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The Theil–Sen estimator in a

measurement error perspective∗
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Abstract: In a simple measurement error regression model, the classical least
squares estimator of the slope parameter consistently estimates a discounted
slope, though sans normality, some other properties may not hold. It is shown
that for a broader class of error distributions, the Theil–Sen estimator, albeit
nonlinear, is a median-unbiased, consistent and robust estimator of the same
discounted parameter. For a general class of nonlinear (including R−,M− and
L− estimators), study of asymptotic properties is greatly facilitated by using
some uniform asymptotic linearity results, which are, in turn, based on conti-
guity of probability measures. This contiguity is established in a measurement
error model under broader distributional assumptions. Some asymptotic prop-
erties of the Theil–Sen estimator are studied under slightly different regularity
conditions in a direct way bypassing the contiguity approach.

1. Introduction

For the simple regression model Y = θ + βx + e, with nonstochastic regressors,
the estimator of the slope parameter β based on the Kendall tau statistic, known
as the Theil–Sen estimator (TSE), is robust, median-unbiased and it provides a
distribution-free confidence interval for β (Sen [11]). When the regressors are them-
selves stochastic and, in addition, they are subject to measurement errors (ME),
like the classical least squares estimator (LSE), the TSE does not estimate the
slope unbiasedly or even consistently. The LSE, under some additional regularity
assumptions, estimate a discounted regression parameter γ = κβ, where the dis-
counting factor κ is the variance ratio of the unobserved and observed regressors.
In this ME setup, there are some basic qualms:

(i) Sans the normality of the errors, when does the LSE in a ME setup estimate
γ consistently and median-unbiasedly?

(ii) In the same ME setup, when does the TSE estimate γ consistently and
median-unbiasedly?

Researchers in the past have relied heavily on normality of the errors including the
ME component (Fuller [1]), albeit in real applications such stringent assumptions
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are rarely tenable. A Box-Cox type transformation on either variable may not only
distort the form of the regression line but also complicate the error structures.
Hence, it seems more reasonable to look into the usual ME model without the nor-
mality of errors or even the finiteness of the error variances; the latter aspect is
important from robustness perspectives. The present study is mainly a characteri-
zation of the TSE in a ME setup where the normality of errors is dispensed with
less stringent regularity assumptions. An important by-product of this characteri-
zation of TSE is the scope for indepth study of various finite sample to asymptotic
properties of the TSE in a ME setup. Since the TSE is a member of a general
class of (regression) R-estimators (which unlike the TSE may not have a closed
expression), a formulation of the contiguity of probability measures in a ME setup
is incorporated here to facilitate the study of asymptotic properties of such general
nonlinear estimators. For the TSE, the contiguity based derivation of asymptotic
properties is, however, not that essential, and under slightly different regularity
conditions, a direct approach is presented along with.

In passing, we may remark that in the simple regression model, the TSE provides
a distribution-free confidence interval for the slope β. This procedure (Sen [11]) rests
on an independence clause whereby the permutation distribution of the Kendall tau
statistic under the hypothesis of no regression agrees with its null distribution. In
a ME setup, this simple equivariance result may not be generally true, and hence,
alternative approaches are to be developed for the confidence interval problem.

2. Preliminary notion

Consider a simple regression (without ME) model with dependent variable Yi and
(nonstochastic) independent or explanatory variable ti:

Yi = θ + βti + ei, i = 1, . . . , n;(2.1)

where θ is the intercept parameter, β is the slope parameter, the ei are independent
and identically distributed (i.i.d.) error variables with mean zero and finite variance
σ2
e , and t1, . . . , tn are known regression constants, not all equal. In this setup, the

LSE of slope parameter β can be expressed as

β̂n =

∑
1≤i<j≤n(Yj − Yi)(tj − ti)∑

1≤i<j≤n(tj − ti)2
.(2.2)

Set S = {1 ≤ r < s ≤ n : ts �= tr} and define divided differences and relative
weights as

Zij = (Yj − Yi)/(tj − ti),

= β + (ej − ei)/(tj − ti) = β + Zo
ij , say,

wij = (tj − ti)
2
/ ∑

1≤r<s≤n

(ts − tr)
2,(2.3)

for (i, j) ∈ S. Then, we have

β̂n =
∑

{(i,j)∈S}
wijZij

= β +
∑

{(i,j)∈S}
wijZ

o
ij .(2.4)
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Thus, whenever ei has a finite variance σ2
e , even without the normality of the errors,

Eβ̂n = β and

Var(β̂n) = σ2
e

/ n∑
i=1

(ti − t̄n)
2.(2.5)

This representation reveals that the LSE is very sensitive to outliers and has low
efficiency for heavy-tailed distributions, along with some other undesirable prop-
erties (Sen [11]). By contrast, the TSE of β is simply given by the median of the
Zij , (i, j) ∈ S (Sen [11]). This estimator, basically being a median of some depen-
dent, non-i.i.d. but symmetrically distributed divided differences, exhibits greater
robustness for outliers, error contamination etc. Let us consider next a ME setup
and appraise the extent to which the properties of LSE and TSE are compromised.

3. The ME model

Let us consider a motivating illustration. It is of interest to regress Y , the systolic
blood pressure (SBP) onW , the body mass index (BMI). Even for the same person,
the SBP is known to vary over time or other extraneous factors and is also subject to
ME due to recording instrument. Likewise, the BMI is measured indirectly through
other physiological measurements and is thereby subject to intrinsic as well as
instrumental errors. As such consider an observable set of n independent stochastic
vectors (Yi,Wi), i = 1, . . . , n where

Yi = Y o
i + ηi,Wi = Xi + Ui,

Y o
i = μy + βXi + ei, Xi = μx + Vi, i = 1, . . . , n,(3.1)

and the error components Ui, Vi, ei and ηi are mutually independent. Note that ηi
and Ui are the measurement errors on the Y o and X variables respectively, while
ei, Vi relate to intrinsic chance error for the unobservable Y o

i , Xi. Here, ηi does not
affect the regression but Ui has an affecting role in the regression. This model is
known as error in variables (EIV) models, considered by Fuller [1] and others. The
contemplated ME model is also known as the simple structural linear relation model
with model error, and we refer to Hsiao [5] and Kukush and Zwanzig [8] where other
pertinent references are cited.

When all the error components are assumed to be normally distributed (entailing
finite variances σ2

e , σ
2
η, σ

2
u and σ2

v), the regression of Y on W is linear with the slope
parameter γ = κβ where the discounting factor κ, 0 ≤ κ ≤ 1, is given by

κ = σ2
v/{σ2

v + σ2
u}.(3.2)

Further, in this normal error model, Y − γW and W are stochastically indepen-
dent. This simple resolution may not workout when the errors are not all normally
distributed: even if the the error variances are finite, Y − γW and W may be un-
correlated but not necessarily independent. Even the uncorrelation may not hold if
the error variances are not finite.

Assuming the error variances to be finite, if we blindly use the LSE of Y on W
it is given by

γ̂nL =

∑
1≤i<j≤n(Yi − Yj)(Wi −Wj)∑

1≤i<j≤n(Wi −Wj)2
.(3.3)

Note that the LSE is a ratio of two U -statistics (Hoeffding [4]), and hence, under
finite variances of the errors, it converges almost surely (a.s.) to γ as n→ ∞. Thus,
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normality of the errors is not crucial for the LSE to be (strongly) consistent for γ.
However, without normality of errors, strictly unbiasedness or even median unbi-
asedness of the LSE may not hold. To gain further insight, we follow an estimating
equation (EE) approach. Recall that (Yi,Wi) are are i.i.d. stochastic vectors with
Cov(Yi,Wi) = Cov(Y o

i + ηi, Xi + Ui) = Cov(Y o
i , Xi) = βσ2

v . Thus, if we let for a
given (real) b,

Sn(b) =
∑

1≤i<j≤n

(Wi −Wj)(Yi − bWi − Yj + bWj)

=
∑

1≤i<j≤n

(Wi −Wj)(Yi − Yj)− b
∑

1≤i<j≤n

(Wi −Wj)
2.(3.4)

then Sn(b) is a strictly monotone decreasing function of b ∈ R. Further note that

E(Wi −Wj)
2 = 2(σ2

u + σ2
v) = 2σ2

w.(3.5)

Hence, EβSn(b) = 0 only when b = βσ2
v/(σ

2
v + σ2

u) = γ. Thus, the graph of
(b, Sn(b)), b ∈ R crosses the abscissa at b = γ̂nL which is the LSE.

For nonnormal errors, Sn(γ) may not have a symmetric distribution around 0,
and hence, the median-unbiasedness of the LSE may not hold. Also, since the LSE
is the ratio of two U -statistics, it may not be unbiased for γ. However, by Theorem
7.5 of Hoeffding [4] under finite 4th order moments of all the errors, the asymptotic
normality of the LSE follows readily. This result clearly depicts the high degree of
nonrobustness of LSE to outliers, error contamination and its inefficiency for heavy-
tailed distributions. Moreover, for nonnormal errors, the LSE may not provide an
exact confidence interval for γ.

Motivated by this less than desired performance characteristics of the LSE in
a ME setup, we intend to study the performance of the TSE. In passing, we may
remark that ηi being independent of ei, Ui, Vi can easily be absorbed in the ei
without affecting the relation with Ui, Vi, and hence, in the sequel, we omit ηi
in the basic model (3.1) and work with the Yi instead of the Y o

i . Though this
adjustment does not affect the estimation of the parameters, in the expression for
their standard errors, η will add additional variability. The convoluted density of
ei and ηi takes care of that adjustment.

We follow the EE approach for the TSE too. As in Sen [11], we consider the
following form of the aligned Kendall tau statistic, convenient to deal with in the
contemplated ME model. For real b ∈ R, we set

Kn(b) =
∑

1≤i<j≤n

sign((Yi − Yj)− b(Wi −Wj))sign(Wi −Wj).(3.6)

Since sign(ab) = sign(a)sign(b), we rewrite Kn(b) as

Kn(b) =
∑

1≤i<j≤n

sign(Zij − b), b ∈ R,(3.7)

where Zij = (Yi−Yj)/(Wi−Wj). As such, Kn(b) is nonincreasing (and a step down
function) in b.

The crux of the problem is therefore to study the nature of EβZij − b in a ME
model and develop an estimating equation accordingly.
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4. Rationality of TSE in ME model

Let us define Uij = Ui − Uj , Vij = Vi − Vj , eij = ei − ej , so that we have

Yi − Yj − b(Wi −Wj) = eij + βVij − b(Uij + Vij)

= eij + (β − b)Vij − bUij ,(4.1)

for all 1 ≤ i < j ≤ n. Recall that eij , Uij , Vij are all independent and each one
has a symmetric distribution around 0. However, this symmetry is not enough to
guarantee the desired pivotal result. We denote the density function of the eij , Uij

and Vij by fe(·), fu(·) and fv(·) respectively. While we allow fe(·) to be completely
arbitrary but symmetric about 0, for the other two densities, in view of their sym-
metric form around 0, we make the following Assumption A, linking them to a
common member of the location-scale family of densities; the conventional normal
case is a particular one in this general family:

fu(x) = λ−1
u fo(x/λu),

fv(x) = λ−1
v fo(x/λv),(4.2)

where fo(·) is a symmetric density free from nuisance parameter(s) and λu, λv are
unknown scale parameters.

If we assume that the density fo(·) admits of a finite variance say σ2
o then

var(Uij) = λ2uσ
2
o ; var(Vij) = λ2vσ

2
o .(4.3)

The last two equations also imply that U∗
ij = Uij/λu and V ∗

ij = Vij/λv both have
the common density fo(·) and hence are identically distributed; this feature remains
in tact even if σo does not exist. Further, whenever σ2

o is finite, we note that

κ =
σ2
v

σ2
v + σ2

u

=
λ2v

λ2v + λ2u
.(4.4)

Henceforth, we shall express γ in terms of λu and λv.
In the above setup, if we let b = γ = κβ then

eij + (β − γ)Vij − γUij

= eij + β[(1− κ)Vij − κUij ],(4.5)

where eij is independent of both Uij , Vij . Further, Vij = (λv)V
∗
ij has the same

(symmetric) density as (λv)U
∗
ij = [Uij(λv/λu)]. Moreover, note that (1 − κ)/κ =

λ2u/λ
2
v so that

Vij/λv − [κ/(1− κ)](U∗
ij)[λu/λv]

= V ∗
ij − [κ/(1− κ)]1/2U∗

ij .(4.6)

Further, noting that U∗
ij and V

∗
ij are i.i.d. both having a common symmetric density

fo(·), we conclude that the joint density of (U∗
ij , V

∗
ij) is totally symmetric around

the origin 0. As such, if we let

Lij = V ∗
ij −

√
κ/(1− κ)U∗

ij ,

Qij = U∗
ij +

√
κ/(1− κ)V ∗

ij ,(4.7)
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we may express (Lij , Qij) = (U∗
ij , V

∗
ij)P, where

√
(1− κ)P is an orthogonal ma-

trix. Therefore, invoking the total symmetry of the joint density of (U∗
ij , V

∗
ij), we

conclude that (Lij , Qij) has a totally symmetric joint density around the origin.
If the independent U∗

ij , V
∗
ij were normally distributed, Lij , Qij would have been in-

dependent too. However, sans the normality of the U∗
ij , V

∗
ij , the Lij , Qij would be

uncorrelated but not necessarily independent. Hence, this characterization of total
symmetry of the joint distribution of Lij , Vij is the best we could get and that
serves our purpose too. Next, we note that

Uij + Vij =
√
(1− κ)/κλvU

∗
ij + λvV

∗
ij

= λv
√

(1− κ)/κQij

= λuQij .(4.8)

and at b = κβ,

eij + β[(1− κ)λvV
∗
ij − κλuU

∗
ij ]

= eij + βλv(1− κ)Lij(4.9)

has a symmetric distribution around 0. This is also a linear combination of eij
and Lij (which are independent), and Lij is orthogonal to Qij . Thus, we conclude
that for any combination (eij , Lij , Qij) = (e, l, q), we can define an orbit O of 16
mass points: (e, l, q), (−e, l, q), (e,−l, q), (e, l,−q), (−e,−l, q), (−e, l,−q), (e,−l,−q),
(−e,−l,−q), (e, q, l), (−e, q, l), (e,−q, l), (−e,−q, l), (e, q,−l), (−e,−q, l), (e,−q,−l),
(−e,−q,−l) such that the conditional distribution of (eij .Lij , Qij) on this orbit is
discrete uniform with a (conditional) probability mass 1/16 attached to each of
these 16 points. Of these 16 points, 8 lead to +1 and remaining 8 to −1 for the
kernel. Therefore, first taking conditional expectation over an orbit and then inte-
grating over all orbits, it can be concluded that under Assumption A,

Eβ{Kn(γ)} = 0.(4.10)

Along with this result, the monotonicity of Eβ [Kn(b)] in b provide the rationality
of the estimating equation Kn(b) = 0 which yields the TSE of γ in the ME model.
As such, the TSE is denoted by

γ̂nT = median{Zij : (i, j) ∈ S}.(4.11)

We may also set γ̂nT = γ+med{eij+βλv(1−κ)Lij : (i, j) ∈ S}, where in view of the
stochastic nature of the Wi and their continuous distributions, S can be replaced
by the set of all

(
n
2

)
pairs (1 ≤ i < j ≤ n). Further, note that Kn(γ+ ε)/

(
n
2

) → δ(ε)
a.s., as n → ∞, where δ(ε) is negative or positive according as ε is positive or
negative. This result follows from the a.s. convergence of U-statistics. Hence, we
arrive at the main result of this section.

Theorem 4.1. Under Assumption A, the estimating equation Kn(b) = 0 leads
to the TSE γ̂nT which is a strongly consistent estimator of γ.

5. Median-unbiasedness of TSE

Note that Kn(b) is invariant under any any change of μy, μx, and hence, without
any loss of generality, we set μy = μx = 0. As such, for Kn(γ), we work with the



230 P.K. Sen and A.K.M.E. Saleh

variables (ei + β[(1− κ)Vi − κUi], Ui + Vi) = (Li, Qi), say i = 1, . . . , n. We denote
by

Kn(γ) = Kn((L1, Q1), . . . , (Ln, Qn)).(5.1)

Then, by arguments (on total symmetry) similar to the preceding section, we claim
that under Assumption A,

Kn((L1,−Q1), . . . , (Ln,−Qn)) = −Kn((L1, Qi), . . . , (Ln, Qn)),(5.2)

so that the distribution of Kn(γ) is symmetric about 0. This, in turn implies that

Pβ{γ̂nT ≤ γ} = Pβ{Kn(γ) ≥ 0}
= Pβ{Kn(γ) ≤ 0} = Pβ{γ̂nT ≥ 0}.(5.3)

so that the TSE is median-unbiased for γ. In the above derivation of median-
unbiasedness of TSE, we have tacitly bypassed the role of finite variances of ei, Ui, Vi,
and hence, the results pertain to a general class of densities, including the Cauchy,
where the variances may not necessarily exist. We may also remark that the (Yi,Wi),
i ≥ 1, are i.i.d. stochastic vectors, and hence, for every (i, j) ∈ S, Zij has a symmet-
ric distribution; we denote this common distribution by G(z), z ∈ R. Using then
the moment properties of sample quantiles, as extended to U -processes, it can be
shown that if G(·) admits of a finite absolute moment of order δ for some δ > 0,
not necessarily an integer, then for every n ≥ 4k/δ, the TSE has a finite (absolute)
moment of order k. Hence, for n ≥ 4/δ, TSE is unbiased for the discounted slope
parameter γ. For i.i.d.r.v, this moment result of sample quantile is due to Sen [10],
and the rest of the proof follows by noting that the tail probability of the TSE is
dominated by the tail probability of median{Z12, . . . , Z2m−1,2m} where m is the
largest integer contained in (n+ 1)/2.

6. General asymptotics of TSE

Here, in the ME setup, we discuss the asymptotic results without incorporating
contiguity of probability measures. Note that the kernel in the definition of Kn(b)
is bounded so that moments of all finite order exist. Because of the non-increasing
(step-down) property of Kn(b), b ∈ R, and the boundedness of the kernel in the
Kendall tau statistic, the asymptotic normality and some other properties of TSE
are studied by relatively simpler and direct analysis, along the lines in Section 4.

First, note that EβKn(b) is a continuous and monotone decreasing function of
b ∈ R. Further, if we set b = bn = γ + n−1/2ξ, for some fixed ξ, then for any pair
(i, j),

eij + (β − bn)Vij − bnUij

= eij + βλv(1− κ)Lij − ξλv
√
1− κ√
nκ

Qij

= eij + βλv(1− κ)Lij − n−1/2ξλuQij ,(6.1)

where the eij , Lij , Qij are all defined in Sections 1 – 4. In the following, for simplicity,
we let ξ > 0 (and a similar treatment holds for ξ < 0). As such, if we consider a
specific pair (i, j) in the summand of Kn(γ+n−1/2ξ), its expectation comes out as

− 4P{Qij > 0; −β(1− κ)λvLij ≤ eij

≤ −β(1− κ)λvLij + n−1/2ξλuQij}.(6.2)

We denote the joint distribution function of (Lij , Qij) by H
∗(l, q), (l, q) ∈ R2. Also,

as in Section 4, we denote the density of eij by fe(·) Further, assume that
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Assumption B: The following functional exists:

A∗ =

∫
R

∫ ∞

0

qfe(β(1− κ)λvl) dH
∗(l, q).(6.3)

It is easy to show that

λuA
∗ = (1/2)E{fe(β((1− κ)Vij − κUij)|Uij + Vij |}.(6.4)

In the case of no measurement error, λu = 0 and Ui = 0 (a.e.), and hence, κ = 1,
so that the last expression reduces to

(1/2)fe(0)E|Vij |.(6.5)

Even this expression is different from the case where the xi are nonstochastic, as
treated in Section 2. Further, note that

fe(0) =

∫
R
f∗2e (e) de,(6.6)

where f∗e (·) is the pdf of ei. In passing, we may remark that a sufficient condition
for A∗ to be finite is that H∗(·) admits of a finite first order moment and fe(·) is
bounded a.e. A less restrictive condition would be to assume the integrability of
Qijfe(β(1− κ)λvLij). Then, by standard manipulations, along the lines of Section
4, it follows that (6.2) is asymptotically

− 2n−1/2A∗ξλu + o(n−1/2).(6.7)

Next, we note that for any fixed ξ,

P{√n(γ̂nT − γ) ≤ ξ} ≤ P{√nKn(γ + n−1/2ξ) ≤ 0},(6.8)

and a lower bound to the left hand side of (6.5) is the right hand side with ≤ being
replaced by strict inequality (< 0). As such, for large n, we can work with either the
upper or lower bound in (6.5). Since, for any b, Kn(b) is a U -statistic based on a
bounded kernel of degree 2, its asymptotic normality holds with appropriate mean
and variance functions. Since, here b = bn = γ + ξn−1/2, the asymptotic variance
can be replaced by the corresponding expression at b = γ but the mean has to be
adjusted according to (6.2). As such, (6.8) is asymptotically equivalent to

P{√n[Kn(γ + ξ/
√
n)− EKn(γ + ξ/

√
n)] ≤ 2ξλuA

∗}.(6.9)

Further, note that as n→ ∞,

nVar(Kn(γ)) → 4ν2,(6.10)

where ν2 is the variance of the first order kernel corresponding to the kernel of
Kn(γ) (Hoeffding [4]).

We need to address ν2 a bit more elaborately than in the conventional regression
model, treated in Section 2. Note that (Yi,Wi) are i.i.d. random vectors, and hence,
Y ∗
i = Yi − γWi, i = 1, . . . , n are i.i.d.r.v.. Therefore Y ∗

i − Y ∗
j has a symmetric

distribution around 0. On the other hand, in the ME setup, as has been discussed
earlier, Y ∗

i −Y ∗
j andWi−Wj are not generally independent (but are uncorrelated);

they are independent in the case where the errors Ui, Vi are normally distributed
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(irrespective of the distribution of eij). Keeping this in mind, we denote the joint
distribution function of (Y ∗

i ,Wi) by H(y∗, w), for (y∗, w) ∈ R2. Then we note that

E[sign((Y ∗
i − Y ∗

j )(Wi −Wj))|Y ∗
i ,Wi]

= 4H(Y ∗
i ,Wi)− 2Hi(Y

∗
i )− 2H2(Wi) + 1,(6.11)

where H1(·) and H2(·) refer to the marginal distribution functions. Further, note
that by arguments presented in Section 4,

E[4H(Y ∗
i ,Wi)− 2H1(Y

∗
i )− 2H2(Wi) + 1] = 0.(6.12)

As a result, we obtain that

ν2 = E{[4H(Y ∗
i ,Wi)− 2H1(Y

∗
i )− 2H2(Wi) + 1]2}

=

∫ ∫
R2

[4H(y, w)− 2H1(y)− 2H2(w) + 1]2 dH(y, w).(6.13)

Note that when Y ∗
i ,Wi are independent, H(y, w) = H1(y)H2(w), and hence, the

above expression reduces to 1/9, so that 4ν2 = 4/9, the leading term in the variance
of

√
nKn(0) under the null hypothesis of independence of Y ∗

i ,Wi.
Having checked the expression (6.13) for ν2 in a general ME setup, and appealing

to the celebrated theorem of Hoeffding [4] on the asymptotic normality of a U -
statistic when the parameter is stationary of order 0, we complete the proof of
asymptotic normality of the TSE in ME model by using (6.8) and (6.9). Hence, we
have the following.

Theorem 6.1 . Under Assumptions (A,B), for every fixed ξ ∈ R, as n→ ∞,

P{√n(γ̂nT − γ) ≤ ξ} → Φ(ξ/ζ),(6.14)

where Φ(x), x ∈ R is the standard normal distribution function and

ζ2 = ν2κ/{λvA∗(1− κ)}2
= ν2/{A∗2λ2u}.(6.15)

The last result yields, as a special case, the asymptotic normality of the TSE
in the nonstochastic regressor case as treated in Sen [11] and elsewhere, albeit the
expression for ν2 could be different as the regressors are not necessarily distinct.

7. Contiguity in ME models

We conclude this study with a general observation on the contiguity of probability
measures in the ME model in Section 3; this result pertains to general linear rank
statistics as well as other likelihood based ones. In the hypothesis testing context,
a similar result for (partially informed) stochastic regressors was established by
Ghosh and Sen [2]). More recently, Jurečková, Picek and Saleh [6] studied the
testing problem in a ME setup using regression rank scores. Also, Saleh, Picek and
Kalina [9] have studied nonparametric estimation in ME models, putting major
emphasis on numerical studies. Under the ME setup, the verification of contiguity
is simpler and neater too. Further, in view of the monotonicity of Kn(b) in b ∈ R,
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the uniform asymptotic linearity results presented in detail in Jurečková and Sen
[7] may not be needed in this specific case.

We use the same notation as in Section 3, and note that the observable r.v.s
(Yi,Wi), i = 1, . . . , n are identically distributed. We denote the (bivariate) density
function of (Yi,Wi) by fY,W (y, w), (y, w) ∈ R2. Also, let fX(x), x ∈ R be the
marginal density of Xi (unobservable). Then, we can write

fY,W (y, w) =

∫
R
f(y, w|x)fX(x) dx.(7.1)

Next, we write f(y, w|x) = f(y|w, x)f(w|x). At this stage, WLOG, we take μy =
0 = μx, and note that given W,X, the conditional density of Y depends only on
X. This along with (3.1) lead to

fY,W (y, w) =

∫
R
fe(e− βv)fU (w − v)fV (v) dv,(7.2)

where y = βv + e, x = v, w = u+ v. Therefore, we have

(∂/∂β)fe,w(e, u+ v;β)

=

∫
R
[(∂/∂β) log fe(e− βv)]fe(e− βv)fU (w − v)fV (v) dv,(7.3)

provided the usual regularity conditions which permit the interchange of integration
(over v) and differentiation (with respect to β) hold. Further, note that the partial
derivative (wrt β) inside the above integral is equal to −v(∂/∂e) log fe(e−βv), and
we write this as vψ(e− βv), where

ψ(e− βv) = −(∂/∂e)fe(e− βv)/fe(e− βv)(7.4)

is the usual Fisher score function associated with the density fe(·). Also, note that

f(v|e, w) = fe(e− βv)fU (w − v)fV (v)∫
R fe(e− βv)fU (w − v)fV (v) dv

.(7.5)

As a result, (∂/∂β) log fe,w(e, w;β) can be written as

ψ∗(e, w) =
∫
R
vψ(e− βv)f(v|e, w) dv.(7.6)

Thus, it is easy to show that the expected value of the left hand side of (7.6) is equal
to 0 (as it should be). Therefore, under the usual (Cramér) regularity conditions
on the pdf fe(·), fU (·) and fV (·) along with the following:

Assumption C: ψ∗(e, w) is square integrable.
It is easy to verify contiguity by invoking Le Cam’s First and Second lemma (viz.,
Hájek et al. [3], ch. 7). Moreover, using the Jensen inequality along with the Cauchy–
Schwarz inequality, it follows that

E[(∂/∂β) log fe,w(e, w;β)]
2 = E{[E(vψ(e− βv)|e, w)]2}

≤ E(V 2)E(ψ2(e− βV ))(7.7)

so that the finite fisher information of the score function associated with the pdf
fe(·) along with the finite second moment of W will provide a set of sufficient
conditions. The technical details are therefore omitted.
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In passing we may remark that for the TSE based on the Kendall tau statistic
having a bounded kernel, the contiguity based proof of asymptotic normality is not
needed, and the needed regularity Assumptions A, B are relatively less restrictive
than C. However, the last expression conveys an easily verifiable condition, albeit
under the finite variance of the regressor; for fe(·) the finite Fisher information
suffices. In Assumption B, the finiteness of the variance of V is not needed. For
general linear rank statistics based R-estimator in a general ME model, the un-
derlying score generating function may not be bounded, and we may not have a
closed expression for the estimator. In such a case, the contiguity based proof of
asymptotic normality should be a more plausible approach. We intend to pursue
this in a subsequent communication.
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