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Abstract Acquiring 3D models of intricate objects (like
tree branches, bicycles and insects) is a challenging task
due to severe self-occlusions, repeated thin structures, and
surface discontinuities. In theory, a shape-from-silhouettes
(SFS) approach can overcome these difficulties and recon-
struct visual hulls that are close to the actual shapes, regard-
less of the complexity of the object. In practice, however,
SFS is highly sensitive to errors in silhouette contours and
the calibration of the imaging system, and has therefore not
been used for obtaining accurate shapes with a large number
of views. In this work, we present a practical approach to
SFS using a novel technique called coplanar shadowgram

imaging that allows us to use dozens to even hundreds of

This is an extension and consolidation of our previous work on
coplanar shadowgram imaging system (Yamazaki et al. 2007)
presented at IEEE International Conference on Computer Vision
2007.
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views for visual hull reconstruction. A point light source is
moved around an object and the shadows (silhouettes) cast
onto a single background plane are imaged. We character-
ize this imaging system in terms of image projection, re-
construction ambiguity, epipolar geometry, and shape and
source recovery. The coplanarity of the shadowgrams yields
unique geometric properties that are not possible in tra-
ditional multi-view camera-based imaging systems. These
properties allow us to derive a robust and automatic algo-
rithm to recover the visual hull of an object and the 3D posi-
tions of the light source simultaneously, regardless of the
complexity of the object. We demonstrate the acquisition
of several intricate shapes with severe occlusions and thin
structures, using 50 to 120 views.

Keywords Multi-view geometry · Shape reconstruction ·

Shape from silhouette · Imaging system · Calibration ·
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1 Introduction

Acquiring 3D shapes of objects that have numerous occlu-
sions, discontinuities and repeated thin structures is chal-
lenging for vision algorithms. For instance, the wreath ob-
ject shown in Fig. 1(a) contains over 300 branch-lets each
1–3 mm in diameter and 20–25 mm in length. Covering the
entire surface area of such objects requires a large number
(dozens or even a hundred) of views. Thus, finding corre-
spondences between views as parts of the object get oc-
cluded and “dis-occluded” becomes virtually impossible, of-
ten resulting in erroneous and incomplete 3D models.

The issues of correspondence and occlusion in the ob-
ject can be avoided if we only use the silhouettes of an

http://dx.doi.org/10.1007/s11263-008-0170-4
mailto:shun-yamazaki@aist.go.jp
mailto:srinivas@cs.cmu.edu
mailto:tk@cs.cmu.edu
mailto:sbaker@microsoft.com


260 Int J Comput Vis (2009) 81: 259–280

Fig. 1 Obtaining 3D models of
intricate shapes such as in (a) is
hard due to severe occlusions
and correspondence
ambiguities. (b) By moving a
point source in front of the
object, we capture a large
number of shadows cast on a
single fixed planar screen (122
views for this object). Applying
our techniques to such coplanar
shadowgrams enables the
accurate recovery of intricate
shapes

Fig. 2 Sensitivity of SFS
reconstruction: (Top) The visual
hulls reconstructed using the
light source positions estimated
by our method. As the number
of silhouettes increases, the
visual hull gets closer to the
actual shape. (Bottom) The
reconstructions obtained from
slightly erroneous source
positions. As the number of
views increases, the error
worsens significantly

object obtained from different views and reconstruct its vi-

sual hull (Baumgart 1974). The top row of Fig. 2 illustrates
the visual hulls estimated using our technique from different
numbers of silhouettes. While the visual hull computed us-
ing a few (5 or 10) silhouettes is too coarse, the reconstruc-
tion from a large number of views (50) is an excellent model
of the original shape. Thus, a Shape-From-Silhouettes (SFS)
approach may be used to recover accurate 3D models of in-
tricate objects.

In practice, however, SFS algorithms are highly sensitive
to errors in silhouette contours and the geometric parame-
ters of the imaging system (camera calibration) (Sinha et al.
2004). This sensitivity worsens as the number of views in-

creases, resulting in poor quality models. The bottom row
in Fig. 2 shows the visual hulls of the wreath object ob-
tained from slightly erroneous source positions. This draw-
back must be addressed in order to acquire intricate shapes
reliably.

The traditional SFS system assumes that a camera ob-
serves the object, and the silhouette is extracted from the
obtained image by image processing, such as, background
subtraction (Cheung et al. 2005; Smith and Blinn 1996), im-
age segmentation (Boykov and Funka-Lea 2006; Campbell
et al. 2007) or manual segmentation (Furukawa et al. 2006).
Multiple viewpoints are captured by moving either the cam-
era or the object (see Fig. 3(a)). For each view, the relative
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Fig. 3 (a) The object of interest
is observed directly by a
camera. The silhouette of the
object is extracted from the
captured image. Multiple views
are obtained by moving the
camera or the object. (b) A point
source illuminates the object
and its shadow cast on a planar
rear-projection screen represents
the silhouette of the object.
Coplanar shadowgrams from
multiple viewpoints are
obtained by moving the light
source. Note that the relative
transformation between the
object and the screen remains
fixed across different views

pose between the object and the camera is described by six
parameters (3D translation and 3D rotation). Savarese et al.
(2005) proposed a system that avoids the difficulty in silhou-
ette extraction using cast shadows. When an object is illumi-
nated by a single point light source, the shadow cast onto a
background plane is sharp and can be directly used as its
silhouette. Silhouettes from multiple views are obtained by
rotating the object and capturing the shadow images (also
known as shadowgrams1). Balan et al. (2007) proposed a
hybrid method that reconstructs the visual hull of an object
using the shadows cast on the floor as well as the silhou-
ettes captured by multiple cameras. In terms of multi-view
geometry, these methods are equivalent to traditional SFS,
requiring six parameters per view.

This paper proposes a novel approach to SFS called
coplanar shadowgram imaging. We use a setup similar in
spirit to that proposed by Savarese et al. (2005) The key dif-
ference here is that the point source is moved, while the ob-
ject, the camera and the background screen all remain sta-
tionary. The principal focus of this work is on acquiring vi-
sual hulls of intricate and opaque objects from a large num-
ber of coplanar shadowgrams. Our main contributions are
described below.

Multi-View Geometry of Coplanar Shadowgram Imaging:

We propose a coplanar shadowgram imaging system, and
clarify how it is different from traditional imaging system
where the camera directly observes the silhouette of an ob-
ject. Figure 3 compares the geometry of the two systems.

1Shadowgrams have also been widely used for visualizing the 3D
structure of transparent objects such as glasses or fluids (Settles 2001;
Hooke 1667).

The key observation is that the relative transformation be-
tween the object and screen remains fixed across different
views in our coplanar shadowgram imaging system. The im-
age projection model is hence described by only three para-
meters per view (3D translation of the source) instead of six
in traditional systems. The geometry is similar in spirit to
parallax geometry (Sawhney 1994; Cross et al. 1999) where
the homography between image planes is known to be an
identity, which allows the derivation of unique geometric
properties that are not possible in the traditional multi-view
camera-based imaging system. For instance, we show that
epipolar geometry can be uniquely estimated from only the
shadowgrams, without requiring any correspondences, and
independent of the object’s shape.

Recovery of Shape and Source Positions: When the shape
of the object is unknown, the locations of all the point
sources (and therefore the object’s shape) can be recov-
ered from coplanar shadowgrams, only up to a four para-
meter perspective transformation. We show how this trans-
formation relates to the Generalized Perspective Bas-Relief
(GPBR) ambiguity (Kriegman and Belhumeur 2001) that is
derived for a single viewpoint system. We break this ambi-
guity by simultaneously capturing the shadowgrams of two
or more spheres and using them as soft constraints.

Robust Reconstruction of Visual Hull: Even a small am-
ount of blurring in the shadow contours may result in erro-
neous estimates of source positions that in turn can lead to
erroneous visual hulls due to the non-linear nature of the re-
construction algorithm. We propose an optimization of the
light source positions that can robustly reconstruct the vi-
sual hulls of intricate shapes. First, the large error in light
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source positions is corrected by enforcing the reconstructed
epipolar geometry. We then minimize the mismatch between
the acquired shadowgrams and those obtained by reproject-
ing the estimated visual hull. Undesirable local convergence
in the non-linear optimization is alleviated using the con-
vex polygons of the silhouette contours. In practice, the op-
timization on the convex silhouettes also leads to faster con-
vergence.

For the analogous camera-based imaging, a number of al-
gorithms have been proposed to make SFS robust to errors in
camera position and orientation. These techniques optimize
camera parameters by exploiting either epipolar tangency or
silhouette consistency.

When we exploit the epipolar tangency and reconstruct
the projective geometry of imaging system, the localization
of epipole and the correspondence between tangent lines
have to be solved simultaneously. To solve this combinator-
ial optimization, existing methods assume either good ini-
tializations (Cipolla et al. 1995; Sinha et al. 2004) or an
approximated camera model such as linear projection (Fu-
rukawa et al. 2006). These methods also assume that the
shape of the object is reasonably complex; Silhouettes of
simple objects such as spheres do not have enough features,
and intricate objects like branches have too many, making
it hard to find correspondences automatically. Wong and
Cipolla propose a technique that can recover the epipolar
geometry regardless of the complexity of the silhouette, us-
ing the outer epipolar tangency which is similar in spirit to
our approach (Wong and Cipolla 2004). The camera mo-
tion, however, is limited to circular motion since they use
the multi-view camera-based imaging system.

Another approach to the camera reconstruction from sil-
houettes is estimating the camera poses that can reconstruct
the visual hull consistent to with the acquired silhouettes.
Yezzi and Soatto (2003) solved this highly non-linear opti-
mization problem assuming a good initialization and simple
silhouettes. Hernández et al. proposed an efficient optimiza-
tion by maximizing the consistency only along the contour
lines of the silhouettes. However, the methods based on the
silhouette consistency also have difficulty in the initializa-
tion and the limitation on the complexity of the shape. As a
result, these techniques have succeeded in only acquiring the
3D shapes of relatively simple objects like people and stat-
ues using a small number of views and/or assuming limited
camera motion.

In contrast, our algorithm is effective for a large number
of views (dozens to a hundred) from a wide range of view-
points, does not require any feature correspondences and
does not place any restriction on the shapes of the objects.
The minimization of silhouette mismatch is also easier re-
quiring optimization of source translation (3 DOF per view),
instead of the harder (and sometimes ambiguous (Hartley
and Zisserman 2004)) joint estimation of camera rotation

Fig. 4 The setup used to capture coplanar shadowgrams includes a
single point light source, a rear-projection screen, and a digital cam-
era. The object is placed close to the screen to cover a large field of
view. Two or more spheres are used to estimate the initial light source
positions. (Inset) An example shadowgram obtained using the setup

and translation (6 DOF per view) in the traditional system.
As a result, we achieve good quality reconstructions of real
objects such as a wreath, a wiry ball, a palm tree, and an
octopus that show numerous occlusions, discontinuities and
thin structures. In addition, we have also evaluated our tech-
niques quantitatively using simulations with objects such as
a coral, branches, a bicycle and an insect whose ground truth
shapes are known beforehand.

Despite significant progress in optical scanning hard-
ware (Curless and Levoy 1996; Levoy et al. 2000) and multi-
view geometry (Hartley and Zisserman 2004; Seitz et al.
2006), reconstruction of intricate shapes remains an open
problem. We believe this work is an initial step to solving
this problem. Possible extensions of our work include multi-
ple screens covering 360◦ ×360◦ views of the objects and/or
multiple light sources for dynamic objects, and combine our
techniques with stereo and photometric stereo, to obtain re-
constructions that are smoother than visual hulls, including
concavities.

2 Coplanar Shadowgrams

We define shadowgrams as the shadow pattern cast on a
background plane by an object that occludes a point source.
If the object is opaque, the sharp shadowgram accurately
represents the silhouette of the object. Henceforth, we shall
use shadowgrams and silhouettes interchangeably. We also
refer to the images that captures shadowgrams as shadow-
gram images. Coplanar shadowgram imaging is the process
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of acquiring several shadowgrams on a single plane by mov-
ing the light source while keeping the shadow plane fixed.

Our acquisition setup shown in Fig. 4 includes a 6M-pixel
Canon EOS-20D digital camera, a 250 watt 4 mm incandes-
cent bulb, and a 4 ft × 4ft translucent rear-projection screen.
This setup is similar to the one in Savarese et al. (2005)
where the object is rotated and the light source is fixed. We
prove in Sect. 4 that the fixed relative position between the
image plane and the object is crucial to deriving a strong
constraint on the shadowgrams. Another advantage of mov-
ing only the light source is that we can easily acquire the
shadowgrams of non-rigid objects. In this section, we de-
scribe how the visual hull of the object is obtained using our
setup.

2.1 Shadowgram Projection

Throughout this paper, we represent the locations of light
sources, the surface of 3D objects, and the shadowgrams on
a background plane in either a two or three dimensional real
projective space (RP

2 or RP
3) unless defined explicitly. Sets

are written in calligraph face as S , operators are in sans-serif
font as P, vectors and matrices are in bold face as v and M ,
and scalars are in normal fonts as x. All the vectors without
the transpose are column vectors.

Figure 3(b) illustrates the viewing and illumination
geometry of coplanar shadowgram imaging. Without loss of
generality, we assume the shadowgram plane � is located at
z = 0. When an 3D object O ⊂ RP

3 is illuminated by a point
light source at l ∈ RP

3, the shadowgram S O ⊂ RP
2 of the

object on the shadowgram plane is obtained by a perspective
projection:

S
O = P(l) · O. (1)

The projection P(l) : RP
3 → RP

2 can be represented as a
3 × 4 matrix P (l) (see Appendix A for the derivation):

P (l) =

⎛

⎝

−w 0 u 0
0 −w v 0
0 0 1 −w

⎞

⎠ . (2)

The image I of the shadowgram acquired by a camera
is related to the shadowgram S O on the plane � by a 2D
homography:

I = H · S
O. (3)

This homography H : RP
2 → RP

2 is independent of the
light source position and can be estimated separately using
a standard computer vision algorithm. In the following, we
assume that the shadowgram S O has been estimated using

S
O = H

−1 · I. (4)

2.2 Visual Hull Reconstruction

Now let a set of shadowgrams S O
i of an object O (i =

1, . . . ,N ) be acquired by moving the source to different lo-
cations li . The visual cone Ci ⊂ RP

3 associated with the
shadowgram S O

i is defined as

Ci
def
=

{

p ∈ RP
3 | P(li) · p ∈ S

O
i

}

. (5)

Then, the visual hull V ⊂ RP
3 of the object is obtained as

V
def
=

N
⋂

i=1

Ci . (6)

Given the 3D locations li of the light sources, the visual hull
of the object can be estimated using (2) and (6). Due to the
nature of the reconstruction algorithm, the reprojection S V

of the visual hull V to the shadowgram plane reproduces the
shadowgram identical to the input.

S
V
i

def
= P(li) · V (7)

= S
O
i . (8)

Table 1 summarizes and contrasts the geometric parame-
ters that appear in the traditional multi-view camera-based
and coplanar shadowgram imaging systems. In multi-view
camera-based imaging system (Fig. 3(a)), we must specify
both the intrinsic camera parameters that define the rela-
tionship between pixels and ray directions, and the extrinsic
camera parameters (rotation and translation) that define the
ray directions in a world coordinate frame. As the camera
moves, the intrinsic parameters remain the same, while the
six extrinsic parameters vary. On the other hand, in coplanar
shadowgram imaging (Fig. 3(b)), the point source is defined
only by its location, requiring three parameters per view as
compared to the six in the traditional system. As we shall
show, this difference is crucial to the success of the tech-
nique presented in this paper.

3 Source Recovery

When the shape of the object is unknown, it is not possible
to uniquely recover the 3D source positions only using the
coplanar shadowgrams. In this section, we discuss the nature
of the ambiguity in the 3D reconstruction from our coplanar
shadowgrams and propose a simple method to break it.

3.1 Ambiguity in 3D Reconstruction from Coplanar
Shadowgrams

Suppose two sets of light source locations, li =

(ui, vi,wi,1)T and l′i = (u′
i, v

′
i,w

′
i,1)T for i = 1, . . . ,N ,
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are estimated from a given set of coplanar shadowgrams.
We can reconstruct respective visual hulls V and V ′ using
(6). The reprojection of the visual hulls defined in (7) sat-
isfy:

P(li) · V = P(l′i) · V
′. (9)

Let A : RP
3 → RP

3 be a transformation that deforms V into
V ′:

V
′ = A · V . (10)

Equations (9) and (10) lead to the identical equation:

P(li) = P(l′i) · A. (11)

Here, A is a linear transformation because any 3D point
along a ray from a point light source at li is transformed
to the point on a ray from the source at l′i . Comparing all
elements in both sides of (11), we obtain the matrix A of the
transformation (see Appendix B for the derivation):

A =

⎛

⎜
⎜
⎝

1 0 a1 0
0 1 a2 0
0 0 a3 0
0 0 a4 1

⎞

⎟
⎟
⎠

. (12)

The four parameters a1, a2, a3, and a4 take arbitrary num-
bers under the condition that

a3 �= 0 and a3a4 ≥ 0. (13)

Using (11), we can prove that the transformation between
the source locations is also described by the same matrix:

l′i = Ali . (14)

Equations (10) and (12) show that we can recover the shape
of an object only from coplanar shadowgrams, up to a four-
parameter family of perspective transformations A.

This result is consistent with the theory on the ambigu-
ity in the geometric reconstruction from shadow informa-
tion. Kriegman and Belhumeur (2001) prove that, when the
shape of an object and the locations of light sources are all
unknown, we can at best reconstruct the 3D structure from
the shadow information, up to a four-parameter family of
perspective transformation which they call the Generalized
Perspective Bas-Relief (GPBR) transformation. In fact, our
ambiguity transformation A can be viewed as the GPBR
transformation if the origin of the world coordinate system
is translated to the center of projection of a calibrated cam-
era, and the shadowgram plane is regarded as a part of the
object. In our imaging system, however, we use the coordi-
nate system where the origin is on the shadowgram plane
for the following reasons. Firstly, the estimation of the ho-
mography between the camera image plane and the shad-
owgram plane is much easier than the calibration of camera

projection. We can reconstruct the shape of the object with-
out knowing any camera parameter. Secondly, the ambiguity
in the global scale of the reconstruction can be resolved us-
ing the physical dimension of the shadowgram screen.

3.2 Determining Source Position Using Spheres

Significant effort has been devoted to understanding when
and how the ambiguity in the shape reconstruction using
shadows can be resolved. If the surface reflection on the
object of interest is observed by a camera, the ambiguity
is resolved by exploiting relative albedo values (Hayakawa
1994), interreflections (Chandraker et al. 2005), speculari-
ties (Georghiades 2003; Drbohlav and Sara 2002; Drbohlav
and Chantler 2005), or Helmholtz reciprocity (Tan et al.
2007). However, we cannot observe the surface reflection
in coplanar shadowgram imaging system. The robustness of
the analyses of surface reflection is also open to question
when the object has an intricate shape.

We now propose a technique of breaking the ambiguity
using calibration objects. The location l = (u, v,w,1)T of
a point light source is directly estimated by capturing shad-
owgrams of two additional spheres that are placed adjacent
to the object of interest.

The first and second coordinates u and v can be estimated
by analyzing the shadowgrams of the spheres. Figure 5 illus-
trates the coplanar elliptical shadowgrams cast by the two
spheres.2 The ellipses are localized using a constrained least
squares approach (Fitzgibbon et al. 1999). The intersection
of the major axes A1B1 and A2B2 of the two ellipses is
the foot of the perpendicular line from l to �, denoted by
l⊥ = (u, v,0,1)T in Fig. 5.

The third coordinate w is obtained as the intersection of
hyperbolae in 3D space as shown below. Without loss of
generality, consider the 3D coordinate system whose origin
is at the center of the ellipse, and X and Y axes are respec-
tively the major and minor axes of the ellipse. Then, the el-
lipse is represented in the following form.

x2

a2
+

y2

b2
= 1 (a > b). (15)

In 3D space, there exists an inscribed sphere tangent to
the conical surface and the plane, regardless of the position
or the radius of the sphere. The cross section of the inscribed
sphere by the plane that includes the apex of the cone and
the major axis of the ellipse is shown in Fig. 6. The center of

2Each sphere is placed so that the minimum distance between a light
source and the rear-projection screen is larger than the distance be-
tween the center of the sphere and the screen. Under this configuration,
the cast shadow of the sphere is always an ellipse (Besant 1890).
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the inscribed sphere is shown by R. The other symbols are
corresponding to those in Fig. 5. The center of the ellipse C

is the origin of the coordinate system.
The inscribed sphere is tangent to XY -plane at a focus of

the ellipse R′, hence

CR′ =
√

a2 − b2. (16)

Using the symmetry of triangles,

LA − AR′ = LB − BR′. (17)

Let the position of the apex be l = (t,0,w,1)T in this coor-
dinate system, then we can solve w with respect to t as:

w =

√

b2t2

a2 − b2
− b2, (18)

where a and b are the semimajor and semiminor axes of one
of the ellipses, and t is the length between l⊥ and the center
of the ellipse.

More than two spheres may be used for a robust estimate
of the source position. The above method is completely au-
tomatic and does not require the knowledge of the radii of
the spheres, the exact locations at which they are placed in
the scene, or point correspondences.

This technique for estimating the source position can be
sensitive to errors in measured silhouettes. Due to the fi-
nite size of the light bulb, the shadowgram formed may be
blurred, making it hard to localize the boundary of the sil-
houette. The extent of blurring depends on the relative dis-
tances of the screen and source from the object. To show the
sensitivity of the technique, we performed simulations with
spheres. We blurred the simulated silhouettes (effective res-
olution 480 × 360 pixels) with 5 × 5 and 10 × 10 averag-
ing kernels, and estimated the 3D coordinates of the light
source. Figure 7 presents u and w components of the source
positions reconstructed using three spheres. Observe that the
estimation becomes poor when the shadowgram is close to
a right circle. In turn, the visual hull of a tree branch com-
puted from the erroneous source positions is too erroneous
even to perceive the 3D structure.

Due to the nature of visual hull reconstruction, a large er-
ror in one light source can blast the perfect reconstruction
obtained by the other sources. Thus, better algorithms for
averaging out the errors in individual light sources are cru-
cial for obtaining accurate 3D models of intricate shapes.

4 Epipolar Geometry

Analogous to the scenario of binocular stereo, we define
the epipolar geometry between a pair of shadowgrams that
are generated by placing the point source in two locations

(li = (ui, vi,wi,1)T and lj = (uj , vj ,wj ,1)T in Fig. 8).
Here, the locations of the point source are analogous to
the centers-of-projection of the stereo cameras. The base-
line connecting the two light sources li and lj intersects
the shadowgram plane � at the epipole eij . When the light
sources are equidistant from the shadowgram plane �, the
epipole is at infinity.

Based on these definitions, we make two key observa-
tions that do not hold for binocular stereo: since the shad-
owgrams are coplanar, (a) they share the same epipole and
(b) the points on the two shadowgrams corresponding to the
same scene point lie on the same epipolar line. These obser-
vations are respectively written as

M ijeij = 0, (19)

mT
i F ijmj = 0. (20)

In (19), M ij is a 2 × 3 matrix composed of two plane equa-
tions in the rows

M ij =

(

−�v �u

�u�w −� − v�w

uivj − ujvi

(ui�u + vi�v)�w − wi(�u2 + �v2)

)

(21)

where �u = uj − ui , �v = vj − vi , and �w = wj − wi . In
(20),

F ij = [eij ]× (22)

is the fundamental matrix that relates two corresponding
points mi and mj between shadowgrams. [eij ]× is the 3 × 3
skew symmetric matrix:

[eij ]×x = eij × x (23)

for any 3D vector x.
The camera geometry in coplanar shadowgram is simi-

lar in spirit to the parallax geometry (Sawhney 1994; Cross
et al. 1999) where the image deformation is decomposed
into a planar homography and a residual image parallax
vector. In our system, however, the homography is exactly
known to be an identity, which allows us to recover the
epipolar geometry only from acquired images accurately re-
gardless of the number of views or the complexity of the
shadowgram contours.

4.1 Algorithm for Estimating Epipolar Geometry

We now show that the above observations enable us to
uniquely estimate the epipolar geometry from only the shad-
owgram images. Suppose we have the plane in Fig. 8 that
includes the baseline and is tangent to the surface of an ob-
ject at a frontier point F . The intersection of this plane and
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Fig. 5 Source position
l = (u, v,w,1)T is recovered
using the elliptical
shadowgrams of two spheres.
The radii and positions of the
spheres are unknown. The major
axes of the ellipses intersect the
screen at l⊥ = (u, v,0,1)T . The
w component is obtained
using (18)

Table 1 Comparison between the geometric parameters of silhouette
projection. For n views, the traditional multi-view system is described
by 5 + 6n parameters. In comparison, the coplanar imaging system
requires only 8 + 3n parameters

View independent View dependent

Projective cameras 1 (focal length) 3 (rotation)

1 (aspect ratio) 3 (translation)

1 (skew)

2 (image center)

Coplanar shadowgrams 8 (homography H) 3 (translation l)

the shadowgram plane � forms an epipolar line, which is
also known as an epipolar bitangent (Cross et al. 1999), that
can be estimated as one that is cotangent to the two shadow-
grams (at Ti and Tj in Fig. 8). Two such epipolar lines can
then be intersected to localize the epipole. But the reverse
need not hold; every cotangent line need not be an epipolar
line. So, how do we localize the epipole and estimate the
epipolar lines without knowing any frontier points?

Figure 9(a) illustrates the simplest case of two convex
shadowgrams partially overlapping each other. There are
only two cotangent lines that touch the shadowgrams at the
top and bottom region, resulting in a unique epipole e. When
the convex shadowgrams do not overlap each other, four dis-
tinct cotangent lines are possible, generating six candidate
epipoles, as shown by dots in Fig. 9(b). Only two of these
four cotangent lines pass through the actual epipole, hence,
the other two are false detections. Indeed, the false detec-
tions correspond to infeasible cases where the light source
is located between the object and the screen, or behind the
screen. We can detect actual epipolar lines by choosing the

cotangent lines where the epipole does not appear between
the two points of shadowgram tangency.

When shadowgrams are non-convex, the number of
cotangent lines can be arbitrarily large depending on the
complexity of the shadowgram contours. Figure 9(c) illus-
trates the multiple candidates of cotangent lines at the point
of tangency T . In this case, we compute the convex polygon
surrounding the silhouette contour as shown in Fig. 9(d) and
prove the following proposition (see Appendix C for the
proof):

Proposition 1 The silhouettes of the convex hull of an object

are the convex hulls of the silhouettes.

Using Proposition 1, the problem of estimating epipo-
lar lines for concave silhouettes is reduced to the case of
either (a) or (b). Thus, epipolar geometry can be recon-
structed uniquely and automatically from only the shadow-
grams. This capability of recovering epipolar geometry is
independent of the shape of silhouette, and hence, the 3D
shape of the object. Even when the object is a sphere, we
can recover the epipolar geometry without any ambiguity.
This geometric property is also observed in the parallel pro-
jection model where cameras are internally calibrated and
moved without rotation (Åström et al. 1999). In the coplanar
shadowgram imaging, however, the same geometric struc-
ture is accomplished without camera calibration or any ap-
paratus to control the cameras. Table 2 summarizes the dif-
ferences between traditional multi-view imaging by uncal-
ibrated cameras and coplanar shadowgrams in terms of re-
covering epipolar geometry.

For the special case where the baseline intersects a con-
vex object, one convex silhouette lies completely within the
other and hence the epipole lies within the silhouettes. In
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Fig. 6 The cross section of a
right circular conical surface
formed by the light rays
emanating from a point light
source at l and tangent to a
calibration sphere

Fig. 7 Source positions (u,w)
are estimated using three
calibration spheres. The sizes
and positions of the spheres and
screen are shown in the plot.
Each plot shows 11 source
positions obtained from (a)
ground truth, (b) accurate
shadowgrams, and (c)–(d)
shadowgrams blurred using
5 × 5 and 10 × 10 averaging
filters. On the right is the visual
hull of a branch reconstructed
from 50 light sources. The poor
result demonstrates the need for
better algorithms for
reconstructing intricate shapes

Fig. 8 Epipolar geometry of
two shadowgrams. The baseline
connecting the two sources li
and lj intersects the
shadowgram plane � at an
epipole eij . Suppose an epipolar
plane that is tangent to the
surface of an object at a frontier
point F , then the intersection of
the epipolar plane and the
shadowgram plane � is an
epipolar line. The epipolar line
can be estimated as a line that is
co-tangent to the shadowgrams
at Ti and Tj
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Fig. 9 Localization of the
epipole. (a), (b) If two
shadowgrams are convex, a
maximum of four co-tangent
lines and six intersections are
possible. Considering that the
object and the light source are
on the same side with respect to
the screen, the epipole can be
chosen uniquely out of the six
intersections. (c), (d) If the
shadowgrams are non-convex,
the epipole is localized by
applying the technique in (a) or
(b) to the convex polygons of
the original shadowgrams

Fig. 10 Initial light source
positions in Fig. 7 were
improved by epipolar
constraints in (24). On the right

is the visual hull reconstructed
from the improved source
positions

Fig. 11 The light source
positions reconstructed using
epipolar constraint in Fig. 10
were optimized by maximizing
the shadowgram consistency in
(28). On the right is the visual
hull reconstructed from the
optimized source positions

this case, there are no frontier points formed (and hence no
cotangent lines for convex silhouettes). We can avoid this
case by placing the sources such that the baselines do not
always intersect the object.

4.2 Improving Accuracy of Source Locations

The error in the light source positions reconstructed using
spheres can be arbitrarily large depending on the localiza-
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Fig. 12 Reconstructed shape of a polyhedron object is improved with
each iteration from left to right. (Top) Reconstructed visuals hull at the
end of each iteration. (Bottom) The reprojection of the reconstructed
visual hulls onto one of captured silhouette images. The reprojection
and silhouettes are consistent at yellow pixels, and inconsistent at

green (Color online). The boxed figures show the reconstruction from
the light source positions (a) estimated from spheres, (b) improved
by epipolar geometry, and (c) optimized by maximizing shadowgram
consistency. (d) Photograph of the object

Fig. 13 Simulation with a
coral object: (a) Eighty four
coplanar shadowgrams of the
object are generated with
average resolution 530 × 270
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) The ground
truth 3D shape. The volume
difference is 0.15% of the
volume of the ground truth 3D
shape. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

tion of the elliptical shadowgram for each sphere. This error

can be reduced by relating different light source positions

through the epipolar geometry. Let the set of epipoles eij be

estimated from all the source pairs li and lj . The locations

of the sources are improved by minimizing the expression in

(19) for each pair of light sources using least squares:

{l1, . . . , lN } = argmin
{l1,...,lN }

∑

i �=j

∥
∥M ijeij

∥
∥

2
2 (24)

where || · ||2 is the L2-norm of a vector. The source positions
reconstructed from the shadowgrams of spheres are used as
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Fig. 14 Simulation with a
seaweed object: (a) Forty nine
coplanar shadowgrams of the
object are generated with
average resolution 334 × 417
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) The ground
truth 3D shape. The volume
difference is 0.21% of the
volume of the ground truth 3D
shape. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

Table 2 Comparison between traditional multi-view camera-based
imaging and coplanar shadowgrams in epipolar reconstruction. The
traditional multi-view images acquired by uncalibrated cameras re-

quire at least 7 point correspondences of the silhouette contours. Copla-
nar shadowgrams allow unique epipolar reconstruction irrespective of
the shape of the 3D object

Silhouette complexity Convex Non-convex

#correspondences 2 < 7 ≥ 7 ≫ 7

Uncalibrated multi-camera impossible impossible not always hard

Coplanar shadowgrams possible possible possible possible

possible—the epipolar geometry can be reconstructed uniquely

not always—possible if seven correspondences are found

hard—hard to find the correct correspondences in practice

impossible—impossible because of the insufficient constraints

initial estimates. We evaluate this approach using the simu-

lated silhouettes described in Fig. 7. Figure 10 shows con-

siderable improvement in accuracy obtained by enforcing

the epipolar constraint in (19). Compared to the result in

Fig. 7, collinearity in the positions of light sources is better

recovered in this example.
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Fig. 15 Simulation with a
bicycle object: (a) Sixty one
coplanar shadowgrams of the
object are generated with
average resolution 635 × 425
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) The ground
truth 3D shape. The volume
difference is 0.12% of the
volume of the ground truth 3D
shape. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

5 Using Shadowgram Consistency

While the epipolar geometry improves the estimation of
the light source positions, the accuracy of estimate can
still be insufficient for the reconstruction of intricate shapes
(Fig. 10). In this section, we present an optimization algo-
rithm that improves the accuracy of all the source positions
even more significantly. As we will show, combining the
epipolar constraints and the optimization algorithm results
in high quality models of intricate shapes.

5.1 Optimizing Light Source Positions

Let V be the visual-hull obtained from the set of captured
shadowgrams Si and the estimated projection P(li) for i =

1, . . . ,N . Due to the nature of the intersection operator, the
reprojections of the visual hull to the shadowgram plane sat-
isfy:

S
V
i ⊆ S

O
i . (25)

The reprojections match the acquired silhouettes when the
source positions are perfect. In other words, if they match,
we cannot make any more improvement to the shape only
by the silhouettes. We can define a measure of silhouette
mismatch by the sum of squared difference:

ǫ2
reprojection =

N
∑

i=1

D

(

S
V
i (x), S

O
i (x)

)

(26)

where D : RP
2 × RP

2 → R evaluates the difference be-
tween two sets and will be discussed in Sect. 5.2. We min-
imize the above mismatch by optimizing for the locations
of the light sources. Unfortunately, optimizing solely (26)
is known to be inherently ambiguous owing to the four-
parameter transformation mentioned in Sect. 3. To alleviate
this issue, we simultaneously minimize the discrepancy be-
tween the optimized light source positions li and the initial
source positions l0

i estimated from the spheres (Sect. 3) and
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Fig. 16 Simulation with a
spider object: (a) Seventy six
coplanar shadowgrams of the
object are generated with
average resolution 356 × 354
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) The ground
truth 3D shape. The volume
difference is 0.08% of the
volume of the ground truth 3D
shape. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

epipolar geometry (Sect. 4):

ǫ2
initial =

N
∑

i=1

∥
∥
∥li − l0

i

∥
∥
∥

2

2
. (27)

The final objective function is obtained by a linear combina-
tion of the two errors:

ǫtotal = ǫ2
reprojection + αǫ2

initial (28)

where α is a user-defined weight. While the idea of min-
imizing silhouette discrepancy is well known in the tra-
ditional multi-view camera-based SFS (Sinha et al. 2004;
Yezzi and Soatto 2003; Wong and Cipolla 2004; Hernán-
dez et al. 2007), the key advantage over prior work is the
reduced number of parameters our algorithm needs to opti-
mize (three per view for the light source position, instead of
six per view for rotation and translation of the camera). In
turn, this allows us to apply our technique to a much larger
number of views than possible before.

5.2 Implementation

How do we represent the scalar-valued function D that de-
scribes the difference between two silhouettes in (26)? Sup-
pose the silhouettes S V

i and S O
i are given as images in the

same dimension, then it is natural to define D as the sum of
square distances between the pixels values of the silhouettes.
Then, the next question is how to define the pixels values of
the silhouette images.

The simplest one is a binary function that returns 0 and
1 when a pixel is located respectively outside and inside the
silhouette. This binary function, however, is not suitable for
iterative minimization of (26) since D(S V

i , S O
i ) is non-zero

at only a small number of pixels around mis-matched con-
tour lines. Due to errors in the measured silhouette, the bi-
nary function causes undesirable bias.

We use the signed Euclidean distances to the contour
of S V

i and S O
i as the pixels values in the silhouette im-

ages. The intersection of silhouettes is computed for each
3D ray defined by a pixel in S O

i , and then projected back to
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Fig. 17 Real experiment with
a polyhedron object: (a) Forty
five coplanar shadowgrams of
the object are generated with
average resolution 126 × 116
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) Photograph of
the object. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

the silhouette to obtain S V
i . This is a simplified version of

image-based visual hull (Matusik et al. 2000) and has been
used in silhouette registration methods (Hernández et al.
2007). Equation (28) is minimized using Powell’s gradient-
free technique (Press et al. 1988).

Due to the intricate shapes of the silhouettes, the error
function in (28) can be complex and may have numerous
local minima. We alleviate this issue using the convex poly-
gons of the silhouette contours described in Sect. 4. From
Proposition 1, a following corollary is derived regarding the
consistency between the visual hull and the silhouettes of an
object (see Appendix D for the proof).

Proposition 2 If silhouette contours are consistent in that

they can be generated from a physical 3D object, then the

convex polygons obtained from the silhouette contours are

also consistent.

Using Proposition 2, we minimize (28) using the convex sil-
houettes with l0

i as initial parameters. The resulting light
source positions are in turn used as starting values to min-

imize (28) with the original silhouettes. In practice, using
convex silhouettes also speeds up convergence.

We evaluate this approach using the simulated silhouettes
described in Figs. 7 and 10. Compare the results in Fig. 7
(using spheres to estimate source positions) and Fig. 10 (en-
forcing epipolar constraints) with those in Fig. 11. The final
reconstruction of the tree branch is visually accurate high-
lighting the performance for our technique.

6 Results

In this section, we demonstrate the accuracy of our tech-
niques using both simulated and real experimental data. Ta-
ble 3 summarizes the data set used in the experiment and the
performance of our reconstruction algorithms.

We first generated or captured a sufficiently large number
of shadowgrams, and started our reconstruction algorithm
using a small number of randomly-chosen images. The num-
ber of images used is increased until the reconstructed visual
gets sufficiently close to the actual shape. We used a work-
station equipped with four dual-core AMD Opteron 8218
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Fig. 18 Real experiment with
a wreath object: (a) 122
coplanar shadowgrams of the
object are generated with
average resolution 674 × 490
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) Photograph of
the object. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

Table 3 The models used in our experiments: We reconstructed visual
hulls from coplanar shadowgrams using four simulation and four real
data sets. The detail of each experiment is shown in the corresponding
figure. The average resolution of shadow region in the shadowgrams
is shown in the row of shadowgram size. The computation time in
optimizing epipolar geometry and silhouette consistency is shown in

minutes (see the main text for our computational environment). Repro-

jection error indicates the mismatch between the input shadowgrams

and those generated by reprojecting the estimated visual hull. For sim-

ulation data, the volume ratio between the ground truth and the recon-

structed visual hulls is presented

Simulation data Real data

Model coral seaweed bicycle spider polyhedron wreath palm-tree octopus

Figure 13 14 15 16 17 18 19 20

# of views 84 49 61 76 45 122 56 53

Shadowgram size 530 × 270 334 × 417 635 × 425 356 × 354 126 × 116 674 × 490 520 × 425 451 × 389

Reconstruction time 532 min 384 min 429 min 498 min 235 min 9312 min 429 min 402 min

Reprojection error 2.2% 3.2% 2.3% 1.3% 3.2% 5.2% 4.8% 4.6%

Volume error 0.15% 0.21% 0.12% 0.08% – – – –
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Fig. 19 Real experiment with
a palm-tree object: (a) Fifty six
coplanar shadowgrams of the
object are generated with
average resolution 520 × 425
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) Photograph of
the object. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

2.6 GHz and 16 GB main memory for optimization of epipo-
lar geometry and silhouette consistency explained in Sect. 4
and Sect. 5.

All results of 3D shape reconstructions shown in this
paper are generated by the exact polyhedral visual hull
method proposed by Franco and Boyer (2003). The acquired
3D shape is then rendered using Autodesk Maya rendering
package.

6.1 Reconstruction of Visual Hulls and 3D Source
Positions

6.1.1 Simulation Data

We have chosen four objects with complex structure in our
simulations—a coral, a seaweed (also used in Figs. 7, 10,
and 11 in the main paper), a bicycle, and a spider. The sea-
weed and coral objects have many thin sub-branches with
numerous occlusions. The bicycle object is composed of
very thin structures such as spokes, chains, and gears. The

spider object is composed of both thick and thin structure.
The simulation experiments with known ground truth shape
and source positions are shown respectively in Figs. 13, 14,
15, and 16.

Each of the figures is organized as follows: (a) A set
of coplanar shadowgrams of the object is generated by a
shadow simulator implemented by Direct 3D graphics li-
brary. (b) The positions of light source are perturbed with
random noise with σ = 5% of the object size, and the sil-
houettes are blurred by 3 × 3 averaging filters. (c) The posi-
tions of the light sources are recovered using epipolar geom-
etry followed by the maximization of silhouette consistency
in (d). For each of (b), (c), and (d), the top row shows one
of captured silhouette images (in green), overlaid with the
reprojection of the reconstructed visual hulls onto the sil-
houette (in yellow). The middle row shows the ground truth
positions of light sources (in red) and the estimated posi-
tions (in yellow). The reconstructed 3D shape is shown at
the bottom. Finally, (e) the ground truth 3D shape and (f)
the reconstructed visual hull rendered by Maya is shown.
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Fig. 20 Real experiment with
an octopus object: (a) Fifty
three coplanar shadowgrams of
the object are generated with
average resolution 451 × 389
pixels. (b) Initial reconstruction.
(c) The reconstruction using
epipolar geometry. (d) The
reconstruction using silhouette
consistency. (e) Photograph of
the object. (f) Rendering of the
reconstructed shape. (Refer to
main text for the detail of each
figure)

6.1.2 Real Data

We show the 3D shape reconstruction of four different
objects—a polyhedron (also used in the Fig. 12 in the main
paper), a wreath (Figs. 1 and 2), a palm-tree object, and an
octopus object. The wreath object has numerous thin nee-
dles which cause severe occlusions. The polyhedron is a thin
wiry polyhedral object. The palm-tree object is a plastic ob-
ject composed of two palm trees with flat leaves. The octo-
pus is a plastic object that has complex surface reflection and
large concavities. The results of reconstructing 3D shape are
shown in Figs. 17, 18, 19, and 20. Each figure is organized
in the same way as those of simulation data, except that: The
final reconstruction of source positions are presented in red
in the middle row of (b), (c), and (d). The photograph of the
object is shown in (e).

6.2 Convergence

Figure 12 illustrates the convergence properties of our opti-
mization algorithm. Figure 12(a) shows the visual hull of the

wiry polyhedral object obtained using the initial positions
of light sources estimated from the calibration spheres. The
reprojection of the visual hull shows poor and incomplete
reconstruction. By optimizing the light source positions, the
quality of the visual hull is noticeably improved in only a
few iterations.

The convergence of the reconstruction algorithm is quan-
titatively evaluated in Fig. 21. The error in light source po-
sitions estimated by the algorithm proposed in Sect. 5 is
shown in the top-left plot. The vertical axis shows L2 dis-
tance between the ground truth and the current estimate of
light source positions. After convergence, the errors in the
light source positions are less than 1% of the sizes of the
objects. The volume ratio between actual and erroneously-
reconstructed visual hulls is presented in the top-right. The
silhouette mismatch defined in (26) is plotted on the bottom.
On average, the silhouettes cover on the order of 105 pixels.
The error in the reprojection of the reconstructed visual hulls
is less than 1% of the silhouette pixels for the real objects.
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Fig. 21 Convergence of error:
(a, b) Errors in light source
positions and visual hull are
computed using ground truth for
simulation models. (a) The error
in the source position computed
by L2 distance in meter. (b) The
volume ratio between actual and
erroneously-reconstructed
visual hulls. (c) Error in
shadowgram consistency
computed in pixels for both
simulation and real data. All
plots are in logarithmic scale

Fig. 22 Two different
configurations of coplanar
shadowgrams of a bicycle
object: Gray rectangle and
yellow spheres indicate
respectively a shadow screen
and light source position (Color
online). 36 light sources are
used in both configurations. The
screen is rotated by 90 degrees,
while the object remains fixed.
For the demonstration of the
two-screen algorithm, a small
number of light sources are used

7 Conclusion

7.1 Summary

Coplanar shadowgram imaging is an technique to easily
capture a large number of silhouettes of intricate objects
from a wide range of viewpoints, with high accuracy. The
setup shown in Fig. 4 is inexpensive and requires only off-
the-shelf components like a camera, a rear-projection screen
and a small light source. However, traditional shape-from-
silhouettes (SFS) approaches are highly sensitive to (even
tiny) errors in acquired silhouettes or light source posi-

tions. The epipolar geometry of the shadowgrams and the

silhouette consistency based optimization described in this

work are crucial to obtaining extremely accurate reconstruc-

tions of intricate shapes. Most approaches for shape-from-

silhouettes have acquired shapes of non-intricate objects

(simple models of people, statues and figurines) that can be

modeled with a small number of views. We believe this is the

first time such accurate shapes have been estimated automat-

ically using a large number of views (50 to 120) of objects

with severe occlusions, discontinuities and thin structures.



278 Int J Comput Vis (2009) 81: 259–280

Fig. 23 Comparison of shape
reconstruction: We synthesized
36 coplanar shadowgrams of a
3D shape shown in (a). The
visual hull of the object is
reconstructed from: (b) the
shadowgrams taken from
side-direction (Fig. 22 left) and
(c) the shadowgrams taken from
frontal-direction (Fig. 22 right).
The reconstructed shape is
stretched into the direction
perpendicular to a shadow
screen due to the lack of views
parallel to the screen. (d)
Combining shadowgrams (b)
and (c) enlarges the coverage of
light source positions, which
successfully reduces the
stretching artifact in the
reconstructed shape

7.2 Discussion

A single screen cannot be used to capture the complete
360◦ × 360◦ view of the object. For instance, it is not possi-
ble to capture the silhouette observed in the direction paral-
lel to a shadowgram plane. This limitation can be overcome
by augmenting the system with more than one shadowgram
screen (or move one screen to different locations). The al-
gorithm of the multi-screen coplanar shadowgram imaging
can be divided into offline and online steps:

Off-line Calibration (one-time): This calibration can be
done in several ways and we mention a simple one here. In
the case of two-screen setup which is observed by a single
camera, we only need to estimate the homography between
each screen and image plane. The extra work required over
the one-screen case is an additional homography estima-
tion. The homographies in turn can be used to recover the
relative transformation between the screens.
Online Calibration: In the two-screen setup, we can esti-
mate the light source positions for each set of shadowgrams

on one screen separately using the technique demonstrated

in the paper. Finally, we merge the two sets of results using

the relative orientation between the screens resulting from

the off-line calibration.

In principle, it is possible to also optimize (minimize) the

errors due to off-line calibration. However, the off-line in-

trinsic calibration of a camera and the screen-to-image ho-

mography can be done carefully. More importantly, it is in-

dependent of the complexity of the object and the number of

source positions.

We have performed simulations with a bicycle object

with two screen positions as shown in Fig. 22. The bicycle

was chosen since frontal and side views are both necessary

to carve the visual hull satisfactorily. Combining the two sets

of shadowgrams enlarges the coverage of source positions,

which successfully reduces the stretching artifact of the re-

constructed shape in Fig. 23.
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7.3 Future Work

One drawback of SFS techniques is the inability to model
concavities on the object’s surface. Combining our approach
with other techniques, such as photometric stereo or multi-
view stereo can overcome this limitation, allowing us to ob-
tain appearance together with a smoother shape of the ob-
ject. Finally, using multiple light sources of different spectra
to speed up acquisition, and the analysis of penumbra due to
the finite size of a light source are our directions of future
work.
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Appendix A: Derivation of (2)

The projective transformation in coplanar shadowgram
imaging is viewed as a perspective transformation in the
translated coordinate system whose origin is at the location
of a light source. Thus, the projection by the source located
at l = (u, v,w,1)T is written in matrix form as

P (l) =

⎛

⎝

1 0 0 0
0 1 0 0
0 0 0 1

⎞

⎠

︸ ︷︷ ︸

drop z (≡ 0)

·

(

I 3 l

0T
3 1

)

·

(

−wI 3 03

(0,0,1) 0

)

︸ ︷︷ ︸

project to �

·

(

I 3 −l

0T
3 1

)

=

⎛

⎝

−w 0 u 0
0 −w v 0
0 0 1 −w

⎞

⎠

where I 3 is a 3 × 3 identity matrix and 03 = (0,0,0)T .

Appendix B: Derivation of (12)

The linear transformation A is generally written in a 4 × 4
matrix as

A =

⎛

⎜
⎜
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟
⎟
⎠

. (29)

Then, the elements in (11) can be expanded into a 3 × 4
matrix using (2) and (29), which yields twelve equations.
Using the six equations that are identical to 0 in the left side,
we obtain

a21 = a31 = a41 = a12 = a32 = a42 = a14 = a24 = a34 = 0.

(30)

Similarly,

a11 = a22 = a44 �= 0 (31)

because w �= 0 and w′ �= 0. Dividing A by a11(= a22 =

a44 �= 0), we can reparameterize A to (12). By solving (11)
with respect to l′, the transformation from l to l′ can also be
obtained as (14). To guarantee that l and l′ are in the same
side with respect to the shadowgram plane, the additional
constraints on the elements in A is derived as (13).

Appendix C: Proof of Proposition 1

Proof

Suppose the silhouette S O
i of an object O is generated by

perspective projection Pi (i = 1, . . . ,N ). The convex hull of
the object and the silhouettes are respectively defined as

Ô
def
=

⋃

xj ,xk∈O

xjxk and (32)

Ŝ
O
i

def
=

⋃

mj ,mk∈S O
i

mjmk (33)

where the over-line pjpk represents the line segment
spanned by two points pj and pk . Then, the shadowgram

S Ô
i of the convex object Ô generated by the projection Pi is

S
Ô
i

def
= Pi · Ô (34)

=
⋃

xj ,xk∈O

Pi · xjxk (∵ (32)) (35)

=
⋃

mj ,mk∈S O
i

mjmk (∵ Pi is linear.) (36)

= Ŝ
O
i (∵ (33)). (37)

�

Appendix D: Proof of Proposition 2

Proof Suppose the visual hull V of an object O is recon-
structed from the shadowgrams S O

i and the projections Pi

(i = 1, . . . ,N ). Proposition 1 implies that the convex hull Ô

of the object generates the convex hulls Ŝ O
i of the shadow-

grams:

Ŝ
O
i = Pi · Ô. (38)

Hence, the convex shadowgrams Ŝ O
i are consistent by defi-

nition. �
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