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Basic function method is developed to treat the incompressible viscous flow. Artificial compressibility 
coefficient, the technique of flux splitting method and the combination of central and upwind schemes 
are applied to construct the basic function scheme of trigonometric function type for solving 
three-dimensional incompressible Navier-Stokes equations numerically. To prove the method, flows in 
finite-length-pipe are calculated, the velocity and pressure distribution of which solved by our method 
quite coincide with the exact solutions of Poiseuille flow except in the areas of entrance and exit. After 
the method is proved elementary, the hemodynamics in two- and three-dimensional aneurysms is re-
searched numerically by using the basic function method of trigonometric function type and unstruc-
tured grids generation technique. The distributions of velocity, pressure and shear force in steady flow 
of aneurysms are calculated, and the influence of the shape of the aneurysms on the hemodynamics is 
studied. 

basic function, unstructured grid, aneurysm, viscous incompressible flow, artificial compressibility, flux splitting 

Nowadays numerical methods can be mainly classified 
into two categories: One is to discrete differential op-
erator on structured grids such as the difference 
method[1], spectral method[2], the other is to discrete in-
tegral operator on unstructured grids, such as finite ele-
ment method[3], finite volume method[4]. The difference 
method has been widely used in the field of computa-
tional aerodynamics for a long time. And its analytic 
background was already carefully studied in the past 
years. The difference method is highly-adaptive, simple 
and effective. However, it has its own limitations, such 
as it is difficult to deal with complex boundaries for the 
coordinate transform, and joined-domain methods 
should be introduced, and it is also not easy to employ 
the adaptive remeshing technique in the difference 
method. Although the finite element method (FEM) has 
proved its superiority to the difference method in the 

aspects described above, FEM will cost much more CPU 
time and memory than difference method[5]. 

To enrich and develop the existing methods, Wu 
Wangyi proposed a new numerical method: basic func-
tion method, and it has been successfully applied to cal-
culate the inviscid compressible flow with good results[6]. 
The method directly discretes differential operator on 
unstructured grids. We use the expansion of basic func-
tion to approach the exact function. A lot of orthogonal 
and complete families of functions can be used as basic 
function, for example, polynomial and trigonometric 
function are in common use, and Legendre polynomial 
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and Chebyshev polynomial also can be selected as basic 
functions to construct different kinds of basic function 
schemes. To obtain the values of physical quantities at 
nodes, the governing equations of differential type are 
applied for basic function schemes, and the area coordi-
nate or volume coordinate is used for two- or three-di-                         
mensional problems. Utilizing the technique of flux 
splitting and the combination of central and upwind 
schemes, refs. [6－8] successfully construct the basic 
function scheme for solving inviscid compressible equa-
tions numerically and calculate many one-, two- and 
three-dimensional typical examples, and the accuracy 
and resolution of the shock waves are very satisfactory.  

In the previous studies of basic function method only 
inviscid compressible equations are considered. In this 
paper, the basic function scheme of incompressible vis-
cous flow is developed for the first time. Here we use 
trigonometric function as basic function because the 
basic function of trigonometric function type has special 
advantage in dealing with high-order derivatives, and it 
remains to have the same order of accuracy for all 
high-order derivatives. To solve the velocity and pres-
sure synchronously, we introduce Chorin’s artificial 
compressibility technique[9]. And the volume coordinate 
is used for three-dimensional problem. The first order 
basic function of trigonometric function type and the 
central and upwind schemes for derivatives are con-
structed successfully. Then we construct the basic func-
tion scheme of the trigonometric function type for solv-
ing three-dimensional incompressible Navier-Stokes 
equations numerically for the first time, which adopts 
the technique of flux splitting method and the combina-
tion of central and upwind schemes. Flows in fi-
nite-length-pipe and the hemodynamics in two- and 
three-dimensional aneurysms are studied numerically by 
using the basic function of trigonometric function type 
and unstructured grids generation technique. For steady 
flow, the distributions of velocity, pressure and shear 
stress in the aneurysms are calculated, and the influence 
of the shape of the aneurysms on the hemodynamics is 
studied. Here the unstructured grids are generated by a 
mixed method formed from advancing front method and 
Delaunay triangulation method. 

1  Generation of the unstructured grids 

There are two popular methods to generate the unstruc-
tured grids: One is Delaunay triangulation method[10,11], 

which enables to connect the formed points into tetrahe-
drons by Dirichlet tessellated principle and has virtues 
of high efficiency and steady generation process; the 
other is advancing front method[12,13], which generates 
surface grid points at first and then takes it as starting 
front, and moves into interior region. It can generate 
points automatically through the information provided 
by background grids and has virtue of controlling the 
distribution of grid scale, but its generation process is 
unsteady and efficiency of generation is low.  

From above, it can be concluded that advancing front 
method provides a good way to set points, while Delau-
nay triangulation is a good point-connecting method. 
Therefore, based on the above analysis, a new mixing 
method is proposed by Xie[7] in three-dimensional prob-
lems, which combine the advantage of both methods 
using advancing front method to set points and Delau-
nay triangulation to connect points. Similar considera-
tion in two-dimensional problems has been discussed in 
ref. [14]. We utilize this mixing method to generate the 
three dimensional unstructured grids in this paper. 

2  The basic function of the trigonometric 
function type 

As mentioned above, only trigonometric function is used 
as basic function in this paper. And the basic function 
scheme of first-order-precision trigonometric function is 
studied here emphatically. Comparing with that of high- 
order-precision, the formula of basic function scheme of 
first-order-precision is simpler with much less node 
number, so the CPU time and memory needed are the 
least. 

2.1  Approximation of exact function  

We use the expansion of basic function ( ) ( , , )n
i x y zφ  to 

approach the exact function f (x, y, z): 

 ( ) ( )

1
( , , ) ( , , ) ( , , ).

m
n n

i i i i
i

f x y z f x y z x y zφ
=

=∑  (1) 

In the formula above, ( ) ( , , )nf x y z  is the nth-order ap-
proximation of exact function, ( , , )i i if x y z  is the exact 

value on the node of element. Especially, ( ) ( , , )nf x y z  is 
equal to exact function ( , , )f x y z  on every node. Any 
orthogonal and complete family of functions may be 
used as basic function. The basic function in common 
use is polynomial[6,7] and trigonometric function[10]. 
When n is equal to different positive integer, different  
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order approximating function can be obtained, and m is 
the number of the nodes in elements. 

2.2  The central and upwind schemes for derivatives 
on unstructured grids 

In the following parts we will restrict our discussion to 
basic function of trigonometric function type. In three 
dimensional problems, in order to make the expression 
of formula more simple and convenient, volume coordi-
nate is applied. 
2.2.1  Introduction of volume coordinates.  We define: 
Li = Vi /V (i = 1, 2, 3, 4) as volume coordinate of point P 
in V. V is the volume of the whole tetrahedral element. Vi 
is the volume of the tetrahedral element constructed by 
P and other three vertices (except vertex i). 

Obviously, the four volume coordinates L1, L2, L3, L4 
satisfy L1 + L2 + L3 + L4 = 1, so only three of them are 
independent. 

The relationship between Li and Cartesian coordinates 
comes as follows:  
 ,i i i i iL a b x c y d z= + + +  (2) 
where 

 

1
1 1,  1 ,

6 6
1

1 1
1 11 ,   1 ,

6 6
1 1

j j j j j

i k k k i k k

l l l l l

j j j j

i k k i k k

l l l l

x y z y z

a x y z b y z
V V

x y z y z

x z x y

c x z d x y
V V

x z x y

= = −

= = −

 (3) 

and V is the tetrahedral volume. 
2.2.2  The construction of first order basic function of 
trigonometric function type and the expression for de-
rivatives.  When n = 1, eq. (1) can be rewritten as 

 
4

(1) (1)

1
( , , ) ( , , ) ( , , ),i i i i

i
f x y z f x y z x y zφ

=

=∑  (4) 

where (1) ( , , )i x y zφ  is the first order basic function of 
trigonometric function type. Its expression in volume 
coordinates is shown as follows: 

(1) 1 π π( , , ) 1 sin cos
2 2 2i i ix y z L Lφ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 (i = 1, 2, 3, 4). (5) 
The first order derivatives of f (1)(x,y,z) are 

 
(1)(1) 4

1
( , , ) ,i

i i i
ij j

f f x y z
X X

φ

=

∂∂
=

∂ ∂∑  

 1 2 3( ,  ,  ).X x X y X z= = =  (6) 

Considering eqs. (2) and (5), eq. (6) can be rewritten as 
(1) 4

1

π π π( , , ) cos sin ,
4 2 2i i i i i ji

ij

f f x y z L L B
X =

∂ ⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  

1 2 3 1 2 3( ,  ,  ,  ,  ,  ).X x X y X z B b B c B d= = = = = =   (7) 
The second order derivatives of f (1)(x,y,z) can also be 
deduced as 

 

2 (1) 2 4

2
1

2

π ( , , )
8

π πcos sin .
2 2

i i i
ij

i i ji

f f x y z
X

L L B

=

∂
=

∂

⎡ ⎤⎛ ⎞ ⎛ ⎞× −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑
 

(8)

 

Now let us show how to construct the formulas for de-
rivatives. Due to the need of physical problem, the cen-
tral scheme and the upwind scheme are introduced.  
2.2.3  The first order central scheme (1C ).  Assume 
there are N tetrahedral elements around node n, and N 

different values of derivative ( 1,  2,  ,  )
iem

m
n

f i N
x

⎡ ⎤∂
=⎢ ⎥

∂⎣ ⎦
…  

on node n can be obtained, ei stands for the ith 
tetrahedral element around n. Utilize the weighted 

average method to obtain 
iem

m
n

f
x

⎡ ⎤∂
⎢ ⎥
∂⎣ ⎦

 on node n. Because 

the less the area of the triangular element, the closer the 

value of 
iem

m
n

f
x

⎡ ⎤∂
⎢ ⎥
∂⎣ ⎦

 to the exact value, so it is 

appropriate to choose 1/
ieA as the weighted coefficient. 

Now the first order central scheme of the derivative 
can be shown as follows: 

 
1

1

1 1 .
1

i

i

i

C e
m mN

m N m
i ej jn n

ei

f f
Ax x

A
=

=

⎡ ⎤ ⎡ ⎤∂ ∂
=⎢ ⎥ ⎢ ⎥

∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

∑
 (9) 

2.2.4  The first order upwind scheme (1U ).  To obtain 
the upwind scheme for derivative on unstructured grids, 
the upwind area of triangular element is introduced. We 
can easily understand the fact in physics: Only the up-
wind area has its effect on the value of upwind deriva-
tive on that node. 

Take the two-dimensional region shown in Figure 1 
for example. Assume that there are four elements ei (i =  

1,… , 4) in the region. If the upwind direction is parallel 
to the x-axis, we draw the perpendicular of the x-axis 
through node the n to split each triangular element 
around node into upstream region (shadow region) and  
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Figure 1   
 
downstream region. 

We introduce upwind coefficient ie
nα  on each node 

of every element. Shown as in Figure 1, for node 1, 1
ieα  

should be defined as the ratio of shadow region area 

ie xA  to the whole area ,
ieA  that is, 1 .i

i i

e
e x eA Aα =  In 

three-dimensional region, upwind coefficient should be 
the ratio of volumes. Only shadowy area is used to cal-
culate the upwind scheme of derivative.  

The first order upwind scheme of the derivative is 

 
1

1

1 .
i

i

i
i

i

U e
em mN
n

m e mN
i ej jnn n

ei

f f
Ax x

A

α
α

+

=

=

⎡ ⎤ ⎡ ⎤∂ ∂
=⎢ ⎥ ⎢ ⎥

∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

∑
 (10) 

If the downwind area is used to calculate, the first or-
der negative upwind scheme of the derivative could be 
obtained. 

Apparently, if we assign all upwind coefficients 1
ieα  

with value 1, the upwind scheme (10) will transfer into 
central scheme (9). 
2.2.5  The first order central scheme and upwind 
scheme of the derivative in three-dimensional unstruc-
tured grids.  According to the discussion above, we can 
construct the first order central scheme and upwind 
scheme of the derivative in three-dimensional unstruc-
tured grids. 

The first order central scheme and upwind scheme of 
the m order derivative are 

 

( )

1
(1)

1

1

1 1 3

1 1
1

1,  2,  3,  ,  ,  ,
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= = = =

∑
∑  

(11)
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 ( )1 1 31,  2,  3,  ,  ,  ,j x x x y x z= = = =  (12a) 
1

(1)

1

1

11
1

i
i

i
i

i

U e
em mN
n

m e mN
i ej jnn n

ei

f f
Ax x

A

α
α

−

=

=

⎡ ⎤ ⎡ ⎤−∂ ∂
=⎢ ⎥ ⎢ ⎥

∂ ∂−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

∑
 

 ( )1 1 31,  2,  3,  ,  ,  ,j x x x y x z= = = =  (12b) 

where m is equal to 1 or 2 in this paper. 

3  The basic function scheme for three- 
dimensional viscous incompressible Na-
vier-Stokes equations 

3.1  Governing equations 

The dimensionless Navier-Stokes equations of three- 
dimensional viscous incompressible flow can be written 
as follows (the body force is omitted here): 

 2

0,
1 .p

t Re

∇ ⋅ =
∂

+ ⋅∇ = −∇ + ∇
∂

v
v v v v

 (13) 

Here L, 2,  /  and U L U Uρ∞ ∞ ∞  are characteristic length, 
characteristic velocity, characteristic time and character-
istic pressure, respectively. Reynolds number is defined 
as / ,Re U Lρ μ∞=  and ρ, μ denote density and coeffi-
cient of viscosity of the fluid. 

Since the velocity doesn’t be coupled with the pres-
sure in eq. (13), we introduce artificial compressibility 
coefficient β into the continuous equation to couple the 
velocity and pressure which can then be solved syn-
chronously. Therefore, after adoption of the artificial 
compressibility technique, the dimensionless Navier- 
Stokes equations can be rewritten as follows: 

 
2

1 0,

1 ,

p

p
t Re

β τ
∂

+ ∇ ⋅ =
∂

∂
+ ⋅∇ = −∇ + ∇

∂

v

v v v v
 (14) 

where τ is virtual time and t is real time, β is the artifi-
cial compressibility coefficient. According to the ex-
perience before, β gets different values for different flow 
patterns. There were many reports and discussion in de-
tail about β in ref. [15], for example, the smaller β is, the 
bigger error is, while the bigger β is, the more poor 
convergence is, and usually β is between 1 and 10. The 
values of β in most numerical examples of this paper are 
taken in the range between 1 and 10. 
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3.2  Flux splitting method and the expression of basic 
function scheme 

After the viscous incompressible N-S equations are re-
written as hyperbolic equations, eq. (14) can be dealt 
with using flux splitting technique. According to the 
feature of the equations, we use first order upwind 
scheme for inertia terms and use central scheme for vis-
cous terms. 
3.2.1  Flux splitting.  First, we apply flux splitting 
technique for N-S equations (14). Eq. (14) can be re-
written as three-dimensional N-S equations of conserva-
tive form with artificial compressibility treatment, that 
is[16] 

 

( )

( ) ( )
  0,

m
E EQ QI

t x
F F G G

y z

ν

ν ν

τ
∂ −∂ ∂

+ +
∂ ∂ ∂
∂ − ∂ −

+ + =
∂ ∂

 
(15)

 

where diag(0,1,1,1)mI =  diag(0,1,1,1)mI =  when flow 
is unsteady, and Im = 0 when flow is steady. 

T 2 T

2 T 2 T

T

T

T

( , , , ) ,  ( , , , ) ,

( , , , ) ,  ( , , , ) ,
1 (0, , , ) ,

1 (0, , , ) ,

1 (0, , , ) .

x x x

y y y

z z z

Q p u v w E u u p uv uw

F v uv v p vw G w uw vw w p
HE u v w

Re x
HF u v w

Re y
HG u v w

Re z

ν

ν

ν

β

β β

= = +

= + = +
∂

= =
∂
∂

= =
∂
∂

= =
∂

 (16) 

Let 

 
( ) ( ) ( )

,
E E F F G G

R
x y z

ν ν ν∂ − ∂ − ∂ −
= + +

∂ ∂ ∂
 (17) 

and we have 

 .m
Q QR I

tτ
∂ ∂

= − −
∂ ∂

 (18) 

In this paper, we only consider the steady flow, so eq. 
(18) can be rewritten as 
 .Q RτΔ = −Δ ⋅  (19) 
And eq. (17) can be rewritten as 

 ,xx yy zz
Q Q QR A B C H H H
x y z

∂ ∂ ∂
= + + − − −

∂ ∂ ∂
 (20) 

where  
0 0 0 0 0 0
1 2 0 0 0 0

,  ,
0 0 1 0 2 0
0 0 0 0

u v uE FA B
v u vQ Q
w u w v

β β⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

∂ ∂⎜ ⎟ ⎜ ⎟= = = =
⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

0 0 0
0 0

.
0 0
1 0 0 2

w uGC
w vQ

w

β⎛ ⎞
⎜ ⎟

∂ ⎜ ⎟= =
⎜ ⎟∂
⎜ ⎟
⎝ ⎠

 

We utilize the first order upwind scheme for inertia 
terms of the first order and the first order central scheme 
for viscous terms of the second order. 

The matrix A can be expressed as ,x x xA R RΛ −=  

where xΛ  is the characteristic diagonal matrix. Its ex-

pression is 1 2 3 4diag( ,  ,  ,  ),x x x x xΛ λ λ λ λ=  and the char-
acteristic number can be deduced as follows: 

 
1 2 3 2

4 2

,   ,

,

x x x

x

u u u

u u

λ λ λ β

λ β

= = = + +

= − +
 (22) 

We split xΛ  into 

 ,  ,   ,x x x x x xA R R A A AΛ Λ Λ Λ+ − ± ± − + −= + = = +  (23) 

Let 2 ,xC u β= +  and we have 2
1

4 (1 / )x

A
C u β

=
+

 

( )ija× ( ,  1,  2,  3,  4)i j = , 

where 
2 2

11 3 4 3 42(1 / ) ( ) 2 / ( ),x xa u C C uβ λ λ β λ λ= + + − −  
2

12 3 42 ( ),xa C λ λ= −  
3 2

21 3
4 2

4

(1 / ) [2(1 / ) 2 / ]

(1 / ) [ 2(1 / ) 2 / ],
x x

x x

a u u C u

u u C u

λ β λ β β

λ β λ β β

= + + −

+ + − + −
 

3 4
22 3 42 [(1 / ) (1 / ) ],x x xa C u uλ β λ λ β λ= + + +  

2 3 4
31 1 3 4

3 4 2
3 4

4 / 2(1 / ) ( ) /

 2 ( ) / ,
x x x

x x x

a C v u v

C uv

λ β β λ λ λ λ β

λ λ λ λ β

= − + + −

− +
 

3 4
32 1 3 44 / 2 ( ) / ,x x x xa C uv C vλ β λ λ λ λ β= − + +  

2
33 14 (1 / ),xa C uλ β= +  

2 3 4
41 2 3 4

3 4 2
3 4

4 / 2(1 / ) ( ) /

 2 ( ) / ,
x x x

x x x

a C u

C u

ωλ β β ω λ λ λ λ β

ω λ λ λ λ β

= − + + −

− +
 

3 4
42 2 3 44 / 2 ( ) / ,x x x xa C u Cωλ β ω λ λ λ λ β= − + +  

2
44 24 (1 / ),xa C uλ β= +  

13 14 23 24 34 43 0.a a a a a a= = = = = =  
The matrix B and C also can be split in the same way. 
3.2.2  The basic function scheme for viscous incom-
pressible N-S equations.  Based on the analysis above, 
the expression of the first order basic function scheme 

(21)
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for three-dimensional viscous incompressible N-S equa-
tions is as follows (explicit scheme): 

1

11 1

11 1

 

 

n n

UU U

UU U

Q Q

QQ QA B C
yx z

QQ QA B C
yx z

τ

+

++ +
+ + +

−− −
− − −

=

⎧⎡⎛ ⎞∂⎛ ⎞∂ ∂⎪ ⎛ ⎞ ⎛ ⎞⎢⎜ ⎟− Δ + +⎨ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎝ ⎠⎪ ⎝ ⎠⎣⎩
⎤⎛ ⎞∂⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞ ⎥⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠ ⎝ ⎠ ⎥⎝ ⎠⎝ ⎠⎦

 

 
1 1 12 2 2

2 2 2 ,

nC C C
H H H

x y z

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ⎪⎢ ⎥− + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎬
⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪⎣ ⎦⎭

 (24) 

where 

1
2

1 2 32 ( 1,  2,  3,  ,  ,  )
C

j

H j x x x y x z
x

⎡ ⎤∂
= = = =⎢ ⎥

∂⎢ ⎥⎣ ⎦
 is 

given by eq. (11) (m = 2), and 
1

,
U

j

Q
x

+
⎡ ⎤∂
⎢ ⎥
∂⎢ ⎥⎣ ⎦

 
1U

j

Q
x

−
⎡ ⎤∂
⎢ ⎥
∂⎢ ⎥⎣ ⎦

 

are given by eqs .(12a) and (12b) (m = 1), respectively. 
Eq. (24) is the first order basic function scheme of the 

trigonometric function type for three-dimensional vis-
cous incompressible flow.  

The expression of the first order basic function 
scheme of the trigonometric function type for two-di-                        
mensional incompressible flow N-S equations can be 
deduced in the same way[5]. 

4  Numerical examples 

Using the basic function scheme of the trigonometric 
function type for solving three-dimensional incom-
pressible Navier-Stokes equations numerically, flows in 
finite-length-pipe are calculated first, after the method is 
proved elementary, the hemodynamics in two- and 
three-dimensional aneurysms are researched numeri-
cally. 

Boundary conditions of our examples are 
Wall: u = v = w = 0; entrance: p = P0, u = U0, v = w = 0, 

exit: p = 0, / 0,  / 0,u x v x∂ ∂ = ∂ ∂ = / 0,w x∂ ∂ =  where P0 

= 9.0 kPa[17]. 

4.1  Numerical results and analysis of the finite- 
length pipe 

Considering the symmetry of the pipe, we only study the 
flow pattern on its symmetrical section. The isolines of 
pressure at the symmetrical section of z = 0 are shown as 
in Figure 2(a). Figures 2(b)－(d) depict the velocity dis-
tributions near the entrance on sections of 0.1R, 0.7R 

and 4R away from the entrance, respectively. Figure 2(e) 
shows the comparison of the velocity calculated on sec-
tions of x = 0, x = ±5R with that of the Poiseuille flow. 

From the figures mentioned above, it can be con-
cluded that the velocity and pressure distributions of the 
finite-length-pipe calculated by our method are in 
agreement with the exact solutions of Poiseuille flow at 
the center and a majority of region, and the velocity dis-
tributions near the entrance present the feature of en-
trance flow[18]. The three-dimensional incompressible 
N-S equations we used are intact and are never simpli-
fied, the agreement of results calculated by our method 
with that of the exact solutions of Poiseuille flow illus-
trates that the basic function method of trigonometric 
function type is feasible to simulate numerically the 
viscous incompressible flow. 

4.2  Numerical results and analysis of the hemody-
namics in the two-dimensional aneurysm 

Recently, many numerical simulations about aneurysm 
were made[19,20]. For example, Zhang et al.[19] used an 
axis-symmetrical model to numerically calculate the 
pulsatile flow fields in rigid abdominal aortic aneurysm 
(AAA), in which they applied pulsatile velocity inflow 
boundary condition as input, and they conducted the 
simulation with Flunet 6.2. Their results show that there 
are one or more vortexes in the AAA bulge, and a fairly 
high wall shear stress exist at the distal end. 

The parameters we take in this example are according 
to ref. [17]. Density and coefficient of viscosity of the 
blood are taken as ρ = 1000 kg·m−3 and μ = 0.0035  
Pa·s, respectively. And L = 40R, R = 0.002 m, where L 
and R denote the length and the radius of blood vessel, 
respectively. Therefore the influence of entrance and exit 
on the flow in aneurysm can be ignored. Reynolds 
number is taken as 0 / 400.Re U Rρ μ= =  

The velocity vector plot (Figure 3(a)) and the wall 
shear stress profile vs. arc length in the aneurysm (Fig-
ure 3(b)) are calculated for the two-dimensional aneu-
rysm of half-spherical type and the wall shear stress pro-
file (Figure 3(c)) has been compared with that from ref. 
[19]. The length of the line and the arrowhead in Figure 
3(a) denote the size and direction of the velocity vector, 
respectively. It can be seen that the blood in the tube 
flows into aneurysm forms a counter-clockwise pattern 
of recirculation vortex zone in the aneurysm and then 
flows back to the tube. As seen in Figure 3(b), shear  
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Figure 2  The flows in the finite-length pipe. (a) Isolines of pressure (z = 0); (b) velocity distribution of 0.1R from the entrance; (c) velocity distribution of 
0.7R from the entrance; (d) velocity distribution of 4R from the entrance; (e) velocity distribution compare among x = 0, x=±5R and Poiseuille exact result. 
 
stress in the close and distal region is obvious larger than 
that in the other region of the aneurysm wall, and the 
maximal value of the wall shear stress is reached in the 
distal region. Figure 3(c) gives the shear stress profile 
from ref. [19] with the same shape as our two-dimen-                   
sional aneurysm. It can be seen from Figure 3(c) that in 
the case of Reynolds number 400, the shear stress along 
the aneurysm wall and its value in the close and distal 
region are quite close to that in Figure 3(b). The pressures 
at entrance and exit are not given in ref. [19], so the exa-                                 
mples as compared here may not be exactly the same. 

4.3  Numerical results and analysis of the hemody-
namics in the three-dimensional aneurysm 

Two shapes of three-dimensional aneurysms are studied. 

And the velocity vector plot, the shear stress profiles and 
pressure distribution along the wall of aneurysm, and the 
influence of the shape of the aneurysms on the hemody-
namics are numerically researched. The geometric con-
figurations. 

The velocity vector plots at the symmetrical section 
of z = 0 obtained from Model 1 and Model 2 are shown 
in Figures 4(a) and (b), respectively. There are no vortex 
zones appearing in the aneurysms from Model 1 or 
Model 2, which is different with the two-dimensional 
aneurysm[20]. 

The shear stress profiles along the wall of aneurysms 
at the symmetrical section obtained from Model 1 and 
Model 2 are shown in Figures 4(c) and (d), respectively. 
The shear stress profiles are similar to that from two- 
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Figure 3  2D half-spherical aneurysm. (a) Velocity vector; (b) the shear stress profiles along the wall of aneurysm; (c) the shear stress profiles along the 
axis x=0 in ref. [19]. 1 dyn = 10−5 N. 

 
Table 1  Dimensions of three-dimensional aneurysms studied (R, parent 
artery radius) 

Model Aneurysm shape Ostium 
width 

Aneurysms 
radius 

Ostium-to-Dome
distance 

1 half-spherical 2R R R 

2 less-than-half- 
spherical 1.6R R 0.4R 

 
dimensional aneurysms, and the maximal shear stresses 
all exhibit in the distal region. This maximal level also 
increases with increasing aneurysm Ostium-to- Dome 
distance. 

The pressure distributions along the wall of aneurysm 
at the symmetrical sections obtained from Model 1 and 
Model 2 are shown in Figures 4(e) and (f), respectively. 
The maximal pressure exhibits near the distal region 
both in Model 1 and Model 2. 

4.4  Conclusions 

From the analysis above for two- and three-dimensional  

aneurysm, we can conclude that 
1) The maximal shear stresses and pressures all ex-

hibit in or near the distal region of the aneurysms, so the 
distal region of the aneurysms is the dangerous region 
where the aneurysm growth and rupture often happen. 
This conclusion is also pointed out in refs. [19－22]. 

2) There exists vortex zone in the two-dimensional 
aneurysms, but no vortex zone appears in the three-di-          
mensional aneurysms, which may be caused by the rela-
tively rough meshes. 

3) The maximal shear stress on the aneurysms wall 
will increase with increasing aneurysms size at fixed 
Reynolds number (Re = 400). 

4) However, further studies should consider pulsatile 
velocity inflow boundary condition as input (ref. [19]), 
and much denser meshes. 
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Figure 4  3-D aneurysm. (a) Velocity vector of z=0 in Model 1; (b) velocity vector of z = 0 in Model 2; (c) the shear stress profiles along the wall of an-
eurysm (Model 1, z = 0); (d) the shear stress profiles along the wall of aneurysm (Model 2, z = 0); (e) the pressure profiles along the wall of aneurysm 
(Model 1, z = 0); (f ) the pressure profiles along the wall of aneurysm (Model 2, z = 0). 
 
5  Conclusion 

Basic Function method is developed to treat the incom-
pressible viscous flow in this paper. By using artificial 
compressibility, basic function scheme of trigonometric 
function type is constructed to deal with incompressible  
viscous flow. We focus our study on the first-order-pre-                        
cision basic function scheme of the trigonometric func-
tion type. In comparison with the high-order-precision 
scheme, the formula of first-order-precision scheme is  

simpler with less node number, so the CPU time and 
memory needed are the least. At first the volume coor-
dinate is adopted for the three-dimensional problem, and 
the basic function of the first order trigonometric func-
tion type and the central and upwind schemes of deriva-          
tive are established. Then we construct the basic func-
tion scheme of the trigonometric function type for solv-
ing three-dimensional incompressible Navier-Stokes 
equations numerically for the first time; in this process  
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we introduce the artificial compressibility technique, and 
adopt the technique of flux splitting and the combination 
of central and upwind schemes. 

Flows in finite-length pipe and the hemodynamics in 
two- and three-dimensional aneurysms are researched 
numerically by using the basic function of the trigono-
metric function type and the unstructured grids genera-
tion technique. The velocity and pressure distribution of 
the finite-length pipe calculated by our method agree 
well with the exact solutions of Poiseuille flow at most 
regions, some numerical results of two-dimensional an-

eurysms are compared with that of ref. [19] and the 
agreement is satisfactory. It indicates from the numerical 
results of aneurysms that the maximal shear stresses and 
pressures all exhibit in or near the distal region of the 
aneurysms, and the distal region of the aneurysms is the 
dangerous region where the aneurysm growth and rup-
ture often happen. Furthermore, the maximal shear stress 
on the aneurysms wall will increase with increasing an-
eurysms size, while much improvement should be made 
in future, such as the pulsatile velocity inflow boundary 
condition and dense meshes. 
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