, θq “ P3pθq ´

κA#A˚

logX

ÿ

z1ăqďpďz2

qďp X
p q1{2

z6ăpq

S˚
pqpq, θqSpBpq , q, θq .

By Proposition 4.5 we obtain:

(4.4)
ÿ

z1ăqďpďz2

qďp X
p q

1{2

z0ăpq

S˚
pqpq, θq “

κA#A˚

logX
E1pI1, θq ,

where

(4.5) I1 “

ĳ

θ2´θ1ăvďθ1
văp1´uq{2
1´θ1ău`v

ω

ˆ
1 ´ u ´ v

v

˙
dudv

uv2
.

I1 is the first one of a series of nine integrals I1, . . . , I9, which occur in Maynard
[22].
We perform further decompositions of the second term of (4.3), first splitting ac-
cording to the size of q2p compared with z6.

(4.6)
ÿ

z1ăqďpďz2

qďp X
p q1{2

z3ďpqăz5

S˚
pqpq, θq “

ÿ

z1ăqďpďz2
z3ďpqăz5
q2păz6

S˚
pqpq, θq `

ÿ

z1ăqďpăz2
z3ďpqăz5
z6ďq2pďX

S˚
pqpq, θq .

For the second term of (4.6), when q2p is large, we first separate the contribution
from products of three primes: By an essentially identical argument to when we
replaced S˚

p pp, θq by

S˚
p

˜

min

˜

p,

ˆ
X

p

˙1{2
¸

, θ

¸

we may replace S˚
pqpq, θq by

S˚
pq

˜

min

˜

q,

ˆ
X

pq

˙1{2
¸

, θ

¸

12



at the cost of a negligible sum N7pθq (since pq ă z6).
By Buchstab’s identity we have (with r restricted to being prime):

ÿ

z1ăqďpďz2
z3ďpqăz5
z6ďq2pďX

S˚
pq

˜

min

˜

p,

ˆ
X

p

˙1{2
¸

, θ

¸

“

ÿ

z1ďqăpďz2
z3ďpqăz5
z6ďq2pďX

S˚
pq

˜ˆ
X

pq

˙1{2

, θ

¸

`
ÿ

z1ăqďpďz2
z3ďpqăz5
z6ďq2pďX

qărďpX{pqq1{2

S˚
pqr pr, θq .

The first term above is counting products of exactly three primes, and for these
terms we drop the contribution of the A-part for a non-negative sum. We obtain

(4.7)
ÿ

z1ăqďpďz2
z3ăpqďz5
z6ďq2pďX

S˚
pq

˜ˆ
X

pq

˙1{2

, θ

¸

“ P4pθq ´
κA#A˚

logX
E2pI2, θq ` N8pθq ,

where

I2 “

ĳ

θ2´θ1ăvăuăθ1
θ2ău`vă1´θ2
1´θ1ă2v`uă1

dudv

uvp1 ´ u ´ vq
.

For the terms not coming from products of three primes, we split our summation
according to the size of pqr, noting that this is negligible, if qr P rz2, z3q by Propo-
sition 4.3. For the terms with qr R rz2, z3q we just take the trivial lower bound.
Thus, by Proposition 4.5 we have

ÿ

z1ăqďpďz2
z3ďpqďz5
z6ďq2pďX

qărďp X
pq q1{2

S˚
pqrpr, θq “

“
ÿ

z1ďqďpďz2
z3ďpqăz5
z6ďq2pďX

qărďp X
pq q1{2

qrăz2

S˚
pqrpr, θq `

ÿ

z1ăqďpďz2
z3ďpqăz5
z6ďq2pďX

qărďp X
pq q1{2

qrąz3

S˚
pqrpr, θq ` N9pθq

“ ´p1 ` op1qq
κA#A˚

logX
pE3pI3, θq ` E4pI4, θqq ` P5pθq,

where

(4.8) I3 “

¡

pu,v,wqPR1

ω

ˆ
1 ´ u ´ v ´ w

w

˙
dudvdw

uvw2
,

(4.9) I4 “

¡

pu,v,wqPR2

ω

ˆ
1 ´ u ´ v ´ w

w

˙
dudvdw

uvw2
,

13



where R1 and R2 are given by

R1 :“ tpu, v, wq : θ2 ´ θ1 ă v ă u ă θ1, θ2 ă u ` v ă 1 ´ θ2,

1 ´ θ1 ă u ` 2v ă 1, v ă w ă p1 ´ u ´ vq{2, v ` w ă θ1u ,

R2 :“ tpu, v, wq : θ2 ´ θ1 ă v ă u ă θ1, θ2 ă u ` v ă 1 ´ θ2,

1 ´ θ1 ă u ` 2v ă 1, v ă w ă p1 ´ u ´ vq{2, v ` w ă θ2u .

When q2p ă z6 we can apply two further Buchstab iterations, since then we can
evaluate terms S˚

pqrpz1, θq with r ď q ď p using Proposition 4.2 (since pqr ă z6).
This gives

ÿ

z1ăqďpďz2
q2păz6

z3ďpqăz5

S˚
pqpq, θq “

ÿ

z1ăqďpďz2
q2păz6

z3ďpqăz5

S˚
pq

˜

min

˜

q,

ˆ
X

pq

˙1{2
¸

, θ

¸

` N10pθq

“
ÿ

z1ăqďpďz2
q2păz6

z3ďpqăz5

S˚
pqpz1, θq ´

ÿ

z1ărďqďpďz2
q2păz6

z3ďpqăz5
rďpX{pqq1{2

S˚
pqrpr, θq ` N11pθq

“ N12pθq ´
ÿ

z1ărďqďpďz2
q2păz6

z3ďpqďz5

rďpX{pqq1{2

S˚
pqr

˜

min

˜

r,

ˆ
X

pqr

˙1{2
¸

, θ

¸

“ N12pθq ´
ÿ

z1ărďqďpďz2
q2păz6

z3ďpqăz5

rďpX{pqq1{2

S˚
pqrpz1, θq `

ÿ

z1ăsďrďqďpďz2
q2păz6

z3ďpqăz5
r2pq,s2rpqďX

S˚
pqrsps, θq

“ N13pθq `
ÿ

z1ăsďrďqďpďz2
q2pďz6

z3ďpqăz5
r2pq,s2rpqďX

S˚
pqrsps, θq ,

where r, s are restricted to primes in the sums above.
Finally, we see that any part of the final sum with a product of two of p, q, r, s in
rz2, z3s can be discarded by Proposition 4.3. Trivially lower bounding the remaining
terms as before yields

ÿ

z1ăsďrďqďpďz2
q2păz6

z3ďpqăz5
r2pq,s2rpqďX

S˚
pqrsps, θq “ P6pθq ´

κA#A˚

logX
E5pI5, θq ,

with

(4.10) I5 “

żżżż

pu,v,w,tqPR3

ω

ˆ
1 ´ u ´ v ´ w ´ t

t

˙
dudvdwdt

uvwt2
,

where R3 is given by

R3 :“ tpu, v, w, tq : θ2 ´ θ1 ă t ă w ă v ă u ă θ1, u ` 2v ă 1 ´ θ1,

u ` v ` 2w ă 1, u ` v ` w ` 2t ă 1, θ2 ă u ` v ă 1 ´ θ2,
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tu ` v, u ` w, u ` t, v ` w, v ` t, w ` tu X rθ1, θ2s “ Hu.

We perform decompositions to the third term of (4.3) in a similar way to how
we dealt with the second term. We have

q2p ă pqpq3{2 ă z
3{2
2 ă z6

so, as above, we can apply two Buchstab iterations and use Proposition 4.2 to deal
with the terms Spqrpz1, θq, since we have pqr ď pq2 ă z6.
Furthermore, we notice that terms with any of pqr, pqs, prs, or qrs in rz2, z3s Y
rz5, z6s are negligible by Proposition 4.3. This gives

ÿ

z1ăqďpďz2
z1ďpqďz2

S˚
pqpq, θq “

ÿ

z1ăqďpďz2
z1ďpqăz2

S˚
pqpz1, θq ´

ÿ

z1ărďqďpďz2
z1ďpqăz2

S˚
pqpr, θq

“ N14pθq ´
ÿ

z1ărďqďpďz2
z1ďpqďz2

S˚
pqrpz1, θq `

ÿ

z1ăsărăqăpăz2
z1ăpqăz2

S˚
pqrsps, θq

“
ÿ

z1ăsărăqăpăz2
z1ăpqăz2

prq,pqs,prs,qrsRrz2,z3s
pqrsRrz2,z3sYrz5,z6s

S˚
pqrsps, θq ` N15pθq

“ P7pθq ´
κA#A˚

logX
E6pI6, θq ,

where

(4.11) I6 “

żżżż

pu,v,w,tqPR4

ω

ˆ
1 ´ u ´ v ´ w ´ t

t

˙
dudvdwdt

uvwt2
,

where

R4 :“ tpu, v, w, tq : θ2 ´ θ1 ă t ă w ă v ă u ă θ1, u ` v ă θ1,

u ` v ` w ` t R rθ1, θ2s Y r1 ´ θ2, 1 ´ θ1s,

tu ` v ` w, u ` v ` t, u ` w ` t, v ` w ` tu X rθ1, θ2s “ Hu.

Together (4.4), (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11) give our lower bound for
all the terms occurring in (4.3) and so give a lower bound for the first term from
(4.3) which covers all terms with p ď z2.
We are left to consider the second term from (4.3), which is the remaining term
with p P pz3, z4s. We treat these in a similar manner to those with p ď z2.
We first split the sum according to the size of qp. Terms with qp P rz5, z6q are
negligible by Proposition 4.3, so we are left to consider qp P pz3, z5q or qp ą z6. We
then split the terms with qp P pz3, z5q according to the size of q2p compared with
z6. This gives

ÿ

z3ăpďz4
z1ăqďpX{pq1{2

S˚
pqpq, θq “ S1 ` S2 ` S3 ` N16pθq,

where

S1 :“
ÿ

z3ăpďz4

z1ăqďpX{pq1{2

S˚
pqpq, θq “ P8pθq ´

κA#A˚

logX
E7pI7, θq ,
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with

I7 “

ĳ

θ2ăuă1{2
θ2´θ1ăvăp1´uq{2

1´θ1ău`v

ω

ˆ
1 ´ u ´ v

v

˙
dudv

uv2

S2 :“
ÿ

z3ăpďz4

z1ăqďpX{pq1{2

z3ăqpďz5
z6ďq2p

S˚
pqpq, θq “ P9pθq ´

κA#A˚

logX
E8pI8, θq ,

with

(4.12) I8 “

ĳ

θ2ăuă1{2
θ2´θ1ăvăp1´uq{2
θ2ău`vă1´θ2
1´θ1ă2v`u

ω

ˆ
1 ´ u ´ v

v

˙
dudv

uv2

and where

S3 :“
ÿ

z3ăpďz4

z1ăqďpX{pq1{2

z3ăqpăz5
q2păz6

S˚
pqpq, θq .

We apply two further Buchstab iterations to S3 (we can handle the intermediate
terms using Proposition 4.2 as before since q2p ă z6).
As before, we may replace S˚

pqrpq, θq by

S˚
pq

˜

min

˜

q,

ˆ
X

pq

˙1{2

, θ

¸¸

and S˚
pqrpr, θq by

S˚
pqr

˜

min

˜

r,

ˆ
X

pqr

˙1{2

, θ

¸¸

at the cost of a negligible error term (since pqr ă z6). This gives
16



S3 :“
ÿ

z3ăpďz4
z1ăqďpX{pq1{2

z3ďqpăz5
q2păz6

S˚
pq

˜

min

˜

q,

ˆ
X

pq

˙1{2

, θ

¸¸

` N17pθq

“
ÿ

z3ăpďz4

z1ăqďpX{pq1{2

q2păz6
z3ăqpăz5

S˚
pqpz1, θq

´
ÿ

z3ăpďz4
z1ărăqďpX{pq1{2

S˚
pqr

˜

min

˜

r,

ˆ
X

pqr

˙1{2

, θ

¸¸

` N18pθq

“ N18pθq ´
ÿ

z3ăpďz4

z1ărďqďpX{pq1{2

q2păz6
z3ăqpăz5
r2pqďX

S˚
qprpz1, θq `

ÿ

z3ăpďz4

z1ăsďrďqďpX{pq1{2

q2păz6
z3ăqpăz5

s2qrp,r2pqďX

S˚
qprsps, θq

“ N19pθq ´
κA#A˚

logX
E9pI9, θq ,

where

(4.13) I9 “

żżżż

pu,v,w,tqPR5

ω

ˆ
1 ´ u ´ v ´ w ´ t

t

˙
dudvdwdt

uvwt2
,

with

R5 :“ tpu, v, w, tq : θ2 ´ θ1 ă t ă w ă v, θ2 ă u ă 1{2, u ` 2v ă 1 ´ θ1,

u ` v ` 2w ă 1, u ` v ` w ` 2t ă 1, θ2 ă u ` v ă 1 ´ θ2,

tu ` v, u ` w, u ` t, v ` w, v ` t, w ` tu R rθ1, θ2su .

From (4.5), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.13) we now obtain

JpSA˚XPpθqq “
X

4

#A˚

logX
SpN0q

ˆ p1 ´ I1 ´ I2 ´ I3 ´ I4 ´ I5 ´ I6 ´ I7 ´ I8 ´ I9q .(4.14)

Numerical integration (Maynard [22] has included a Mathematica file detailing this
computation with this article on arxiv.org) shows that

(4.15) I1 ` ¨ ¨ ¨ ` I9 ă 0.996.

Thus Theorem 1.1 follows from (4.14) and (4.15). It remains to prove Propositions
4.2, 4.3 and 4.5.

5. Fourier estimates and Large Sieve inequalities

In this section we collect various results related to Section 10 of Maynard. We
also cite the Large Sieve inequality from Analytic Number Theory.
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Definition 5.1. Let

A1 :“

#
ÿ

0ďiďk

ni10
i : ni P t0, . . . , 9uzta0u, k ě 0

+

.

For Y an integral power of 10, we write

FY pθq :“ Y ´ log 9{ log 10

ˇ̌
ˇ̌
ˇ

ÿ

năY

1A1
pnqepnθq

ˇ̌
ˇ̌
ˇ
.

Lemma 5.2. Let q ă Y 1{3 be of the form q “ q1q2 with pq1, 10q “ 1 and q1 ą 1,
and let |η| ă Y ´2{3{2. Then for any integer c coprime to q we have

FY

ˆ
c

q
` η

˙
! exp

ˆ
´c1

log Y

log q

˙

for some absolute constant c1 ą 0.

Proof. This is Lemma 10.1 of [22]. �

Lemma 5.3. We have for Y1 — Y2 — Y3

sup
βPR

ÿ

căY1

FY2

ˆ
β `

c

Y3

˙
! Y

27{77
1

and ż 1

0

FY ptqdt !
1

Y 50{77
.

Proof. This is contained in Lemma 10.2 of [22]. �

Lemma 5.4. We have that

#

"
0 ď c ă Y : FY

´ c

Y

¯
„

1

B

*
! B235{154Y 59{433 .

Proof. This is Lemma 10.4 of [22]. �

Lemma 5.5. (Large sieve estimates)
We have

sup
βPR

ÿ

cďq

sup
|η|ăδ

FY

ˆ
c

q
` β ` η

˙
! p1 ` δqq

´
q27{77 `

q

Y 50{77

¯

sup
βPR

ÿ

qďQ

ÿ

0ăcăq
pc,qq“1

sup
|η|ăδ

FY

ˆ
c

q
` β ` η

˙
! p1 ` δQ2q

ˆ
Q54{77 `

Q2

Y 50{77

˙

and for any integer d, we have

sup
βPR

ÿ

qďQ
d|q

ÿ

0ăcăq
pc,qq“1

sup
|η|ăδ

FY

ˆ
c

q
` β ` η

˙
!

ˆ
1 `

δQ2

d

˙ ˜ˆ
Q2

d

˙27{77

`
Q2

dY 50{77

¸

Proof. This is Lemma 10.5 of [22]. �
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Lemma 5.6. (Hybrid Bounds)
Let E ě 1. Then we have

ÿ

cďq

ÿ

|η|ďE{Y

pη` c
q qY PZ

FY

ˆ
c

q
` η

˙
! pqEq27{77 `

qE

Y 50{77
,

ÿ

qăQ
d|q

ÿ

cďq
pc,qq“1

ÿ

|η|ďE{Y

pη` a
q qY PZ

FY

ˆ
c

q
` η

˙
!

ˆ
Q2E

d

˙27{77

`
Q2E

dY 50{77
.

Proof. This is Lemma 10.6 of [22]. �

Lemma 5.7. (Alternative Hybrid Bound)
Let D,E, Y,Q1 ě 1 be integral powers of 10 with DE ! Y . Let q1 „ Q1 with
pq1, 10q “ 1 and let d „ D satisfy d|10u for some u ě 0. Let

S “ Spd, q1, Q2, E, Y q

:“
ÿ

q2„Q2

pq2,10q“1

ÿ

cădq1q2
pc,dq1q2q“1

ÿ

|η|ďE{Y´
η` c

q1q2d

¯
Y PZ

FY

ˆ
c

dq1q2
` η

˙
.

Then we have

S ! pDEq27{77pQ1Q
2
2q1{21 `

E5{6D3{2Q1Q
2
2

Y 10{21
.

In particular, if q “ dq1 with pq1, 10q “ 1 and d | 10u for some integer u ě 0, then
we have

ÿ

căq
pc,qq“1

ÿ

|η|ďE{Y

pη` c
q qY PZ

FY

ˆ
c

q
` η

˙
! pdEq27{77q1{21 `

E5{6d3{2q

Y 10{21
.

Proof. This is Lemma 10.7 of [22]. �

Lemma 5.8. (Large Sieve Estimates)
Let αr P RzZ, }αi ´ αj} ě δ, an complex numbers with M ă n ď M ` N , where
0 ă δ ă 1{2 and N ě 1 is an integer. Then

ÿ

r

ˇ̌
ˇ̌
ˇ

ÿ

MănďM`N

anepαrnq

ˇ̌
ˇ̌
ˇ

2

ď pδ´1 ` N ´ 1q}a}2 .

Proof. This is Theorem 7.11 of [16] �

6. Local versions of Maynard’s results

In this section we reduce the propositions of Section 4 to other facts, which will
be proven in later sections.
Whereas we may represent the sifted sets appearing in Propositions 4.3 and 4.5
as a union of simpler sets, the set considered in Proposition 4.2 is obtained by an
idea related to the inclusion-exclusion principle. Its analogue in number theory
in its simplest form is the Sieve of Eratosthenes-Legendre containing the Möbius
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µ-function µpnq:
Let C be a set of integers and P a set of primes then

SpC,P , zq :“ #tn P C : p | n, p P P ñ p ą zu

“
ÿ

nPC

ÿ

t|n
t|P pzq

µptq , with P pzq :“
ź

pďz
pPP

p .

In the theory of combinatorial sieves the Möbius function is replaced by a func-
tion λ, having smaller support. Also in this paper we proceed in this way. The
basis is the following result from Combinatorial Sieve Theory.

Lemma 6.1. Let κ ą 0 and y ą 1. There exist two sets of real numbers

Λ` “ pλ`
d q and Λ´ “ pλ´

d q

depending only on κ and y with the following properties:

(6.1) λ˘
1 “ 1

(6.2) |λ˘
d | ď 1 , if 1 ď d ă y

(6.2) λ˘
d “ 0 , if d ě y

and for any integer n ą 1,

(6.3)
ÿ

d|n

λ´
d ď 0 ď

ÿ

d|n

λ`
d .

Moreover, for any multiplicative function gpdq with 0 ď gppq ă 1 and satisfying the
dimension conditions

ź

wďpăz

p1 ´ gppqq´1 ď

ˆ
log z

logw

˙κ ˆ
1 `

κ

logw

˙

for all 2 ď w ă y, we have

ÿ

d|P pzq

λ˘
d gpdq “

˜

1 ` O

˜

e´s

ˆ
1 `

κ

log z

˙10
¸¸

ź

păz

p1 ´ gppqq ,

where P pzq denotes the product of all primes p ă z and s “ log y{ log z. The implied
constants depend only on κ.

Proof. This is the Fundamental Lemma 6.3 of [16]. �

A special role in the consideration of the sifted set in Proposition 4.2 is played
by the prime factors of 10, p “ 2 and 5. To simplify things we consider the subsets

U˚1

:“ ta P U˚ : pa, 10q “ 1u

and
B˚1

:“ tb P B˚ : pb, 10q “ 1u

Definition 6.2. Let λ be an arithmetic function, z ě 1. For a set of C of integers
we define

SpC, z, θ, λq :“
ÿ

nPC

epnθq

¨

˚̊
˝

ÿ

t|n
t|P pzq

λptq

˛

‹‹
‚
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We are now ready for the statement of

Proposition 6.3. Let ǫ ą 0, 0 ă η0 ď θ2 ´ θ1, l “ lpη0q be fixed. Let L, and
the summation condition

ř„
be as in Proposition 4.2, q ď Q0, pc, qq “ 1. Let

λ˘ satisfy the properties of Lemma 6.1 with y “ Xpη
1{2
0

q and let λ˘ptq “ 0, if
pt, 10q ą 1. Then we have for λ “ λ´ or λ`:

„ÿ

Xη0ďp1ď¨¨¨ďpl

ˆ
S

ˆ
A˚

p1...pl
, Xη0,

c

q
, λ

˙
´

κA#A˚

#B˚
S

ˆ
B˚
p1...pl

, Xη0 ,
c

q
, λ

˙˙

“ O
`
p#A˚qplogXq´A

˘
.

Proposition 6.4. (Type II terms, local version)
Let ǫ, η0, l,L,

ř„
, q, c, t be as in Proposition 6.3. Then we have

„ÿ

Xη0ďp1ď¨¨¨ďpl

Xθ1ď
ś

iPI
piďXθ2

p1¨¨¨plďX{pj

ˆ
S

ˆ
A˚

p1...pl
, pj ,

c

q

˙
´

κA#A˚

#B˚
S

ˆ
B˚
p1...pl

, pj ,
c

q

˙˙

“ O
`
p#A˚qplogXq´A

˘
.

and
„ÿ

Xη0ďp1ď¨¨¨ďpl

X1´θ2ď
ś

iPI
piďX1´θ1

p1¨¨¨plďX{pj

ˆ
S

ˆ
A˚

p1...pl
, pj ,

c

q

˙
´

κA#A˚

#B˚
S

ˆ
B˚
p1...pl

, pj ,
c

q

˙˙

“ O
`
p#A˚qplogXq´A

˘
.

We have now collected the material for the a-variable major arcs part of the local
version of Maynard. For the deduction of Propositions 4.2 and 4.3 from Propositions
6.3 and 6.4 we also need information on the Piatetski-Shapiro sum Sc0pθq as well
as information on the contributions of the minor arcs.

Lemma 6.5. Assume the GRH. Let c, q be positive integers, pc, qq “ 1. Then we
have for all ǫ ą 0:

ÿ

pďN

e

ˆˆ
c

q
` ξ

˙
p

˙
log p “

µpqq

φpqq

ÿ

nďN

epnξq ` OǫpN
3

2
`ǫqp|ξ|qq. pN Ñ 8q.

Proof. We decompose the sum into partial sums:

ÿ

pďN

e

ˆˆ
c

q
` ξ

˙
p

˙
log p “

ÿ

s mod q

e

ˆ
s
c

q

˙ ÿ

pďN
p”s mod q

epξpq log p .

We have
ÿ

pďN
p”s mod q

epξpq log p “
ÿ

nďN

epnξq

ˆ
1

φpqq
` rpnq

˙
.

For the evaluation of the sum
ÿ

nďN

rpnqepnξq

21



we apply summation by parts and use the well known consequence of the GRH:
ÿ

n”s mod q
nďu

Λpnq “
u

φpqq
` Oǫpu

1

2
`ǫq pǫ ą 0q.

�

Lemma 6.6. Let γ, δ satisfy 0 ă γ ď 1, 0 ă δ and

9p1 ´ γq ` 12δ ă 1.

Then, uniformly in α, we have

1

γ

ÿ

păN

p“rn
1

γ s

epαpqp1´γ log p “
ÿ

păN

epαpq log p ` OpN1´δq ,

where the implied constant may depend on γ and δ only.

Proof. This is Theorem 4 of [1]. �

We now discuss the minor arcs contributions to the expression (2.6) for J pEq,
where E is the exponential sum E0 from Proposition 4.2 or one of the exponential
sums E1 or E2 of Proposition 4.3.

Lemma 6.7. Suppose that θ P R such that there are integers c, q with pc, qq “ 1

and ˇ̌
ˇ̌θ ´

c

q

ˇ̌
ˇ̌ ă q´2.

Then, for all N ě 2 we have

ÿ

nďN

Λpnqepθnq ! plogNq
7

2

ˆ
N

q
1

2

` N
4

5 ` pNqq
1

2

˙
.

Proof. This is Theorem 2.1 of [22]. �

Lemma 6.8. Given θ P p0, 1q, N P N. Then there is q with 1 ď q ď N , such that

(6.15)

ˇ̌
ˇ̌θ ´

c

q

ˇ̌
ˇ̌ ď

1

qN
.

Lemma 6.9. The intervals Ic,qpLq, 1 ď q ď rX4{5s ` 1 cover p0, 1q.

Proof. This follows by application of Lemma 6.8 with N “ rX4{5s ` 1. �

Definition 6.10. Let δ0 ą 0 be fixed, such that

9p1 ´ γ0q ` 12δ0 ă 1.

Then we define

n :“ tθ P p0, 1q : |Sc0pθq| ď X1´δ0u.

Lemma 6.11. Let Epθq be one of the exponential sums Eipθq, pi “ 0, 1, 2q, consid-
ered in Propositions 4.2, 4.3. Then we have:

(6.16)
ÿ

1ďqďQ0

pc,qq“1

ÿ

a
X

PIc,qzIc,qpL0q

E
´ a

X

¯
S2
c0

´ a

X

¯
e

´
´N0

a

X

¯
! |A|X2L´1

0 .
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Proof. By Lemma 6.6 and GRH we have for

ξ P
ď

1ďqďplogXqc1

pc,qq“1

Ic,qzIc,qpL0q ,

Q ă q ď 2Q ď plogXqc1 :

(6.17) Sc0

ˆ
c

q
` ξ

˙
“

µpqq

φpqq

ÿ

mPInt

epmξq ` OpX1´δ0q !
X

QL

(6.18) #
!
a :

a

X
P Ic,qpLq, Q ă q ď 2Q

)
ď QL

and

E
´ a

X

¯
! |A|.

From (6.17) and (6.18) we obtain

(6.19)
ÿ

1ďqďplogXqC1

pc,qq“1

ÿ

a
X

PIc,qp2LqzIc,qpLq

E
´ a

X

¯
S2
c0

´ a

X

¯
e

´
´N0

a

X

¯
! |A|X2L´1.

Summation of (6.9) for L “ L02
j gives the result of Lemma 6.11. �

Lemma 6.12.
„ÿ

:“
ÿ

a
X

Pn

E
´ a

X

¯
S2
c0

´ a

X

¯
e

´
´N0

a

X

¯
! |A|1{2X5{2´δ0 .

Proof. We apply the Caychy-Schwarz inequality and Parseval’s equation. Observ-
ing the definition of n we get:

„ÿ
ď

˜
ÿ

1ďaďX

E
´ a

X

¯2

¸1{2

X1´δ0

˜
ÿ

1ďaďX

S2
c0

´ a

X

¯¸1{2

! X1{2|A|1{2X1´δ0X,

i.e. Lemma 6.12. �

Lemma 6.13. Let Q ď Xδ0 , L ď X1{5. Then we have
ÿ

Qăqď2Q

ÿ

c mod q

ÿ

a
X

PIc,qpLq

E
´ a

X

¯
S2
c0

´ a

X

¯
ep´N0

a

X
q ! |A|X2Q´1{2.

Proof. We only deal with the A-part of Epθq. We partition the intervals Ic,q into
subintervals:

Ic,qpLq “

Rc,q,Lď

j“´Rc,q,L

Hj

with

Hj “

ˆ
c

q
` q´1X´12j ,

c

q
` q´1X´12j`1

˙
, pj ě 0q,

Rc,q,L ! logL

(and analogous definition for j ă 0).
We write ξj “ q´1X´12j. Let

zl “
al

X
P Hj , zl “

c

q
` ξl.
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We have

Epzlq “ E

ˆ
c

q
` ξj

˙
`

ż ξl

ξj

E1

ˆ
c

q
` ξ

˙
dξ

and thus

|Epzlq| ď

ˇ̌
ˇ̌E

ˆ
c

q
` ξj

˙ˇ̌
ˇ̌ `

ż q´12j`1X´1

q´12jX´1

ˇ̌
ˇ̌E1

ˆ
c

q
` ξ

˙ˇ̌
ˇ̌ dξ.

From Lemma 6.5 we obtain:

Sc0

ˆ
c

q
` ξ

˙
!

1

φpqq
minpX, |ξ|´1q.

Thus we obtain
ÿ

zlPUj

|Epzlq| |Sc0pzlq|2

!
1

φpqq2
minpX2, |ξ|´2qp1 ` q´12j`1q

ˆ

˜ˇ̌
ˇ̌E

ˆ
c

q
` ξj

˙ˇ̌
ˇ̌ `

ż q´12j`1X´1

q´12jX´1

ˇ̌
ˇ̌E1

ˆ
c

q
` ξ

˙ˇ̌
ˇ̌ dξ

¸

.

We now sum over all c mod q and obtain
ÿ

c mod q

ÿ

a
X

PIc,qpLq

E
´ a

X

¯
S2
c0

´ a

X

¯
e

´
´N0

a

X

¯
(6.20)

!
X2

φpqq2

ÿ

j : 2jďL

minp1, q2´jqp1 ` q´12jq

ÿ

c mod q

˜ˇ̌
ˇ̌E

ˆ
c

q
` ξj

˙ˇ̌
ˇ̌ `

ż q´12j`1X´1

q´12jX´1

ˇ̌
ˇ̌E1

ˆ
c

q
` ξ

˙ˇ̌
ˇ̌ dξ

¸

.

Recalling the definition:

(2.7) Epθq “
ÿ

vpnqepnθq , with vpnq “ 0 for n R A

we have

ÿ

c mod q

ˇ̌
ˇ̌E

ˆ
c

q
` ξj

˙ˇ̌
ˇ̌
2

(6.21)

“
ÿ

n1,n2

vpn1qvpn2qepn1ξjqep´n2ξjq
ÿ

c mod q

e

ˆ
cpn1 ´ n2q

q

˙

ď q
ÿ

s mod q

ÿ

n1”n2”s mod q
n1,n2PA

1 ! |A|2

by Lemma 5.6.
We apply an analogous argument to obtain

(6.22)
ÿ

c mod q

ˇ̌
ˇ̌E1

ˆ
c

q
` ξ

˙ˇ̌
ˇ̌
2

! X2|A|2.

From (6.20), (6.21) and (6.22) we obtain Lemma 6.13. �
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Lemma 6.14. Let X1{5 ď q ď rX4{5s ` 1. Then the interval Ic,qpLq is a subset of
n.

Proof. This follows from Lemma 6.7. Lemmas 6.9, 6.11, 6.12,6.13 now show that
the contributions to JpEq in the formula (2.8) give a negligible contribution, if C1

is chosen sufficiently large and η sufficiently small. �

We now come to the proof of Proposition 4.5. We first prove a modification
containing the weights λ˘.

Lemma 6.15. Let λ˘ satisfy the properties of Lemma 6.1 and λ˘ptq “ 0, if
pt, 10q ą 1. Let

E0,A˚,λpθq “
„ÿ

xη0ďp1ď¨¨¨ďpl

SpA˚
p1¨¨¨pl

, Xη0 , θ, λq

E0,B˚,λpθq “
„ÿ

xη0ďp1ď¨¨¨ďpl

SpB˚
p1¨¨¨pl

, Xη0 , θ, λq

Then for λ “ λ´ or λ`, we have:

1

X

ÿ

1ďaďX

ˆ
E0,A˚,λ

´ a

X

¯
´ κA

#A˚

#B˚
E0,B˚,λ

´ a

X

¯˙

S2
c0

´ a

X

¯
e

´
´N0

a

X

¯
“ O

`
#A˚XplogXq´A

˘
.

Proof of Lemma 6.15 assuming Proposition 6.3
The first step in the approximation of E0,A˚,λpθq inside Ic,q consists in the re-

placement of the variable factors e
´
n

´
c
q

` ξ
¯¯

by e
´
n0

c
q

¯
epnξq, where n0 is the

midpoint of the interval B˚. We set

λ̃puq “
ÿ

t|n

λptq

and obtain:

E0,A˚,λ

ˆ
c

q
` ξ

˙
“

„ÿ

Xη0ďp1ď¨¨¨ďpl

S

ˆ
A˚

p1...pl
, Xη0 ,

ˆ
c

q
` ξ

˙
, λ

˙
(6.23)

“
„ÿ

Xη0ďp1ď¨¨¨ďpl

epn0ξq
ÿ

nPB˚

1A˚
p1...pl

pnqe

ˆ
n
c

q

˙
λ̃pnq

`
„ÿ

Xη0ďp1ď¨¨¨ďpl

epn0ξq
ÿ

nPB˚

1A˚
p1...pl

pnqe

ˆ
n
c

q

˙
pepnξ ´ epn0ξqqλ0pnq

“: E
p1q
0,A˚,λ

` E
p2q
0,A˚,λ

We have

(6.24) E
p1q
0,A˚,λ

“ epn0ξq
„ÿ

Xη0ďp1ď¨¨¨ďpl

S

ˆ
A˚

p1...pl
, Xη0 ,

c

q
, λ

˙
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and

(6.25) E
p2q
0,A˚,λ

“ O

˜
„ÿ

Xη0ďp1ď¨¨¨ďpl

ÿ

nPB˚

1A˚
p1...pl

pnq |n ´ n0| |ξ| λ̃2pnq

¸

.

We obtain an analogous decomposition for the B˚-part:

E0,B˚,λ :“ Σ
p1q
0,B˚,λ

` E
p2q
0,B˚,λ

.

From (6.23), (6. 24), and (6.25) we obtain:

(6.26)

ˇ̌
ˇ̌E0,A˚,λ

ˆ
c

q
` λ

˙
´ κA

#A˚

#B˚
E0,B˚,λ

ˆ
c

q
` λ

˙ˇ̌
ˇ̌

ď

ˇ̌
ˇ̌E0,A˚,λ

ˆ
c

q

˙
´ κA

#A˚

#B˚
E0,B˚,λ

ˆ
c

q

˙ˇ̌
ˇ̌ ` |E

p1q
0,A,λ| ` κA

#A˚

#B˚
|E

p2q
0,A,λ|.

By Proposition 6.3 we have:

(6.27)

ˇ̌
ˇ̌E0,A˚,λ

ˆ
c

q

˙
´ κA

#A˚

#B˚
E0,B˚,λ

ˆ
c

q

˙ˇ̌
ˇ̌ “ O

`
#AplogXq´A

˘
.

We also have:

(6.28) epnξq ´ epn0ξq “ Op|n ´ n0| |ξ|q .

Additionally, we have

(6.29)
„ÿ

Xη0ďp1ď¨¨¨ďpl

ÿ

nPA˚
p1¨¨¨pl

ÿ

t|n

λptq !
ÿ

Xη0ďp1ď¨¨¨ďpl

tďX6

ÿ

nPA˚
rp1¨¨¨pl,ts

1

We also have

(6.30)
„ÿ

Xη0ďp1ď¨¨¨ďpl

ÿ

nPA˚
p1¨¨¨pl

ÿ

t|n

λptq !
„ÿ

Xη0ďp1ď¨¨¨ďpl

tďY

ÿ

nPA˚
rp1¨¨¨pl,ts

1

From Lemma 5.5 we have

(6.31) #A˚
rp1...pl,ts

“ O

ˆ
#A˚

rp1 ¨ ¨ ¨ pl, ts

˙

The major arcs estimate for Lemma 6.15 can now be concluded:
From (6.27), (6.28), (6.29), (6.30) and (6.31) we obtain:

1

X

ÿ

qďQ0

ÿ

pc,qqą1

ÿ

a
X

PIc,qpL0q

ˆ
E0,A˚,λ

´ a

X

¯
´

κA#A˚

#B˚
E0,B˚,λ

´ a

X

¯˙
S2
c0

´ a

X

¯
e

´
´N0

a

X

¯

“ O
`
p#A˚qXplogXq´A

˘
.

The minor arcs estimates are now obtained by treating the A-part E0,A˚,λpθq and
the B-part E0,B˚,λpθq separately. The estimates are easily carried out by the appli-
cation of Lemmas 6.9, 6.11, 6.12, 6.13 and 6.14.

Conclusion of the proof of Proposition 4.2
The next step consists in replacing the functions λ˘ from Lemma 6.15 by the
Mönius function µ, thus obtaining the exponential sum E0pθ, ηq from Proposition
4.2. We set

U˚1

:“ tm P U˚ : pm, 10q “ 1u

B˚1

:“ tn P B˚ : pn, 10q “ 1u
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and observe that
SpU˚1

, Xη0 , θ, µq “ SpU˚, Xη0 , θ, µq

and
SpB˚1

, Xη0 , θ, µq “ SpB˚, Xη0 , θ, µq .

because of the condition λptq “ 0 for pt, 10q ą 1 we have:

(6.32) JpEpA˚, Xη0 , λ´qq ď JpEpA˚, Xη0 , µqq ď JpEpA˚, Xη0 , λ`qq

and

(6.33) JpEpB˚, Xη0 , λ´qq ď JpEpB˚, Xη0 , µqq ď JpEpB˚, Xη0 , λ`qq.

We now apply Lemma 6.1 with

gppq :“

#
0 , if p P t2, 5u

1{p , otherwise ,

and obtain:
For all ǫ ą 0 there is an η˚, such that

lim sup
kÑ8

|JpEpθ, η˚qq| logX

|A˚|X
ă ǫ , for η˚ ď η0 .

We still have to pass from Xη0 to Xθ2´θ1 . We modify the analysis in [22], p.
156:
Given a set C and an integer d we let

TmpC; d, θq :“
ÿ

Xηďp1
mď¨¨¨ďp1

1
ďXθ

dp1
1

¨¨¨p1
mďXθ1

SpCp1
1

¨¨¨p1
m
, Xη, θq

UmpC; d, θq :“
ÿ

Xηďp1
mď¨¨¨ďp1

1
ďXθ

dp1
1

¨¨¨p1
mďXθ1

SpCp1
1

¨¨¨p1
m
, p1

mXη, θq

VmpC; d, θq :“
ÿ

Xηăp1
mď¨¨¨ďp1

1
ďXθ

SpCp1
1

¨¨¨p1
m
, p1

m, θq.

Buchstab’s identity shows that

UmpC; d, θq “ TmpC; d, θq ´ Um`1pC; d, θq ´ Vm`1pC; d, θq

The Tm-terms are now handled by Lemma 6.15, whereas the Vm-terms are reduced
to Proposition 4.3.
Proposition 4.2 now has been reduced to Proposition 6.3 and Proposition 4.3.

Proof of Proposition 4.3 assuming Proposition 6.4
We restrict ourselves to E1pθ, η0q, since the case of E2pθ, η0q is completely analogous.
As in the proof of Proposition 4.2 we replace the variable factoris epnp c

q
` ξqq by

epn0ξqepn c
q

q with n0 P B˚.

We obtain
ÿ

0,A˚

e

ˆ
c

q
` ξ

˙
“

ÿ

n

1UpA˚
p1...pl

,pjqpnq e

ˆ
n

ˆ
c

q
` ξ

˙˙
“ Σ

p1q
0,A˚ ` Σ

p2q
0,A˚

with

Σ
p1q
0,A˚ “ epn0ξq

ÿ

n

1UpA˚
p1...pl

,pjqpnqe

ˆ
n
c

q

˙
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and

Σ
p2q
0,A˚ “ epn0ξq

ÿ

n

1UpA˚
p1...pl

,pjqpnqpepnξq ´ epn0ξqq.

An analogous decomposition holds for

ÿ

0,B˚

e

ˆ
c

q
` ξ

˙
.

The claim of Proposition 4.3 now follows quite analogously to the proof of Lemma
6.15. We use Proposition 6.4 for the estimate of

Σ
p1q
0,A˚ ´

κA#A˚

#B˚
Σ

p1q
0,B˚ ,

where for the other major arcs contribution we again use the estimate

|epnξq ´ epn0ξq| “ Op|n ´ n0| |ξ|q .

The minor arcs estimates follow again by the application of Lemmas 6.9, 6.11, 6.12,
6.13 and 6.14.

Proof of Proposition 4.5
We first deal with the a-variable major arcs contribution:
Let 1 ď q ď Q0, pc, qq “ 1, η “ q´1X´1L0. By Lemma 6.6 and the GRH we have
for |ξ| ď η:

Sc0

ˆ
c

q
` ξ

˙
“

µpqq

φpqq

ÿ

mPIntpN0q

epmξq ` OpX1´δ0q.

We now approximate E
´

c
q

` ξ
¯
. For n P U

´
Bś̊

p~pq, X
zpLog~pq

¯
we write

n “ p1 ¨ ¨ ¨ pl ¨ m and m “ q1 ¨ ¨ ¨ qr

with

XzpLog~pq ď q1 ă q2 ă ¨ ¨ ¨ ă qv.

By partitioning the range of the pk and the qj into intervals and using GRH we see

Upq, sq :“ #
!
n P U

´
Bś̊

p~pq, X
zpLog~pq

¯
, n ” s mod q

)
(6.34)

“ Upq, s0q
`
1 ` OpplogXq´Aq

˘
,

for any s0 with pq, s0q “ 1, i.e. Upq, sq is asymptotically independent of s.
From (6.34) we obtain:

E

ˆ
c

q
` ξ

˙
“

ÿ

s mod q
ps,qq“1

e

ˆ
sc

q

˙ ÿ

nPUpq,sq

epnξqp1 ` OplogXq´4q

“
µpqq

φpqq

ÿ

~p : Log ~p P R

ÿ

m P UpBś
p~pq,X

zpLog ~pqq

p1 ` OplogXq´C4q.

We obtain
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ż c
q

`η

c
q

´η

E

ˆ
c

q
` ξ

˙
Sc0

ˆ
c

q
` ξ

˙2

e

ˆ
´N0

ˆ
c

q
` ξ

˙˙
dξ

(6.35)

“
µpqq3

φpqq3
e

ˆ
´N0

c

q

˙ ż 1{2

´1{2

Epξq
ÿ

pn1,n2qPInt

epn1ξ ` n2ξqep´N0ξqdξ

“
µpqq3

φpqq3
e

ˆ
´N0

c

q

˙ ÿ

~p : Log ~p P R

#
!

pm,n1, n2q : m P U

´
Bś̊

p~pq, X
zpLog ~pq

¯
,

ni P Int,m ` n1 ` n2 “ N0

)
.

We write m “ p1 ¨ ¨ ¨ pl ¨ h with m “ q1 ¨ ¨ ¨ qv. By the well-known connection
between the Buchstab function and the number of integers free of small prime
factors, we have:

#

"
h : h P

#B˚

p1 ¨ ¨ ¨ pl
: pph ñ p ě zpLogp~pqq

*
(6.36)

“
#B˚

p1 ¨ ¨ ¨ pl
ω

ˆ
logpX{p1 ¨ ¨ ¨ plq

Logp~pq

˙
1

logX
p1 ` op1qq .

The function

Mpqq “
ÿ

pc,qq“1

e

ˆ
´N0

c

q

˙

is a multiplicative function of q: We obtain the singular series SpN0q.
From (6.34), (6.35), (6.36) we obtain the major arcs contribution:

ÿ

qďQ0

ÿ

pc,qq“1

ż c
q

`η

c
q

´η

EpξqS2
c0

pξqep´N0ξqdξ

“
Xp#B˚q

4 logX
S0pN0q

ż
¨ ¨ ¨

ż

R

ωp1 ´ u1 ´ ¨ ¨ ¨ ´ ulq

u1 ¨ ¨ ¨ulzpu1, . . . , ulq
du1 ¨ ¨ ¨ dulp1 ` op1qq .

The proof of Proposition 4.5 is complete by application of Lemmas 6.9, 6.11,
6.12, 6.13, 6.14.

7. Sieve asymptotics for local version of Maynard

In this section we prove Proposition 6.3. We also prove Proposition 6.4 assuming
Proposition 7.2 given below.

Proof of Proposition 6.3
Let q “ q1q2 with q1 | 10, pq2, 10q “ 1. The solution set of the congruence

condition
n ” s mod q

is then a union of solution sets of systems of the form

(I) n ” u1 mod 10

(II) n ” u2 mod q2 ,

where u1 P t1, 3, 7, 9u. We also have that

(III) n ” 0 mod p1 . . . plt .
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We substitute

u “ 10ũ ` u1 .

The system (I), (II), (III) then becomes

10ũ ` u1 ” v2 mod rp1 . . . plt, q2s ,

if (I), (II), (III) are compatible.
The system (I), (II), (III) may be written with the use of exponential sums

ÿ

Xη0ďp1ď¨¨¨ďpl

S

ˆ
A˚

p1¨¨¨pl,q,s
, Xη0 , λ,

c

q

˙
(7.1)

“
ÿ

s mod q2
ps,q2q“1

ÿ

Xη0ďp1ď¨¨¨ďpl

ÿ

tďq

λptq
ÿ

ñP B˚´U
10

1

rt, q2s

rt,q2s´1ÿ

l“0

e

ˆ
lpũ ´ 10´1pq2qpv2 ´ uiq

rt, q2s

˙
,

where 10 ¨ 10´1pq2q ” 1 mod q2.
We now carry out the same computation with B˚ instead of A˚. We find that the
main terms cancel and the other ones may be estimated by Lemma 5.5 to give the
main result.
We now shall reduce Proposition 6.4 to Proposition 7.3 stated below. The ranges of
summation (6.4) and (6.5) are defined by several sets of linear forms of the vectors

(7.2) Logp1qpnq :“

ˆ
log p̃1

logX
, . . . ,

log p̃v

logX

˙
,

where n “ p̃1 ¨ ¨ ¨ p̃v.
1) The linear forms from L, included by

ř„
.

2) The linear forms related to the conditions

n P A˚
p1¨¨¨pv

, p | n ñ p ą pj .

3) The linear forms related to the chain of inequalities

p1 ď ¨ ¨ ¨ ď pv .

4) The linear forms analogous to (3) related to the other prime factors.
All the linear forms from (1) to (4) now form a set

(7.3) L˚ :“
ď

v

L̃pvq ,

where v denotes the total number of prime factors.
To be able to describe the set of integers satisfying these linear inequalities by a
polytope, we pass from the vector Logp1q in (7.2) to the vector

(7.3) Logp2qpnq :“

ˆ
log p̃1

logn
, . . . ,

log p̃v

logn

˙
.

Obviously

Logp2qpnq P Qvpηq :“ tpx1, . . . , xnq P Rv , η ď x1 ď ¨ ¨ ¨ ď xv, x1 ` ¨ ¨ ¨ ` xv “ 1u .

By a closed convex polytope in Rv we mean a region R defined by a finite number
of non-affine linear inequalities in the coordinates (equivalently this is the convex
hull of a finite set of points in Rv).
Given a closed convex polytope R Ď Qlpηq, we let
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1Rpnq :“

#
1 , if n “ p1 ¨ ¨ ¨ pv with Logp2qpnq P Rv

0 , otherwise ,

We now let sR Ď rη, 1sv´1 denote the projection of R onto the first v ´ 1 coordi-
nates (which is also a convex polytope).

Definition 7.1. Fix η ą 0 and let v P Z satisfy 1 ď v ď 2{q. Let γ ą 0 and let

~a :“ pa1, a2, . . . , av´1q

be a sequence of real numbers. Let

~p :“ pp1, . . . , pvq

be an l-tuplet of prime numbers,
ś

p~pq “ p1 ¨ ¨ ¨ pv. Then we define

Cp~a, γq :“
!
~p “ pp1, . . . , pvq : pj P pXaj , Xaj`γq, 1 ď j ď v1,

ź
p~pq P B˚

)

and

Cp~a, γ, q, sq :“
!
~p P Cp~a, γq :

ź
p~pq ” s mod q

)
.

The sequence ~a and the box Cp~a, γq are called normal, if aj ` γ ă aj`1, for
1 ď j ď v ´ 2.

Proposition 7.2. Let Cp~a, γq be as defined in Definition 7.1, γ “ plogXq´C3 for
C3 ą 0 fixed. Let q ď Q0, ps, qq “ 1. Then

ÿ

nPCp~a,γ,q,sq

wn “ O

¨

˝

¨

˝ 1

φpqq

ÿ

nPCp~a,γ,q,sq

1

˛

‚plogXq´A

˛

‚ .

Proof of Proposition 6.4 assuming Proposition 7.3

Definition 7.3. Let δ0 :“ plogXq´C3 . We cover rη, 1sv´1 by Oηpδ
´pv´1q
0 q disjoint

hypercubes Cp~a, δ0q. We partition the ~a P sR into two disjoint sets:

Y1 :“ t~a P sR : Cp~a, δ0q Ď sRu

Y2 :“ t~a P sR : Cp~a, δ0q X bd sR ‰ Hu .

Since the set L˚ of linear forms defining R imply

log pi

logn
‰

log pj

logn
, for i ‰ j ,

Cp~a, γq Ď R implies that Cp~a, γq is normal.

We have thus by Proposition 7.2 that
ÿ

~a : Cp~a,δ0qĎ sR

ÿ

nPCp~a,δq

e

ˆ
n
c

q

˙
w˚

n “
ÿ

s mod q
ps,qq“1

e

ˆ
sc

q

˙ ÿ

~a : Cp~a,δ0q

ÿ

nPCp~a,δ0,q,sq

w˚
n

By the Prime Number Theorem for short intervals and arithmetic progressions, we
have for any s0 with ps0, qq “ 1:

ÿ

nPCp~a,δ0,q,sq

1 “

¨

˝
ÿ

nPCp~a,δ0,q,s0q

1

˛

‚`
1 ` OplogXq´A

˘
.

Thus, we obtain by Proposition 7.2:
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ÿ

~a : Cp~a,δ0qP sR

ÿ

nPC`pu,γq

e

ˆ
n
c

q

˙
w˚

n “ O

¨

˝
ÿ

~a : Cp~a,δ0qĎ sR

|Cp~a, δ0q|

˛

‚plogXq´A .

For the contribution of Y2 we estimate the total volume of the Cp~a, δ0q and treat
the A˚-part and the B˚-part separately.
Proposition 6.4 thus has been reduced to Proposition 7.2.

8. b-variable circle method

In this section we state propositions needed in the estimate of type II expressions
by the b-variable circle method. We then derive Proposition 7.2 from them.

Proposition 8.1. Fix η ą 0 and let v P Z satisfy 1 ď v ď 2{η. Let

C :“ Cp~a, r, q, sq

be as in Definition 7.1. Let q ď Q0. Let Mpbq “ MpbqpC4q be given by

Mpbq :“

"
0 ď b ă X :

ˇ̌
ˇ̌ b
X

´
d

r

ˇ̌
ˇ̌ ď

plogXqC4

X

*

for some integers d, r with r ď plogXqC4, r | X.
Then, if C4 is chosen sufficiently large,

1

X

ÿ

0ďbăX
bPM

SA˚

ˆ
b

X

˙
SC

ˆ
´

b

X

˙
´

κA#A˚

#B˚
#Cp~a, r, q, sq “ O

ˆ
#A˚

plogXqA

˙
.

The implied constants depend on A, but not on η, v and the aj.

Proposition 8.2. (Generic minor arcs)
Let C and MpC4q be as in Proposition 8.1. Then there is some exceptional set

E :“ EpCq Ď r0, Xs , with #E ď X23{40 ,

such that
1

X

ÿ

băX
bRE

ˇ̌
ˇ̌SA˚

ˆ
b

X

˙
SC

ˆ
´

b

X

˙ˇ̌
ˇ̌ “ O

ˆ
#A˚

Xǫ

˙
.

The implied constant depends on η but not on the aj.

Proposition 8.3. (Exceptional minor arcs)
Let C and M “ MpC4q be as given in Proposition 8.1. Let a1, . . . , av´1 in the
definition of Cp~a, r, q, sq satisfy

ÿ

iPI

ai P

„
9

40
`

ǫ

2
,
16

25
´

ǫ

2


Y

„
23

40
`

ǫ

2
,
16

25
´

ǫ

2



for some I Ď t1, . . . , v ´ 1u and let C4 be sufficiently large. Let E Ď r0, Xs be any
set, such that #E ď X23{40. Then we have

1

X

ÿ

bPE
bRM

SA˚

ˆ
b

X

˙
SC

ˆ
´

b

X

˙
“ O

ˆ
#A˚

plogXqA

˙
.

The implied constant depends on η but not on the a1, . . . , av´1.
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Proof of Proposition 7.2
By orthogonality we have

#pC X A˚q “
1

X

ÿ

1ďbďX

SA˚

ˆ
b

X

˙
SC

ˆ
´

b

X

˙
.

Proposition 7.2 now follows by the partition given by Proposition 8.1, 8.2 and
8.3.

9. b-variable Major Arcs

In this section we establish Proposition 8.2. We split Mpbq up as three disjoint
sets.

Mpbq “ M1 Y M2 Y M3 ,

where

M1 :“

"
b P Mpbq :

ˇ̌
ˇ̌ b
X

´
d

r

ˇ̌
ˇ̌ ď

plogXqC2

X
for some d, r ď plogXqC3 , r ∤ X

*
,

M2 :“

"
b P Mpbq :

b

X
“

d

r
` v for some d, r ď plogXqC3 , r | X, 0 ă |v| ď

plogXqC3

X

*
,

M3 :“

"
b P Mpbq :

b

X
“

d

r
` v for some d, r ď plogXqC3 , r | X

*
.

By Lemma 5.5 and recalling X is a power of 10, we have

sup
bPM1

ˇ̌
ˇ̌SA˚

ˆ
b

X

˙ˇ̌
ˇ̌ “ #A˚ sup

bPM1

F10k´H

ˆ
b

X

˙
“ O

´
#A˚ expp´plogXq´1{2`ǫq

¯
.

Using the trivial bound

SCp~a,r,q,sq “ OpXplogXqBq

and noting that
M1 ! plogXq3B ,

we obtain

(9.1)
1

X

ÿ

bPM1

SA˚

ˆ
b

X

˙
SC

ˆ
´

b

X

˙
“ O

ˆ
#A˚

plogXqA

˙
.

This gives the result for M1. We now consider M2.
For ~p “ pp1, . . . , pvq we write ~pv´1 “ pp1, . . . , pv´1q,

ś
v´1p~pq “ p1 ¨ ¨ ¨ pv´1:

SC “
ÿ

~pv´1“pp1,...,pv´1q

pjPpXaj ,X
aj`γq

ÿ

ś
p~pv´1qpvPB˚

ś
p~pv´1qpv”s mod q

e

ˆ
b

ś
v´1p~pqpv

X

˙
.

We note that if b P M2, then

b

X
“

d

r
`

c

X
, for some integers b, r, |c| ď plogXqC4 , (c is an integer since r | X) .

We now chose C5 ą 0, C5 P Z, so large, that - after C1, . . . , C4 have been chosen -
the following considerations are true and set

∆ :“ rlogXs´C5 .
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We remark that ∆´1 is an integer.
We separate the sum SC

`
b
X

˘
by putting the prime variable pv in short intervals of

length

∆p#B˚q{pp1 ¨ ¨ ¨ pv´1q

and in arithmetic progressions modrq, rs. Thus, we have
ˇ̌
ˇ̌SC

ˆ
b

X

˙ˇ̌
ˇ̌ “

ÿ

~pv´1 : pjPpXaj ,X
aj`γq

ÿ

pvă |B˚|
p1¨¨¨pv´1

epp1 ¨ ¨ ¨ pv´1pvq .

If mp “ j∆x ` Op∆xq and p ” u mod d, then we have

e

ˆ
mp

ˆ
d

r
`

c

X

˙˙
“ e

ˆ
dum

r

˙
epjcxq ` Op∆plogXqC4q .

By the Prime Number Theorem in short intervals and arithmetic progressions, we
have

ÿ

pPrj∆X{m,pj`1q∆X{ms

1 “ E
∆X

m
p1 ` OpplogXq´Aq ,

where E “ 1 if the system
"

p ” u mod r

p ” s mod q ,

is solvable and E “ 0 otherwise,
with

E
∆X

m
p1 ` OpplogXq´Aq ď ∆|B˚| sup

dďplogXqC

rďplogXqC

ÿ

u”l mod q

e

ˆ
dum

r

˙ ÿ

1ďjă∆´1

epj∆cq .

We have ÿ

1ďjă∆´1

epj∆cq “ ep´cq “ ´1 “ Op1q .

We finally obtain

1

X

ÿ

bPM2

SA˚

ˆ
b

X

˙
SC

ˆ
´

b

X

˙
“ O

ˆ
#A˚

plogXqA

˙
,

where the implied elements depend on η and γ, but not on the aj .
Finally we consider M3:
For pd, rq “ 1 we have:

SC

ˆ
d

r

˙
“

ÿ

0ďuďr

e

ˆ
du

r

˙ ÿ

nPB˚

n”up mod rq
n”sp mod qq

1 “
1

φprq, rsq

˜
ÿ

nPL

1

¸
ÿ

0ăuăr
pu,rq“1

r”sp mod pq,rqq

e

ˆ
du

r

˙
.

The solution set of
"

n ” u mod r

n ” s mod q ,

is non-empty if and only if for the square-free kernels r0 of r the solution set of
"

n ” u mod r0
n ” s mod q ,
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is non-empty.
For the exponential sum

ÿ

0ăuăr
pu,rq“1

e

ˆ
du

r

˙

we have:
r
r0

´1ÿ

g“0

e

ˆ
dps ` gr0q

r

˙
“ e

ˆ
du

r

˙ r
r0

´1ÿ

g“0

e

ˆ
g

r{r0

˙
“

"
0, if r0 ă r

1, if r0 “ r

We finally obtain:

SCp~a,r,q,sq

ˆ
d

r

˙
“

ÿ

0ăuăr
pu,rq“1

e

ˆ
du

r

˙
φpqq

φprq, rsq

ÿ

nPCp~a,r,q,sq

1Cp~a,r,q,sqpuq
`
1 ` OpplogXq´Aq

˘

“
φpqq

φprq, rsq

ÿ

nPCp~a,r,q,sq

1
ÿ

0ăuăr
pu,rq“1

e

ˆ
du

r

˙ `
1 ` OpplogXq´Aq

˘

“ µprq
φpqq

φprq, rsq

ÿ

nPCp~a,r,q,sq

1 .

Since µprq “ 0 for r | 10k, unless r P t1, 2, 5, 10u the estimate can easily be con-
cluded.

10. Generic Minor Arcs

In this section we establish Proposition 8.2 and obtain some bounds on the
exceptional set E by using the estimates of Lemma 5.5.

Lemma 10.1. Let C “ Cp~a, γ, q, sq as in Definition 7.1. We have that

#

"
0 ď b ă X :

ˇ̌
ˇ̌Sc

ˆ
b

X

˙ˇ̌
ˇ̌ „

X

C

*
!

C2|C|

X
.

Proof. We have

ÿ

b : |SCp b
X q|2ě |C|2

10C2

ˇ̌
ˇ̌SC

ˆ
b

X

˙ˇ̌
ˇ̌
2

ě
|#C|2

10C2
#

"
b :

ˇ̌
ˇ̌SC

ˆ
b

X

˙ˇ̌
ˇ̌ ě

#C

10C

*
.

Thus

#

"
b : |SCp~a,γq| ě

|C|

10C

*
ď

10C2

X2

ÿ

bďX

ˇ̌
ˇ̌SC

ˆ
b

X

˙ˇ̌
ˇ̌
2

“
10C2

X2
X |C| ,

the last identity following by Parseval’s equation. �

Lemma 10.2.

Let

E :“

"
0 ď b ď X : FX

ˆ
b

X

˙
ě

1

X23{80

*
.

Then
#E ! X23{40´ǫ ,

ÿ

bPE

FX

ˆ
b

X

˙
! X23{80´ǫ ,
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and

1

X

ÿ

băX
bRE

ˇ̌
ˇ̌FX

ˆ
b

X

˙
SC

ˆ
´

b

X

˙ˇ̌
ˇ̌ !

1

Xǫ
.

Proof. The first bound on the size of E follows from using Lemma 5.4 with B “ X23{80

and verifying that

23

80 ˆ 154
`

54

433
ă

23

40
.

For the second bound we see from Lemma 5.5 that

ÿ

bPE

FX

ˆ
b

X

˙
!

ÿ

jě0

2jďX23{80

#

"
0 ď b ă X : FX

ˆ
b

X

˙
„ 2´j

*

!
ÿ

jě0

2jďX23{80

2p235{154´1qjX59{433 ! X59{433`p23ˆ235q{p80ˆ154q´23{80 ,

and so the calculation above gives the result.
It remains to bound the sum over b R E . We divide the sum into OpplogXq2q
subsums, where we restrict to these b, such that

FX

ˆ
b

X

˙
„

1

B
and

ˇ̌
ˇ̌SC

ˆ
b

X

˙ˇ̌
ˇ̌ „

|C|

C

for some B ě X23{80 and C ď X2 (terms with C ą X2 make a contribution
O(1/X)). This gives

1

X

ÿ

băX
bRE

ˇ̌
ˇ̌FX

ˆ
b

X

˙
SC

ˆ
´

b

X

˙ˇ̌
ˇ̌

!
ÿ

X23{80ďB
1ďCďX2

plogXq2

X

ÿ

băX
FXp b

X q— 1

B

SCp´ b
X q„ X

C

ˇ̌
ˇ̌FX

ˆ
b

X

˙
SC

ˆ
´

b

X

˙ˇ̌
ˇ̌ `

1

X2
.

We concentrate on the inner sum:
Using Lemmas 5.4 and 10.1 we see, that the sum contribution

!
#C

BC
#

"
b : FX

ˆ
b

X

˙
—

1

B
, SC

ˆ
´

b

X

˙
„

X

C

*

!
#C

BC
min

´
C2, B235{154X50{435

¯
! X |C|X2ǫ

Here we used the bound minpx, yq ď X1{2Y 1{2 in the last line. In particular, we
see this is OpX1´2ǫq if B ě X23{80 on verifying that

23

8
ˆ

73

308
ą

59

866
.

Substituting this into our bound above gives the result. �
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11. Exceptional minor arcs

Lemma 11.1. (Bilinear sum bound)
Let N,M,R ě 1 and E satisfy

X9{25 ď N ď X17{40, R ď X1{2, NM ď 1000X, and E ď 100
X1{2

R

and either E ě
1

X
or E “ 0.

Let F :“ FpR,Eq be given by

F :“

"
b ă X :

b

X
“

d

r
` v for some pd, rq “ 1 with r — R, v “

E

X

*
.

Then for any 1-bounded complex sequences αn, βn, γb we have

ÿ

bPFXE

ÿ

n„N
m„M

αnβmγbe

ˆ
´
bnm

X

˙
!

XplogXqOp1qq

pR ` Eqǫ{10
.

Proof. This is Lemma 13.1 of [22]. �

We now derive Proposition 8.3 from Lemma 13.1.
Proof of Proposition 8.3.

By symmetry, we may assume that I “ t1, . . . , l1u for some l1 ă l. By Dirichlet’s
theorem on Diophantine approximation, any b P r0, Xs has a representation

b

X
“

d

r
` ν

for some integers pd, rq “ 1 with r ď X1{2 and some real |ν| ď 1{X1{2r.
Thus we can partition r0, Xs into OpplogXq2q sets FpR,Eq as defined by Lemma
10.1 for different parameters R,E satisfying

1 ď R ď X1{2 and E “ 0 or
1

X
ď E ď

100X2

R
.

Moreover, if b R Mpbq, then b P F “ FpR,Eq for some R,E with

R ` E ě plogXqC3 .

Thus, provided C3 is sufficiently large, we see that it is sufficient to show that

(10.1)
1

X

ˇ̌
ˇ̌
ˇ

ÿ

bPFXE

SA

ˆ
b

X

˙
SCq,s

ˆ
´

b

X

˙ˇ̌
ˇ̌
ˇ

!
#A

pR ` Eqǫ{20
.

Recalling the Definition 7.1

Cq,s :“ t~p “ pp1, p2, . . . , plq : pi P Ii ,Πp~pq ” s pmodqqu

let
CpIq :“

ą

jPI

Iij , CpIIq :“
ą

jRI

Iij ,

such that
n P C

pIq
i ñ X9{25 ď n ď X17{40.

We have (with t´1t ” 1 pmodqq):

Cq,s “
ď

t mod q
pt,qq“1

pC
pIq
q,t ˆ C

pIIq
q,t´1s

q
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and thus

1

X

ÿ

nPE

SA

ˆ
b

X

˙
SCq,s

ˆ
´

b

X

˙

!
ÿ

t mod q
pt,qq“1

ÿ

bPFXE

SA

ˆ
b

X

˙ ÿ

n1„N1

n2„N2

αn1
βn2

e

ˆ
´
bn1n2

X

˙
,

where

αn1
:“

#
1 , if n1 P C

pIq
q,t

0 , otherwise ,
βn2

:“

#
1 , if n2 P C

pIIq
q,t´1s

0 , otherwise .

Thus it suffices to show that

(10.2)
1

X

ÿ

bPFXE

SA

ˆ
b

X

˙ ÿ

n„N

αn

ÿ

m„M

βm e

ˆ
´
bnm

X

˙
!

#A˚

plogXqA
,

Let γb be the 1-bounded sequence, satisfying

SA

ˆ
b

X

˙
“ #AγbFX

ˆ
b

X

˙
.

After substituting this expression for SA, we see that (10.2) follows immediately
from Lemma 10.1, if the parameter C3 is chosen sufficiently large.
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