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ABSTRACT 
A theoretical approach to partial discharge transients is pre- 
sented. This approach is based on the relationship between 
the charge induced on the measurement electrode by those 
created in the inter-electrode volume during partial discharge 
activity. The starting point of the analysis is the formulation 
of the measured-transient /induced-charge relationship. There- 
after the general relationship between the induced and the in- 
ducing charge is derived. This latter relattonship is disc_ussed 
with respect to both the D field and the P field. The D-field 
approachjs the more relevant from a practical point of view, 
but the P-field approach provides a greater insight into the 
molecular physics of the phenomenon. An exposition of the 
currents related to these transient phenomena is then under- 
taken. The theory of void partial discharge transients based 
on the D-field approach is thereafter reviewed and extended. 
This theory has allowed the influence of all relevant void pa- 
rameters to be quantitatively assessed. A general derivation of 
the measured transients associated with the time dependence 
of the induced charge is presented, and the application to mul- 
tiple electrode systems of practical interest is illustrated. A 
discussion of the salient features and practical aspects of the 
theory concludes the work. 

1. INTRODUCTION 

ARTIAL discharges in voids in a solid dielectric are P often discussed in terms of a simple equivalent capac- 
itive circuit known as the abc-model. The void is rep- 
resented by a capacitance and discharges are simulated 
by the discharge of this capacitance [l-41. An equivalent 
circuit is any circuit which can generate, as faithfully as 
possible, the signals which are manifest a t  the terminals 
of the actual system, and in this respect the abc-model 
has been very successful in promoting the development of 

methods for partial discharge detection [5] .  It is impor- 
tant to  realize, however, tha t  the operation of an equiv- 
alent circuit need in no way correspond to  the physical 
processes tha t  occur in the actual system. This is clearly 
evident in the case of the abc-model, as this model repre- 
sents a physical phenomenon, which is inherently a field 
problem, in terms of lumped circuit parameters. 

To envisage a void as a capacitor is an  erroneous in- 
terpretation of the concept of capacitance. This concept 
is intrinsically related to  conducting electrodes between 
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which a space-charge-free electrostatic field can be es- 
tablished. This means that the field must be Laplacian. 
Strict proportionality will consequently exist between the 
charges Q and -Q on the electrodes and the applied volt- 
age U between these electrodes, i.e. 

Q = C U  (1) 

where C is the capacitance. A meaningful application 
of (1) to the field within a void is not possible since the 
void wall is not an  equipotential surface [6] and, in addi- 
tion, once space charges are present, the field is no longer 
Laplacian, which again negates a meaningful use of (l), 
e.g. see [7]. 

The transients which are manifest a t  the electrodes of a 
system during partial discharge activity are related to the 
charges which are electrostatically induced on the elec- 
trodes. The primary sources for these induced charges 
are the charges which, as a result of partial discharge ac- 
tivity, are distributed within the voids of the insulating 
medium. These charge relationships will now be derived, 
and their application to the measurement of partial dis- 
charge transients discussed. 

2. MEASURED 
TRANSIENT/INDUCED 

CHARGE RELATIONSHIP 

HE charge Q, on the i-th electrode in a space-charge- T free system consisting of N electrodes is given by 

N 

Qt = G,(ut - U,) (2) 
J =O 

with 
N 

CO, = O  (3)  
J = O  

in which j = 0 refers t o  ground. U, and U, are the poten- 
tials of the a-th and the 1-th electrodes, and C,, is the par- 
tial capacitance between these electrodes. If space charge 
is present in the interelectrode volume, a charge q, will 
be induced on the i-th electrode. In addition, the original 
charge on the electrode may change from Qz to QF and 
the potential may drop from U, to U, - AU,; see remarks 
in [ 8 ] .  The total charge on the 2-th electrode in the pres- 
ence of space charge is the sum of the induced charge and 
the charge which is linked with the partial capacitances 
and the new potentials of the electrodes, viz. 

N 

Qpr  = 91 + Ctj[(ut - Aua) - (U, - nu, ) ]  (4) 
1 =o 

or 
N 

Qpi = 4; + Q; - C;j(AUi - AUj) (5) 
j = O  

If Qpi differs from Q; a charge AQi given by 

AQi = &pi - Qi (6) 

will have been added to the charge on the i-th electrode. 
The induced charge q; is thus given by 

N 

q, = AQ; + C C;j(AU; - AUj) (7) 
j = O  

In principle the additional charge AQ; can consist of 
two components, one delivered from the external source 
through the lead to the electrode and the other result- 
ing from a direct exchange of charge between the sur- 
face of the electrode and the adjacent dielectric. Whereas 
the former component is directly accessible for measure- 
ments, the latter generally remains unknown. A direct 
measurement of AQ; is possible, therefore, only in the 
absence of any exchange of charge between electrode and 
dielectric. This condition is normally fulfilled when the 
induced charge is related to discharges in a void which is 
completely embedded in a solid dielectric. In such cas- 
es (7) connects the induced charge with quantities which 
are manifest a t  the electrodes and which can be measured. 
This relationship is, therefore, the fundamental basis for 
partial discharge detection equipment. I t  does, however, 
not contain any quantity which directly connects the in- 
duced charge with its primary source, namely the space 
charge of the partial discharge. Further, it  contains no 
information on the location and the size of any void in 
which partial discharges are active. The manner in which 
this important link can be established is discussed in the 
following. 

3. INDUCED CHARGE/SPACE 
C H AR G E R EL AT10 N S H I P 

HE induced charge can be expressed as the differ- T ence between the charge on an electrode following 
discharge activity and the charge on the same electrode 
prior to this activity [9]. The direct implementation of 
a method based on this approach can be rather cumber- 
some as it requires the solution of Poisson’s equation. 
A more straightforward approach is possible through an 
application of the principle of superposition. This can 
be done in two different ways depending on whethzr the 
analysis is based on the D field [ lo ,  111 or on the P field 
[12]. The former, the Maxwellian description, is conve- 
nient for practical application, whereas the latter, the 
quasi-molecular description, is suitable for fundamental 
studies of the molecular physics of the phenomenon. 
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3.1 MAXWELLIAN DESCRIPTION 

The induced charge depends in a unique way on the 
location and magnitude of the space charge. This induced 
charge is independent of the electrode potentials if the 
permittivities are independent of the electric field. An 
infinitesimal charge d Q  located somewhere in the inter- 
electrode region will induce charges on all the electrodes. 
The induced charge dq; on the i-th electrode will, in view 
of the principle of superposition, be proportional to  d Q ,  
i.e. 

dq; = - X i  d Q  (8) 
The parameter A; is a dimensionless positive scalar func- 
tion which depends on the location of d Q  only. The entire 
induced charge on the i-th electrode from a distribution 
of space charges can thus be expressed in the form 

in which p is the volume charge density in the volume 
element dfl  and U is the surface charge density on the 
surface element d S  of an interface between two dielectrics. 
The volume integral is extended over all space and the 
surface integral over all dielectric interfaces. 

In a study of partial discharges in voids in solid di- 
electrics the space charges will be located within the voids 
and on the walls of these voids, and thus both terms in 
(9) have to  be utilized. In contrast, the use of a probe to  
measure insulator surface charges [13] is concerned with 
only the second integral in (9). 

The response function X i  can be found, as shown by 
Maxwell [14], by applying Green’s reciprocal theorem to 
the system in the following way. If all electrodes are 
held a t  ground potential all charges linked with the par- 
tial capacitances will be zero. The only charges left on 
the electrodes will then be the induced charges associat- 
ed with space charges deposited in the space subtended 
by these electrodes. We compare this with the situation 
when p = 0 and U = 0 everywhere, the potential of the 
i-th electrode is Uc; and all other electrodes are a t  zero 
potential. Applying Green’s reciprocal theorem [I51 to  
these two situations yields 

Vc; denotes the scalar potentials a t  d R  and d S  when the 
i-th electrode is a t  the potential Uti, all other electrodes 

are a t  zero potential, and the system is space charge free. 
Comparing (9) and (11) shows that 

X i  = 3 (12) 
U C i  

As Vci is the solution to  Laplace’s equation 

e .  (&e&) = 0 (13 )  

A, can be determined from 

in which E denotes the permittivity. The boundary con- 
ditions are X i  = 1 a t  the surface of the i-th electrode and 
A; = 0 a t  the surfaces of all other electrodes. In addition, 
the following condition must be fulfilled a t  all dielectric 
interfaces such as the walls of voids, viz. 

where A; is differentiated in the direction normal to  the 
interface and the signs + and - refer to  each side of the 
interface, respectively. An alternative derivation of (14) 
based directly on Maxwell’s equations is given in [13]. 

Since (14) is Laplace’s equation any standard meth- 
od for the calculation of space-charge-free electrostatic 
fields can be used t o  evaluate A;. I t  must be emphasized, 
however, that  Uc; and Vc; are introduced solely for the 
purpose of calculation. Uc; can be given any arbitrarily 
chosen value, i.e. Uci is not in any way synonymous with 
the potential of the i-th electrode during discharge activ- 
ities for which totally different boundary conditions may 
exist. 

3.2 QUASI- M OLECU LA R 
D ESC RI PTlO N 

The polarization P‘ in the dielectrics is a significant 
property when discussing the molecular aspects of the 
induced charge in a system which contains polarizable 
materials. The  importance of the polarization is, howev- 
er, not evident from the preceding analysis. The reason 
is that  the effect of the polarization is included in the X 
function. This is a definite advantage when the analysis is 
applied to  practical systems, whereas it will be unsuitable 
in studies of the molecular physics of the phenomenon. 

The effect of the polarization P‘ can be taken into ac- 
count by adopting a quasi-molecular description [ I l l .  This 
means that the entire space subtended by the electrodes 
is viewed as vacuum in which the dielectric is represented 
by a distributen of dipoles with a dipole moment den- 
sity equal to  P. The induced charge on an electrode is 
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then considered to  consist of two parts. One which is 
linked solely with the space charge distribution created 
by partial discharge activities, and a second part which is 
related to the molecular dipoles-in the dielectric, that  is 
to changes in the polarization P caused by the presence 
of this space charge. 

The induced charge related to  a dipole can be found by 
visualizing a dipole as two charges, Q and -&, separated 
by an infinitesimal distance dr'. The dipole moment is 
therefore 

d/i= Qdr'  (16) 
Let q5; denote the A; function for vacuum, then 

di(r '+ d?') 4(?) + dr' .  e$, (17) 

where r'is the radius vector indicating the position of the 
dipole. The induced charge on the i-th electrode thus 
becomes 

dq, = -d$ .  3$i (18) 

The response function for vacuum 4; is given by Laplace's 
equation for vacuum, i.e. 

e..5(b;=0 (19) 

or 
Q2& = 0 

The boundary conditions are $i = 1 at the surface of the 
i-th electrode and 4; = 0 a t  all other electrodes. No con- 
dition is imposed on 4; a t  the dielectric interfaces. Any 
available method of electrostatic field calculation in vac- 
uum can thus be applied to obtain & from the equations 

Q2Vc,, = 0 (21) 

(22) 

and 
4 ,  - vcvi 

a -  
uci 

Vcv; is the scalar potential in a point of the space-charge- 
free electrostatic field in vacuum when the potential of the 
i-th electrode is U,, and all other electrodes are a t  zero 
potential. As with the X function determination, these 
potentials are computational quantities. 

The polarization P' in a point of the solid dielectric will 
depend on the applied voltages and on the field related 
to the space charge formed by partial discharges, i.e. 

$=&,-tap' (23) 

where $a is linked with the applied voltages and AP' 
is related solely to the effect of the inter-electrode space 
charge. The resulting induced charge on the i-th electrode 

as a result of partial discharge activities will thus be given 
by 

The volume integral is extended over the entire space sub- 
tended by the electrodes and the surface integral over all 
dielectric interfaces, that  is the walls of the voids. 

In spite of the apparent simplicity of the 4 function this 
approach is immensely more complicated than an analysis 
based on the X function. 

4. CURRENT PULSES IN THE 
LEADS 

HE current I, flowing in the lead towards the i-th T electrode when the system is discharge free is given 
bv 

dQi Ii - 
d t  (25) 

During the periods of time in which partial discharges 
are active, a transient current Ipi is superimposed upon 
I;. In addition, a transfer of charge can occur from the 
electrodes into the inter-electrode space; this is likely to 
take place if a void is located at an interface between 
an  electrode and the solid dielectric. Such a transfer of 
charge can be accounted for by a current It, flowing away 
from the i-th electrode into the dielectric. The principle 
of conservation of charge then requires that 

dQ,i I, + Ipi = Iti + - 
d t  

Combining this with ( 5 )  and (25) leads to  

d A U i  N 
Ipi = I t ,  + - dqi - c C , j  [- - *] 

Differentiating (9) with respect to the time t yields 

(27) d t  d t  J = o  

which by means of the continuity equations 

can be written in the form 

- au 
at 

G . A J + -  = O  (29) 

T i s  the current density a t  5 point within a void during 
discharge activities. n' . A J  is the interface divergence 
defined in the following manner [16], 

- - +  

i i .Ad= n ' . ( J +  - J-) (31) 
where the signs + and - refer to each side of the interface, 
respectively, and ii is a unit vector normal to  the interface 
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and directed away from the positive side. It is assumed 
in this analysis that  the effect of the surface conductivity 
of the interfaces, i.e. possible transient charge flow along 
the walls of the voids, can be neglected. Introducing the 
identities 

e .  ( A ; J - )  = A,*. J-+ J-. ?A, 

Aan' .  AJ-= ii ' A(A;J-) 

(32) 

(33) 
and 

then leads to  

Applying the extended divergence theorem of Gauss [17] 
to  the vector field Aifreveals that  

+ JJJ e .  ( x i J - )  dfl + 5 .  A(A,J-) d S  = o (35) JJ 
This means that 

Inserting (36) in (27) shows that the additional transient 
current flowing in the lead towards the i-th electrode ow- 
ing to  discharge activities is given by 

It should be noted that  if f a n d  '?A; are orthogonal, the 
value of the volume integral in (37) is zero, and thus a 
finite f d o e s  not inherently contribute to  the lead current. 

Since the A; function is determined by Laplace's equa- 
tion, see (14), the gradient of A; can be found from 

in which I?,-; is the field strength in the Laplacian elec- 
trostatic field between the electrodes of the system when 
the potential of the i-th electrode is U,-; and all other 
electrodes are a t  zero potential. It should again be em- 
phasized that U,-; and I?,, are introduyd solely for com- 
putational purposes. For this reason, E,. and U,-i should 
not be inserted in the expression for the current: (38)  
should be evaluated independently of (37) to avoid any 
confusion with applied field terms because boundary con- 
ditions may be quite different. 

Should it be desirable to  include the polarization in the 
analysis, a similar procedure can be applied to  (24). This 

leads to  the following expression for the transient current 
in the lead to  the i-th electrode 

The gradient of 4, can be calculated from 

... 
where Ecu; is the field strength in the electrostatic field 
associated with Uc, when the entire inter-electrode space 
is vacuum_ and all other electrodes are a t  zero potential. 
As with VA;, a similar precaution with the evaluation of 
d#; should be exercised. 

The  current density .?, see (37) and (39), is related to 
the motion of electrons and ions within the voids during 
discharge activities, viz. 

m 

k=O 

where p is the charge density and ii the drift velocity, 
k = 0 refers to  electrons and m is the number of possible 
species of positive and negative ions which are participat- 
ing in the discharge process. 

A direct application of (24) and (39) to  practical sys- 
tems would be rather complicated because of the explicit 
occurrence of the polarization in these equations. A closer 
analysis shows that  the polarization plays an important 
role, from a molecular point of view, and that this effect 
becomes more dominant the more oblate the void is with 
respect to  the direction of the gradient of 4; [12]. 

Formulae similar t o  those derived above, but for sys- 
tems in which polarizable materials are absent, have been 
given by many authors, see e.g. von Engel and Steen- 
beck [MI, Shockley [19], Ram0 [20]. These formulae are 
sometimes referred t o  as the Ramo-Shockley theorem [21]. 
It should be remembered, however, that  these formulae 
were readily available in the standard literature prior to 
the publication of the papers by Ram0 and Shockley, and 
that a quantitative treatment based on Faraday's concept 
of induced charge dates back a t  least to  Maxwell [14]. 

Although the analysis given above is discussed with ref- 
erence to partial discharges in voids, the sets of formulae 
are of general validity. Therefore these can be applied to 
electrode systems in which currents in the external leads 
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depend on charges in motion in the inter-electrode space; 
with respect to gas discharge studies, see [22]. 

5. APPLICATION T O  VOID 
PART I A L DISC H AR G ES 

discharge in a void results in a deployment of charges A on the surface S of the void. The  surface-charge den- 
sity U will attain such values that the electric field within 
the void will reduce until the discharge is quenched. As 
the detection of partial discharges refers t o  signals which 
are manifest at a specific electrode, we will omit sub- 
scripts. The resulting final value of the induced charge q 
on this measurement electrode is, in view of (9), given by 

where cr is the final value of the surface-charge density on 
S. 

The dimensions of any void are normally small relative 
to  the system dimensions. In (42) X can therefore, within 
the void, be replaced by its Taylor expansion. Let ?de- 
note the position vector for a fixed point inside the void 
and S’ denote a variable vector linking the end of ? with 
dS. The value of X at dS can now be written in the form 
of the Taylor expansion 

in which anX(q /asn  is the value of the n-th order direc- 
tional derivative of X for the fixed point given by r’ [23]. 
Combining (42) and (43) means that the induced charge 
q can be written as an  infinite series 

(44) 

in which each term is related to the multipole expansion 
of the charges deployed on the walls of the void as a re- 
sult of a partial discharge. The zero-order term qo is the 
monopole term 

(45) 

or 

where QS is the net charge deployed on S by the partial 
discharge. The first-order term q1 is the dipole term given 
bv 

in which p,, pY ,  and ,uz are the Cartesian components of 
the dipole moment of the charge distribution, viz. 

s 

The second-order term qz is related to the quadrupole 
moment and is given by 

1 a”(?+) 1 PX(q 1 a”(q 
q 2  = - - - P X X T  - p l y 2  - 5 p z z  -@- 

azX(q a”(q a z q q  
- P X Y  - - P y z m  - Pzz- azax axay 

(49) 
2 ax ay 

in which the six components of the quadrupole moment 
tensor are given 1241 by 

s,, sy ,  and sz denote the Cartesian components of S’. 
The third-order term q3 is related to the octupole mo- 
ment, and progressively qn t o  the n-th-order multipole. 
However, since the dimensions of the void are small, the 
second and all higher order terms can normally be ne- 
glected. Moreover, since in most cases the net charge &s 
will be zero, i.e. qo = 0, we are normally left with the 
dipole term only. In most cases therefore, the induced 
charge q will be given by (47). This expression can be 
written in vector form as 

where the dipole moment F; is given by (48). 

In general, the gradient of X can be determined only in 
such cases where the location and the geometrical form of 
the void are known. This difficulty can to  some extent be 
circumvented by replacing X with the value which the X 
function would attain if we assume that the entire insulat- 
ing system is completely free from voids. Let X o  denote 
this idealized function. The gradients of X and Xo are 
connected by 

= h$Xo (52) 

If the application is restricted to simple geometries, such 
a s  spheroids and to isotropic dielectrics, we can consider 
the parameter h t o  be a scalar. Generally, however, h is 
a tensor. Based on the mathematical analogies between 
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the X function and an electrostatic field it can be deduced 
that 

l < h < E +  (53) 
where E,. is the relative permittivity of the bulk dielectric. 
The lower limit applies to voids-which are very prolate 
with respect to the direction of VXo. The upper limit is 
approached for a very oblate void. 

The introduction of A0 leads to the following expression 
for the total induced charge on the measurement electrode 

q = -h@. (54) 

An assessment of the dipole moment requires a knowledge 
of the shape and location of the void. The nature of 
the gas within the void must also be known. All these 
particular da t a  will not be available in connection with 
partial discharge testing of commercial HV equipment. 
The dipole moment and the parameter h will, however, 
remain constant if we consider discharges in a number 
of voids of fixed volume and form containing the same 
gas, but placed a t  different locations within the insulating 
system. The induced charge will in such cases vary with 
the location of the void in the same way as the gradient of 
Xu or, in view of the analogy with an  electrostatic field, 
as indicated by the variation of the equivalent electric 
field strength for the idealized void-free system. It must 
be emphasized tha t ,  with reference to the measurement 
electrode, the associated equivalent electric field is not 
the same as the applied electric field. Although both 
fields are solutions of Laplace's equation, they are quite 
different solutions because, in general, each fullfils quite 
different boundary conditions. 

Based on the above theory, a quantitative analysis re- 
lated to ellipsoidal and spheroidal voids has been given 
by Crichton et al. [ll]. 

It should be noted that in this particular Section, ref- 
erence is made to  the final, or total value of the induced 
charge, see (42). To deduce the temporal variation of 
q ( t ) ,  where t is the time, it is necessary to consider not 
only a( t )  a t  the void wall, but also p ( t )  within the void 
and thus both integrals in (9) must be evaluated. 

6. TRANSIENTS RELATED T O  
IN DU CED-C H ARG E 

HE detectable quantities from which the induced T charge can be deduced are current pulses in the lead 
to, and transients in the potential of a measurement elec- 
trode. This electrode could be a suitable probe inserted in 
the system, a segment of one of the terminal electrodes or 

simply one of the terminals. The relation between these 
transients and the induced charge is given by (7). To em- 
phasize the transient nature of the phenomena we rewrite 
this expression in the form 

N 

q i ( t )  = AQi(t) + C c i j [ A u i ( t )  - Auj(t)] (55) 
j =O 

where t is the time. Since AQ; is accessible for measure- 
ments only in the absence of any charge exchange between 
the electrode itself and the adjacent dielectric this condi- 
tion is considered fulfilled in the following discussion. 

The values of AUi and A U j  are zero before and after 
the transient. The final value of the induced charge will, 
therefore, always be equal to the final value of the charge 
which is delivered to  the measurement electrode from the 
external source; viz. 

lim q ; ( t )  = t-cc lim AQ,(t) (56) 
t-oo 

The delivered charge AQ; is found in practice by inte- 
grating the transient current Ip; flowing in the lead when 
a partial discharge is active, see (37) and (39). These 
expressions contain the current density J' which is relat- 
ed to the motion of electrons and ions within a void, see 
(41). This current density is, however, unknown. A rela- 
tionship between Ipi and the transients a t  the electrode 
can be obtained from (55) by noting that,  in the absence 
of a charge transfer between electrode and dielectric, the 
transient current is given by 

or 

The first term, which relates t o  the induced charge, is 
normally of very short duration as it  is coincident with 
the creation of the partial discharge. The  last term, which 
depends strongly on the impedances of the external cir- 
cuit, will therefore in most cases dominate the recorded 
transient. 

6.1 APPLICATION T O  A 
THREE-ELECTRODE SYSTEM 

Let us consider a three-electrode system, i.e. N = 3. 
Electrode-1 is the termina.1 to which the HV is applied, 
and electrode-2 is a t  ground potential. The 3rd electrode 
is the electrode a t  which the transients are recorded. This 
measurement electrode can be either a segment in one of 
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the other electrodes, or it can be a separate electrode used 
as a probe. The induced charge 43 on this measurement 
electrode is then according to  (55) given by 

43 AQ3 + C30AU3 + C31(AU3 - AUl) + C32AU3 (59) 

or 
43 AQ3 + C3 AU3 - C31 AUl (60) 

in which C3 = C30 + C31 + c 3 2  is the total capacitance 
of electrode-3. The related transient current as given by 
(58) becomes 

(61) 
dAU1 + c31- dq3 dAU3 

Ip3 = - - c3 - dt dt dt 

In order to  study the relation between the induced 
charge q3 and the space charges within a void, A3 or A03 

must be found. The former can be calculated only if the 
location and shape of the void are known, whereas A03 

can be determined without this knowledge, since it refers 
to a void-free system. The boundary conditions for A03 

are X03 = 1 a t  the surface of electrode-3 and A03 = 0 a t  
the two other electrodes. In addition the condition given 
by (15) must be fulfilled a t  all interfaces between different 
dielectrics in the system, but with void interfaces exclud- 
ed. 

If an available method or program for electrostatic field 
calculation is used, the boundary conditions to be used 
in the calculating procedure for the electrode potentials 
become U,l = 0, Uc2 = 0, and Uc3 # 0. It is evident, 
therefore, that  the field calculated in this case is entirely 
different from that obtained with the voltage applied to  
electrode-1. 

6.2 APPLICATION TO A 
TWO-ELECTRODE SYSTEM 

The test object is often a two-electrode system, N = 2, 
with one terminal directly a t  ground potential. The tran- 
sients related to  the induced charge are, when using con- 
ventional detection equipment, referred to  the HV termi- 
nal. Let i = 1 refer to  this electrode and let electrode-2 be 
directly grounded. The induced charge q1 thus becomes 

41 = AQi + cioAui + Ci2Aui 

q i  = AQi + cinui 

(62) 

(63) 

or 

where C1 = Cl(r+C12 is the total capacitance of electrode- 
1. The transient current becomes 

Should it be desirable to measure the transients a t  the 
grounded electrode, i.e. a t  electrode-2, an impedance must 

be inserted between this electrode and ground; i.e. a volt- 
age transient AlJ2 is now manifest a t  this electrode. The 
induced charge q 2  becomes 

q 2  = AQ2 + CzoAUz + C21(AU2 - AU,) (65) 

or 
Q Z  1 AQz + CzAU2 - C21AU1 (66) 

in which C2 = C20 + C21 is the total capacitance of 
electrode-2. 

It should be noted that all A U  values are defined in 
this theory to  be drops in potential. This means that 
AUZ is negative if a voltage transient of positive polarity 
is recorded a t  electrode-2. 

Similarly, we obtain for the transient current towards 
electrode-2 the expression 

(67) 
dAU1 + 4 7 2 1 -  

4 2  dAU2 I ---c2-- 
p2 - dt dt dt 

It is seen that  q 2  and Ip2 depend, in contrast to  q1 and I p l ,  
on a voltage transient which occurs a t  the other terminal, 
in this case the HV terminal. If this additional transient 
is not recorded, a n  accurate assessment of the temporal 
variation cannot be achieved. However, the final value 
of the induced charge can still be correctly assessed, see 
(55) and (56). 

7. DISCUSSION 

7.1 SPACE CHARGE/INDUCED 
CHARGE ASPECTS 

7.1.1 INDUCED CHARGE CONCEPT 

HE currently accepted philosophy concerning partial T discharge transients is based on the assumption that 
the capacitance of the system is affected by the discharge 
activity. This is, however, a t  variance with the concept of 
capacitance. The key to  partial discharge transients is the 
concept of induced charge. As this charge arises via the 
process of electrostatic induction, the appropriate nomen- 
clature is induced charge, a concept which dates back to 
Faraday. Consequently, the continued use of the term 
'apparent charge', which is associated with the change- 
in-capacitance philosophy [l-51, is not recommended. It 
should be remembered that the partial capacitances of 
the system remain constant under partial discharge ac- 
tivity and that,  as a consequence, the recorded transients 
cannot be related to  a change in capacitance. 
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7.1.2  FIELD AND F-FIELD APPROACH 

Based on the induced charge concept, analytical ex- 
pressions can be derived for the charges induced on the 
measurement electrode of a system. This can be done 
in two different ways: viz. the Maxwellian description in 
which the field within the dielectrics is related to the D- 
field, and the- quasi-molecular description in which the 
polarization P plays a dominant role. The former is the 
more convenient method for practical applications. A di- 
rect implementation of the latter method to an actual 
system would be very :umbersome if a t  all possible. The 
reason is tha t ,  in the P-field approach, parameters relat- 
ed to the ambient solid dielectric appear explicitly in the 
analytical expressions for the partial discharge transients, 
and their magnit_udes are dependent on the unknown field 
sources. In the D-field approach, these effects are all em- 
bodied in the X function, and this function can be deter- 
mined by well-known standard procedures. 

7.1.3 T H E  X FUNCTION 

This function represents the proportionality factor be- 
tween the free charge in the inter-electrode volume and 
the induced charge on the measurement electrode, i.e. X 
is a dimensionless scalar function. The A function is a so- 
lution of the general Laplace equation for the boundary 
conditions X = 1 a t  the measurement electrode and X = 0 
a t  all other electrodes. 

7.1.4 T H E  Xo FUNCTION 

With respect to void partial discharge transients, it  is 
advantageous to relate the X function to the associated 
void-free system as this greatly simplifies the calculation 
of the induced charge. The corresponding function is des- 
ignated Xo. The variation in the induced charge with void 
location is then given by the gradient of Xo. If, for exam- 
ple, the complete HV electrode is used for measurement 
purposes, then for a simple disk-type spacer in a coaxial. 
system the induced charge is proportional to the inverse 
of the distance from the axis of this electrode to the center 
of the void [ll]. 

For practical systems, which are always associated with 
nonuniform fields, the calculation of Xo (void free) is es- 
sentially a trivial problem in comparison to the evaluation 
of X (void present). A fuller discussion of the < X / f X , ,  
relationship is to be found in [ll]. 

7.1.5 T H E  4 FUNCTION 

Unlike the X function, the 4 function is a solution of the 
reduced Laplace equation and thus it is simpler to evalu- 
ate. This advantage is lost however when the 4 function 
is employed to  determine the induced charge and currents 
in's system containing polarizable materials. This situa- 
tion arises from the need to  evaluate also the change in 
the polarization due to  the field produced by the partial 
discharge space charge. 

The 4 function is adequate in traditional gas-discharge 
studies [22], owing to  the absence of polarizable materials. 

7.2 INDUCED CHARGE/MEASURED 
TRANSIENT ASPECTS 

7.2.1 MEASUREMENT ELECTRODE 

Both the X function and the partial capacitances are 
strongly dependent upon the location and geometry of 
the measurement electrode. Consequently, the choice of 
this electrode will have a dominant influence on the actual 
transients recorded. The present analysis indicates the 
manner in which this influence can be assessed for each 
particular situation. The selection of the measurement 
electrode configuration can then be optimized. 

7.2.2 MEASURED TRANSIENTS 

Partial discharge measurements are undertaken to gain 
information about the partial discharge activity in the 
insulation. As a first step this requires a knowledge of 
the induced charge. This parameter is however related to 
effectively two components, see (55). The first of these, 
AQ,(t), is associated with the transient current and hence 
will be strongly dependent on the circuit impedances. 

The second component is related to the transient po- 
tentials of the remaining ( N  - l) electrodes. This sit- 
uation arises because the interelectrode space charge in- 
duces charges on all N electrodes in the system, such that 
we have 

J J J  J J  

Depending on the electrode in question, these induced 
charges can produce changes in the electrode potentials. 
Through the partial capacitances, these changes are regis- 
tered a t  the measuring electrode. Consequently, because 
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the ‘potential’ component is closely related to  the creation 
of the space charge, i.e. to  the duration of the partial dis- 
charge, this component will have a very short risetime. 
The associated decay will again be controlled by the cir- 
cuit impedance. 

7.2.3 I NT E R P R E T A 1  I ON 

As the induced charge is derived from the integral of 
a product, it is evident that  the same value of induced 
charge could be related to an infinite number of space 
charge distributions and locations. Consequently, to  ob- 
tain a unique interpretation of the induced charge signal 
requires an exact knowledge of void location and geome- 
try, gas pressure and gas composition. These restrictions 
should, however, not prohibit a sound qualitative assess- 
ment of the insulation t o  be made on the basis of such 
measurements. The XIPD technique [25] offers distinct 
advantages in this area. 

8. CONCLUSION 

ROM a study of the relationship between the space F charge, the induced charge and the measured tran- 
sient, a theory of partial discharge transients has been 
developed. In so doing, the concept of induced charge 
has been examined from both a Maxwellian and quasi; 
molecular approach. The former approach, via the D 
field, provides a n  elegant method to  address the prob- 
lem of partial discharge transients. The quasi-molecular 
approach highlights the contribution of the bulk polar- 
ization to  the partial discharge transients. This latter 
approach is, however, exceedingly cumbersome to apply 
in practice. 

The 6 f i e l d  approach has been applied t o  the problem 
of partial discharges in voids, and i t  is concluded that  the 
induced charge on any one electrode is essentially propor- 
tional to the dipole moment of the partial discharge space 
charge. With this void partial discharge theory, a correct 
assessment of the influence of all relevant void parameters 
can be made. 

In addition, the present analysis has clearly established 
the influence of both the measurement electrode and over- 
all electrode configuration upon the partial discharge tran- 
sients which are actually recorded. This allows a correct 
quantitative correlation between the measured transient 
and the induced charge to be undertaken. Through the A 
and Xo functions, the space charge in the inter-electrode 
volume can be related to  this induced charge in a quan- 
titative manner. 

The analysis presented has linked clearly the funda- 
mental features of the generation, measurement and in- 
terpretation of partial discharge transients. 
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