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The TerraSAR-X Mission and System Design
Rolf Werninghaus and Stefan Buckreuss

Abstract—This paper describes the TerraSAR-X mission con-
cept within the context of a public–private partnership (PPP)
agreement between the German Aerospace Center (DLR) and the
industry. It briefly describes the PPP concept as well as the overall
project organization. This paper then gives an overview of the
satellite design and the corresponding ground segment, as well as
the main mission parameters. After a short introduction to the
scientific and commercial exploitation scheme, this paper finally
focuses on the mission accomplishments achieved so far during the
ongoing mission.

Index Terms— Ground segment, radar, satellite, scientific and
commercial exploitation, system design, TerraSAR-X.

I. INTRODUCTION

ON JUNE 15, 2007, Germany’s first operational radar

satellite TerraSAR-X was launched into orbit. This event

marked the culmination point of a long and successful synthetic

aperture radar (SAR) technology development line, which has

been initiated and supported by the German Aerospace Center

(DLR) together with the German industry since the late 1970s.

TerraSAR-X is Germany’s first national remote sensing satel-

lite being implemented in a public–private partnership (PPP)

between DLR and EADS Astrium GmbH. TerraSAR-X sup-

plies high-quality radar data for purposes of scientific observa-

tion of the Earth for a period of at least five years. At the same

time, it is designed to satisfy the steadily growing demand of the

private sector for remote sensing data in the commercial market.

The TerraSAR-X mission [1] is the continuation of the

scientifically and technologically successful radar missions

X-SAR and the Shuttle Radar Topography Mission, which have

been conducted in cooperation with the National Aeronau-

tics and Space Administration and the Italian Space Agency

(ASI) in 1994 and 2000. In parallel to these missions, the

national technology developments DESA (X-band SAR an-

tenna demonstrator) and TOPAS (technology development for

onboard SAR processing and storage demonstrator) have been

brought forward, which have prepared the floor for the national

implementation of a complex SAR mission like TerraSAR-X.

Today, remote sensing data and the derived information

products about the Earth are needed not only for scientific

purposes but also for a variety of private business applications.

Therefore, TerraSAR-X aims to hand over the acquisition of
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such data to the private sector in the long run, turning it into a

self-supporting sustainable business.

In this context, TerraSAR-X serves two main goals: The first

goal is to provide the scientific community with multimode

X-band SAR data. The broad spectrum of scientific application

areas includes hydrology, geology, climatology, oceanography,

environmental monitoring, and disaster monitoring, as well as

cartography (digital elevation model (DEM) generation) and

interferometry [2]. Representing the federal government, DLR

will be the sole owner of the TerraSAR-X data and coordinates

their scientific utilization.

The second goal is the establishment of a commercial Earth

observation (EO) market in Europe, i.e., the development of a

sustainable EO business so that follow-on systems can com-

pletely be financed by the industry from the profit. Taking into

account the expected business development, the PPP agreement

is aiming at the following:

1) the self-sustainability of the business;

2) the implementation and operation of a follow-on system

TerraSAR-X2 by the industry;

3) the scientific exploitation rights for DLR for

TerraSAR-X2.

If the business develops as foreseen today, EADS Astrium

GmbH will finance a follow-on system after the satellite’s ser-

vice life has ended, thus securing the continuity of the business.

II. PROJECT ORGANIZATION

A. Public-Private Partnership

TerraSAR-X is the first space project in Germany that has

been realized in a PPP, with considerable financial contribution

by the industry [3]. The partnership model is based on a coop-

eration agreement that was signed by DLR and EADS Astrium

GmbH on March 25, 2002. The objective is for equal partners to

cooperate, with each making an equitable contribution toward a

joint project in order to meet their own needs. Going beyond the

traditional process of awarding government-funded contracts,

this approach is based on a cooperative project management.

Having different objectives, both sides contribute their re-

sources, jointly implementing the project and utilizing its re-

sults afterward. The advantage of this approach is that it permits

meeting scientific goals while supporting industrial marketing

needs at the same time. In this way, investments are secured

which a single partner would be unable to provide on its own.

Under the partnership agreement, EADS Astrium GmbH has

been awarded a contract by DLR to develop, build, and launch

the satellite. For its part, DLR developed the corresponding

ground segment as described in Section III-C. DLR has also set

up the science service segment and took over the responsibility

0196-2892/$26.00 © 2009 IEEE
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Fig. 1. Block diagram of the TerraSAR-X project structure with its governing
body of the Joint Committee, as well as the three main elements space, ground,
and service segment.4/C

to provide data to the science community as explained in

Section IV. In addition, DLR is responsible for the operation

of the satellite over a period of five years.

EADS Astrium undertook to set up a distribution system

and commercialize the TerraSAR-X data and products through

its fully owned subsidiary Infoterra GmbH. In return for the

exclusive right to commercialize the TerraSAR-X data, EADS

Astrium GmbH agreed to contribute to the development cost

of the satellite. In addition, EADS Astrium contributed with

a sales-dependent share of the operating cost for the satellite

during its operational phase and invested considerable sums in

marketing the satellite’s data and products.

B. Project Structure

The overall project management for the TerraSAR-X project

is located in the directorate for space projects (DLR-RD) in

Bonn, as shown in Fig. 1. Under contract to DLR, EADS

Astrium GmbH in Friedrichshafen, Germany, has developed

the TerraSAR-X satellite, whereas the DLR institutes in

Oberpfaffenhofen provided the related ground segment.

Within this context, DLR has the following responsibilities:

1) overall project management;

2) management of the TerraSAR-X contract with Astrium;

3) mission management;

4) science coordination;

5) development of the ground segment;

6) system engineering, calibration/verification;

7) satellite and instrument operations (German Space Oper-

ation Center (GSOC): Weilheim station);

8) data reception (Neustrelitz), processing, archiving, and

distribution.

EADS Astrium/Infoterra, on the other hand, was in charge

of the development, assembly, and launch of the TerraSAR-X

satellite (as contractor to DLR), as well as of the business-

related activities like the following:

1) X-band-based product research and development;

2) X-band-based market development;

3) development of a commercial service segment;

4) commercial exploitation of the TerraSAR-X data;

5) implementation and operation of a follow-on system

TerraSAR-X2.

Fig. 2. General TerraSAR-X mission concept showing the command and data
streams from/to the Mission Control Center in Oberpfaffenhofen and the DLR
ground stations in Weilheim and Neustrelitz, as well as the Infoterra DAS
of commercial customers and the science user community represented by the
science coordinator. 4/C

III. MISSION AND SYSTEM DESIGN

A. Mission Design

The TerraSAR-X satellite [4] was launched from Baikonur

on a Russian/Ukrainian Dnepr-1 launch vehicle with a 1.5-m-

long fairing extension. A sun-synchronous dawn–dusk orbit

with an 11-day repeat period was selected as a good compro-

mise between radar performance, order to-acquisition time, and

revisit time. Once in the orbit, the satellite has been taken over

by the Mission Control Center in Oberpfaffenhofen. The system

baseline includes two ground stations in Germany. Weilheim is

used as the satellite control station, and Neustrelitz serves as

the central receiving station for the 300-Mb/s X-band downlink

(Fig. 2). Beyond that up to now, five additional direct access

stations (DAS)—receiving stations of commercial partners of

Infoterra GmbH—have been set up to extend the baseline

receiving station concept [1]. More DAS may be added in the

future.

B. TerraSAR-X Satellite

The TerraSAR-X satellite bus (see also the related TGRS

article [5] in this Special Issue) is a heritage from the successful

CHAMP and GRACE missions [6]. The satellite configuration

of TerraSAR-X is shown in Fig. 3. TerraSAR-X features an

advanced high-resolution X-band SAR based on the active

phased array technology [7], [8] which allows the operation in

spotlight, stripmap, and ScanSAR mode with two polarizations

in various combinations (see Table I). It combines the ability to

acquire high-resolution images for detailed analysis, as well as

wide-swath images for overview applications [9]. The experi-

mental dual-receive antenna (DRA) mode [10] allows receiving

independently the echoes from the two azimuth antenna halves.

This new experimental mode enables the use of interesting

new features like along-track interferometry, full-polarimetric

data acquisition, and the enhancement of stripmap azimuth

resolution [11].
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Fig. 3. Artist view of the TerraSAR-X satellite. Note the (upper left) solar
generator, the (lower left) boom with the X-band downlink antenna, and the
(lower right) X-band radar antenna.4/C

TABLE I
MAIN TERRASAR-X SYSTEM PARAMETERS

In addition to the SAR instrument, two secondary payloads

fly on the TerraSAR-X spacecraft:

1) the laser communication terminal (LCT), a technology

demonstrator for an intersatellite communication link

developed by TESAT, Backnang, in contract to DLR,

allowing for a 5.6-Gb/s satellite-to-satellite or satellite-

to-ground communication link [12];

2) the tracking, occultation, and ranging (TOR) instrument

package, a dual-frequency GPS tracking receiver and

a laser reflector set for high-precision orbit determi-

nation and occultation measurements provided by the

GeoForschungsZentrum Potsdam and the University of

Texas Center for Space Research [13]. As shown in

Table I, TOR allows for a high-precision orbit determi-

nation accuracy of better than 20 cm [14].

C. TerraSAR-X Ground Segment

The TerraSAR-X ground segment (see also the related TGRS

articles [15] and [16] in this Special Issue) is the central element

for controlling and operating the TerraSAR-X satellite, for

calibrating its SAR instrument, and for archiving the SAR data,

as well as generating and distributing the basic data products.

The overall TerraSAR-X ground infrastructure consists of two

major parts:

1) the DLR-provided ground segment;

2) the commercial exploitation and service segment (TSXX)

developed by Infoterra.

The DLR ground segment is based on an existing national in-

frastructure as much as possible and was optimized for flexible

response to (scientific and commercial) user requests and fast

image product turnaround times. It is composed of three major

elements [17]:

1) the mission operations segment provided by GSOC for

control of the satellite;

2) the instrument operation and calibration segment (see

also the related TGRS articles [18] and [19] in this

Special Issue) provided by the Microwaves and Radar

Institute (IHR);

3) the payload ground segment for receiving, processing,

archiving, calibrating, and distributing the radar data

provided by the German Remote Sensing Data Center

(DFD) and the DLR Remote Sensing Technology Insti-

tute (IMF).

IV. SCIENTIFIC COORDINATION AND

COMMERCIAL EXPLOITATION

TerraSAR-X is an operational SAR system for scientific

and commercial applications. The commercial exploitation is

exclusively granted to Astrium/Infoterra GmbH.

DLR is responsible for the scientific utilization of the

TerraSAR-X products. The status “scientific use” needs to be

gained via a selection process. The Science Service System

(http://sss.terrasar-x.dlr.de/) was developed for this purpose.

Already prior to the launch of the TerraSAR-X satellite, a pre-

launch announcement of opportunity (AO) was issued by DLR.

Since the end of October 2007, new proposals can be submitted

under a general AO at any time. Under these AOs, more than

300 scientific proposals have been accepted until mid-2009,

resulting in several thousands of data acquisition requests. The

corresponding TerraSAR-X data are provided to the costs of

fulfilling the user request. Additional AOs are planned, where

special conditions might be applied with respect to the data

provision.

The relative number of proposals from the AOs in different

application fields is shown in Fig. 4. As expected, the “land

cover and vegetation” area is the most significant application

field, as the TerraSAR-X mission has been particularly de-

signed for land applications. Within this subgroup, there is a

relatively equal distribution between urban, forest, agriculture,
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Fig. 4. Under the TerraSAR-X AOs, more than 300 scientific proposals have
been accepted until mid-2009. The figure shows the relative distribution of these
proposals in the different application areas.4/C

Fig. 5. Relative distribution of the 108 proposals in the land cover and
vegetation application area in Fig. 4. Among these, the land use/land cover is
the most significant field of use.4/C

topography, and land use/land cover application areas, with the

latter being the most significant field of use, as can be seen in

Fig. 5.

Commercial customers, on the other hand, will have to

contact Infoterra (http://www.terrasar.com/) for access to the

TerraSAR-X data via the commercial TerraSAR-X exploitation

and service infrastructure (TSXX) developed by Infoterra. In

addition to the baseline station in Neustrelitz, Infoterra sets

up additional receiving stations for dedicated commercial cus-

tomers, which require fast and direct access to the TerraSAR-X

data. These so-called DAS are implemented to extend the

baseline receiving station concept.

V. MISSION ACCOMPLISHMENTS

TerraSAR-X was successfully launched on June 15, 2007,

2:14 UTC, on Dnepr-1 in Baikonur, Kasachstan. During the

following launch and early orbit phase (LEOP), the basic

functionalities of the bus and the prime and secondary payload

were checked out.

The first acquisition of the satellite telemetry occurred

15 min after launch over the European Space Agency ground

station in Malindi, Kenya. Throughout the following days, the

satellite systems and radar instrument were switched on and

are working well since then. The X-band data reception was

switched on at LEOP day 4. The radar performance is excellent;

the first image was processed already at LEOP day 5 on

June 19, 2007. In the following days, all standard imaging

modes (stripmap, spotlight, and ScanSAR) have been exercised

successfully.

The checking out of the dual-frequency GPS receiver IGOR

(secondary payload) and the LCT (secondary payload) was

Fig. 6. First TerraSAR-X image, showing a 30 km × 60 km area in Russia,
western to Wolgograd. The scene has been imaged in the stripmap mode, HH
polarization, on June 19, 2007. The resolution is approximately 15 m.

completed as planned. The first satellite-to-satellite commu-

nication links between the TerraSAR-X LCT and the U.S.

NFIRE satellite were executed successfully in the following

months.

Fig. 6 shows the first image acquired by TerraSAR-X. The

image shows a 30 km × 60 km area in Russia, western to

Wolgograd, which has been imaged in the stripmap mode with

HH polarization. The resolution is approximately 15 m.

In the upper half of the image, the Tsimlyanskoye reservoir

can be seen. Here, the River Don is dammed with the water be-

ing used for power generation. In the immediate neighborhood,

the meandering oxbow river bends can be seen as dark surfaces.

Calm water surfaces are typically very dark in radar pho-

tographs since the radar radiation hitting them is reflected away.

In the center left of the image, a railway bridge crosses the River

Don with the railway line disappearing toward the northeast. In

the lower half, large agricultural areas dominate. The different

brightness of the fields results from the differing vegetation and

the particular stages of their annual growth cycles.

During this survey, a thick cloud cover prevailed. Neverthe-

less, radar satellites such as TerraSAR-X offer imaging capa-

bility even in the case of cloudy skies and at night. However,

exceptional strong precipitation events like heavy thunder-

storms may influence even radar imaging. Such an event can be

seen at the upper left part of the radar image as a bright “veil.”
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The successful processing of this first image demonstrated

the functional capability of the satellite on the one hand and the

operability of the ground segment on the other hand. The entire

processing chain, including order input, scheduling, command-

ing, data acquisition, on-ground data reception, SAR process-

ing, and archiving of the images, has been verified. This result

was also the consequence of a comprehensive prelaunch testing

program, including numerous space-to-ground-segment tests.

After the successful completion of the LEOP, the commis-

sioning phase (see also the related TGRS article [20] in this

Special Issue) was started on June 22, 2007, encompassing an

ambitious program with respect to the following goals [21]:

1) orbit and attitude verification [22];

2) instrument characterization/verification [23], [24];

3) overall SAR system performance characterization [21],

[25] (see also the related TGRS article [26] in this Special

Issue);

4) calibration of the radar data [27], [28];

a) geometric calibration;

b) antenna pointing calibration;

c) antenna model verification (see also the related TGRS

article [29] in this Special Issue);

d) relative radiometric calibration;

e) absolute radiometric calibration;

f) internal instrument calibration.

5) checking out of the receiving station and processing

system;

6) SAR product verification [30];

7) checking out of the DAS operated by Infoterra GmbH;

8) load tests including the commercial service segment

[31], [32];

9) interferometric processing [33], [34].

The commissioning phase was finished right on schedule

after 5.5 months, and the goal was attained to ensure optimum

SAR product quality and to accomplish the full operational

readiness of the space and ground segment in December 2007.

The TerraSAR-X team executed a very comprehensive cali-

bration and verification program. During the commissioning

phase, 12 000 data takes were executed, and all imaging modes

were tested and verified. In several cases, the obtained re-

sults even exceeded the initial specifications. Consequently,

TerraSAR-X turned out to be a very stable precision instrument

for radar imaging.

Furthermore, the potential of TerraSAR-X for repeat pass

[35], as well as along-track interferometry [36] and TOPSAR

[37]–[39], was shown (see also the related articles [40] and

[41] in this TGRS Special Issue). Novel techniques such as the

total zero Doppler steering proved their effectivity [42]. The

benefit from the high resolution provided by TerraSAR-X was

demonstrated for geoscientific applications, oceanography [43],

and disaster monitoring [44].

Consequently, the operational phase could be kicked off on

January 7, 2008, and the image production for scientific and

commercial users is running extremely satisfactory since then.

In the first two years of the mission, approximately 35 000 data

takes have been acquired by the satellite, relating to approxi-

mately 50 000 data products, with a still growing trend.

Fig. 7. Multitemporal TerraSAR-X image of mudflats near the island of Sylt,
Germany. The image is a combination of two acquisitions that were taken by
TerraSAR-X in April and May 2008 in stripmap mode. The individual pictures
are colored red and green, respectively. 4/C

VI. EXAMPLE IMAGERY

In the following, a few examples of TerraSAR-X imagery

shall demonstrate the high quality of the data products (see also

the related TGRS article [45] in this Special Issue).

The first example (Fig. 7) shows the mudflats near the island

of Sylt, Germany. It was compiled from two images that were

taken by TerraSAR-X in April and May 2008 in stripmap mode.

The individual pictures are colored red and green, respectively.

The difference in the reflected radar signals (in blue) is partic-

ularly large over the areas of water, where the most changes

occurred in between the two data takes. The resulting image

can be used to extensively study the morphology, sediments,

and habitats in the Wadden Sea. Structures such as tidal creek

courses (recognizable in the blue area) and mussel beds (light

areas near the coast) are clearly shown.

The high-resolution capability of advanced radar sensors like

TerraSAR-X opens up new observation opportunities particu-

larly in urban areas. The following example (Fig. 8) shows an

image of the Tokyo river island taken on March 7, 2008, in

high-resolution spotlight mode with HH polarization. Due to

the high resolution of the TerraSAR-X image, the details of the

urban scenery, including the skyscrapers at the river shoreline,

can clearly be distinguished. The small inlay in the image shows

the appearance of the same scene in a Google Earth image for

comparison. Note that the 3-D appearance of the towers in the
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Fig. 8. High-resolution spotlight image of the Tokyo river island taken on
March 7, 2008, in HH polarization with a small Google Earth image inlay for
comparison.

Fig. 9. Multitemporal high-resolution spotlight image of the Sydney harbor
area. The three images were taken on (green) December 21, 2007, (blue)
January 1, 2008, and (red) January 12, 2008. Objects, which have not changed
in between the acquisitions, appear white.4/C

radar image is due to the well-known foreshortening effect of

side-looking imaging radars.

Fig. 9 also shows a high-resolution spotlight image but, this

time, a multitemporal repeat-pass acquisition of the Sydney

harbor area. Three color-coded images taken on December 21,

Fig. 10. TerraSAR-X image of the Guelb er Richat ring structure in
Mauritania. The image was taken on July 8, 2007; original resolution:
16 m; mode: ScanSAR mode; polarization: VV.

2007 (green), January 1, 2008 (blue), and January 12, 2008

(red), have been overlayed. Objects, which have not changed

in between the acquisitions, appear white. Objects, which have

been present only at the time of one of the acquisitions—like the

ship (green) close to the bridge—appear in the corresponding

color. The radar reflection of the water surface is different in

each of the images, giving the water body its special appear-

ance. The center of the image is dominated by the impressive

Sydney Harbour Bridge.

Aside from the stripmap and spotlight mode, ScanSAR is

the third standard imaging mode of TerraSAR-X. It allows

wide area coverage in up to 100-km-wide swathes with reduced

resolution. Fig. 10 shows an image example of the Guelb er

Richat in Mauritania. The ring structure shown in this image

has a diameter of about 45 km and is located in Ouadane.

The ring consists of limestones, dolomites, and breccias from

the late Proterozoic to Ordovician eras (aged about 0.6 to

0.5 billion years) that were centrally uplifted and subsequently

eroded. The question as to the structure’s origin, which is

widely thought to have been originally a meteorite crater, has

not been finally answered. Although the exposed layers have

formed a shallow ridge which, in many parts, is no more than a

few meters high, the structure can excellently be identified and

mapped in a radar image due to its surface properties.

In addition to the standard imaging modes, TerraSAR-X

features the experimental DRA mode, which allows for

along-track interferometry measurements (see also the related

TGRS article [46] in this Special Issue), as well as full-

polarimetric data acquisitions. Fig. 11 shows an example of a
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Fig. 11. One of the first images acquired in the fully polarimetric experimental
mode of TerraSAR-X. The different information layers correspond to different
colors. (Red) HH channel. (Green) VV channel. (Blue) (HV + VH)/2 channel.4/C

full-polarimetric image taken in the DRA mode. The scene is

located approximately 130 km north of Munich in the region

of Deggendorf, Germany. It represents a typical agricultural

cultivated area with some small forest parts and smaller

urbanized areas. The use of SAR polarimetry enhances the

information content because it allows separating different scat-

tering mechanisms occurring within one resolution cell and is

sensitive to the geometry and the material properties of the illu-

minated object. This can perfectly be illustrated by the colored

image, where the different information layers correspond to dif-

ferent colors. The agricultural areas are represented by a variety

of different colors representing the agricultural crop growth

status: green fields representing nonvegetated fields, red one

representing the sensitivity to the interaction between the sur-

face and the plant stalks, and blue fields indicating dense veg-

etated areas. In the case that all scattering information occurs

within one resolution cell, then the color combination is white.

Another outstanding feature of TerraSAR-X is its excellent

interferometric performance. In combination with the high

geometric resolution of the radar sensor, interesting new re-

sults can be obtained particularly in urban areas by generating

high-resolution interferograms. Fig. 12 shows a zoom into a

300-MHz high-resolution spotlight interferogram of Paris,

France, at the location of the Eiffel Tower [47]. The orientation

of the images generates a pseudoperspective view of the tower

and larger buildings which are laid over other areas. The images

were taken on January 16 and 27, 2008, with a 300-MHz range

bandwidth at an incidence angle of 34.7◦ and a baseline of

49 m. One fringe corresponds to a 321-m height difference

which is, by chance, exactly the height of the tower. The orig-

Fig. 12. Zoom into the Eiffel Tower of a high-resolution spotlight interfer-
ogram of Paris, France. The images were taken on January 16 and 27, 2008,
with a 300-MHz range bandwidth at an incidence angle of 34.7◦ and a baseline
of 49 m. 4/C

inal interferogram features the phase stability over the whole

scene without artifacts, the overall coherence in urban built-

up areas, and the decorrelation in vegetated park areas after

11 days.

VII. CONCLUSION

The launch of TerraSAR-X into orbit has been realized for

the first time in Germany, an EO project by a PPP with con-

siderable financial contribution by the industry. This enabled

an innovative mission to be carried out which could not have

been financed otherwise, a mission with a large potential for

scientific use, as well as for the sustainable commercialization

of EO data.

The mission provides a new class of high-quality X-band

SAR products due to its high-resolution capability and the

high flexibility of its antenna. In addition, it provides the

capability of repeat-pass interferometry. The new DRA mode

offers new applications like along-track interferometry and full-

polarimetric data acquisition.

As a next step in Germany’s SAR roadmap, DLR and

EADS Astrium are currently preparing the TanDEM-X mission

[48], [49], scheduled to be launched by the end of 2009. The

TanDEM-X mission will feature a second TerraSAR-X-type

satellite that will fly in a close formation with TerraSAR-X
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Fig. 13. Artist view of the TerraSAR-X and TanDEM-X satellites flying
in close formation. The main goal of the TanDEM-X mission will be the
acquisition of a global high-quality DEM with high resolution.4/C

(Fig. 13). The main goal of the TanDEM-X mission will be

the acquisition of a global high-quality DEM fulfilling the

High-Resolution Terrain Information Level 3 specification. In

addition, a new technology development is presently being con-

ducted by DLR, investigating the high-resolution wide-swath

concept for a future SAR mission after TanDEM-X, which al-

lows overcoming the restrictions of conventional SAR systems

with respect to simultaneously achieved high resolution and

wide area coverage [50].
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The TerraSAR-X Mission and System Design
Rolf Werninghaus and Stefan Buckreuss

Abstract—This paper describes the TerraSAR-X mission con-
cept within the context of a public–private partnership (PPP)
agreement between the German Aerospace Center (DLR) and the
industry. It briefly describes the PPP concept as well as the overall
project organization. This paper then gives an overview of the
satellite design and the corresponding ground segment, as well as
the main mission parameters. After a short introduction to the
scientific and commercial exploitation scheme, this paper finally
focuses on the mission accomplishments achieved so far during the
ongoing mission.

Index Terms— Ground segment, radar, satellite, scientific and
commercial exploitation, system design, TerraSAR-X.

I. INTRODUCTION

ON JUNE 15, 2007, Germany’s first operational radar

satellite TerraSAR-X was launched into orbit. This event

marked the culmination point of a long and successful synthetic

aperture radar (SAR) technology development line, which has

been initiated and supported by the German Aerospace Center

(DLR) together with the German industry since the late 1970s.

TerraSAR-X is Germany’s first national remote sensing satel-

lite being implemented in a public–private partnership (PPP)

between DLR and EADS Astrium GmbH. TerraSAR-X sup-

plies high-quality radar data for purposes of scientific observa-

tion of the Earth for a period of at least five years. At the same

time, it is designed to satisfy the steadily growing demand of the

private sector for remote sensing data in the commercial market.

The TerraSAR-X mission [1] is the continuation of the

scientifically and technologically successful radar missions

X-SAR and the Shuttle Radar Topography Mission, which have

been conducted in cooperation with the National Aeronau-

tics and Space Administration and the Italian Space Agency

(ASI) in 1994 and 2000. In parallel to these missions, the

national technology developments DESA (X-band SAR an-

tenna demonstrator) and TOPAS (technology development for

onboard SAR processing and storage demonstrator) have been

brought forward, which have prepared the floor for the national

implementation of a complex SAR mission like TerraSAR-X.

Today, remote sensing data and the derived information

products about the Earth are needed not only for scientific

purposes but also for a variety of private business applications.

Therefore, TerraSAR-X aims to hand over the acquisition of
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such data to the private sector in the long run, turning it into a

self-supporting sustainable business.

In this context, TerraSAR-X serves two main goals: The first

goal is to provide the scientific community with multimode

X-band SAR data. The broad spectrum of scientific application

areas includes hydrology, geology, climatology, oceanography,

environmental monitoring, and disaster monitoring, as well as

cartography (digital elevation model (DEM) generation) and

interferometry [2]. Representing the federal government, DLR

will be the sole owner of the TerraSAR-X data and coordinates

their scientific utilization.

The second goal is the establishment of a commercial Earth

observation (EO) market in Europe, i.e., the development of a

sustainable EO business so that follow-on systems can com-

pletely be financed by the industry from the profit. Taking into

account the expected business development, the PPP agreement

is aiming at the following:

1) the self-sustainability of the business;

2) the implementation and operation of a follow-on system

TerraSAR-X2 by the industry;

3) the scientific exploitation rights for DLR for

TerraSAR-X2.

If the business develops as foreseen today, EADS Astrium

GmbH will finance a follow-on system after the satellite’s ser-

vice life has ended, thus securing the continuity of the business.

II. PROJECT ORGANIZATION

A. Public-Private Partnership

TerraSAR-X is the first space project in Germany that has

been realized in a PPP, with considerable financial contribution

by the industry [3]. The partnership model is based on a coop-

eration agreement that was signed by DLR and EADS Astrium

GmbH on March 25, 2002. The objective is for equal partners to

cooperate, with each making an equitable contribution toward a

joint project in order to meet their own needs. Going beyond the

traditional process of awarding government-funded contracts,

this approach is based on a cooperative project management.

Having different objectives, both sides contribute their re-

sources, jointly implementing the project and utilizing its re-

sults afterward. The advantage of this approach is that it permits

meeting scientific goals while supporting industrial marketing

needs at the same time. In this way, investments are secured

which a single partner would be unable to provide on its own.

Under the partnership agreement, EADS Astrium GmbH has

been awarded a contract by DLR to develop, build, and launch

the satellite. For its part, DLR developed the corresponding

ground segment as described in Section III-C. DLR has also set

up the science service segment and took over the responsibility

0196-2892/$26.00 © 2009 IEEE
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Fig. 1. Block diagram of the TerraSAR-X project structure with its governing
body of the Joint Committee, as well as the three main elements space, ground,
and service segment.4/C

to provide data to the science community as explained in

Section IV. In addition, DLR is responsible for the operation

of the satellite over a period of five years.

EADS Astrium undertook to set up a distribution system

and commercialize the TerraSAR-X data and products through

its fully owned subsidiary Infoterra GmbH. In return for the

exclusive right to commercialize the TerraSAR-X data, EADS

Astrium GmbH agreed to contribute to the development cost

of the satellite. In addition, EADS Astrium contributed with

a sales-dependent share of the operating cost for the satellite

during its operational phase and invested considerable sums in

marketing the satellite’s data and products.

B. Project Structure

The overall project management for the TerraSAR-X project

is located in the directorate for space projects (DLR-RD) in

Bonn, as shown in Fig. 1. Under contract to DLR, EADS

Astrium GmbH in Friedrichshafen, Germany, has developed

the TerraSAR-X satellite, whereas the DLR institutes in

Oberpfaffenhofen provided the related ground segment.

Within this context, DLR has the following responsibilities:

1) overall project management;

2) management of the TerraSAR-X contract with Astrium;

3) mission management;

4) science coordination;

5) development of the ground segment;

6) system engineering, calibration/verification;

7) satellite and instrument operations (German Space Oper-

ation Center (GSOC): Weilheim station);

8) data reception (Neustrelitz), processing, archiving, and

distribution.

EADS Astrium/Infoterra, on the other hand, was in charge

of the development, assembly, and launch of the TerraSAR-X

satellite (as contractor to DLR), as well as of the business-

related activities like the following:

1) X-band-based product research and development;

2) X-band-based market development;

3) development of a commercial service segment;

4) commercial exploitation of the TerraSAR-X data;

5) implementation and operation of a follow-on system

TerraSAR-X2.

Fig. 2. General TerraSAR-X mission concept showing the command and data
streams from/to the Mission Control Center in Oberpfaffenhofen and the DLR
ground stations in Weilheim and Neustrelitz, as well as the Infoterra DAS
of commercial customers and the science user community represented by the
science coordinator. 4/C

III. MISSION AND SYSTEM DESIGN

A. Mission Design

The TerraSAR-X satellite [4] was launched from Baikonur

on a Russian/Ukrainian Dnepr-1 launch vehicle with a 1.5-m-

long fairing extension. A sun-synchronous dawn–dusk orbit

with an 11-day repeat period was selected as a good compro-

mise between radar performance, order to-acquisition time, and

revisit time. Once in the orbit, the satellite has been taken over

by the Mission Control Center in Oberpfaffenhofen. The system

baseline includes two ground stations in Germany. Weilheim is

used as the satellite control station, and Neustrelitz serves as

the central receiving station for the 300-Mb/s X-band downlink

(Fig. 2). Beyond that up to now, five additional direct access

stations (DAS)—receiving stations of commercial partners of

Infoterra GmbH—have been set up to extend the baseline

receiving station concept [1]. More DAS may be added in the

future.

B. TerraSAR-X Satellite

The TerraSAR-X satellite bus (see also the related TGRS

article [5] in this Special Issue) is a heritage from the successful

CHAMP and GRACE missions [6]. The satellite configuration

of TerraSAR-X is shown in Fig. 3. TerraSAR-X features an

advanced high-resolution X-band SAR based on the active

phased array technology [7], [8] which allows the operation in

spotlight, stripmap, and ScanSAR mode with two polarizations

in various combinations (see Table I). It combines the ability to

acquire high-resolution images for detailed analysis, as well as

wide-swath images for overview applications [9]. The experi-

mental dual-receive antenna (DRA) mode [10] allows receiving

independently the echoes from the two azimuth antenna halves.

This new experimental mode enables the use of interesting

new features like along-track interferometry, full-polarimetric

data acquisition, and the enhancement of stripmap azimuth

resolution [11].



IE
E
E

P
ro

o
f

WERNINGHAUS AND BUCKREUSS: TERRASAR-X MISSION AND SYSTEM DESIGN 3

Fig. 3. Artist view of the TerraSAR-X satellite. Note the (upper left) solar
generator, the (lower left) boom with the X-band downlink antenna, and the
(lower right) X-band radar antenna.4/C

TABLE I
MAIN TERRASAR-X SYSTEM PARAMETERS

In addition to the SAR instrument, two secondary payloads

fly on the TerraSAR-X spacecraft:

1) the laser communication terminal (LCT), a technology

demonstrator for an intersatellite communication link

developed by TESAT, Backnang, in contract to DLR,

allowing for a 5.6-Gb/s satellite-to-satellite or satellite-

to-ground communication link [12];

2) the tracking, occultation, and ranging (TOR) instrument

package, a dual-frequency GPS tracking receiver and

a laser reflector set for high-precision orbit determi-

nation and occultation measurements provided by the

GeoForschungsZentrum Potsdam and the University of

Texas Center for Space Research [13]. As shown in

Table I, TOR allows for a high-precision orbit determi-

nation accuracy of better than 20 cm [14].

C. TerraSAR-X Ground Segment

The TerraSAR-X ground segment (see also the related TGRS

articles [15] and [16] in this Special Issue) is the central element

for controlling and operating the TerraSAR-X satellite, for

calibrating its SAR instrument, and for archiving the SAR data,

as well as generating and distributing the basic data products.

The overall TerraSAR-X ground infrastructure consists of two

major parts:

1) the DLR-provided ground segment;

2) the commercial exploitation and service segment (TSXX)

developed by Infoterra.

The DLR ground segment is based on an existing national in-

frastructure as much as possible and was optimized for flexible

response to (scientific and commercial) user requests and fast

image product turnaround times. It is composed of three major

elements [17]:

1) the mission operations segment provided by GSOC for

control of the satellite;

2) the instrument operation and calibration segment (see

also the related TGRS articles [18] and [19] in this

Special Issue) provided by the Microwaves and Radar

Institute (IHR);

3) the payload ground segment for receiving, processing,

archiving, calibrating, and distributing the radar data

provided by the German Remote Sensing Data Center

(DFD) and the DLR Remote Sensing Technology Insti-

tute (IMF).

IV. SCIENTIFIC COORDINATION AND

COMMERCIAL EXPLOITATION

TerraSAR-X is an operational SAR system for scientific

and commercial applications. The commercial exploitation is

exclusively granted to Astrium/Infoterra GmbH.

DLR is responsible for the scientific utilization of the

TerraSAR-X products. The status “scientific use” needs to be

gained via a selection process. The Science Service System

(http://sss.terrasar-x.dlr.de/) was developed for this purpose.

Already prior to the launch of the TerraSAR-X satellite, a pre-

launch announcement of opportunity (AO) was issued by DLR.

Since the end of October 2007, new proposals can be submitted

under a general AO at any time. Under these AOs, more than

300 scientific proposals have been accepted until mid-2009,

resulting in several thousands of data acquisition requests. The

corresponding TerraSAR-X data are provided to the costs of

fulfilling the user request. Additional AOs are planned, where

special conditions might be applied with respect to the data

provision.

The relative number of proposals from the AOs in different

application fields is shown in Fig. 4. As expected, the “land

cover and vegetation” area is the most significant application

field, as the TerraSAR-X mission has been particularly de-

signed for land applications. Within this subgroup, there is a

relatively equal distribution between urban, forest, agriculture,
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Fig. 4. Under the TerraSAR-X AOs, more than 300 scientific proposals have
been accepted until mid-2009. The figure shows the relative distribution of these
proposals in the different application areas.4/C

Fig. 5. Relative distribution of the 108 proposals in the land cover and
vegetation application area in Fig. 4. Among these, the land use/land cover is
the most significant field of use.4/C

topography, and land use/land cover application areas, with the

latter being the most significant field of use, as can be seen in

Fig. 5.

Commercial customers, on the other hand, will have to

contact Infoterra (http://www.terrasar.com/) for access to the

TerraSAR-X data via the commercial TerraSAR-X exploitation

and service infrastructure (TSXX) developed by Infoterra. In

addition to the baseline station in Neustrelitz, Infoterra sets

up additional receiving stations for dedicated commercial cus-

tomers, which require fast and direct access to the TerraSAR-X

data. These so-called DAS are implemented to extend the

baseline receiving station concept.

V. MISSION ACCOMPLISHMENTS

TerraSAR-X was successfully launched on June 15, 2007,

2:14 UTC, on Dnepr-1 in Baikonur, Kasachstan. During the

following launch and early orbit phase (LEOP), the basic

functionalities of the bus and the prime and secondary payload

were checked out.

The first acquisition of the satellite telemetry occurred

15 min after launch over the European Space Agency ground

station in Malindi, Kenya. Throughout the following days, the

satellite systems and radar instrument were switched on and

are working well since then. The X-band data reception was

switched on at LEOP day 4. The radar performance is excellent;

the first image was processed already at LEOP day 5 on

June 19, 2007. In the following days, all standard imaging

modes (stripmap, spotlight, and ScanSAR) have been exercised

successfully.

The checking out of the dual-frequency GPS receiver IGOR

(secondary payload) and the LCT (secondary payload) was

Fig. 6. First TerraSAR-X image, showing a 30 km × 60 km area in Russia,
western to Wolgograd. The scene has been imaged in the stripmap mode, HH
polarization, on June 19, 2007. The resolution is approximately 15 m.

completed as planned. The first satellite-to-satellite commu-

nication links between the TerraSAR-X LCT and the U.S.

NFIRE satellite were executed successfully in the following

months.

Fig. 6 shows the first image acquired by TerraSAR-X. The

image shows a 30 km × 60 km area in Russia, western to

Wolgograd, which has been imaged in the stripmap mode with

HH polarization. The resolution is approximately 15 m.

In the upper half of the image, the Tsimlyanskoye reservoir

can be seen. Here, the River Don is dammed with the water be-

ing used for power generation. In the immediate neighborhood,

the meandering oxbow river bends can be seen as dark surfaces.

Calm water surfaces are typically very dark in radar pho-

tographs since the radar radiation hitting them is reflected away.

In the center left of the image, a railway bridge crosses the River

Don with the railway line disappearing toward the northeast. In

the lower half, large agricultural areas dominate. The different

brightness of the fields results from the differing vegetation and

the particular stages of their annual growth cycles.

During this survey, a thick cloud cover prevailed. Neverthe-

less, radar satellites such as TerraSAR-X offer imaging capa-

bility even in the case of cloudy skies and at night. However,

exceptional strong precipitation events like heavy thunder-

storms may influence even radar imaging. Such an event can be

seen at the upper left part of the radar image as a bright “veil.”
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The successful processing of this first image demonstrated

the functional capability of the satellite on the one hand and the

operability of the ground segment on the other hand. The entire

processing chain, including order input, scheduling, command-

ing, data acquisition, on-ground data reception, SAR process-

ing, and archiving of the images, has been verified. This result

was also the consequence of a comprehensive prelaunch testing

program, including numerous space-to-ground-segment tests.

After the successful completion of the LEOP, the commis-

sioning phase (see also the related TGRS article [20] in this

Special Issue) was started on June 22, 2007, encompassing an

ambitious program with respect to the following goals [21]:

1) orbit and attitude verification [22];

2) instrument characterization/verification [23], [24];

3) overall SAR system performance characterization [21],

[25] (see also the related TGRS article [26] in this Special

Issue);

4) calibration of the radar data [27], [28];

a) geometric calibration;

b) antenna pointing calibration;

c) antenna model verification (see also the related TGRS

article [29] in this Special Issue);

d) relative radiometric calibration;

e) absolute radiometric calibration;

f) internal instrument calibration.

5) checking out of the receiving station and processing

system;

6) SAR product verification [30];

7) checking out of the DAS operated by Infoterra GmbH;

8) load tests including the commercial service segment

[31], [32];

9) interferometric processing [33], [34].

The commissioning phase was finished right on schedule

after 5.5 months, and the goal was attained to ensure optimum

SAR product quality and to accomplish the full operational

readiness of the space and ground segment in December 2007.

The TerraSAR-X team executed a very comprehensive cali-

bration and verification program. During the commissioning

phase, 12 000 data takes were executed, and all imaging modes

were tested and verified. In several cases, the obtained re-

sults even exceeded the initial specifications. Consequently,

TerraSAR-X turned out to be a very stable precision instrument

for radar imaging.

Furthermore, the potential of TerraSAR-X for repeat pass

[35], as well as along-track interferometry [36] and TOPSAR

[37]–[39], was shown (see also the related articles [40] and

[41] in this TGRS Special Issue). Novel techniques such as the

total zero Doppler steering proved their effectivity [42]. The

benefit from the high resolution provided by TerraSAR-X was

demonstrated for geoscientific applications, oceanography [43],

and disaster monitoring [44].

Consequently, the operational phase could be kicked off on

January 7, 2008, and the image production for scientific and

commercial users is running extremely satisfactory since then.

In the first two years of the mission, approximately 35 000 data

takes have been acquired by the satellite, relating to approxi-

mately 50 000 data products, with a still growing trend.

Fig. 7. Multitemporal TerraSAR-X image of mudflats near the island of Sylt,
Germany. The image is a combination of two acquisitions that were taken by
TerraSAR-X in April and May 2008 in stripmap mode. The individual pictures
are colored red and green, respectively. 4/C

VI. EXAMPLE IMAGERY

In the following, a few examples of TerraSAR-X imagery

shall demonstrate the high quality of the data products (see also

the related TGRS article [45] in this Special Issue).

The first example (Fig. 7) shows the mudflats near the island

of Sylt, Germany. It was compiled from two images that were

taken by TerraSAR-X in April and May 2008 in stripmap mode.

The individual pictures are colored red and green, respectively.

The difference in the reflected radar signals (in blue) is partic-

ularly large over the areas of water, where the most changes

occurred in between the two data takes. The resulting image

can be used to extensively study the morphology, sediments,

and habitats in the Wadden Sea. Structures such as tidal creek

courses (recognizable in the blue area) and mussel beds (light

areas near the coast) are clearly shown.

The high-resolution capability of advanced radar sensors like

TerraSAR-X opens up new observation opportunities particu-

larly in urban areas. The following example (Fig. 8) shows an

image of the Tokyo river island taken on March 7, 2008, in

high-resolution spotlight mode with HH polarization. Due to

the high resolution of the TerraSAR-X image, the details of the

urban scenery, including the skyscrapers at the river shoreline,

can clearly be distinguished. The small inlay in the image shows

the appearance of the same scene in a Google Earth image for

comparison. Note that the 3-D appearance of the towers in the
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Fig. 8. High-resolution spotlight image of the Tokyo river island taken on
March 7, 2008, in HH polarization with a small Google Earth image inlay for
comparison.

Fig. 9. Multitemporal high-resolution spotlight image of the Sydney harbor
area. The three images were taken on (green) December 21, 2007, (blue)
January 1, 2008, and (red) January 12, 2008. Objects, which have not changed
in between the acquisitions, appear white.4/C

radar image is due to the well-known foreshortening effect of

side-looking imaging radars.

Fig. 9 also shows a high-resolution spotlight image but, this

time, a multitemporal repeat-pass acquisition of the Sydney

harbor area. Three color-coded images taken on December 21,

Fig. 10. TerraSAR-X image of the Guelb er Richat ring structure in
Mauritania. The image was taken on July 8, 2007; original resolution:
16 m; mode: ScanSAR mode; polarization: VV.

2007 (green), January 1, 2008 (blue), and January 12, 2008

(red), have been overlayed. Objects, which have not changed

in between the acquisitions, appear white. Objects, which have

been present only at the time of one of the acquisitions—like the

ship (green) close to the bridge—appear in the corresponding

color. The radar reflection of the water surface is different in

each of the images, giving the water body its special appear-

ance. The center of the image is dominated by the impressive

Sydney Harbour Bridge.

Aside from the stripmap and spotlight mode, ScanSAR is

the third standard imaging mode of TerraSAR-X. It allows

wide area coverage in up to 100-km-wide swathes with reduced

resolution. Fig. 10 shows an image example of the Guelb er

Richat in Mauritania. The ring structure shown in this image

has a diameter of about 45 km and is located in Ouadane.

The ring consists of limestones, dolomites, and breccias from

the late Proterozoic to Ordovician eras (aged about 0.6 to

0.5 billion years) that were centrally uplifted and subsequently

eroded. The question as to the structure’s origin, which is

widely thought to have been originally a meteorite crater, has

not been finally answered. Although the exposed layers have

formed a shallow ridge which, in many parts, is no more than a

few meters high, the structure can excellently be identified and

mapped in a radar image due to its surface properties.

In addition to the standard imaging modes, TerraSAR-X

features the experimental DRA mode, which allows for

along-track interferometry measurements (see also the related

TGRS article [46] in this Special Issue), as well as full-

polarimetric data acquisitions. Fig. 11 shows an example of a
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Fig. 11. One of the first images acquired in the fully polarimetric experimental
mode of TerraSAR-X. The different information layers correspond to different
colors. (Red) HH channel. (Green) VV channel. (Blue) (HV + VH)/2 channel.4/C

full-polarimetric image taken in the DRA mode. The scene is

located approximately 130 km north of Munich in the region

of Deggendorf, Germany. It represents a typical agricultural

cultivated area with some small forest parts and smaller

urbanized areas. The use of SAR polarimetry enhances the

information content because it allows separating different scat-

tering mechanisms occurring within one resolution cell and is

sensitive to the geometry and the material properties of the illu-

minated object. This can perfectly be illustrated by the colored

image, where the different information layers correspond to dif-

ferent colors. The agricultural areas are represented by a variety

of different colors representing the agricultural crop growth

status: green fields representing nonvegetated fields, red one

representing the sensitivity to the interaction between the sur-

face and the plant stalks, and blue fields indicating dense veg-

etated areas. In the case that all scattering information occurs

within one resolution cell, then the color combination is white.

Another outstanding feature of TerraSAR-X is its excellent

interferometric performance. In combination with the high

geometric resolution of the radar sensor, interesting new re-

sults can be obtained particularly in urban areas by generating

high-resolution interferograms. Fig. 12 shows a zoom into a

300-MHz high-resolution spotlight interferogram of Paris,

France, at the location of the Eiffel Tower [47]. The orientation

of the images generates a pseudoperspective view of the tower

and larger buildings which are laid over other areas. The images

were taken on January 16 and 27, 2008, with a 300-MHz range

bandwidth at an incidence angle of 34.7◦ and a baseline of

49 m. One fringe corresponds to a 321-m height difference

which is, by chance, exactly the height of the tower. The orig-

Fig. 12. Zoom into the Eiffel Tower of a high-resolution spotlight interfer-
ogram of Paris, France. The images were taken on January 16 and 27, 2008,
with a 300-MHz range bandwidth at an incidence angle of 34.7◦ and a baseline
of 49 m. 4/C

inal interferogram features the phase stability over the whole

scene without artifacts, the overall coherence in urban built-

up areas, and the decorrelation in vegetated park areas after

11 days.

VII. CONCLUSION

The launch of TerraSAR-X into orbit has been realized for

the first time in Germany, an EO project by a PPP with con-

siderable financial contribution by the industry. This enabled

an innovative mission to be carried out which could not have

been financed otherwise, a mission with a large potential for

scientific use, as well as for the sustainable commercialization

of EO data.

The mission provides a new class of high-quality X-band

SAR products due to its high-resolution capability and the

high flexibility of its antenna. In addition, it provides the

capability of repeat-pass interferometry. The new DRA mode

offers new applications like along-track interferometry and full-

polarimetric data acquisition.

As a next step in Germany’s SAR roadmap, DLR and

EADS Astrium are currently preparing the TanDEM-X mission

[48], [49], scheduled to be launched by the end of 2009. The

TanDEM-X mission will feature a second TerraSAR-X-type

satellite that will fly in a close formation with TerraSAR-X
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Fig. 13. Artist view of the TerraSAR-X and TanDEM-X satellites flying
in close formation. The main goal of the TanDEM-X mission will be the
acquisition of a global high-quality DEM with high resolution.4/C

(Fig. 13). The main goal of the TanDEM-X mission will be

the acquisition of a global high-quality DEM fulfilling the

High-Resolution Terrain Information Level 3 specification. In

addition, a new technology development is presently being con-

ducted by DLR, investigating the high-resolution wide-swath

concept for a future SAR mission after TanDEM-X, which al-

lows overcoming the restrictions of conventional SAR systems

with respect to simultaneously achieved high resolution and

wide area coverage [50].
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