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Abstract

Background: The association between the TERT rs2736100 single nucleotide polymorphism (SNP) and cancer risk

has been studied by many researchers, but the results remain inconclusive. To further explore this association, we

performed a meta-analysis.

Methods: A computerized search of PubMed and Embase database for publications on the TERT rs2736100

polymorphism and cancer risk was performed and the genotype data were analyzed in a meta-analysis. Odds

ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of

heterogeneity, cumulative meta-analysis and assessment of bias were performed in our meta-analysis.

Results: A significant association between the TERT rs2736100 polymorphism and cancer susceptibility was revealed

by the results of the meta-analysis of the 25 case-control studies (GG versus TT: OR = 1.72, 95% CI: 1.58, 1.88; GT

versus TT: OR = 1.38, 95% CI: 1.29, 1.47; dominant model-TG + GG versus TT: OR = 1.47, 95% CI: 1.37, 1.58; recessive

model-GG versus TT + TG: OR = 1.37, 95% CI 1.31, 1.43; additive model-2GG + TG versus 2TT + TG: OR = 1.30, 95%

CI: 1.25, 1.36). Moreover, increased cancer risk in all genetic models was found after stratification of the SNP data

by cancer type, ethnicity and source of controls.

Conclusions: In all genetic models, the association between the TERT rs2736100 polymorphism and cancer risk was

significant. This meta-analysis suggests that the TERT rs2736100 polymorphism may be a risk factor for cancer.

Further functional studies between this polymorphism and cancer risk are warranted.

Background
Cancer is a multifactorial disease, which is the result of

complex interactions between inherited and environ-

mental factors. Lung cancer is the most common malig-

nancy and the leading cause of cancer deaths for

women and men worldwide [1-3]. There are two main

histologic subgroups of lung cancer: small-cell lung car-

cinoma (SCLC) and non-small-cell lung carcinoma

(NSCLC); the latter includes the common types, which

are squamous cell carcinoma (SCC) and adenocarci-

noma (ADC). Gliomas of astrocytic, oligodendroglial,

and ependymal origin are derived from glial cells and

account for Fax~80% of malignant primary brain tumors

(PBTs), which are the most common histologic type of

brain tumors [4]. There is a dose-response relationship

between ionizing radiation and the risk of developing an

intracranial tumor [5], whereas familial aggregation of

gliomas [6] is a result of a combination of low-risk

variants.

Telomeres are special nucleoprotein structures located

at the ends of eukaryotic chromosomes and are essential

for protecting chromosomal termini against degradation,

end to-end fusion and rearrangement [7]. Telomeres are

composed of repetitive DNA (TTAGGG repeats) bound

to abundant specialized proteins. The length of telomere

repeats as well as the integrity of telomere-binding pro-

teins are essential for telomere maintenance [8]. Telo-

merase recognizes the 3’ hydroxyl (3’ OH) at the end of

the G-strand overhang and adds telomeric repeat

sequences onto chromosome ends. Telomerase
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expression can prevent telomere erosion in most eukar-

yotic organisms. Functional telomerase is composed of

the TERT (telomerase reverse transcriptase) protein and

the telomerase RNA component (TERC) that acts as a

template for DNA synthesis. In contrast to TERC, which

is expressed rather ubiquitously, TERT expression is low

in most normal human somatic tissues and is physiolo-

gically restricted to primary germ line cells, tissue stem

cells and activated lymphocytes [9-14], leading research-

ers to consider TERT as the limiting factor for telomer-

ase activity. The TERT gene product contains three

distinct structural domains: the RNA-binding domain

(TRBD), the reverse transcriptase domain and the car-

boxy-terminal extension (CTE), which represents the

putative thumb domain of TERT [15]. Tumor cells can

prevent telomere loss through the abnormal upregula-

tion of telomerase [16], and telomerase has been found

to be reactivated in the majority of cancers, including

those of the lung [7]. Activation of telomerase induced

by the catalytic component TERT is a pivotal step dur-

ing cellular immortalization and malignant transforma-

tion of human cells [17].

In the past decade, many investigators have explored

factors contributing to inherited susceptibility to cancer

[18]. The sequence variants in the TERT and cleft lip

and palate transmembrane 1 like (CLPTM1L) gene

regions are associated with susceptibility to many types

of cancer [19]. The rs2736100 polymorphism is localized

to intron 2 of the TERT gene. McKay et al. [20] pub-

lished the first study indicating that the TERT

rs2736100 polymorphism may contribute to an

increased risk of lung cancer. Since then, several

research groups have reported associations between this

SNP and cancer risk, but with inconclusive results

[21-31]. Consequently, we performed a meta-analysis to

more precisely characterize this association.

Methods
Study eligibility and identification

Eligible studies were identified by searching PubMed,

Embase, CNKI, and the Chinese Biomedicine Database

(the last search update was performed on November 15,

2011), using the following search terms (TERT OR “telo-

merase reverse transcriptase”) AND polymorphism and

using the limits, Humans, English, Cancer. The related

reference articles were searched to identify other rele-

vant publications. Unpublished data and further infor-

mation were also obtained from the authors. The case-

control studies were selected if data were available on

the role of the TERT rs2736100 polymorphism in cancer

risk.

In our meta-analysis, the following inclusion criteria

were used for selecting the studies: (1) articles about the

TERT rs2736100 polymorphism and cancer risk, (2)

case-control design, and (3) sufficient genotype data for

estimating an odds ratio (OR) with a 95% confidence

interval (CI). Articles that were not about cancer

research, contained duplicated previous research, or did

not include usable genotype data were excluded.

Data extraction

Two investigators independently extracted the data from

all eligible publications using the selection criteria listed

above. Any disagreement was resolved by discussion.

We extracted the following information from each study

when available: the first author’s name, year of publica-

tion, country, patient ethnicity (composed of either Eur-

opean or Asian), cancer type, source of control groups

(population- or hospital-based controls or mixed (com-

posed of both population- and hospital-based controls)),

genotyping method and number of cases and controls

with the TT, TG, and GG genotypes.

Data synthesis

All statistical analyses were performed using the STATA

software (version 11; Stata Corporation, College Station,

Texas). Two-sided P values less than 0.05 were consid-

ered statistically significant. We first assessed Hardy-

Weinberg equilibrium in the control groups of each

study. The OR and 95% CI in each case-control study

were employed to assess the strength of the associations

between the TERT rs2736100 polymorphisms and can-

cer risk. The OR and the 95% CI in each comparison

were assessed in a codominant model (GG versus TT;

GT versus TT), a dominant model (GG + GT versus

TT), a recessive model (GG versus GT + TT) and an

additive model (2GG + TG versus 2TT + TG). Sub-

group analyses were performed based on cancer type,

the source of controls and ethnicity. The chi-square

test-based Q-statistic was calculated to test the hetero-

geneity between studies. If the result of this heterogene-

ity test was P < 0.05, then the pooled ORs were

analyzed using the random effects model (the DerSimo-

nian and Laird method) [32]. Otherwise, if the result of

this heterogeneity test was P > 0.05, indicating that the

between-study heterogeneity was not significant, then

the fixed-effects model was selected (the Mantel-Haens-

zel method) [33]. The I2 (I2 = 100% × (Q-df)/Q) statistic

was then used to quantitatively estimate heterogeneity,

with I2 <25%, 25-75% and >75% representing low, mod-

erate or high degrees of inconsistency, respectively

[34,35]. The significance of the combined OR was deter-

mined using the Z test (P < 0.05 was considered statisti-

cally significant). Additionally, sensitivity analyses were

performed after sequential removal of each study.

Cumulative meta-analyses were performed through an

assortment of all eligible cancer studies with case sample

size. Finally, the Begg’s funnel plot and Egger’s test were
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performed to analyze the publication bias statistically (P

< 0.05 was considered a significant publication bias)

[36].

Results
Eligible studies

In total, 11 articles including 25 case-control studies in

English with 23032 cases and 38274 controls met the

inclusion criteria. The characteristics of the studies are

listed in Table 1. In our meta-analysis, most of the can-

cer types were lung cancer and glioma. Among the 25

studies, 14 focused only on lung cancer, 9 focused only

on glioma and 2 focused on other cancers. The 25 stu-

dies collected in this meta-analysis included 15 studies

of Asians and 10 studies of Europeans, 17 studies of

population-based controls, 6 studies of hospital-based

controls and 2 study of population-based and hospital-

based controls. Figure 1 shows the study selection

procedure. The main results of this meta-analysis were

listed in Table 2.

Evidence synthesis

There was wide variation in the TERT rs2736100 poly-

morphism among the controls across different ethnici-

ties. For European populations, the G allele frequency

was 51.0% (95% CI = 49.6-52.4), which was significantly

(P <0.001) higher than that in the Asian populations

(39.6%, 95% CI = 38.4-40.8) (Figure 2).

As shown in Table 2, for the TERT rs2736100 poly-

morphism, all studies combined (23032 cases and 38274

controls) were pooled into the meta-analysis, and a signifi-

cantly increased cancer risk was found for all genetic mod-

els based on the studies (GG versus TT: OR = 1.72, 95%

CI: 1.58, 1.88; GT versus TT: OR = 1.38, 95% CI: 1.29,

1.47; dominant model-TG + GG versus TT: OR = 1.47,

95% CI: 1.37, 1.58; recessive model-GG versus TT + TG:

Table 1 Study characteristics from published studies on the relation of the TERT rs2736100 polymorphism to cancer

risk in this meta- analysis

ID First author Year Ethnicity Cancer type Source of
controls

Total Cases Controls HWE

TT TG GG TT TG GG

1 Jin(China)[21] 2009 Asian Lung cancer PB 2551 353 627 232 450 658 231 0.72

2 Wang(England) [22] 2010 European Lung cancer PB 792 42 115 82 136 259 158 0.15

3 Kohno(Japan) [23] 2010 Asian Lung cancer MIXED 2624 488 796 372 373 460 135 0.72

4 Hsiung(China-GELAC) [24] 2010 Asian Lung cancer PB 1169 118 330 136 225 278 82 0.79

5 Hsiung(China-GELAC(replication))
[24]

2010 Asian Lung cancer PB 1170 156 318 136 214 260 86 0.63

6 Hsiung(China-CAMSCH) [24] 2010 Asian Lung cancer PB 556 71 122 77 87 154 45 0.09

7 Hsiung(Korea-SNU) [24] 2010 Asian Lung cancer PB 542 87 125 44 114 141 31 0.19

8 Hsiung(Korea-KNUH) [24] 2010 Asian Lung cancer PB 227 40 52 26 44 46 19 0.25

9 Hsiung(Korea-KUMC) [24] 2010 Asian Lung cancer PB 176 31 47 15 31 41 11 0.66

10 Hsiung(China-WHLCS) [24] 2010 Asian Lung cancer HB 381 50 83 42 65 104 37 0.68

11 MiKi(Japan) [25] 2010 Asian Lung cancer MIXED 2904 291 498 215 696 890 314 0.30

12 MiKi(Japan(replication)) [25] 2010 Asian Lung cancer HB 8201 157 273 95 2830 3664 1182 0.94

13 MiKi(Korea) [25] 2010 Asian Lung cancer HB 2015 174 277 106 567 692 199 0.60

14 Hu(China) [26] 2011 Asian Lung cancer HB 17937 2393 4294 1872 3231 4533 1614 0.72

15 Shete(England) [27] 2009 European Glioma PB 2065 115 316 200 349 676 409 0.04

16 Shete(America) [27] 2009 European Glioma HB 3480 230 645 372 546 1103 584 0.58

17 Shete(France) [27] 2009 European Glioma PB 2913 225 686 441 383 807 371 0.18

18 Shete(German) [27] 2009 European Glioma PB 1056 91 240 160 133 269 163 0.28

19 Shete(Sweden) [27] 2009 European Glioma PB 1387 120 326 177 212 367 185 0.29

20 Wrensch(America) [28] 2009 European Glioma PB 4672 95 354 242 1021 1904 1056 0.01

21 Schoemaker(Denmark) [29] 2010 European Glioma PB 265 22 58 39 31 74 41 0.82

22 Schoemaker(Finland) [29] 2010 European Glioma PB 192 8 56 33 23 53 19 0.25

23 Chen(China) [30] 2011 Asian Glioma HB 1989 244 515 194 334 542 160 0.01

24 Gago-Dominguez(America) [31] 2010 European Bladder
cancer

PB 1018 86 239 146 127 262 158 0.36

25 Gago-Dominguez(China) [31] 2010 Asian Bladder
cancer

PB 1024 141 260 98 174 274 77 0.06

PB: population based; HB: hospital based
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OR = 1.37, 95% CI 1.31, 1.43; additive model-2GG + TG

versus 2TT + TG: OR = 1.30, 95% CI: 1.25, 1.36). Figure 3

shows the overall meta-analysis of the TERT rs2736100

polymorphism and cancer risk in the recessive model.

Subgroup analysis

Specific data for the TERT rs2736100 polymorphism

were stratified by cancer type: the lung cancer subgroup,

the glioma subgroup and the other cancers subgroup.

The pooled odds ratios for the lung cancer, glioma, the

other cancers were 1.39 (95% CI 1.32, 1.47), 1.34 (95%

CI 1.24, 1.44) and 1.22 (95% CI 0.99, 1.51), respectively,

when we use a recessive genetic model. The meta-analy-

sis results for the other genetic models are listed in

Table 2.

Figure 1 The study inclusion and exclusion procedures.

Table 2 Stratified analyses of the TERT rs2736100 polymorphism on cancer risk

Variables GG versus TT GT versus TT Dominant model Recessive model Additive model

OR(95%CI) P
a OR(95%CI) P

a OR(95%CI) P
a OR(95%CI) P

a OR(95%CI) P
a

Total 1.72(1.58-1.88)b 0.002 1.38(1.29-1.47)b 0.012 1.47(1.37-1.58)b 0.001 1.37(1.31-1.43) 0.062 1.30(1.25-1.36)b 0.004

Cancer type

Lung cancer 1.74(1.54-1.96)b 0.008 1.34(1.23-1.46)b 0.031 1.44(1.32-1.57)b 0.009 1.39(1.32-1.47) 0.077 1.32(1.24-1.40)b 0.009

Glioma 1.76(1.51-2.06)b 0.017 1.47(1.36-1.60) 0.138 1.57(1.39-1.77)b 0.040 1.34(1.24-1.44) 0.174 1.31(1.22-1.40)b 0.044

Other cancer 1.46(1.13-1.89) 0.592 1.24(1.01-1.54) 0.522 1.30(1.06-1.59) 0.725 1.22(0.99-1.51) 0.245 1.19(1.05-1.34) 0.644

Source of control

Population based 1.80(1.56-2.07)b 0.001 1.44(1.28-1.61)b 0.004 1.53(1.36-1.73)b 0.000 1.38(1.29-1.47) 0.069 1.32(1.24-1.42)b 0.002

Hospital based 1.57(1.46-1.68) 0.949 1.29(1.22-1.37) 0.892 1.36(1.29-1.44) 0.963 1.33(1.25-1.41) 0.637 1.25(1.21-1.29) 0.960

Ethnicity

Asian 1.72(1.54-1.92)b 0.013 1.32(1.22-1.43)b 0.041 1.42(1.31-1.54)b 0.013 1.40(1.33-1.47) 0.111 1.31(1.24-1.38)b 0.013

European 1.72(1.48-2.01)b 0.016 1.50(1.37-1.63) 0.266 1.58(1.46-1.72) 0.077 1.31(1.22-1.41) 0.160 1.30(1.21-1.39)b 0.040

a
P value of Q-test for heterogeneity test
bRandom-effects model was used when P value for heterogeneity test <0.05; otherwise, fix-effects model was used
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In the stratified analysis by source of controls, signifi-

cantly increased risks were also found. The pooled odds

ratios were 1.38 (95% CI 1.29, 1.47) in the population-

based controls subgroup and 1.33 (95% CI 1.25, 1.41) in

the hospital-based controls subgroups in a recessive

genetic model. The meta-analysis results for the other

genetic models are listed in Table 2.

We stratified the studies by the ethnicity of the parti-

cipants into two subgroups, Asian and European, and

the pooled odds ratios were 1.40 (95% CI 1.33, 1.47)

and1.31 (95% CI 1.22, 1.41), respectively, in a recessive

genetic model. The meta-analysis results for the other

genetic models are listed in Table 2.

Among the 25 studies, many investigators also have

established an association between the TERT rs2736100

polymorphism and risk of lung adenocarcinoma (Table

3). As shown in Table 4, a significant association was

observed between the TERT rs2736100 polymorphism

and adenocarcinoma susceptibility in all genetic models

(GG versus TT: OR = 1.85, 95% CI: 1.72, 1.98; GT

versus TT: OR = 1.44, 95% CI: 1.31, 1.59; dominant

model-TG + GG versus TT: OR = 1.56, 95% CI 1.42,

1.71; recessive model-GG versus TT + TG: OR = 1.50,

95% CI: 1.41, 1.60; additive model-2GG + TG versus

2TT + TG: OR = 1.36, 95% CI: 1.31, 1.41).

Sensitivity analysis

Sensitivity analyses were performed after sequential

removal of each eligible study. When we investigated

the TERT rs2736100 polymorphism and cancer suscept-

ibility, the results suggested that the significance of the

pooled ORs was not influenced by any single study in a

recessive genetic model. Sensitivity analyses indicated

that the independent study contributing the most to

heterogeneity was conducted by Kohno et al. [23] (Fig-

ure 4). The heterogeneity was effectively decreased by

exclusion of that study: OR = 1.37 (95% CI: 1.31, 1.43; P

heterogeneity = 0.062; I2 = 32.3%) and 1.35 (95% CI: 1.29,

1.41; P heterogeneity = 0.174; I2 = 21.2%) before and after

removal, respectively.

Figure 2 Frequencies of the variant alleles among controls stratified by ethnicity.
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Figure 3 Overall meta-analysis of the TERT rs2736100 polymorphism and cancer risk in the recessive model.

Table 3 Study characteristics from published studies on the relation of the TERT rs2736100 polymorphism to

adenocarcinoma in this meta-analysis

ID First author Year Ethnicity Cancer type Source of
controls

Total Cases Controls HWE

TT TG GG TT TG GG

1 Jin(China)[21] 2009 Asian Adenocarcinoma PB 374 38 101 32 73 98 32 0.93

2 Wang(England)[22] 2010 European Adenocarcinoma PB 665 13 60 39 136 259 158 0.15

3 Kohno(Japan)[23] 2010 Asian Adenocarcinoma MIXED 2624 488 796 372 373 460 135 0.72

4 Hsiung(China-GELAC)[24] 2010 Asian Adenocarcinoma PB 1169 118 330 136 225 278 82 0.79

5 Hsiung(China-GELAC(replication))
[24]

2010 Asian Adenocarcinoma PB 967 99 213 95 214 260 86 0.63

6 Hsiung(China-CAMSCH)[24] 2010 Asian Adenocarcinoma PB 474 47 88 53 87 154 45 0.09

7 Hsiung(Korea-SNU)[24] 2010 Asian Adenocarcinoma PB 503 70 109 38 114 141 31 0.19

8 Hsiung(Korea-KNUH)[24] 2010 Asian Adenocarcinoma PB 212 35 45 23 44 46 19 0.25

9 Hsiung(Korea-KUMC)[24] 2010 Asian Adenocarcinoma PB 149 20 37 9 31 41 11 0.66

10 Hsiung(China-WHLCS)[24] 2010 Asian Adenocarcinoma HB 295 19 48 22 65 104 37 0.68

11 MiKi(Japan)[25] 2010 Asian Adenocarcinoma MIXED 2904 291 498 215 696 890 314 0.30

12 MiKi(Japan(replication))[25] 2010 Asian Adenocarcinoma HB 8201 157 273 95 2830 3664 1182 0.94

13 MiKi(Korea)[25] 2010 Asian Adenocarcinoma HB 2015 174 277 106 567 692 199 0.60

14 Hu(China)[26] 2011 Asian Adenocarcinoma HB 13701 1148 2155 1020 3231 4533 1614 0.72

PB: population based; HB: hospital based
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Test of heterogeneity

Significant heterogeneity existed in four genetic models

(GG versus TT, GT versus TT, TG + GG versus TT,

2GG + TG versus 2TT + TG) of the TERT rs2736100

polymorphism (Table 2). However, stratification based

on the source of controls reduced the heterogeneity in

the hospital-based controls subgroups (GG versus TT: P

heterogeneity = 0.949, I2 = 0.0%; GT versus TT: P heterogene-

ity = 0.892, I2 = 0.0%; TG + GG versus TT: P heterogeneity

= 0.963, I2 = 0.0%; 2GG + TG versus 2TT + TG; P het-

erogeneity = 0.960, I2 = 0.0%). When patients were strati-

fied based on ethnicity, heterogeneity disappeared in the

European (GT versus TT: P heterogeneity = 0.266, I2 =

19.2%; TG + GG versus TT: P heterogeneity = 0.077, I2 =

42.1%). In the analysis of the cancer type subgroups,

heterogeneity disappeared in the glioma (GT versus TT:

P heterogeneity = 0.138, I2 = 35.0%).

Cumulative meta-analysis

Cumulative meta-analyses were also conducted using

the eligible studies sorted by case sample size (Figure 5).

There is no obvious change in the 95% confidence inter-

vals with increasing sample size.

Assessment of bias

The Begg’s funnel plot and Egger’s test were performed

to assess the publication bias (Figure 6). The results did

not show any evidence of publication bias (t = 1.03, P =

0.313 for GG versus GT + TT), and the 95% confidence

interval (95% CI: -0.49, 1.47) included zero, indicating

no publication bias. Additionally, in all genetic models,

the results did not show evidence of publication bias.

Discussion
It is well known that single nucleotide polymorphisms

(SNPs) are the most common sources of human genetic

Table 4 Stratified analyses of the TERT rs2736100 polymorphism on adenocarcinoma

Variables GG versus TT GT versus TT Dominant model Recessive model Additive model

OR(95%CI) P
a OR(95%CI) P

a OR(95%CI) P
a OR(95%CI) P

a OR(95%CI) P
a

Total 1.85(1.72-1.98) 0.117 1.44(1.31-1.59)b 0.037 1.56(1.42-1.71)b 0.030 1.50(1.41-1.60) 0.447 1.36(1.31-1.41) 0.169

Source of control

Population based 2.36(1.96-2.83) 0.515 1.71(1.48-1.98) 0.052 1.86(1.62-2.13) 0.078 1.64(1.41-1.92) 0.648 1.52(1.39-1.65) 0.497

Hospital based 1.74(1.59-1.90) 0.532 1.34(1.24-1.44) 0.954 1.44(1.34-1.54) 0.875 1.45(1.34-1.57) 0.454 1.32(1.26-1.38) 0.610

a
P value of Q-test for heterogeneity test
bRandom-effects model was used when P value for heterogeneity test <0.05; otherwise, fix-effects model was used

Figure 4 Influence analysis for GG versus GT/TT in the overall meta-analysis. This figure shows the influence of individual studies on the

summary OR. The middle vertical axis indicates the overall OR and the two vertical axes indicate the 95% CI. Open circles indicate the pooled

OR when the study indicated on the left is omitted from the meta-analysis. The lines indicate the 95% CI values when the study indicated is

omitted from the meta-analysis.
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Figure 5 Results of the cumulative meta-analysis of associations between the TERT rs2736100 polymorphism and cancer risk in the

recessive model. The studies were sorted based on case sample size (small to large).

Figure 6 Funnel plot of the TERT rs2736100 polymorphism and cancer risk data for publication bias.
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variation, which may contribute to an individual’s sus-

ceptibility to cancer [37]. Thus genetic susceptibility to

cancer has been extensively studied in the scientific

community. A single nucleotide polymorphism (SNP)

rs2736100 located in intron 2 of TERT, has been

hypothesised to be associated with the risk of cancer

development by many researchers, however, the results

are conflicting and heterogeneous. Here, we analyzed

pooled data from case-control studies to determine the

role of TERT rs2736100 polymorphism in cancer sus-

ceptibility. In the meta-analysis conducted on 23032

cases and 38274 controls, TERT rs2736100 polymorph-

ism was found to be associated with a significantly

increased cancer risk. In the subgroup analyses by can-

cer type, ethnicity and source of controls, increased can-

cer risk in all genetic models was also found.

A number of well-designed genome-wide association

studies (GWAS) have implicated variants at the 5p15.33

locus (containing the TERT gene) in cancer risk at sev-

eral different sites; lung cancer, basal cell carcinoma and

pancreatic cancer show strong associations, while blad-

der, prostate and cervical cancer as well as glioma show

risk alleles in this region [38]. The biology of TERT

makes it a compelling candidate gene for factors that

influence cancer risk [39] and the TERT gene has been

recognized as one of the most common tumor markers.

The TERT gene is located on the short (p) arm of chro-

mosome 5 at position 15.33 which is the reverse tran-

scriptase component of telomerase and the expression

of the functional TERT protein is a prerequisite for

acquisition of telomerase activity. Telomerase is a ribo-

nucleoprotein enzyme that synthesizes the TTAGGG

telomeric repeat sequences that are essential for geno-

mic stability [40,41]. Activation of telomerase has been

implicated in human cell immortalization and cancer

cell pathogenesis and telomerase reexpression is a key

factor in cancer cell biology, enabling malignant cells to

proliferate indefinitely [7]. The commonly observed high

expression of telomerase in lung cancer suggests that

TERT may have an important role in lung tumorigenesis

[7,42-44]. Telomerase activity is present in most glioma

samples while absent in normal brain tissues [45]. TERT

expression also correlates with glioma grade and prog-

nosis [46,47]. Moreover, the reduction in telomerase

activity may inhibit glioma cell growth [48].

Telomerase and the control of telomere length are

intimately linked to the process of tumourigenesis in

humans [38]. The association between TERT poly-

morphisms (rs401681 and rs2736098) and shorter tel-

omere length has been recently reported [19]. The

type of alteration (short vs. long telomere length)

linked to a poorer survival might depend on the

tumor type [49]. However, the functional significance

of the SNP rs2736100 was not clear. TERT rs2736100

polymorphism may contribute directly to disease pre-

disposition by modifying the function of TERT or is

in highly linkage disequilibrium (LD) with other

nearby biologically plausible and disease-causing

mutations.

Adenocarcinoma is the most common histologic type

of lung cancer and the relative proportion of ADC has

steadily risen. The strongest risk association was

observed between the TERT rs2736100 polymorphism

and adenocarcinoma in all genetic models. TERT gene

amplification occurred in 57% of NSCLCs, but was

more common among ADCs (75%). TERT gene amplifi-

cation is responsible for TERT mRNA overexpression in

a majority of ADCs, while epigenetic factors at the tran-

scriptional or post-transcriptional levels significantly

affect TERT expression in NSCLC cells [50]. The re-

expression of TERT may indicate progression from

bronchiolo-alveolar carcinoma to adenocarcinoma

[7,51].

There are some limitations of this meta-analysis that

should be discussed. First, misclassifications of the histo-

logic type of the cancers reported may influence the

results. Second, the lack of detailed information, such as

age and sex of the patients, in some studies limited

further stratification, and a more accurate OR would be

corrected for age, sex and other factors that are asso-

ciated with cancer risk. Third, in our meta-analysis, the

origins of heterogeneity may include many factors, such

as the differences in control characteristics and diverse

genotyping methods. In addition, the small sample size

(<100 cases and controls) studies appear to overestimate

the true association because of deficiencies in statistical

power.

Based on the limitations of the present study listed

above, detailed studies are warranted to confirm our

findings. Nevertheless, our meta-analysis has some

advantages. First, the well-designed search and selection

method significantly increased the statistical power of

this meta-analysis. Second, the distribution of genotypes

in the controls was consistent with Hardy-Weinberg

equilibrium (P > 0.01) in all studies. Third, the results

did not show any evidence of publication bias.

Conclusions
The overall results of this meta-analysis have shown that

the TERT rs2736100 polymorphism is associated with

cancer risk. Further functional studies between this

polymorphism and cancer risk are warranted.
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