
The Theory and Practice of Spatial Econometrics

James P. LeSage

Department of Economics

University of Toledo

February, 1999

Preface

This text provides an introduction to spatial econometric theory along with
numerous applied illustrations of the models and methods described. The ap-
plications utilize a set of MATLAB functions that implement a host of spatial
econometric estimation methods. The intended audience is faculty, students and
practitioners involved in modeling spatial data sets. The MATLAB functions
described in this book have been used in my own research as well as teach-
ing both undergraduate and graduate econometrics courses. They are available
on the Internet at http://www.econ.utoledo.edu along with the data sets and
examples from the text.

The theory and applied illustrations of conventional spatial econometric
models represent about half of the content in this text, with the other half
devoted to Bayesian alternatives. Conventional maximum likelihood estimation
for a class of spatial econometric models is discussed in one chapter, followed by
a chapter that introduces a Bayesian approach for this same set of models. It
is well-known that Bayesian methods implemented with a diffuse prior simply
reproduce maximum likelihood results, and we illustrate this point. However,
the main motivation for introducing Bayesian methods is to extend the conven-
tional models. Comparative illustrations demonstrate how Bayesian methods
can solve problems that confront the conventional models. Recent advances in
Bayesian estimation that rely on Markov Chain Monte Carlo (MCMC) methods
make it easy to estimate these models. This approach to estimation has been
implemented in the spatial econometric function library described in the text,
so estimation using the Bayesian models require a single additional line in your
computer program.

Some of the Bayesian methods have been introduced in the regional science
literature, or presented at conferences. Space and time constraints prohibit any
discussion of implementation details in these forums. This text describes the im-
plementation details, which I believe greatly enhance understanding and allow
users to make intelligent use of these methods in applied settings. Audiences
have been amazed (and perhaps skeptical) when I tell them it takes only 10
seconds to generate a sample of 1,000 MCMC draws from a sequence of condi-
tional distributions needed to estimate the Bayesian models. Implementation
approaches that achieve this type of speed are described here in the hope that
other researchers can apply these ideas in their own work.

I have often been asked about Monte Carlo evidence for Bayesian spatial

i

ii

econometric methods. Large and small sample properties of estimation proce-
dures are frequentist notions that make no sense in a Bayesian setting. The best
support for the efficacy of Bayesian methods is their ability to provide solutions
to applied problems. Hopefully, the ease of using these methods will encourage
readers to experiment with these methods and compare the Bayesian results to
those from more conventional estimation methods.

Implementation details are also provided for maximum likelihood methods
that draw on the sparse matrix functionality of MATLAB and produce rapid
solutions to large applied problems with a minimum of computer memory. I
believe the MATLAB functions for maximum likelihood estimation of conven-
tional models presented here represent fast and efficient routines that are easier
to use than any available alternatives.

Talking to colleagues at conferences has convinced me that a simple soft-
ware interface is needed so practitioners can estimate and compare a host of
alternative spatial econometric model specifications. An example in Chapter 5
produces estimates for ten different spatial autoregressive models, including
maximum likelihood, robust Bayesian, and a robust Bayesian tobit model. Es-
timation, printing and plotting of results for all these models is accomplished
with a 39 line program.

Many researchers ignore sample truncation or limited dependent variables
because they face problems adapting existing spatial econometric software to
these types of sample data. This text describes the theory behind robust
Bayesian logit/probit and tobit versions of spatial autoregressive models and
geographically weighted regression models. It also provides implementation de-
tails and software functions to estimate these models.

Toolboxes are the name given by the MathWorks to related sets of MAT-
LAB functions aimed at solving a particular class of problems. Toolboxes of
functions useful in signal processing, optimization, statistics, finance and a host
of other areas are available from the MathWorks as add-ons to the standard
MATLAB software distribution. I use the term Econometrics Toolbox to refer
to my public domain collection of function libraries available at the internet
address given above. The MATLAB spatial econometrics functions used to im-
plement the spatial econometric models discussed in this text rely on many of
the functions in the Econometrics Toolbox. The spatial econometric functions
constitute a “library” within the broader set of econometric functions. To use
the spatial econometrics function library you need to download and install the
entire set of Econometrics Toolbox functions. The spatial econometrics func-
tion library is part of the Econometrics Toolbox and will be available for use
along with more traditional econometrics functions. The collection of around
500 econometrics functions and demonstration programs are organized into li-
braries, with approximately 40 spatial econometrics library functions described
in this text. A manual is available for the Econometrics Toolbox in Acrobat
PDF and postscript on the internet site, but this text should provide all the
information needed to use the spatial econometrics library.

A consistent design was implemented that provides documentation, example
programs, and functions to produce printed as well as graphical presentation of

iii

estimation results for all of the econometric and spatial econometric functions.
This was accomplished using the “structure variables” introduced in MATLAB
Version 5. Information from estimation procedures is encapsulated into a single
variable that contains “fields” for individual parameters and statistics related
to the econometric results. A thoughtful design by the MathWorks allows these
structure variables to contain scalar, vector, matrix, string, and even multi-
dimensional matrices as fields. This allows the econometric functions to return
a single structure that contains all estimation results. These structures can be
passed to other functions that intelligently decipher the information and provide
a printed or graphical presentation of the results.

The Econometrics Toolbox along with the spatial econometrics library func-
tions should allow faculty to use MATLAB in undergraduate and graduate level
courses with absolutely no programming on the part of students or faculty. Prac-
titioners should be able to apply the methods described in this text to problems
involving large spatial data samples using an input program with less than 50
lines.

Researchers should be able to modify or extend the existing functions in the
spatial econometrics library. They can also draw on the utility routines and
other econometric functions in the Econometrics Toolbox to implement and
test new spatial econometric approaches. I have returned from conferences and
implemented methods from papers that were presented in an hour or two by
drawing on the resources of the Econometrics Toolbox.

This text has another goal, applied modeling strategies and data analysis.
Given the ability to easily implement a host of alternative models and produce
estimates rapidly, attention naturally turns to which models best summarize
a particular spatial data sample. Much of the discussion in this text involves
these issues.

My experience has been that researchers tend to specialize, one group is
devoted to developing new econometric procedures, and another group focuses
on applied problems that involve using existing methods. This text should have
something to offer both groups. If those developing new spatial econometric
procedures are serious about their methods, they should take the time to craft
a generally useful MATLAB function that others can use in applied research.
The spatial econometrics function library provides an illustration of this ap-
proach and can be easily extended to include new functions. It would also be
helpful if users who produce generally useful functions that extend the spatial
econometrics library would submit them for inclusion. This would have the
added benefit of introducing these new research methods to faculty and their
students.

There are obviously omissions, bugs and perhaps programming errors in
the Econometrics Toolbox and the spatial econometrics library functions. This
would likely be the case with any such endeavor. I would be grateful if users
would notify me via e-mail at jpl@jpl.econ.utoledo.edu when they encounter
problems. The toolbox is constantly undergoing revision and new functions are
being added. If you’re using these functions, update to the latest version every
few months and you’ll enjoy speed improvements along with the benefits of new

iv

methods. Instructions for downloading and installing these functions are in an
Appendix to this text along with a listing of the functions in the library and a
brief description of each.

Numerous people have helped in my spatial econometric research efforts and
the production of this text. John Geweke explained the mysteries of MCMC
estimation when I was a visiting scholar at the Minneapolis FED. He shared
his FORTRAN code and examples without which MCMC estimation might still
be a mystery. Luc Anselin with his encylopedic knowledge of the field was
kind enough to point out errors in my early work on MCMC estimation of the
Bayesian models and set me on the right track. He has always been encouraging
and quick to point out that he explored Bayesian spatial econometric methods
in 1980. Kelley Pace shared his sparse matrix MATLAB code and some research
papers that ultimately lead to the fast and efficient approach used in MCMC
estimation of the Bayesian models. Dan McMillen has been encouraging about
my work on Bayesian spatial autoregressive probit models. His research in the
area of limited dependent variable versions of these models provided the insight
for the Bayesian logit/probit and tobit spatial autoregressive methods in this
text. Another paper he presented suggested the logit and probit versions of the
geographically weighted regression models discussed in the text. Art Getis with
his common sense approach to spatial statistics encouraged me to write this text
so skeptics would see that the methods really work. Two colleagues of mine,
Mike Dowd and Dave Black were brave enough to use the Econometrics Toolbox

during its infancy and tell me about strange problems they encountered. Their
feedback was helpful in making improvements that all users will benefit from.
In addition, Mike Dowd the local LaTeX guru provided some helpful macros
for formatting and indexing the examples in this text. Mike Magura, another
colleague and co-author in the area of spatial econometrics read early versions
of my text materials and made valuable comments. Last but certainly not
least, my wife Mary Ellen Taylor provided help and encouragement in ways too
numerous to mention. I think she has a Bayesian outlook on life that convinces
me there is merit in these methods.

Contents

1 Introduction 1
1.1 Spatial econometrics . 2
1.2 Spatial dependence . 3
1.3 Spatial heterogeneity . 7
1.4 Quantifying location in our models 10

1.4.1 Quantifying spatial contiguity 11
1.4.2 Quantifying spatial position 14
1.4.3 Spatial lags . 17

1.5 Chapter Summary . 20

2 The MATLAB spatial econometrics library 22
2.1 Structure variables in MATLAB 22
2.2 Constructing estimation functions 24
2.3 Using the results structure . 28
2.4 Sparse matrices in MATLAB . 35
2.5 Chapter Summary . 42

3 Spatial autoregressive models 43
3.1 The first-order spatial AR model 45

3.1.1 Computational details . 47
3.1.2 Applied examples . 57

3.2 The mixed autoregressive-regressive model 63
3.2.1 Computational details . 64
3.2.2 Applied examples . 66

3.3 The spatial autoregressive error model 71
3.3.1 Computational details . 76
3.3.2 Applied examples . 78

3.4 The spatial Durbin model . 82
3.4.1 Computational details . 83
3.4.2 Applied examples . 85

3.5 The general spatial model . 87
3.5.1 Computational details . 89
3.5.2 Applied examples . 92

3.6 Chapter Summary . 97

v

CONTENTS vi

4 Bayesian Spatial autoregressive models 98
4.1 The Bayesian regression model 99

4.1.1 The heteroscedastic Bayesian linear model 102
4.2 The Bayesian FAR model . 107

4.2.1 Constructing a function far g() 113
4.2.2 Using the function far g() 118

4.3 Monitoring convergence of the sampler 124
4.3.1 Autocorrelation estimates 126
4.3.2 Raftery-Lewis diagnostics 127
4.3.3 Geweke diagnostics . 129
4.3.4 Other tests for convergence 132

4.4 Other Bayesian spatial autoregressive models 134
4.4.1 Applied examples . 138

4.5 An applied exercise . 142
4.6 Chapter Summary . 147

5 Limited dependent variable models 149
5.1 Introduction . 150
5.2 The Gibbs sampler . 153
5.3 Heteroscedastic models . 155
5.4 Implementing probit models . 156
5.5 Comparing EM and Bayesian probit models 160
5.6 Implementing tobit models . 164
5.7 An applied example . 168
5.8 Chapter Summary . 180

6 Locally linear spatial models 181
6.1 Spatial expansion . 181

6.1.1 Implementing spatial expansion 183
6.1.2 Applied examples . 188

6.2 DARP models . 193
6.3 Non-parametric locally linear models 204

6.3.1 Implementing GWR . 206
6.3.2 Applied examples . 212

6.4 Applied exercises . 214
6.5 Limited dependent variable GWR models 223
6.6 Chapter Summary . 228

7 Bayesian Locally linear spatial models 229
7.1 Bayesian spatial expansion . 230

7.1.1 Implementing Bayesian spatial expansion 232
7.1.2 Applied examples . 234

7.2 Producing robust GWR estimates 240
7.2.1 Gibbs sampling BGWRV estimates 244
7.2.2 Applied examples . 248
7.2.3 A Bayesian probit GWR model 256

CONTENTS vii

7.3 Extending the BGWR model . 257
7.3.1 Estimation of the BGWR model 260
7.3.2 Informative priors . 263
7.3.3 Implementation details . 264
7.3.4 Applied Examples . 267

7.4 An applied exercise . 273
7.5 Chapter Summary . 276

References 279

Econometrics Toolbox functions 285

List of Examples

1.1 Demonstrate regression using the ols() function 24
2.1 Using sparse matrix functions . 36
2.2 Solving a sparse matrix system 37
2.3 Symmetric minimum degree ordering operations 40
3.1 Using the far() function . 57
3.2 Using sparse matrix functions and Pace-Barry approach 60
3.3 Solving for rho using the far() function 61
3.4 Using the sar() function with a large data set 66
3.5 Using the xy2cont() function . 68
3.6 Least-squares bias . 68
3.7 Testing for spatial correlation . 79
3.8 Using the sem() function with a large data set 80
3.9 Using the sdm() function . 85
3.10 Using sdm() with a large sample 86
3.11 Using the sac() function . 93
3.12 Using sac() on a large data set 95
4.1 Heteroscedastic Gibbs sampler 104
4.2 Metropolis within Gibbs sampling 110
4.3 Using the far g() function . 118
4.4 Using the far g() function . 120
4.5 An informative prior for r . 122
4.6 Using the coda() function . 125
4.7 Using the raftery() function . 128
4.8 Geweke’s convergence diagnostics 129
4.9 Using the momentg() function . 131
4.10 Testing convergence . 132
4.11 Using sem g() in a Monte Carlo setting 138
4.12 Using sar g() with a large data set 140
4.13 Model specification . 143
5.1 Gibbs sampling probit models . 160
5.2 Using the sart g function . 166
5.3 Least-squares on the Boston dataset 169
5.4 Testing for spatial correlation . 171
5.5 Spatial model estimation for the Boston data 172

viii

LIST OF EXAMPLES ix

5.6 Right-censored Tobit Boston data 176
6.1 Using the casetti() function . 188
6.2 Using the darp() function . 201
6.3 Using darp() over space . 203
6.4 Using the gwr() function . 212
6.5 GWR estimates for a large data set 214
6.6 GWR estimates for the Boston data set 218
6.7 GWR logit and probit estimates 226
7.1 Using the bcasetti() function . 235
7.2 Boston data spatial expansion . 236
7.3 Using the bgwrv() function . 248
7.4 City of Boston bgwr() example 252
7.5 Using the bgwr() function . 267

List of Figures

1.1 Gypsy moth counts in lower Michigan, 1991 4
1.2 Gypsy moth counts in lower Michigan, 1992 5
1.3 Gypsy moth counts in lower Michigan, 1993 6
1.4 Distribution of low, medium and high priced homes versus distance 8
1.5 Distribution of low, medium and high priced homes versus living

area . 9
1.6 An illustration of contiguity . 12
1.7 First-order spatial contiguity for 49 neighborhoods 18
1.8 A second-order spatial lag matrix 19
1.9 A contiguity matrix raised to a power 2 20

2.1 Sparsity structure of W from Pace and Barry 37
2.2 An illustration of fill-in from matrix multiplication 39
2.3 Minimum degree ordering versus unordered Pace and Barry matrix 41

3.1 Spatial autoregressive fit and residuals 59
3.2 Generated contiguity structure results 69

4.1 Vi estimates from the Gibbs sampler 106
4.2 Conditional distribution of ρ . 109
4.3 First 100 Gibbs draws for ρ and σ 112
4.4 Posterior means for vi estimates 120
4.5 Posterior vi estimates based on r = 4 122
4.6 Graphical output for far g . 124
4.7 Posterior densities for ρ . 133
4.8 Vi estimates for Pace and Barry dataset 142

5.1 Results of plt() function for SAR logit 163
5.2 Actual vs. simulated censored y-values 167
5.3 Actual vs. Predicted housing values 171
5.4 Vi estimates for the Boston data set 178

6.1 Spatial x-y expansion estimates 192
6.2 Spatial x-y total impact estimates 193
6.3 Distance expansion estimates . 194

x

LIST OF FIGURES xi

6.4 Actual versus Predicted and residuals 195
6.5 GWR estimates . 213
6.6 GWR estimates based on bandwidth=0.3511 216
6.7 GWR estimates based on bandwidth=0.37 217
6.8 GWR estimates based on tri-cube weighting 218
6.9 Boston GWR estimates - exponential weighting 219
6.10 Boston GWR estimates - Gaussian weighting 220
6.11 Boston GWR estimates - tri-cube weighting 221
6.12 Boston city GWR estimates - Gaussian weighting 222
6.13 Boston city GWR estimates - tri-cube weighting 223
6.14 GWR logit and probit estimates for the Columbus data 227

7.1 Spatial expansion versus robust estimates 236
7.2 Mean of the vi draws for r = 4 237
7.3 Expansion vs. Bayesian expansion for Boston 239
7.4 Expansion vs. Bayesian expansion for Boston (continued) 240
7.5 vi estimates for Boston . 242
7.6 Distance-based weights adjusted by Vi 244
7.7 Observations versus time for 550 Gibbs draws 247
7.8 GWR versus BGWRV estimates for Columbus data set 250
7.9 GWR versus BGWRV confidence intervals 251
7.10 GWR versus BGWRV estimates 252
7.11 βi estimates for GWR and BGWRV with an outlier 254
7.12 σi and vi estimates for GWR and BGWRV with an outlier . . . 255
7.13 t−statistics for the GWR and BGWRV with an outlier 256
7.14 Posterior probabilities for δ = 1, three models 270
7.15 GWR and βi estimates for the Bayesian models 271
7.16 vi estimates for the three models 272
7.17 Ohio GWR versus BGWR estimates 274
7.18 Posterior probabilities and vi estimates 276
7.19 Posterior probabilities for a tight prior 277

List of Tables

4.1 SEM model comparative estimates 139
4.2 SAR model comparisons . 144
4.3 SEM model comparisons . 145
4.4 SAC model comparisons . 146
4.5 Alternative SAC model comparisons 146

5.1 EM versus Gibbs estimates . 164
5.2 Variables in the Boston data set 168
5.3 SAR,SEM,SAC model comparisons 174
5.4 Information matrix vs. numerical hessian measures of dispersion 175
5.5 SAR and SAR tobit model comparisons 177
5.6 SEM and SEM tobit model comparisons 179
5.7 SAC and SAC tobit model comparisons 179

6.1 DARP model results for all observations 204

7.1 Bayesian and ordinary spatial expansion estimates 238
7.2 Casetti versus Bayesian expansion estimates 241

xii

Chapter 1

Introduction

This chapter provides an overview of the nature of spatial econometrics. An
applied approach is taken where the central problems that necessitate special
models and econometric methods for dealing with spatial economic phenom-
ena are introduced using spatial data sets. Chapter 2 describes software design
issues related to a spatial econometric function library based on MATLAB soft-
ware from the MathWorks Inc. Details regarding the construction and use
of functions that implement spatial econometric estimation methods are pro-
vided throughout the text. These functions provide a consistent user-interface
in terms of documentation and related functions that provide printed as well as
graphical presentation of the estimation results. Chapter 2 describes the func-
tion library using simple regression examples to illustrate the design philosophy
and programming methods that were used to construct the spatial econometric
functions.

The remaining chapters of the text are organized along the lines of alter-
native spatial econometric estimation procedures. Each chapter discusses the
theory and application of a different class of spatial econometric model, the
associated estimation methodology and references to the literature regarding
these methods.

Section 1.1 discusses the nature of spatial econometrics and how this text
compares to other works in the area of spatial econometrics and statistics. We
will see that spatial econometrics is characterized by: 1) spatial dependence
between sample data observations at various points in space, and 2) spatial
heterogeneity that arises from relationships or model parameters that vary with
our sample data as we move through space.

The nature of spatially dependent or spatially correlated data is taken up
in Section 1.2 and spatial heterogeneity is discussed in Section 1.3. Section 1.4
takes up the subject of how we formally incorporate the locational information
from spatial data in econometric models, providing illustrations based on a host
of different spatial data sets that will be used throughout the text.

1

CHAPTER 1. INTRODUCTION 2

1.1 Spatial econometrics

Applied work in regional science relies heavily on sample data that is collected
with reference to location measured as points in space. The subject of how we
incorporate the locational aspect of sample data is deferred until Section 1.4.
What distinguishes spatial econometrics from traditional econometrics? Two
problems arise when sample data has a locational component: 1) spatial depen-
dence between the observations and 2) spatial heterogeneity in the relationships
we are modeling.

Traditional econometrics has largely ignored these two issues, perhaps be-
cause they violate the Gauss-Markov assumptions used in regression modeling.
With regard to spatial dependence between the observations, recall that Gauss-
Markov assumes the explanatory variables are fixed in repeated sampling. Spa-
tial dependence violates this assumption, a point that will be made clear in the
Section 1.2. This gives rise to the need for alternative estimation approaches.
Similarly, spatial heterogeneity violates the Gauss-Markov assumption that a
single linear relationship with constant variance exists across the sample data
observations. If the relationship varies as we move across the spatial data sam-
ple, or the variance changes, alternative estimation procedures are needed to
successfully model this variation and draw appropriate inferences.

The subject of this text is alternative estimation approaches that can be
used when dealing with spatial data samples. This subject is seldom discussed
in traditional econometrics textbooks. For example, no discussion of issues
and models related to spatial data samples can be found in Amemiya (1985),
Chow (1983), Dhrymes (1978), Fomby et al. (1984), Green (1997), Intrilligator
(1978), Kelejian and Oates (1989), Kmenta (1986), Maddala (1977), Pindyck
and Rubinfeld (1981), Schmidt (1976), and Vinod and Ullah (1981).

Anselin (1988) provides a complete treatment of many facets of spatial econo-
metrics which this text draws upon. In addition to discussion of ideas set forth
in Anselin (1988), this text includes Bayesian approaches as well as conven-
tional maximum likelihood methods for all of the spatial econometric methods
discussed in the text. Bayesian methods hold a great deal of appeal in spa-
tial econometrics because many of the ideas used in regional science modeling
involve:

1. a decay of sample data influence with distance

2. similarity of observations to neighboring observations

3. a hierarchy of place or regions

4. systematic change in parameters with movement through space

Traditional spatial econometric methods have tended to rely almost exclusively
on sample data to incorporate these ideas in spatial models. Bayesian ap-
proaches can incorporate these ideas as subjective prior information that aug-
ments the sample data information.

CHAPTER 1. INTRODUCTION 3

It may be the case that the quantity or quality of sample data is not adequate
to produce precise estimates of decay with distance or systematic parameter
change over space. In these circumstances, Bayesian methods can incorporate
these ideas in our models, so we need not rely exclusively on the sample data.

In terms of focus, the materials presented here are more applied than Anselin
(1988), providing details on the program code needed to implement the meth-
ods and multiple applied examples of all estimation methods described. Readers
should be fully capable of extending the spatial econometrics function library
described in this text, and examples are provided showing how to add new func-
tions to the library. In its present form the spatial econometrics library could
serve as the basis for a graduate level course in spatial econometrics. Students
as well as researchers can use these programs with absolutely no programming
to implement some of the latest estimation procedures on spatial data sets.

Another departure from Anselin (1988) is in the use of sparse matrix al-
gorithms available in the MATLAB software to implement spatial econometric
estimation procedures. The implementation details for Bayesian methods as well
as the use of sparse matrix algorithms represent previously unpublished mate-
rial. All of the MATLAB functions described in this text are freely available on
the Internet at http://www.econ.utoledo.edu. The spatial econometrics library
functions can be used to solve large-scale spatial econometric problems involving
thousands of observations in a few minutes on a modest desktop computer.

1.2 Spatial dependence

Spatial dependence in a collection of sample data means that observations at
location i depend on other observations at locations j �= i. Formally, we might
state:

yi = f(yj), i = 1, . . . , n j �= i (1.1)

Note that we allow the dependence to be among several observations, as the
index i can take on any value from i = 1, . . . , n. Why would we expect sample
data observed at one point in space to be dependent on values observed at
other locations? There are two reasons commonly given. First, data collection
of observations associated with spatial units such as zip-codes, counties, states,
census tracts and so on, might reflect measurement error. This would occur if the
administrative boundaries for collecting information do not accurately reflect the
nature of the underlying process generating the sample data. As an example,
consider the case of unemployment rates and labor force measures. Because
laborers are mobile and can cross county or state lines to find employment in
neighboring areas, labor force or unemployment rates measured on the basis of
where people live could exhibit spatial dependence.

A second and perhaps more important reason we would expect spatial depen-
dence is that the spatial dimension of socio-demographic, economic or regional
activity may truly be an important aspect of a modeling problem. Regional
science is based on the premise that location and distance are important forces

CHAPTER 1. INTRODUCTION 4

at work in human geography and market activity. All of these notions have been
formalized in regional science theory that relies on notions of spatial interaction
and diffusion effects, hierarchies of place and spatial spillovers.

As a concrete example of this type of spatial dependence, we use a spa-
tial data set on annual county-level counts of Gypsy moths established by the
Michigan Department of Natural Resources (DNR) for the 68 counties in lower
Michigan.

The North American gypsy moth infestation in the United States provides
a classic example of a natural phenomena that is spatial in character. During
1981, the moths ate through 12 million acres of forest in 17 Northeastern states
and Washington, DC. More recently, the moths have been spreading into the
northern and eastern Midwest and to the Pacific Northwest. For example, in
1992 the Michigan Department of Agriculture estimated that more than 700,000
acres of forest land had experienced at least a 50% defoliation rate.

-86.5 -86 -85.5 -85 -84.5 -84 -83.5 -83 -82.5 -82
41.5

42

42.5

43

43.5

44

44.5

45

45.5

46

longitude

la
ti
tu

d
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Figure 1.1: Gypsy moth counts in lower Michigan, 1991

Figure 1.1 shows a contour of the moth counts for 1991 overlayed on a map
outline of lower Michigan. We see the highest level of moth counts near Midland
county Michigan in the center. As we move outward from the center, lower levels
of moth counts occur taking the form of concentric rings. A set of k data points
yi, i = 1, . . . , k taken from the same ring would exhibit a high correlation with

CHAPTER 1. INTRODUCTION 5

each other. In terms of (1.1), yi and yj where both observations i and j come
from the same ring should be highly correlated. The correlation of k1 points
taken from one ring and k2 points from a neighboring ring should also exhibit
a high correlation, but not as high as points sampled from the same ring. As
we examine the correlation between points taken from more distant rings, we
would expect the correlation to diminish.

Over time the Gypsy moths spread to neighboring areas. They cannot fly, so
the diffusion should be relatively slow. Figure 1.2 shows a similarly constructed
contour map of moth counts for the next year, 1992. We see some evidence of
diffusion to neighboring areas between 1991 and 1992. The circular pattern of
higher levels in the center and lower levels radiating out from the center is still
quite evident.

-86.5 -86 -85.5 -85 -84.5 -84 -83.5 -83 -82.5 -82
41.5

42

42.5

43

43.5

44

44.5

45

45.5

46

longitude

la
ti
tu

d
e

0

1

2

3

4

5

6

x 10
4

Figure 1.2: Gypsy moth counts in lower Michigan, 1992

Finally, Figure 1.3 shows a contour map of the moth count levels for 1993,
where the diffusion has become more heterogeneous, departing from the circu-
lar shape in the earlier years. Despite the increasing heterogeneous nature of
the moth count levels, neighboring points still exhibit high correlations. An
adequate model to describe and predict Gypsy moth levels would require that
the function f() in (1.1) incorporate the notion of neighboring counties versus
counties that are more distant.

CHAPTER 1. INTRODUCTION 6

-86.5 -86 -85.5 -85 -84.5 -84 -83.5 -83 -82.5 -82
41.5

42

42.5

43

43.5

44

44.5

45

45.5

46

longitude

la
ti
tu

d
e

0

1

2

3

4

5

x 10
4

Figure 1.3: Gypsy moth counts in lower Michigan, 1993

How does this situation differ from the traditional view of the process at
work to generate economic data samples? The Gauss-Markov view of a regres-
sion data sample is that the generating process takes the form of (1.2), where
y represent a vector of n observations, X denotes an nxk matrix of explana-
tory variables, β is a vector of k parameters and ε is a vector of n stochastic
disturbance terms.

y = Xβ + ε (1.2)

The generating process is such that the X matrix and true parameters β are
fixed while repeated disturbance vectors ε work to generate the samples y that
we observe. Given that the matrix X and parameters β are fixed, the dis-
tribution of sample y vectors will have the same variance-covariance structure
as ε. Additional assumptions regarding the nature of the variance-covariance
structure of ε were invoked by Gauss-Markov to ensure that the distribution
of individual observations in y exhibit a constant variance as we move across
observations, and zero covariance between the observations.

It should be clear that observations from our sample of moth level counts do
not obey this structure. As illustrated in Figures 1.1 to 1.3, observations from
counties in concentric rings are highly correlated, with a decay of correlation as

CHAPTER 1. INTRODUCTION 7

we move to observations from more distant rings.
Spatial dependence arising from underlying regional interactions in regional

science data samples suggests the need to quantify and model the nature of the
unspecified functional spatial dependence function f(), set forth in (1.1). Before
turning attention to this task, the next section discusses the other underlying
condition leading to a need for spatial econometrics — spatial heterogeneity.

1.3 Spatial heterogeneity

The term spatial heterogeneity refers to variation in relationships over space. In
the most general case we might expect a different relationship to hold for every
point in space. Formally, we write a linear relationship depicting this as:

yi = Xiβi + εi (1.3)

Where i indexes observations collected at i = 1, . . . , n points in space, Xi rep-
resents a (1 x k) vector of explanatory variables with an associated set of pa-
rameters βi, yi is the dependent variable at observation (or location) i and εi
denotes a stochastic disturbance in the linear relationship.

A slightly more complicated way of expressing this notion is to allow the
function f() from (1.1) to vary with the observation index i, that is:

yi = fi(Xiβi + εi) (1.4)

Restricting attention to the simpler formation in (1.3), we could not hope to
estimate a set of n parameter vectors βi given a sample of n data observations.
We simply do not have enough sample data information with which to produce
estimates for every point in space, a phenomena referred to as a “degrees of free-
dom” problem. To proceed with the analysis we need to provide a specification
for variation over space. This specification must be parsimonious, that is, only
a handful of parameters can be used in the specification. A large amount of
spatial econometric research centers on alternative parsimonious specifications
for modeling variation over space. Questions arise regarding: 1) how sensitive
the inferences are to a particular specification regarding spatial variation?, 2)
is the specification consistent with the sample data information?, 3) how do
competing specifications perform and what inferences do they provide?, and a
host of other issues that will be explored in this text.

One can also view the specification task as one of placing restrictions on
the nature of variation in the relationship over space. For example, suppose we
classified our spatial observations into urban and rural regions. We could then
restrict our analysis to two relationships, one homogeneous across all urban
observational units and another for the rural units. This raises a number of
questions: 1) are two relations consistent with the data, or is there evidence
to suggest more than two?, 2) is there a trade-off between efficiency in the
estimates and the number of restrictions we use?, 3) are the estimates biased if

CHAPTER 1. INTRODUCTION 8

the restrictions are inconsistent with the sample data information?, and other
issues we will explore.

One of the compelling motivations for the use of Bayesian methods in spatial
econometrics is their ability to impose restrictions that are stochastic rather
than exact in nature. Bayesian methods allow us to impose restrictions with
varying amounts of prior uncertainty. In the limit, as we impose a restriction
with a great deal of certainty, the restriction becomes exact. Carrying out
our econometric analysis with varying amounts of prior uncertainty regarding a
restriction allows us to provide a continuous mapping of the restriction’s impact
on the estimation outcomes.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-5

0

5

10

15

20

25

Distance from CBD

d
is

tr
ib

u
ti
o

n
 o

f
h

o
m

e
s

low-price
mid-price
high-price

Figure 1.4: Distribution of low, medium and high priced homes versus distance

As a concrete illustration of spatial heterogeneity, we use a sample of 35,000
homes that sold within the last 5 years in Lucas county, Ohio. The selling prices
were sorted from low to high and three samples of 5,000 homes were constructed.
The 5,000 homes with the lowest selling prices were used to represent a sample of
low-price homes. The 5,000 homes with selling prices that ranked from 15,001
to 20,000 in the sorted list were used to construct a sample of medium-price
homes and the 5,000 highest selling prices from 30,0001 to 35,000 served as the
basis for a high-price sample. It should be noted that the sample consisted of
35,702 homes, but the highest 702 selling prices were omitted from this exercise

CHAPTER 1. INTRODUCTION 9

as they represent very high prices that are atypical.
Using the latitude-longitude coordinates, the distance from the central busi-

ness district (CBD) in the city of Toledo, which is at the center of Lucas county
was calculated. The three samples of 5,000 low, medium and high priced homes
were used to estimate three empirical distributions that are graphed with respect
to distance from the CBD in Figure 1.4.

We see three distinct distributions, with low-priced homes nearest to the
CBD and high priced homes farthest away from the CBD. This suggests different
relationships may be at work to describe home prices in different locations. Of
course this is not surprising, numerous regional science theories exist to explain
land usage patterns as a function of distance from the CBD. Nonetheless, these
three distinct distributions provide a contrast to the Gauss-Markov assumption
that the distribution of sample data exhibits a constant mean and variance as
we move across the observations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

0

2

4

6

8

10

12

14

16
x 10

-4

living area

d
is

tr
ib

u
ti
o
n
 o

f
h
o
m

e
s

low-price
mid-price
high-price

Figure 1.5: Distribution of low, medium and high priced homes versus living
area

Another illustration of spatial heterogeneity is provided by three distribu-
tions for total square feet of living area of low, medium and high priced homes
shown in Figure 1.5. Here we see only two distinct distributions, suggesting a
pattern where the highest priced homes are the largest, but low and medium

CHAPTER 1. INTRODUCTION 10

priced homes have roughly similar distributions with regard to living space.
It may be the case that important explanatory variables in the house value

relationship change as we move over space. Living space may be unimportant in
distinguishing between low and medium priced homes, but significant for higher
priced homes. Distance from the CBD on the other hand appears to work well
in distinguishing all three categories of house values.

1.4 Quantifying location in our models

A first task we must undertake before we can ask questions about spatial depen-
dence and heterogeneity is quantification of the locational aspects of our sample
data. Given that we can always map a set of spatial data observations, we have
two sources of information on which to draw.

The location in Cartesian space represented by latitude and longitude is one
source of information. This information would also allow us to calculate dis-
tances from any point in space, or the distance of observations located at distinct
points in space to observations at other locations. Spatial dependence should
conform to the fundamental theorem of regional science — distance matters.
Observations that are near should reflect a greater degree of spatial dependence
than those more distant from each other. This suggests the strength of spa-
tial dependence between observations should decline with the distance between
observations.

Distance might also be important for models involving spatially heteroge-
neous relationships. If the relationship we are modeling varies over space, ob-
servations that are near should exhibit similar relationships and those that are
more distant may exhibit dissimilar relationships. In other words, the relation-
ship may vary smoothly over space.

The second source of locational information is contiguity, reflecting the rel-
ative position in space of one regional unit of observation to other such units.
Measures of contiguity rely on a knowledge of the size and shape of the obser-
vational units depicted on a map. From this, we can determine which units
are neighbors (have borders that touch) or represent observational units in rea-
sonable proximity to each other. Regarding spatial dependence, neighboring
units should exhibit a higher degree of spatial dependence than units located
far apart. For spatial heterogeneity, relationships may be similar for neighboring
units.

It should be noted that these two types of information are not necessarily
different. Given the latitude-longitude coordinates of an observation, we can
construct a contiguity structure by defining a “neighboring observation” as one
that lies within a certain distance. Consider also, given the boundary points
associated with map regions, we can compute the centroid coordinates of the
regions. These coordinates could then be used to calculate distances between
the regions or observations.

We will illustrate how both types of locational information can be used in
spatial econometric modeling. We first take up the issue of quantifying spatial

CHAPTER 1. INTRODUCTION 11

contiguity, which is used in the models presented in Chapters 3 4 and 5.
Chapters 6 and 7 deal with models that make direct use of the latitude-longitude
coordinates, a subject discussed in the Section 1.4.2.

1.4.1 Quantifying spatial contiguity

Figure 1.6 shows a hypothetical example of five regions as they would appear on
a map. We wish to construct a 5 by 5 binary matrix W containing 25 elements
taking values of 0 or 1 that captures the notion of “connectiveness” between
the five entities depicted in the map configuration. We record the contiguity
relations for each region in the row of the matrix W . For example the matrix
element in row 1, column 2 would record the presence (represented by a 1) or
absence (denoted by 0) of a contiguity relationship between regions 1 and 2.
As another example, the row 3, column 4 element would reflect the presence or
absence of contiguity between regions 3 and 4. Of course, a matrix constructed
in such fashion must be symmetric — if regions 3 and 4 are contiguous, so are
regions 4 and 3.

It turns out there are a large number of ways to construct a matrix that
contains contiguity information regarding the regions. Below, we enumerate
some alternative ways to define a binary matrixW that reflects the “contiguity”
relationships between the five entities in Figure 1.6. For the enumeration below,
start with a matrix filled with zeros, then consider the following alternative ways
to define the presence of a contiguity relationship.

Linear contiguity: Define Wij = 1 for entities that share a common edge
to the immediate right or left of the region of interest. For row 1, where
we record the relations associated with region 1, we would have all W1j =
0, j = 1, . . . , 5. On the other hand, for row 5, where we record relationships
involving region 5, we would have W53 = 1 and all other row-elements
equal to zero.

Rook contiguity: Define Wij = 1 for regions that share a common side
with the region of interest. For row 1, reflecting region 1’s relations we
would have W12 = 1 with all other row elements equal to zero. As another
example, row 3 would record W34 = 1,W35 = 1 and all other row elements
equal to zero.

Bishop contiguity: DefineWij = 1 for entities that share a common vertex
with the region of interest. For region 2 we would have W23 = 1 and all
other row elements equal to zero.

Double linear contiguity: For two entities to the immediate right or left of
the region of interest, define Wij = 1. This definition would produce the
same results as linear contiguity for the regions in Figure 1.6.

Double rook contiguity: For two entities to the right, left, north and south
of the region of interest define Wij = 1. This would result in the same
matrix W as rook contiguity for the regions shown in Figure 1.6.

CHAPTER 1. INTRODUCTION 12

(1)

(2)

(3)

(4)

(5)

Figure 1.6: An illustration of contiguity

Queen contiguity: For entities that share a common side or vertex with
the region of interest define Wij = 1. For region 3 we would have: W32 =
1,W34 = 1,W35 = 1 and all other row elements zero.

There are of course other ways to proceed when defining a contiguity matrix.
For a good discussion of these issues, see Appendix 1 of Kelejian and Robinson
(1995). Note also that the double linear and double rook definitions are some-
times referred to as “second order” contiguity, whereas the other definitions are
termed “first order”. More elaborate definitions sometimes rely on the length
of shared borders. This might impact whether we considered regions (4) and
(5) in Figure 1.6 as contiguous or not. They have a common border, but it
is very short. Note that in the case of a vertex, the rook definition rules out
a contiguity relation, whereas the bishop and queen definitions would record a
relationship.

CHAPTER 1. INTRODUCTION 13

The guiding principle is selecting a definition should be the nature of the
problem being modeled, and perhaps additional non-sample information that is
available. For example, suppose that a major highway connected regions (2) and
(3) in Figure 1.6, and we knew that region (2) was a “bedroom community” for
persons who work in region (3). Given this non-sample information, we would
not rely on the rook definition because it rules out a contiguity relationship
between these two regions.

We will use the rook definition to define a first-order contiguity matrix for
the five regions in Figure 1.6 as a concrete illustration. This definition is often
used in applied work. Perhaps the motivation for this is that we simply need
to locate all regions on the map that have common borders with some positive
length.

The matrix W in (1.5) shows first-order rook’s contiguity relations for the
five regions in Figure 1.6.

W =

0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

(1.5)

Note that W is symmetric, and by convention the matrix always has zeros
on the main diagonal. A transformation often used in applied work converts the
matrix W to have row-sums of unity. A standardized version of W from (1.5)
is shown in (1.6).

C =

0 1 0 0 0
1 0 0 0 0
0 0 0 1/2 1/2
0 0 1/2 0 1/2
0 0 1/2 1/2 0

(1.6)

The motivation for the standardization can be seen by considering matrix
multiplication of C and a vector of observations y ona variable associated with
the five regions. This matrix product, y⋆ = Cy, represents a new variable equal
to the mean of observations from contiguous regions as shown in (1.7).

y⋆
1

y⋆
2

y⋆
3

y⋆
4

y⋆
5

=

0 1 0 0 0
1 0 0 0 0
0 0 0 0.5 0.5
0 0 0.5 0 0.5
0 0 0.5 0.5 0

y1
y2
y3
y4
y5

y⋆
1

y⋆
2

y⋆
3

y⋆
4

y⋆
5

=

y2
y1

1/2y4 + 1/2y5
1/2y3 + 1/2y5
1/2y3 + 1/2y4

(1.7)

CHAPTER 1. INTRODUCTION 14

This is one way of quantifying the notion that yi = f(yj), j �= i, expressed
in (1.1). Equation (1.8) shows a linear relationship that uses the variable y⋆

from (1.7) as an explanatory variable for y in a cross-sectional spatial sample of
observations.

y = ρCy + ε (1.8)

The scalar ρ represents a regression parameter to be estimated and ε denotes the
stochastic disturbance in the relationship. The parameter ρ would reflect the
spatial dependence inherent in our sample data, measuring the average influence
of neighboring or contiguous observations on observations in the vector y. If
we posit spatial dependence between the individual observations in the data
sample y, some part of the total variation in y across the spatial sample would
be explained by each observation’s dependence on its neighbors. The parameter
ρ would reflect this in the typical sense of regression. In addition, we could
calculate the proportion of total variation in y explained by spatial dependence
using ρ̂Cy, where ρ̂ is the estimated value of ρ.

We will examine spatial econometric models that rely on this type of formu-
lation in Chapter 3 where we set forth maximum likelihood estimation proce-
dures for a taxonomy of these models known as spatial autoregressive models.
Anselin (1988) provided this taxonomy and devised maximum likelihood meth-
ods for producing estimates of these models. Chapter 4 provides a Bayesian
approach to these models introduced by LeSage (1997) and Chapter 5 takes up
limited dependent variable and censored data variants of these models from a
Bayesian perspective that we introduce here. As this suggests, spatial autore-
gressive models have historically occupied a central place in spatial econometrics
and they are likely to play an important role in the future.

One point to note is that traditional explanatory variables of the type en-
countered in regression can be added to the model in (1.8). We can represent
these with the traditional matrix notation: Xβ, allowing us to modify (1.8) to
take the form shown in (1.9).

y = ρCy +Xβ + ε (1.9)

Other extended specifications for these models will be taken up in Chapter 3.

1.4.2 Quantifying spatial position

Another approach to spatial econometric modeling makes direct use of the
latitude-longitude coordinates associated with spatial data observations. A host
of methods attempt to deal with spatial heterogeneity using locally linear re-
gressions that are fit to sub-regions of space. Given that the relationship in
our model varies over space, a locally linear model provides a parsimonious way
to estimate multiple relationships that vary with regard to the spatial location
of the observations. These models form the basis of our discussion in Chap-
ter 6 where we examine these models from a maximum likelihood perspective

CHAPTER 1. INTRODUCTION 15

and Chapter 7 where Bayesian variants are introduced. These models are also
extended to the case of limited dependent variables.

Casetti (1972, 1992) introduced one approach that involves a method he
labels “spatial expansion”. The model is shown in (1.10), where y denotes
an nx1 dependent variable vector associated with spatial observations and X
is an nxnk matrix consisting of terms xi representing kx1 explanatory variable
vectors, as shown in (1.11). The locational information is recorded in the matrix
Z which has elements Zxi, Zyi, i = 1, . . . , n, that represent latitude and longitude
coordinates of each observation as shown in (1.11).

The model posits that the parameters vary as a function of the latitude and
longitude coordinates. The only parameters that need be estimated are the 2k
parameters in β0 that we denote, βx, βy. We note that the parameter vector β in
(1.10) represents an nkx1 vector in this model containing parameter estimates
for all k explanatory variables at every observation.

y = Xβ + ε

β = ZJβ0 (1.10)

Where:

y =

y1
y2
...
yn

X =

x′1 0 . . . 0
0 x′2
...

. . .

0 x′n

β =

β1

β2

...
βn

ε =

ε1
ε2
...
εn

Z =

Zx1 ⊗ Ik Zy1 ⊗ Ik 0 . . .

0
. . .

. . .
... Zxn ⊗ Ik Zyn ⊗ Ik

J =

Ik 0
0 Ik
...
0 Ik

β0 =

(

βx

βy

)

(1.11)

Recall that there is a need to achieve a parsimonious representation that
introduces only a few additional parameters to be estimated. This approach
accomplishes this task by confining the estimated parameters to the 2k elements
in βx, βy. This model can be estimated using least-squares to produce estimates
of βx and βy. The remaining estimates for individual points in space are derived

using β̂x and β̂y in the second equation of (1.10). This process is referred to as
the “expansion process”. To see this, substitute the second equation in (1.10)
into the first, producing:

y = XZJβ0 + ε (1.12)

In (1.12) X,Z and J represent available sample data information or data ob-
servations and only the 2k parameters β0 need be estimated.

CHAPTER 1. INTRODUCTION 16

This model would capture spatial heterogeneity by allowing variation in the
underlying relationship such that clusters of nearby or neighboring observations
measured by latitude-longitude coordinates take on similar parameter values. As
the location varies, the regression relationship changes to accommodate a locally
linear fit through clusters of observations in close proximity to one another.

Another approach to modeling variation over space is based on the non-
parametric locally linear regression literature from exploratory statistics dis-
cussed in Becker, Chambers and Wilks (1988). In the spatial econometrics
literature, McMillen (1996), McMillen and McDonald (1997) introduced these
models and Brundson, Fotheringham and Charlton (1996) labeled these “geo-
graphically weighted regression” (GWR) models.

These models use locally weighted regressions to produce estimates for every
point in space based on sub-samples of data information from nearby observa-
tions. Let y denote an nx1 vector of dependent variable observations collected
at n points in space, X an nxk matrix of explanatory variables, and ε an nx1
vector of normally distributed, constant variance disturbances. Letting Wi rep-
resent an nxn diagonal matrix containing distance-based weights for observation
i that reflects the distance between observation i and all other observations, we
can write the GWR model as:

Wiy = WiXβi + εi (1.13)

The subscript i on βi indicates that this kx1 parameter vector is associated
with observation i. The GWR model produces n such vectors of parameter
estimates, one for each observation. These estimates are produced using least-
squares regression on the sub-sample of observations as shown in (1.14).

β̂i = (X ′W 2
i X)−1(X ′W 2

i y) (1.14)

One confusing aspect of this notation is that Wiy denotes an n-vector of
distance-weighted observations used to produce estimates for observation i. The
notation is confusing because we usually rely on subscripts to index scalar mag-
nitudes representing individual elements of a vector. Note also, thatWiX repre-
sents a distance-weighted data matrix, not a single observation and εi represents
an n-vector.

The distance-based weights are specified as a decaying function of the dis-
tance between observation i and all other observations as shown in (1.15).

Wi = f(θ, di) (1.15)

The vector di contains distances between observation i and all other obser-
vations in the sample. The role of the parameter θ is to produce a decay of
influence with distance. Changing the distance decay parameter θ results in a
different weighting profile, which in turn produces estimates that vary more or
less rapidly over space. Determination of the distance-decay parameter θ using
cross-validation estimation methods is discussed in Chapter 5.

Again, note the use of a parsimonious parameterization of the spatially vary-
ing relationship. Only a single parameter, θ is introduced in the model. This

CHAPTER 1. INTRODUCTION 17

along with the distance information can be used to produce a set of parameter
estimates for every point in the spatial data sample.

It may have occurred to the reader that a homogeneous model fit to a spatial
data sample that exhibits heterogeneity will produce residuals that exhibit spa-
tial dependence. The residuals or errors made by a homogeneous model fit to a
heterogeneous relationship should reflect unexplained variation attributable to
heterogeneity in the underlying relationship over space.

Spatial clustering of the residuals would occur with positive and negative
residuals appearing in distinct regions and patterns on the map. This of course
was our motivation and illustration of spatial dependence as illustrated in Fig-
ure 1.1 showing the Gypsy moth counts in Michigan. You might infer correctly
that spatial heterogeneity and dependence are often related in the context of
modeling. An inappropriate model that fails to capture spatial heterogeneity
will result in residuals that exhibit spatial dependence. This is another topic
we discuss in this text.

1.4.3 Spatial lags

A fundamental concept that relates to spatial contiguity is the notion of a spatial
lag operator. Spatial lags are analogous to the backshift operator B from time
series analysis. This operator shifts observations back in time, where Byt =
yt−1, defines a first-order lag and Bpyt = yt−p represents a pth order lag. In
contrast to the time domain, spatial lag operators imply a shift over space but
are restricted by some complications that arise when one tries to make analogies
between the time and space domains.

Cressie (1991) points out that in the restrictive context of regular lattices or
grids the spatial lag concept implies observations that are one or more distance
units away from a given location, where distance units can be measured in
two or four directions. In applied situations where observations are unlikely to
represent a regular lattice or grid because they tend to be irregularly shaped map
regions, the concept of a spatial lag relates to the set of neighbors associated
with a particular location. The spatial lag operator works in this context to
produce a weighted average of the neighboring observations.

In Section 1.4.1 we saw that the concept of “neighbors” in spatial analysis
is not unambiguous, it depends on the definition used. By analogy to time se-
ries analysis it seems reasonable to simply raise our first-order binary contiguity
matrix W containing 0 and 1 values to a power, say p to create a spatial lag.
However, Blommestein (1985) points out that doing this produces circular or
redundant routes, where he draws an analogy between binary contiguity and the
graph theory notion of an adjacency matrix. If we use spatial lag matrices pro-
duced in this way in maximum likelihood estimation methods, spurious results
can arise because of the circular or redundant routes created by this simplistic
approach. Anselin and Smirnov (1994) provide details on many of the issues
involved here.

For our purposes, we simply want to point out that an appropriate approach
to creating spatial lags requires that the redundancies be eliminated from spatial

CHAPTER 1. INTRODUCTION 18

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 232

Figure 1.7: First-order spatial contiguity for 49 neighborhoods

weight matrices representing higher-order contiguity relationships. The spatial
econometrics library contains a function to properly construct spatial lags of
any order and the function deals with eliminating redundancies.

We provide a brief illustration of how spatial lags introduce information
regarding “neighbors to neighbors” into our analysis. These spatial lags will be
used in Chapter 3 when we discuss spatial autoregressive models.

To illustrate these ideas, we use a first-order contiguity matrix for a small
data sample containing 49 neighborhoods in Columbus, Ohio taken from Anselin
(1988). This contiguity matrix is typical of those encountered in applied prac-
tice as it relates irregularly shaped regions representing each neighborhood.
Figure 1.7 shows the pattern of 0 and 1 values in a 49 by 49 grid. Recall
that a non-zero entry in row i, column j denotes that neighborhoods i and j
have borders that touch which we refer to as “neighbors”. Of the 2401 possible
elements in the 49 by 49 matrix, there are only 232 are non-zero elements des-
ignated on the axis in the figure by ‘nz = 232’. These non-zero entries reflect
the contiguity relations between the neighborhoods. The first-order contiguity
matrix is symmetric which can be seen in the figure. This reflects the fact that
if neighborhood i borders j, then j must also border i.

Figure 1.8 shows the original first-order contiguity matrix along with a

CHAPTER 1. INTRODUCTION 19

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 410

Figure 1.8: A second-order spatial lag matrix

second-order spatially lagged matrix, whose non-zero elements are represented
by a ‘+’ symbol in the figure. This graphical depiction of a spatial lag demon-
strates that the spatial lag concept works to produce a contiguity or connective-
ness structure that represents “neighbors of neighbors”.

How might the notion of a spatial lag be useful in spatial econometric model-
ing? We might encounter a process where spatial diffusion effects are operating
through time. Over time the initial impacts on neighbors work to influence
more and more regions. The spreading impact might reasonably be considered
to flow outward from neighbor to neighbor, and the spatial lag concept would
capture this idea.

As an illustration of the redundancies produced by simply raising a first-order
contiguity matrix to a higher power, Figure 1.9 shows a second-order spatial
lag matrix created by simply powering the first-order matrix. The non-zero
elements in this inappropriately generated spatial lag matrix are represented
by ‘+’ symbols with the original first-order non-zero elements denoted by ‘o’
symbols. We see that this second order spatial lag matrix contains 689 non-zero
elements in contrast to only 410 for the correctly generated second order spatial
lag matrix that eliminates the redundancies.

We will have occasion to use spatial lags in our examination of spatial au-

CHAPTER 1. INTRODUCTION 20

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 689

Figure 1.9: A contiguity matrix raised to a power 2

toregressive models in Chapters 3, 4 and 5. The MATLAB function from the
spatial econometrics library as well as other functions for working with spatial
contiguity matrices will be presented along with examples of their use in spatial
econometric modeling.

1.5 Chapter Summary

This chapter introduced two main features of spatial econometric relationships,
spatial dependence and spatial heterogeneity. Spatial dependence refers to the
fact that sample data observations exhibit within-sample correlation with ref-
erence to the location of the sample observations in space. We often observe
spatial clustering of sample data observations with respect to map regions. An
intuitive motivation for this type of result is the existence of spatial hierarchical
relationships, spatial spillovers and other types of spatial interactivity studied
in regional science.

Spatial heterogeneity refers to the fact that spatial econometric relationships
may vary systematically over space. This creates problems for traditional re-
gression methods that assume a single constant relationship holds for the entire
data sample. A host of methods have arisen in spatial econometrics that allow

CHAPTER 1. INTRODUCTION 21

the estimated relationship to vary systematically over space. These methods
attempt to achieve a parsimonious specification of systematic variation in the
relationship such that only a few additional parameters need be estimated.

A large part of the chapter was devoted to introducing how locational infor-
mation regarding sample data observations is formally incorporated in spatial
econometric models. After introducing the concept of a spatial contiguity ma-
trix, we provided a preview of spatial autoregressive models that rely on the
contiguity concept. Chapters 3, and 4 cover this spatial econometric method
in detail, and Chapter 5 extends this model to cases where the sample data
represent limited dependent variables or variables subject to censoring.

In addition to spatial contiguity, other spatial econometric methods rely on
latitude-longitude information to allow variation over space in the relationship
being studied. Two approaches to this were introduced, the spatial expansion
model and geographically weighted regression, which are the subject of Chap-
ters 6 and 7.

Chapter 2

The MATLAB spatial
econometrics library

As indicated in the preface to this text, all of the spatial econometric methods
discussed in the text have been implemented using MATLAB software from the
MathWorks Inc. All readers should read this chapter as it provides an intro-
duction to the design philosophy that should be helpful to anyone using the
functions. A consistent design was implemented that provides documentation,
example programs, and functions to produce printed as well as graphical pre-
sentation of estimation results for all of the econometric functions. This was
accomplished using the “structure variables” introduced in MATLAB Version
5. Information from econometric estimation is encapsulated into a single vari-
able that contains “fields” for individual parameters and statistics related to
the econometric results. A thoughtful design by the MathWorks allows these
structure variables to contain scalar, vector, matrix, string, and even multi-
dimensional matrices as fields. This allows the econometric functions to return
a single structure that contains all estimation results. These structures can be
passed to other functions that can intelligently decipher the information and
provide a printed or graphical presentation of the results.

In Chapter 3 we will see our first example of constructing MATLAB functions
to carry out spatial econometric estimation methods. Here, we discuss some
design issues that affect all of the spatial econometric estimation functions and
their use in the MATLAB software environment. The last section in this chapter
discusses sparse matrices and functions that are used in the spatial econometrics
library to achieve fast and efficient solutions for large problems with a minimum
of computer memory.

2.1 Structure variables in MATLAB

In designing a spatial econometric library of functions, we need to think about
organizing our functions to present a consistent user-interface that packages

22

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 23

all of our MATLAB functions in a unified way. The advent of ‘structures’ in
MATLAB version 5 allows us to create a host of alternative spatial econometric
functions that return ‘results structures’.

A structure in MATLAB allows the programmer to create a variable con-
taining what MATLAB calls ‘fields’ that can be accessed by referencing the
structure name plus a period and the field name. For example, suppose we have
a MATLAB function to perform ordinary least-squares estimation named ols
that returns a structure. The user can call the function with input arguments
(a dependent variable vector y and explanatory variables matrix x) and provide
a variable name for the structure that the ols function will return using:

result = ols(y,x);

The structure variable ‘result’ returned by our ols function might have fields
named ‘rsqr’, ‘tstat’, ‘beta’, etc. These fields would contain the R-squared
statistic, t−statistics for the β̂ estimates and the least-squares estimates β̂. One
virtue of using the structure to return regression results is that the user can
access individual fields in the structure that may be of interest as follows:

bhat = result.beta;

disp(‘The R-squared is:’);

result.rsqr

disp(‘The 2nd t-statistic is:’);

result.tstat(2,1)

There is nothing sacred about the name ‘result’ used for the returned struc-
ture in the above example, we could have used:

bill_clinton = ols(y,x);

result2 = ols(y,x);

restricted = ols(y,x);

unrestricted = ols(y,x);

That is, the name of the structure to which the ols function returns its infor-
mation is assigned by the user when calling the function.

To examine the nature of the structure in the variable ‘result’, we can sim-
ply type the structure name without a semi-colon and MATLAB will present
information about the structure variable as follows:

result =

meth: ’ols’

y: [100x1 double]

nobs: 100.00

nvar: 3.00

beta: [3x1 double]

yhat: [100x1 double]

resid: [100x1 double]

sige: 1.01

tstat: [3x1 double]

rsqr: 0.74

rbar: 0.73

dw: 1.89

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 24

Each field of the structure is indicated, and for scalar components the value
of the field is displayed. In the example above, ‘nobs’, ‘nvar’, ‘sige’, ‘rsqr’,
‘rbar’, and ‘dw’ are scalar fields, so there values are displayed. Matrix or vector
fields are not displayed, but the size and type of the matrix or vector field is
indicated. Scalar string arguments are displayed as illustrated by the ‘meth’ field
which contains the string ‘ols’ indicating the regression method that was used
to produce the structure. The contents of vector or matrix strings would not be
displayed, just their size and type. Matrix and vector fields of the structure can
be displayed or accessed using the MATLAB conventions of typing the matrix
or vector name without a semi-colon. For example,

result.resid

result.y

would display the residual vector and the dependent variable vector y in the
MATLAB command window.

Another virtue of using ‘structures’ to return results from our regression
functions is that we can pass these structures to another related function that
would print or plot the regression results. These related functions can query the
structure they receive and intelligently decipher the ‘meth’ field to determine
what type of regression results are being printed or plotted. For example, we
could have a function prt that prints regression results and another plt that
plots actual versus fitted and/or residuals. Both these functions take a structure
returned by a regression function as input arguments. Example 2.1 provides a
concrete illustration of these ideas.

The example assumes the existence of functions ols, prt, plt and data
matrices y, x in files ‘y.data’ and ‘x.data’. Given these, we carry out a regression,
print results and plot the actual versus predicted as well as residuals with the
MATLAB code shown in example 2.1. We will discuss the prt and plt functions
in Section 2.2.

% ----- Example 1.1 Demonstrate regression using the ols() function

load y.data;

load x.data;

result = ols(y,x);

prt(result);

plt(result);

2.2 Constructing estimation functions

Now to put these ideas into practice, consider implementing an ols function.
The function code would be stored in a file ‘ols.m’ whose first line is:

function results=ols(y,x)

The keyword ‘function’ instructs MATLAB that the code in the file ‘ols.m’
represents a callable MATLAB function.

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 25

The help portion of the MATLAB ‘ols’ function is presented below and fol-
lows immediately after the first line as shown. All lines containing the MATLAB
comment symbol ‘%’ will be displayed in the MATLAB command window when
the user types ‘help ols’.

function results=ols(y,x)

% PURPOSE: least-squares regression

%---

% USAGE: results = ols(y,x)

% where: y = dependent variable vector (nobs x 1)

% x = independent variables matrix (nobs x nvar)

%---

% RETURNS: a structure

% results.meth = ’ols’

% results.beta = bhat

% results.tstat = t-stats

% results.yhat = yhat

% results.resid = residuals

% results.sige = e’*e/(n-k)

% results.rsqr = rsquared

% results.rbar = rbar-squared

% results.dw = Durbin-Watson Statistic

% results.nobs = nobs

% results.nvar = nvars

% results.y = y data vector

% --

% SEE ALSO: prt(results), plt(results)

%---

if (nargin ~= 2); error(’Wrong # of arguments to ols’);

else

[nobs nvar] = size(x); nobs2 = length(y);

if (nobs ~= nobs2); error(’x and y not the same # obs in ols’); end;

end;

results.meth = ’ols’; results.y = y;

results.nobs = nobs; results.nvar = nvar;

[q r] = qr(x,0); xpxi = (r’*r)\eye(nvar);

results.beta = xpxi*(x’*y);

results.yhat = x*results.beta;

results.resid = y - results.yhat;

sigu = results.resid’*results.resid;

results.sige = sigu/(nobs-nvar);

tmp = (results.sige)*(diag(xpxi));

results.tstat = results.beta./(sqrt(tmp));

ym = y - mean(y);

rsqr1 = sigu; rsqr2 = ym’*ym;

results.rsqr = 1.0 - rsqr1/rsqr2; % r-squared

rsqr1 = rsqr1/(nobs-nvar); rsqr2 = rsqr2/(nobs-1.0);

results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared

ediff = results.resid(2:nobs) - results.resid(1:nobs-1);

results.dw = (ediff’*ediff)/sigu; % durbin-watson

All functions in the spatial econometrics library present a unified documen-
tation format for the MATLAB ‘help’ command by adhering to the convention
of sections entitled, ‘PURPOSE’, ‘USAGE’, ‘RETURNS’, ‘SEE ALSO’, and
perhaps a ‘NOTES’ and ‘REFERENCES’ section, delineated by dashed lines.

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 26

The ‘USAGE’ section describes how the function is used, with each input
argument enumerated along with any default values. A ‘RETURNS’ section
portrays the structure that is returned by the function and each of its fields. To
keep the help information uncluttered, we assume some knowledge on the part
of the user. For example, we assume the user realizes that the ‘.residuals’ field
would be an (nobs x 1) vector and the ‘.beta’ field would consist of an (nvar x
1) vector.

The ‘SEE ALSO’ section points the user to related routines that may be use-
ful. In the case of our ols function, the user might what to rely on the printing
or plotting routines prt and plt, so these are indicated. The ‘REFERENCES’
section would be used to provide a literature reference (for the case of our more
exotic spatial estimation procedures) where the user could read about the de-
tails of the estimation methodology. The ‘NOTES’ section usually contains
important warnings or requirements for using the function. For example, some
functions in the spatial econometrics library require that if the model includes a
constant term, the first column of the data matrix should contain the constant
term vector of ones. This information would be set forth in the ‘NOTES’ sec-
tion. Other uses of this section would be to indicate that certain optional input
arguments are mutually exclusive and should not be used together.

As an illustration of the consistency in documentation, consider the func-
tion sar that provides estimates for the spatial autoregressive model that we
presented in Section 1.4.1. The documentation for this function is shown below.
It would be printed to the MATLAB command window if the user typed ‘help
sar’ in the command window.

PURPOSE: computes spatial autoregressive model estimates

y = p*W*y + X*b + e, using sparse matrix algorithms

USAGE: results = sar(y,x,W,rmin,rmax,convg,maxit)

where: y = dependent variable vector

x = explanatory variables matrix

W = standardized contiguity matrix

rmin = (optional) minimum value of rho to use in search

rmax = (optional) maximum value of rho to use in search

convg = (optional) convergence criterion (default = 1e-8)

maxit = (optional) maximum # of iterations (default = 500)

RETURNS: a structure

results.meth = ’sar’

results.beta = bhat

results.rho = rho

results.tstat = asymp t-stat (last entry is rho)

results.yhat = yhat

results.resid = residuals

results.sige = sige = (y-p*W*y-x*b)’*(y-p*W*y-x*b)/n

results.rsqr = rsquared

results.rbar = rbar-squared

results.lik = -log likelihood

results.nobs = # of observations

results.nvar = # of explanatory variables in x

results.y = y data vector

results.iter = # of iterations taken

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 27

results.romax = 1/max eigenvalue of W (or rmax if input)

results.romin = 1/min eigenvalue of W (or rmin if input)

--

SEE ALSO: prt(results), sac, sem, far

REFERENCES: Anselin (1988), pages 180-182.

Now, we turn attention to the MATLAB code for estimating the ordinary
least-squares model, which appears after the user documentation for the func-
tion. We begin processing the input arguments to carry out least-squares es-
timation based on a model involving y and x. First, we check for the correct
number of input arguments using the MATLAB ‘nargin’ variable.

if (nargin ~= 2); error(’Wrong # of arguments to ols’);

else

[nobs nvar] = size(x); [nobs2 junk] = size(y);

if (nobs ~= nobs2); error(’x and y not the same # obs in ols’); end;

end;

If we don’t have two input arguments, the user has made an error which we
indicate using the MATLAB error function. In the face of this error, the error
message will be printed in the MATLAB command window and the ols function
will return without processing any of the input arguments. Another error check
involves the number of rows in the y vector and x matrix which should be equal.
We use the MATLAB size function to implement this check in the code above.

Assuming that the user provided two input arguments, and the number of
rows in x and y are the same, we can proceed to use the input information to
carry out a regression.

The ‘nobs’ and ‘nvar’ returned by the MATLAB size function are pieces of
information that we promised to return in our results structure, so we construct
these fields using a ‘.nobs’ and ‘.nvar’ appended to the ‘results’ variable specified
in the function declaration. We also fill in the ‘meth’ field and the ‘y’ vector
fields.

results.meth = ’ols’; results.y = y;

results.nobs = nobs; results.nvar = nvar;

The decision to return the actual y data vector was made to facilitate the
plt function that will plot the actual versus predicted values from the regression
along with the residuals. Having the y data vector in the structure makes it
easy to call the plt function with only the structure returned by a regression
function.

We proceed to estimate the least-squares coefficients β̂ = (X ′X)−1X ′y,
which we solve using the QR matrix decomposition. A first point to note is
that we require more than a simple solution for β̂, because we need to calculate
t−statistics for the β̂ estimates. This requires that we compute (X ′X)−1 which
is done using the MATLAB ‘slash’ operator to invert the (X ′X) matrix. We
represent (X ′X) using (r′r), where r is an upper triangular matrix returned by
the QR decomposition.

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 28

[q r] = qr(x,0);

xpxi = (r’*r)\eye(nvar);

results.beta = xpxi*(x’*y);

Given these solutions, we are in a position to use our estimates β̂ to compute
the remaining elements of the ols function results structure. We add these
elements to the structure in the ‘.yhat, .resid, .sige,’ etc., fields.

results.yhat = x*results.beta;

results.resid = y - results.yhat;

sigu = results.resid’*results.resid;

results.sige = sigu/(nobs-nvar);

tmp = (results.sige)*(diag(xpxi));

results.tstat = results.beta./(sqrt(tmp));

ym = y - mean(y);

rsqr1 = sigu; rsqr2 = ym’*ym;

results.rsqr = 1.0 - rsqr1/rsqr2; % r-squared

rsqr1 = rsqr1/(nobs-nvar);

rsqr2 = rsqr2/(nobs-1.0);

results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared

ediff = results.resid(2:nobs) - results.resid(1:nobs-1);

results.dw = (ediff’*ediff)/sigu; % durbin-watson

2.3 Using the results structure

To illustrate the use of the ‘results’ structure returned by our ols function,
consider the associated function plt reg which plots actual versus predicted
values along with the residuals. The results structure contains everything needed
by the plt reg function to carry out its task. Earlier, we referred to functions
plt and prt rather than plt reg, but prt and plt are “wrapper” functions
that call the functions prt reg and plt reg where the real work of printing
and plotting regression results is carried out. The motivation for taking this
approach is that separate smaller functions can be devised to print and plot
results from all of the spatial econometric procedures, making it easier to develop
new estimation methods. The wrapper functions eliminate the need for the user
to learn the names of different printing and plotting functions associated with
each group of spatial econometric procedures — all results structures can be
printed and plotted by simply invoking the prt and plt functions. All spatial
econometric results are printed by: prt cas, prt spat, or prt gwr and all
plotting of results is carried out by the function plt spat. Although you need
not remember these function names, you may wish to examine the functions to
see what information is being printed, change the information being printed, or
add new printing methods for additional functions you construct.

A portion of the plt spat function is shown below. This function is also
called by the wrapper function plt, so we need not remember the name plt spat.
A check that the user supplied a regression results structure can be carried out
using the MATLAB isstruct function that is true if the argument represents a
structure. After this error check, we rely on a MATLAB programming construct
called the ‘switch-case’ to provide the remaining error checking for the function.

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 29

function plt_spat(results,vnames)

% PURPOSE: Plots output using spatial regression results structures

%---

% USAGE: plt_spat(results,vnames)

% Where: results = a structure returned by a spatial regression

% vnames = an optional vector of variable names

% e.g. vnames = strvcat(’y’,’constant’,’x1’,’x2’);

%---

% RETURNS: nothing, just plots the spatial regression results

% --

% NOTE: user must supply pause commands, none are in plt_spat function

% e.g. plt_spat(results);

% pause;

% plt_spat(results2);

% --

% SEE ALSO: prt, plt

%---

if ~isstruct(results)

error(’plt_spat requires structure argument’);

end;

nobs = results.nobs;

switch results.meth

case {’sac’,’sar’,’far’,’sem’}

tt=1:nobs;

clf; % plot actual vs predicted and residuals

subplot(2,1,1), plot(tt,results.y,’-’,tt,results.yhat,’--’);

title([upper(results.meth), ’ Actual vs. Predicted’]);

subplot(2,1,2), plot(tt,results.resid)

title(’Residuals’);

case {’casetti’}

.

.

.

otherwise

error(’method not recognized by plt_spat’);

end;

The ‘switch’ statement examines the ‘meth’ field of the results structure
passed to the plt spat function and executes the plotting commands if the
‘meth’ field is one of the spatial methods implemented in our function library.
In the event that the user passed a result structure from a function other than
one of our spatial functions, the ‘otherwise’ statement is executed which prints
an error message.

The switch statement also helps us to distinguish the special case of the
casetti spatial expansion method where the estimated parameters are plotted
for every point in space. A similar approach was used to extend the plt spat
function to accommodate other special spatial estimation functions where ad-
ditional or specialized plots were desired.

A decision was made not to place the ‘pause’ command in the plt function,
but rather let the user place this statement in the calling program or function.
An implication of this is that the user controls viewing regression plots in ‘for

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 30

loops’, or in the case of multiple invocations of the plt function. For example,
only the second ‘plot’ will be shown in the following code.

result1 = sar(y,x1,W);

plt(result1);

result2 = sar(y,x2,W);

plt(result2);

If the user wishes to see the spatial autoregressive model plots associated
with the first model, the code would need to be modified as follows:

result1 = sar(y,x1,W);

plt(result1);

pause;

result2 = sar(y,x2,W);

plt(result2);

The ‘pause’ statement would force a plot of the results from the first spatial
autoregression and wait for the user to strike any key before proceeding with
the second regression and accompanying plot of these results.

Our plt spat function would work with new spatial estimation functions
that we add to the library provided that the function returns a structure con-
taining the fields ‘.y’, ‘.yhat’, ‘.nobs’ and ‘.meth’. We need simply add this
method to the switch-case statement.

A more detailed example of using the results structure is prt spat that
provides a formatted printout of estimation results. The function relies on the
‘meth’ field to determine what type of estimation results are being printed, and
uses the ‘switch-case’ statement to implement specialized methods for different
types of models.

A small fragment of the prt spat function showing the specialized print-
ing for the sar and far spatial autoregression estimation methods is presented
below:

function prt_spat(results,vnames,fid)

% PURPOSE: Prints output using spatial econometric results structures

%---

% USAGE: prt_spat(results,vnames,fid)

% Where: results = a structure returned by a spatial regression

% vnames = an optional vector of variable names

% fid = optional file-id for printing results to a file

% (defaults to the MATLAB command window)

%---

% NOTES: e.g. vnames = strvcat(’y’,’const’,’x1’,’x2’);

% e.g. fid = fopen(’ols.out’,’wr’);

% use prt_spat(results,[],fid) to print to a file with no vnames

% --

% RETURNS: nothing, just prints the regression results

% --

% SEE ALSO: prt, plt

%---

if ~isstruct(results) error(’prt_spat requires structure argument’);

elseif nargin == 1, nflag = 0; fid = 1;

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 31

elseif nargin == 2, fid = 1; nflag = 1;

elseif nargin == 3, nflag = 0;

[vsize junk] = size(vnames); % user may supply a blank argument

if vsize > 0, nflag = 1; end;

else, error(’Wrong # of arguments to prt_spat’);

end;

nvar = results.nvar; nobs = results.nobs;

Vname = ’Variable’; % handling of vnames

for i=1:nvar

tmp = [’variable ’,num2str(i)]; Vname = strvcat(Vname,tmp);

end;

Vname = strvcat(Vname,’rho’); % add spatial rho parameter name

if (nflag == 1) % the user supplied variable names

Vname = ’Variable’; [tst_n nsize] = size(vnames);

if tst_n ~= nvar+1

warning(’Wrong # of variable names in prt_spat -- check vnames argument’);

fprintf(fid,’will use generic variable names \n’); nflag = 0;

else,

for i=1:nvar; Vname = strvcat(Vname,vnames(i+1,:)); end;

Vname = strvcat(Vname,’rho’); % add spatial rho parameter name

end; % end of if-else

end; % end of nflag issue

switch results.meth

case {’sar’} % <=================== spatial autoregressive model

fprintf(fid,’\n’); fprintf(fid,’Spatial autoregressive Model Estimates \n’);

if (nflag == 1)

fprintf(fid,’Dependent Variable = %16s \n’,vnames(1,:));

end;

fprintf(fid,’R-squared = %9.4f \n’,results.rsqr);

fprintf(fid,’Rbar-squared = %9.4f \n’,results.rbar);

fprintf(fid,’sigma^2 = %9.4f \n’,results.sige);

fprintf(fid,’log-likelihood = %16.8g \n’,results.lik);

fprintf(fid,’Nobs, Nvars = %6d,%6d \n’,results.nobs,results.nvar-1);

fprintf(fid,’# of iterations = %6d \n’,results.iter);

fprintf(fid,’min and max rho = %9.4f,%9.4f \n’,results.romin,results.romax);

fprintf(fid,’***\n’);

bout = [results.beta

results.rho];

nvar = results.nvar; nobs = results.nobs;

case {’far’} % <=================== first-order autoregressive model

.

.

.

otherwise

error(’results structure not known by prt_spat function’);

end;

% now print coefficient estimates, t-statistics and probabilities

tout = norm_prb(results.tstat); % find Aymptotic t-stat z-probabilities

tmp = [bout results.tstat tout]; % matrix to be printed

% column labels for printing results

bstring = ’Coefficient’; tstring = ’Asymptot t-stat’; pstring = ’z-probability’;

cnames = strvcat(bstring,tstring,pstring);

in.cnames = cnames; in.rnames = Vname; in.fmt = ’%16.6f’; in.fid = fid;

mprint(tmp,in);

The function mprint is a utility function from the Econometrics Toolbox to

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 32

produce formatted printing of a matrix with column and row-labels. All printing
of matrix results for the library of spatial econometric functions is done using
the mprint function.

The prt spat function allows the user an option of providing a vector of
fixed width variable name strings that will be used when printing the regression
coefficients. These can be created using the MATLAB strvcat function that
produces a vertical concatenated list of strings with fixed width equal to the
longest string in the list. We can also print results to an indicated file rather
than the MATLAB command window. Three alternative invocations of the
prt spat (or prt) function illustrating these options are shown below:

vnames = strvcat(’crime’,’const’,’income’,’house value’);

res = sar(y,x,W);

prt(res); % print with generic variable names

prt(res,vnames); % print with user-supplied variable names

fid = fopen(’sar.out’,’wr’); % open a file for printing

prt(res,vnames,fid); % print results to file ‘sar.out’

The first use of prt produces a printout of results to the MATLAB command
window that uses ‘generic’ variable names:

Spatial autoregressive Model Estimates

R-squared = 0.6518

Rbar-squared = 0.6366

sigma^2 = 95.5033

Nobs, Nvars = 49, 3

log-likelihood = -165.41269

of iterations = 12

min and max rho = -1.5362, 1.0000

Variable Coefficient Asmptot t-stat z-probability

variable 1 45.056481 6.186275 0.000000

variable 2 -1.030647 -3.369256 0.001533

variable 3 -0.265970 -3.004718 0.004293

rho 0.431377 3.587351 0.000806

The second use of prt uses the user-supplied variable names. The MATLAB
function strvcat carries out a vertical concatenation of strings and pads the
shorter strings in the ‘vnames’ vector to have a fixed width based on the longer
strings. A fixed width string containing the variable names is required by the
prt function. Note that we could have used:

vnames = [’crime ’,

’const ’,

’income ’,

’house value’];

but, this takes up more space and is slightly less convenient as we have to provide
the padding of strings ourselves. Using the ‘vnames’ input in the prt function
would produce the following output in the MATLAB command window.

Spatial autoregressive Model Estimates

Dependent Variable = crime

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 33

R-squared = 0.6518

Rbar-squared = 0.6366

sigma^2 = 95.5033

Nobs, Nvars = 49, 3

log-likelihood = -165.41269

of iterations = 12

min and max rho = -1.5362, 1.0000

Variable Coefficient Asymptot t-stat z-probability

const 45.056481 6.186275 0.000000

income -1.030647 -3.369256 0.001533

house value -0.265970 -3.004718 0.004293

rho 0.431377 3.587351 0.000806

The third case specifies an output file opened with the command:

fid = fopen(’sar.out’,’wr’);

The file ‘sar.out’ would contain output identical to that from the second use of
prt. It is the user’s responsibility to close the file that was opened using the
MATLAB command:

fclose(fid);

Next, we turn to details concerning implementation of the prt spat func-
tion. The initial code does error checking on the number of input arguments,
determines if the user has supplied a structure argument, and checks for vari-
able names and/or an output file id. We allow the user to provide a file id
argument with no variable names using the call: prt spat(result,[],fid) where a
blank argument is supplied for the variable names. We check for this case by
examining the size of the vnames input argument under the case of nargin ==
3 in the code shown below.

if ~isstruct(results) error(’prt_spat requires structure argument’);

elseif nargin == 1, nflag = 0; fid = 1;

elseif nargin == 2, fid = 1; nflag = 1;

elseif nargin == 3, nflag = 0;

[vsize junk] = size(vnames); % user may supply a blank argument

if vsize > 0, nflag = 1; end;

else, error(’Wrong # of arguments to prt_spat’);

end;

Variable names are constructed and placed in a MATLAB fixed-width string-
array named ‘Vname’, with the first name in the array being the row-label
heading ‘Variable’ used by the function mprint. For the case where the user
supplied variable names, we simply transfer these to a MATLAB ‘string-array’
named ‘Vname’, again with the first element ‘Variable’ used by mprint. We
do error checking on the number of variable names supplied which should equal
the number of explanatory variables plus the dependent variable (nvar+1). If
the user supplied the wrong number of variable names, we print a warning
and switch to reliance on the generic variable names. This decision was made
because it is often the case that students working with a data set know the
variable names and would prefer to see printed output with generic names than
receive an error message and no printed output.

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 34

nvar = results.nvar; nobs = results.nobs;

Vname = ’Variable’; % handling of vnames

for i=1:nvar

tmp = [’variable ’,num2str(i)]; Vname = strvcat(Vname,tmp);

end;

Vname = strvcat(Vname,’rho’); % add spatial rho parameter name

if (nflag == 1) % the user supplied variable names

Vname = ’Variable’; [tst_n nsize] = size(vnames);

if tst_n ~= nvar+1

warning(’Wrong # of variable names in prt_spat -- check vnames argument’);

fprintf(fid,’will use generic variable names \n’); nflag = 0;

else,

for i=1:nvar; Vname = strvcat(Vname,vnames(i+1,:)); end;

Vname = strvcat(Vname,’rho’); % add spatial rho parameter name

end; % end of if-else

end; % end of nflag issue

After constructing variable names, the ‘switch-case’ takes over sending our
function to the appropriate customized segment of code for printing part of the
spatial estimation results depending on the ‘meth’ field of the results structure.

switch results.meth

case {’sar’} % <=================== spatial autoregressive model

fprintf(fid,’\n’); fprintf(fid,’Spatial autoregressive Model Estimates \n’);

if (nflag == 1) fprintf(fid,’Dependent Variable = %16s \n’,vnames(1,:)); end;

fprintf(fid,’R-squared = %9.4f \n’,results.rsqr);

fprintf(fid,’Rbar-squared = %9.4f \n’,results.rbar);

fprintf(fid,’sigma^2 = %9.4f \n’,results.sige);

fprintf(fid,’log-likelihood = %16.8g \n’,results.lik);

fprintf(fid,’Nobs, Nvars = %6d,%6d \n’,results.nobs,results.nvar-1);

fprintf(fid,’# of iterations = %6d \n’,results.iter);

fprintf(fid,’min and max rho = %9.4f,%9.4f \n’,results.romin,results.romax);

fprintf(fid,’***\n’);

bout = [results.beta

results.rho];

nvar = results.nvar; nobs = results.nobs;

A point to note is that use of the MATLAB ‘fprintf’ command with an input
argument ‘fid’ makes it easy to handle both the case where the user wishes
output printed to the MATLAB command window or to an output file. The
‘fid’ argument takes on a value of ‘1’ to print to the command window and a
user-supplied file name value for output printed to a file.

Finally, after printing the specialized output, the coefficient estimates, t-
statistics and marginal z-probabilities that are in common to all spatial regres-
sions are printed. The marginal probabilities are calculated using a function
norm prb that determines these probabilities given a vector of asymptotic
t−ratios that are normally distributed random variates. This function is part
of the distributions library in the Econometrics Toolbox, which illustrates how
functions in the spatial econometrics library rely on the broader set of functions
included in the Econometrics Toolbox.

The code to print coefficient estimates, asymptotic t-statistics and marginal
probabilities is common to all regression printing procedures, so it makes sense
to move it to the end of the ‘switch-case’ code and execute it once as shown

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 35

below. We rely on the function mprint to do the actual printing of the matrix
of regression results with row and column labels specified as fields of a struc-
ture variable ‘in’. Use of structure variables with fields as input arguments to
functions is a convenient way to pass a large number of optional arguments to
MATLAB functions, an approach we will rely on in other functions we develop
in the spatial econometrics library. Again, the function mprint is part of the
Econometrics Toolbox and is used by all printing routines in the toolbox to
print matrices formatted with row and column labels.

tout = norm_prb(results.tstat); % find t-stat z-probabilities

tmp = [bout results.tstat tout]; % matrix to be printed

% column labels for printing results

bstring = ’Coefficient’; tstring = ’Asymptot t-stat’; pstring = ’z-probability’;

cnames = strvcat(bstring,tstring,pstring);

in.cnames = cnames; in.rnames = Vname;

in.fmt = ’%16.6f’; in.fid = fid;

mprint(tmp,in); % print estimates, t-statistics and probabilities

In the following chapters that present various spatial estimation methods, we
will provide details concerning computational implementation of the estimation
procedures in MATLAB. A function exists in the spatial econometrics library to
implement each estimation procedure. Our focus is on the estimation functions,
but of course there are accompanying functions to provide printed and graphical
presentation of the results. These functions follow the format and methods
described in this section, so we don’t provide details. Of course, you will see the
format of printed and graphical results when we provide applied examples, and
you’re free to examine the code that produces printed and graphical output.

2.4 Sparse matrices in MATLAB

Sparse matrices are those that contain a large proportion of zeros. In spatial
econometrics the first-order contiguity matrix W discussed in Chapter 1 repre-
sents a sparse matrix.

A first point to note regarding sparsity is that large problems involving
thousands of spatial observations will inevitably involve a sparse spatial conti-
guity weighting matrix. We will provide an illustration in Chapter 3 that uses
a sample of 3,107 U.S. counties. When you consider the first-order contiguity
structure of this sample, individual counties exhibited at most 8 first-order (rook
definition) contiguity relations. This means that the remaining 2,999 entries in
this row of W are zero. The average number of contiguity relationships between
the sample of counties was 4, so a great many of the elements in the matrix W
are zero, which is the definition of a sparse matrix.

To understand how sparse matrix algorithms conserve on storage space and
computer memory, consider that we need only record the non-zero elements
of a sparse matrix for storage. Since these represent a small fraction of the
total 3107x3107 = 9,653,449 elements in our example weight matrix, we save a
tremendous amount of computer memory. In fact for this case of 3,107 counties,

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 36

only 12,429 non-zero elements were found in the first-order spatial contiguity
matrix, representing a very small fraction (far less than 1 percent) of the total
elements.

MATLAB provides a function sparse that can be used to construct a large
sparse matrix by simply indicating the row and column positions of non-zero
elements and the value of the matrix element for these non-zero row and col-
umn elements. Continuing with our county data example, we could store the
first-order contiguity matrix in a single data file containing 12,429 rows with 3
columns that take the form:

row column value

This represents a considerable savings in computational space when com-
pared to storing a matrix containing 9,653,449 elements. A handy utility func-
tion in MATLAB is spy which allows one to produce a specially formatted graph
showing the sparsity structure associated with sparse matrices. We demonstrate
by executing spy(W) on our weight matrix W from the Pace and Barry data
set, which produced the graph shown in Figure 2.1. As we can see from the
figure, most of the non-zero elements reside near the diagonal.

An interesting point about Figure 2.1 is that the blocks along the diagonal
represent states and the off-diagonal scatters reflect counties on the borders of
states.

As an example of storing a sparse first-order contiguity matrix, consider
example 2.1 below that reads data from the file ‘ford.dat’ in sparse format and
uses the function sparse to construct a working spatial contiguity matrix W .
The example also produces a graphical display of the sparsity structure using
the MATLAB function spy.

% ----- Example 2.1 Using sparse matrix functions

load ford.dat; % 1st order contiguity matrix

% stored in sparse matrix form

ii = ford(:,1);

jj = ford(:,2);

ss = ford(:,3);

clear ford; % clear out the matrix to save RAM memory

W = sparse(ii,jj,ss,3107,3107);

clear ii; clear jj; clear ss; % clear out these vectors to save memory

spy(W);

MATLAB does not automatically treat a matrix as sparse, users must pro-
vide a declaration using the sparse command. If we know a matrix is sparse
and want to use this to our advantage when executing matrix operations, we
convert the matrix to sparse form using: ‘b = sparse(a)’. Subsequent MAT-
LAB matrix operations such as multiplication, addition, subtraction, division
and the MATLAB ‘slash’ operator (discussed below) involving ‘b’ and other
sparse matrices will produce sparse matrix results. That is, operating on two
sparse matrices will create a new sparse matrix as a result. Other operations
that produce sparse matrix results when given a sparse matrix argument are

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 37

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 12428

Figure 2.1: Sparsity structure of W from Pace and Barry

the cholesky decomposition chol, the householder QR decomposition qr and
the LU decomposition lu.

If one matrix in a binary operation is sparse and the other a full matrix,
the result will be a full matrix. When you are uncertain about the nature of
a matrix, the function issparse will provide an answer. This function returns
a value of 1 if the matrix is sparse and 0 otherwise. Another useful function
for dealing with sparse matrices is nnz, which returns the number of non-zero
elements in a matrix.

To illustrate working with sparse matrices, example 2.2 generates a sparse
matrix system which we solve using the MATLAB ‘slash’ operator that carries
out Gaussian elimination to solve the problem. A full matrix solution is also
provided, and we compare the time needed using the tic and toc commands.

% ----- Example 2.2 Solving a sparse matrix system

n = 500; density = 0.1; knum=0.5;

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 38

for i=1:5;

density = density*0.5;

X = sprandsym(n,density,knum);

y = randn(n,1);

tic; b = X\y; time1 = toc;

xf = full(X);

tic; b = xf\y; time2 = toc;

fprintf(’# of non-zero elements in X = %6d \n’,nnz(X));

fprintf(’sparse matrix solution time = %8.3f \n’,time1);

fprintf(’full matrix solution time = %8.3f \n’,time2);

end;

The example relies on the sparse matrix function sprandsym to generate
a symmetric matrix of dimension ‘n=500’ with random normal numbers dis-
tributed with a density provided by an input argument to the function. This
‘density’ argument represents the fraction of elements that will be non-zero. We
produce a sequence of five matrix systems with increasing sparsity by varying
the ‘density’ input argument each time through the ‘for i=1:5’ loop. A third
argument allows us to specify the condition number for the generated matrix
using a fraction ‘knum’ between zero and one such that the condition number
will be 1/knum. We use this option to prevent ill-conditioning in our matrix
system as the number of non-zero elements becomes smaller.

The results are shown below where we see that the full matrix operation
takes roughly 3.3 seconds to solve all five systems. In contrast, the sparse matrix
solution is around 10 times faster when we have a density of 0.05, taking only
.356 seconds. As the sparsity increases, the time required to solve the problem
decreases dramatically to 0.010 seconds, which is around 300 times faster. For
the U.S counties the density is: 12,429/9,653,449 = 0.00128. By comparison, the
smallest density in example 2.2 is 0.003125, so it should be clear that one could
spend weeks of computer time solving large problems without sparse matrix
algorithms or a few seconds with these algorithms.

of non-zero elements in X = 11878

sparse matrix solution time = 0.356

full matrix solution time = 3.260

of non-zero elements in X = 5970

sparse matrix solution time = 0.080

full matrix solution time = 3.370

of non-zero elements in X = 2982

sparse matrix solution time = 0.020

full matrix solution time = 3.284

of non-zero elements in X = 1486

sparse matrix solution time = 0.013

full matrix solution time = 3.310

of non-zero elements in X = 744

sparse matrix solution time = 0.010

full matrix solution time = 3.261

The subject of sparse matrix computational efficiency is beyond the scope
of this text, but we can provide some insights that will be useful in Chapter 3.
Gaussian elimination includes a special preordering of the columns of the ma-
trix labeled “minimum degree ordering”, which reduces “fill-in” that occurs with

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 39

matrix operations. The term “fill-in” refers to the introducion of non-zero ele-
ments as a result of matrix manipulation. As an illustration of fill-in, we carry
out matrix multiplication of the sparse first-order contiguity matrix taken from
Anselin’s (1988) Columbus neighborhood crime data set. A comparison of the
sparsity associated with the original first-order contiguity matrix W and the
matrix product W ∗W ∗W is shown in Figure 2.2.

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 1165

W
W*W*W

Figure 2.2: An illustration of fill-in from matrix multiplication

To illustrate the importance of preordering in matrix computations, we carry
out matrix multiplication on a symmetric sparse random matrix generated us-
ing sprandsym from example 2.2. We produce a symmetric minimum degree
ordering, using the MATLAB function symmmd and carry out matrix multi-
plication based on this ordering. We also rely on MATLAB to automatically
do this for us and carry out matrix multiplication involving the sparse matrix.
A comparison to the case of a full matrix multiplication is provided in terms of

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 40

both floating point operations (flops) and the time required.

% ----- Example 2.3 Symmetric minium degree ordering operations

n = 500; density = 0.1; knum=0.5;

for i=1:5;

density = density*0.5;

X = sprandsym(n,density,knum);

% produce symmetric minimum degree ordering

mo = symmmd(X);

tic; flops(0); result = X(mo,mo)*X(mo,mo); time0 = toc; flops0 = flops;

tic; flops(0); result = X*X; time1 = toc; flops1 = flops;

xf = full(X);

tic; flops(0); result = xf*xf; time2 = toc; flops2 = flops;

fprintf(’# of non-zero elements in X = %6d \n’,nnz(X));

fprintf(’ordered matrix solution time = %8.3f flops = %16d \n’,time0,flops0);

fprintf(’sparse matrix solution time = %8.3f flops = %16d \n’,time1,flops1);

fprintf(’full matrix solution time = %8.3f flops = %16d \n’,time2,flops2);

end;

From the results presented below we see that the minimum degree ordering
accounts for the greatly reduced number of floating point operations during
sparse matrix multiplication. The time is slightly faster for the straightforward
sparse matrix multiplication because the internal ordering is faster than our
explicit ordering.

of non-zero elements in X = 11922

ordered matrix solution time = 0.179 flops = 1228634

sparse matrix solution time = 0.169 flops = 1228634

full matrix solution time = 8.320 flops = 250000018

of non-zero elements in X = 5956

ordered matrix solution time = 0.058 flops = 296022

sparse matrix solution time = 0.047 flops = 296022

full matrix solution time = 8.533 flops = 250000018

of non-zero elements in X = 2976

ordered matrix solution time = 0.018 flops = 71846

sparse matrix solution time = 0.010 flops = 71846

full matrix solution time = 8.448 flops = 250000018

of non-zero elements in X = 1502

ordered matrix solution time = 0.008 flops = 17238

sparse matrix solution time = 0.006 flops = 17238

full matrix solution time = 8.323 flops = 250000018

of non-zero elements in X = 742

ordered matrix solution time = 0.004 flops = 2974

sparse matrix solution time = 0.002 flops = 2974

full matrix solution time = 8.470 flops = 250000018

As a graphical illustration of symmetric minimum degree ordering, Figure 2.3
shows the 3,107 county contiguity matrix sparsity structure in the original un-
ordered form along with this structure for a symmetric minimum degree ordering
of this matrix.

MATLAB provides other orderings for non-symmetric matrices using the
function colmmd and a Cuthill MacGee ordering can be generated using the
function symrcm. We will have an opportunity to demonstrate these ideas a
bit more in Chapter 3.

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 41

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

nz = 12428

original un-ordered

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

nz = 12428

minimum degree ordering

Figure 2.3: Minimum degree ordering versus unordered Pace and Barry matrix

As a final example of sparse matrix functionality, we examine some code
from a function normw in the spatial econometrics library that normalizes
contiguity matrices to have row-sums of unity. One might approach this problem
inefficiently using a loop over the rows as shown below.

rsum = sum(win’);

wout = zeros(n1,n1);

for i=1:n1

wout(i,:) = win(i,:)/rsum(1,i);

end;

This code is inefficient because we need to allocate space for wout, which
could be a very large but sparse matrix containing millions of elements, most of
which are zero. Rather than allocate this memory, we can rely on the find com-
mand to extract only non-zero elements on which the standardization operates
as shown below.

CHAPTER 2. THE MATLAB SPATIAL ECONOMETRICS LIBRARY 42

[i1,j1,s1] = find(win);

rsum = sum(win’);

for i=1:n;

ind = find(i1 == i);

s1(ind,1) = s1(ind,1)/rsum(1,i);

end;

wout = sparse(i1,j1,s1);

We loop over all rows and find a vector of elements from the row index ‘i1’
equal to the non-zero elements in each row. The index variable ‘ind’ is then
used to standardize only the non-zero elements in ‘s1’, operating on the entire
vector of these elements. On exit, the sparse matrix is reconstructed based on
the standardized values in the variable ‘s1’ using the sparse function.

2.5 Chapter Summary

This chapter described a software design for implementing the spatial economet-
ric estimation methods that we will discuss in this text. Our estimation methods
will be implemented using MATLAB software from the MathWorks Inc. A de-
sign based on MATLAB structure variables was set forth. This approach to
developing a set of spatial econometric estimation functions can provide a con-
sistent user-interface for the function documentation and help information as
well as encapsulation of the estimation results in a MATLAB structure variable.
This construct can be accessed by related functions that provide printed as well
as graphical presentation of the estimation results.

We also demonstrated the computational gains from using the sparse matrix
functionality in MATLAB. Further evidence of these gains will be illustrated
when implementing our estimation procedures. For the most part, MATLAB
will operate intelligently on matrices that are declared sparse without any effort
on our part.

Chapter 3

Spatial autoregressive
models

This chapter discusses spatial autoregressive models briefly introduced in Chap-
ter 1. These models are used to model cross-sectional spatial data samples and
Anselin (1988) provides a relatively complete treatment of these models from
a maximum likelihood perspective. In chapter 4 we examine these same mod-
els from a Bayesian perspective, where the model is extended to handle cases
involving non-constant variance or outliers, a situation that often arises in prac-
tice.

The most general statement of a spatial autoregressive model is shown in
(3.1).

y = ρW1y +Xβ + u (3.1)

u = λW2u+ ε

ε ∼ N(0, σ2In)

Where y contains an nx1 vector of cross-sectional dependent variables and X
represents an nxk matrix of explanatory variables. W1 and W2 are known nxn
spatial weight matrices, usually containing contiguity relations or functions of
distance. As explained in Section 1.4.1, a first-order contiguity matrix has zeros
on the main diagonal, rows that contain zeros in positions associated with non-
contiguous observational units and ones in positions reflecting neighboring units
that are (first-order) contiguous based on one of the contiguity definitions set
forth in Chapter 1.

From the general model in (3.1) we can derive special models by imposing
restrictions. For example, setting X = 0 and W2 = 0 produces a first-order
spatial autoregressive model shown in (3.2).

y = ρW1y + ε (3.2)

43

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 44

ε ∼ N(0, σ2In)

This model attempts to explain variation in y as a linear combination of
contiguous or neighboring units with no other explanatory variables. It repre-
sents a spatial analogy to the first order autoregressive model from time series
analysis, yt = ρyt−1 + εt, where total reliance is on past period observations to
explain variation in yt.

Setting W2 = 0 produces a mixed regressive-spatial autoregressive model
shown in (3.3). This model is analogous to the lagged dependent variable model
in time series. Here we have additional explanatory variables in the matrix X
to explain variation in y over the spatial sample of observations.

y = ρW1y +Xβ + ε (3.3)

ε ∼ N(0, σ2In)

Letting W1 = 0 results in a regression model with spatial autocorrelation in
the disturbances shown in (3.4).

y = Xβ + u (3.4)

u = λW2u+ ε

ε ∼ N(0, σ2In)

A related model known as the spatial Durbin model is shown in (3.5), where a
“spatial lag” of the dependent variable as well as a spatial lag of the explanatory
variables matrix X are added to a traditional least-squares model.

y = ρW1y +Xβ1 +W1Xβ2 + ε (3.5)

ε ∼ N(0, σ2In)

This chapter is organized into sections that discuss and illustrate each of the
special cases as well as the most general version of the spatial autoregressive
model from (3.1).

Section 3.1 deals with the first-order spatial autoregressive model from (3.2)
which we label the FAR model. The mixed regressive-spatial autoregressive
model from (3.3) that we refer to as the SAR model is taken up in Section 3.2.
Section 3.3 takes up the SEM model containing spatial autocorrelation in the
disturbances shown in (3.4). In addition, this section illustrates various tests
for spatial dependence using least-squares regression residuals and other ap-
proaches. These tests can help in specification of an appropriate model from
the alternatives available. The model from (3.5) is discussed in Section 3.4. This
model is often called the spatial Durbin model, and we reference it as the SDM
model. The most general model from (3.1) which we label SAC is the focus of
Section 3.5.

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 45

Computational details necessary to produce maximum likelihood estimates
for each of the models are provided in subsections entitled “computational de-
tails”. Spatial econometrics library functions that utilize MATLAB sparse ma-
trix algorithms allow us to estimate models with over 3,000 observations in
around 100 seconds on an inexpensive desktop computer.

Applied examples are presented in subsections entitled “applied examples”
for each of the models. These examples rely on a host of spatial data sets
ranging from small to large and even very large.

3.1 The first-order spatial AR model

This model is seldom used in applied work, but it serves to motivate ideas we
use in later sections of the chapter. Perhaps the most frequent use for this model
is checking residuals for spatial autocorrelation, which we illustrate in the next
chapter. The model which we label FAR throughout the text, takes the form:

y = ρWy + ε (3.6)

ε ∼ N(0, σ2In)

Where the spatial contiguity matrix W has been standardized to have row sums
of unity and the variable vector y is expressed in deviations from the means form
to eliminate the constant term in the model.

To illustrate the problem with least-squares estimation of spatial autoregres-
sive models, consider applying least-squares to the model in (3.6). This would
produce an estimate for the parameter ρ in the model equal to:

ρ̂ = (y′W ′Wy)−1y′W ′y (3.7)

Can we show that this estimate is unbiased? If not, is it consistent? Taking
the same approach as in least-squares, we substitute the expression for y from
the model statement and attempt to show that E(ρ̂) = ρ, to prove unbiasedness.

E(ρ̂) = E[(y′W ′Wy)−1y′W ′(ρWy + ε)]

= ρ+ E[(y′W ′Wy)−1y′W ′ε] (3.8)

Note that the least-squares estimate is biased, since we cannot show that E(ρ̂) =
ρ. The usual argument that the explanatory variables matrix X in least-squares
is fixed in repeated sampling allows one to pass the expectation operator over
terms like (y′W ′Wy)−1y′W ′, and argue that E(ε) = 0, eliminating the bias
term. Here however, because of spatial dependence, we cannot make the case
that Wy is fixed in repeated sampling. This is not unlike the case with autore-
gressive time-series models where the observations are generated sequentially
and therefore not independent. In this case, the observations are generated by a

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 46

spatial process. We argued in Chapter 1 that this produces spatial dependence
between the observations in the vector y.

This also rules out consistency for the least-squares estimate of ρ, because
the probability limit (plim) for the term y′W ′ε is not zero. In fact, Anselin
(1988) establishes that:

plimN−1(y′W ′ε) = plimN−1ε′W (I − ρW)−1ε (3.9)

Expression (3.9) is equal to zero only in the trivial case when ρ equals zero and
there is no spatial dependence in the data sample.

Given that least-squares will produce biased and inconsistent estimates of
the spatial autoregressive parameter ρ in this model, how do we proceed to
estimate ρ? The maximum likelihood estimator for ρ requires that we find a
value of ρ that maximizes the likelihood function shown in (3.10).

L(y|ρ, σ2) =
1

2πσ2(n/2)
|In − ρW | exp{−

1

2σ2
(y − ρWy)′(y − ρWy)} (3.10)

To simplify the maximization problem, we obtain a concentrated log like-
lihood function based on eliminating the disturbance variance parameter σ2.
This is accomplished by substituting σ̂2 = (1/n)(y − ρWy)′(y − ρWy) in the
likelihood (3.10) and taking logs, which yields the expression in (3.11).

Ln(L) = −
n

2
ln(π) −

n

2
ln(y − ρWy)′(y − ρWy) + ln|In − ρW | (3.11)

This expression can be maximized with respect to ρ using a simplex univariate
optimization routine that is part of the MATLAB function library. The esti-
mate for the parameter σ2 is obtained using the maximum likelihood value of
ρ which we label ρ̃ in: σ̂2 = (1/n)(y − ρ̃Wy)′(y − ρ̃Wy). In the next section,
we demonstrate a sparse matrix approach to evaluating this likelihood function
that allows us to solve problems involving thousands of observations quickly
with small amounts of computer memory.

Two implementation details arise with this approach to solving for maximum
likelihood estimates. First, there is a constraint that we need to impose on the
parameter ρ. Anselin and Florax (1994) point out that this parameter can take
on feasible values in the range:

1/λmin < ρ < 1/λmax

Where λmin represents the minimum eigenvalue of the standardized spatial con-
tiguity matrix W and λmax denotes the largest eigenvalue of this matrix. This
requires that we constrain our optimization search to values of ρ within this
range.

The second implementation issue is that the numerical hessian matrix that
would result from a gradient-based optimization procedure and provide esti-
mates of dispersion for the parameters is not available with simplex optimiza-
tion. We can overcome this problem in two ways. For problems involving a

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 47

small number of observations, we can use our knowledge of the theoretical in-
formation matrix to produce estimates of dispersion. An asymptotic variance
matrix based on the Fisher information matrix shown below for the parameters
θ = (ρ, σ2) can be used to provide measures of dispersion for the estimates of ρ
and σ2. Anselin (1980, page 50) provides the analytical expressions needed to
construct this information matrix.

[I(θ)]−1 = −E[
∂2L

∂θ∂θ′
]−1 (3.12)

This approach is computationally impossible when dealing with large scale
problems involving thousands of observations. The expressions used to calculate
terms in the information matrix involve operations on very large matrices that
would take a great deal of computer memory and computing time. In these
cases we evaluate the numerical hessian matrix using the maximum likelihood
estimates of ρ and σ2 and our sparse matrix function for the likelihood. Given
the ability to evaluate the likelihood function rapidly, numerical methods can
be used to compute approximations to the gradients shown in (3.12). We will
demonstrate both of these approaches in the next section.

3.1.1 Computational details

Building on the software design set forth in Chapter 2 for our spatial econo-
metrics function library, we will implement a function far to produce maximum
likelihood estimates for the first-order spatial autoregressive model. Since this
is our first spatial econometrics estimation function, we start by constructing a
function fars that doesn’t take advantage of sparse matrix functionality avail-
able in MATLAB. This keeps the fars function simple and makes the entire
development process easier to understand. After constructing this simplistic
function (that is not useful for large-scale realistic problems), we show how to
develop an analogous routine far that relies on the sparse matrix functionality
of MATLAB. We demonstrate this function which is part of the spatial econo-
metrics library in action on a data set involving 3,107 U.S. counties.

To solve the univariate optimization problem involving the single parameter
ρ in the model, we rely on a simplex optimization function fmin that is part of
the MATLAB function library. This function takes three input arguments: 1) a
function name provided as a string argument, 2) a single parameter over which
the optimization takes place, and 3) a range of values over which to search for
the optimal parameter value. Our first task is to create a function representing
the concentrated log likelihood function for the first-order spatial autoregressive
model from (3.11). This function named fs far is shown below:

function llike = fs_far(rho,nobs,y,W)

% PURPOSE: evaluate the concentrated log-likelihood

% for the first-order spatial autoregressive model

% ---

% USAGE:llike = fs_far(rho,nobs,y,W)

% where: rho = spatial autoregressive parameter

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 48

% nobs = # of observations in the model

% y = dependent variable vector

% W = standardized contiguity matrix

% ---

% RETURNS: a scalar equal to the concentrated log-likelihood

% function value at the parameter value rho

% --

% SEE ALSO: far, f_far f_sar, f_sac, f_sem

% ---

IN = eye(nobs); B = IN - rho*W;

dB = det(B); epe = y’*B’*B*y;

llike = (nobs/2)*log(pi) + (nobs/2)*log(epe) - log(dB);

One point to note regarding the function fs far is that we return the nega-
tive of the concentrated log-likelihood function. This is because the optimization
function fmin that we use to solve for a maximum likelihood value of the pa-
rameter ρ works by minimizing the function. Minimizing the negative of the
log-likelihood is equivalent to maximizing the log-likelihood function. A second
point is that the likelihood function equations from expression (3.11) were easy
to code in MATLAB, which we will find is often the case.

Given this function, we can turn attention to using the MATLAB simplex
optimization function fmin to find a value for the parameter ρ that minimizes
the function. We call this function from within a function fars that implements
maximum likelihood estimation of the first-order spatial autoregressive model.
The fars function is shown below:

function results = fars(y,W,convg,maxit)

% PURPOSE: computes 1st-order spatial autoregressive estimates

% model: y = p*W*y + e

% ---

% USAGE: results = fars(y,W,convg,maxit)

% where: y = dependent variable vector

% W = standardized contiguity matrix

% convg = (optional) convergence criterion (default = 1e-8)

% maxit = (optional) maximum # of iterations (default = 500)

% ---

% RETURNS: a structure

% results.meth = ’fars’

% results.rho = rho

% results.tstat = asymptotic t-stat

% results.yhat = yhat

% results.resid = residuals

% results.sige = sige = (y-p*W*y)’*(y-p*W*y)/n

% results.rsqr = rsquared

% results.lik = log likelihood

% results.nobs = nobs

% results.nvar = nvar = 1

% results.y = y data vector

% result.iter = # of iterations taken

% --

% SEE ALSO: prt(results), far, sar, sem, sac

% ---

% REFERENCES: Anselin (1988), pages 180-182.

% ---

options = zeros(1,18);

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 49

if nargin == 2 % set default optimization options

options(1) = 0; options(2) = 1.e-8; options(14) = 500;

elseif nargin == 3 % set user supplied convergence option

options(1) = 0; options(2) = convg; options(14) = 500;

elseif nargin == 4 % set user supplied convg and maxit options

options(1) = 0; options(2) = convg; options(14) = maxit;

else

error(’Wrong # of arguments to fars’);

end;

[n junk] = size(y); results.y = y; results.nobs = n;

results.nvar = 1; results.meth = ’fars’;

weig = eig(W); lmin = min(weig); lmax = max(weig);

wy = W*y; IN = eye(n);

% step 1) maximize concentrated likelihood function;

[p opts] = fmin(’fs_far’,1/lmin,1/lmax,options,n,y,W);

if opts(10) == options(14),

fprintf(1,’far: convergence not obtained in %4d iterations’,options(14));

end;

results.iter = opts(10);

epe = (y - p*wy)’*(y-p*wy); sige = epe/n; % step 2) find sige

results.rho = p; results.yhat = p*wy;

results.resid = y - results.yhat; results.sige = sige;

% asymptotic t-stats (page 50 Anselin, 1980)

B = speye(n) - p*sparse(W); xpxi = zeros(2,2); WB = W*inv(B);

pterm = trace(WB*WB + WB*WB’); % rho,rho term

term1 = trace(inv(B’*B)*(W’*W)); xpxi(1,1) = term1;

xpxi(2,2) = n/(2*sige*sige); % sige,sige term

xpxi(1,2) = -(1/sige)*(p*term1 - trace(inv(B’*B)*W));

xpxi(2,1) = xpxi(1,2); % sige,rho term

xpxi = inv(xpxi);

results.tstat = results.rho./(sqrt(xpxi(1,1)));

ym = y - mean(y); % r-squared, rbar-squared

rsqr1 = results.resid’*results.resid;

rsqr2 = ym’*ym;

results.rsqr = 1.0-rsqr1/rsqr2; % r-squared

results.lik = -fs_far(p,n,y,W); % log likelihood

This function like all of our spatial estimation routines returns a ‘results’
structure containing information pertaining to the estimation results. Informa-
tion regarding the ‘fields’ of the returned structure is provided in the function
documentation that would appear if the user typed ‘help fars’ in the MATLAB
command window.

The function first checks for the proper number of input arguments by the
user. The ‘options’ vector controls the behavior of some optional arguments
available when using the MATLAB fmin function that carries out simplex op-
timization. We set default options so that: 1) intermediate results are not
printed, 2) the maximum number of iteration allowed are 500, and 3) the con-
vergence criterion is 1e-8. Optional input arguments to the function fars allow
the user to provide values for these aspects of the optimization problem different
from the default values.

After error checking on the inputs and processing any user input options
regarding optimization, we fill-in some fields of the ‘results structure’ that will
be returned by the function. In the function documentation we promised to

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 50

return: 1) the values of the vector y input to the function, 2) the number of
observations, 3) the number of variables, and 4) a ‘meth’ field that allows users
as well as other functions to decipher which econometric method produced the
results structure. Returning the vector of y observations facilitates plotting
results implemented in our plt spat function. The other values in the results
fields are used when printing estimation results.

After error checking and initialization of the results structure, we compute
the eigenvalues of the spatial weight matrixW using the MATLAB function eig.
We need the maximum and minimum eigenvalues to constrain our search for the
maximum likelihood value of ρ. The function eig returns a vector of n eigen-
values associated with the nxn spatial weight matrix, so we use the MATLAB
max and min functions to find the maximum and minimum eigenvalues.

At this point, we call the simplex optimization function fmin to solve for a
maximum likelihood estimate of ρ. The call takes the form:

[p opts] = fmin(’fs_far’,1/lmin,1/lmax,options,n,y,W);

Where: the first argument is a string containing the name of the concentrated
log likelihood function we wish to minimize; the next two arguments contain
the minimum and maximum of the range over which to search for the optimal
parameter value of ρ; the options vector contains our optional arguments that
control optimization behavior of the simplex algorithm, and the last three input
arguments will be passed to the function fs far as input arguments. Note that
our function fs far was written to accept these last three arguments as inputs.

Outputs from the function fmin take the form of a scalar argument ‘p’ that
contains the optimal parameter value and a vector ‘opts’ containing information
regarding the optimization process. We use the information in ‘opts(10)’ to
check against the maximum number of iterations set as an input option to fmin.
If the actual number of iterations taken equals the maximum allowed, we have a
situation where convergence has not taken place. We provide a printed warning
for the user in this case, but still return a results structure containing estimates
based on the non-optimal value of ρ. This allows the user to examine the
printed output and attempt another solution to the problem using a different
convergence criterion or an increased number of iterations. The number of
iterations taken by fmin are also returned as a field in the results structure and
printed with other output information.

Having obtained a maximum likelihood estimate (ρ̂) of the parameter ρ, we
use the matrix relationships to obtain an estimate of the parameter σ2 based on
the residuals from the model, e = y − ρ̂Wy. Finally, we construct t−statistics
based on the theoretical information matrix provided by Anselin (1988).

The code segment from prt spat that prints the output associated with the
fars model estimates might look as follows:

case {’fars’} % <=================== first-order autoregressive model

nvar = 1; nobs = results.nobs;

% special handling of vnames

Vname = ’Variable’;

Vname = strvcat(Vname,’rho’); % add spatial rho parameter name

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 51

fprintf(fid,’\n’);

fprintf(fid,’First-order spatial autoregressive model Estimates \n’);

if (nflag == 1)

fprintf(fid,’Dependent Variable = %16s \n’,vnames(1,:));

end;

fprintf(fid,’R-squared = %9.4f \n’,results.rsqr);

fprintf(fid,’sigma^2 = %9.4f \n’,results.sige);

fprintf(fid,’Nobs, Nvars = %6d,%6d \n’,results.nobs,results.nvar);

fprintf(fid,’log-likelihood = %16.8g \n’,results.lik);

fprintf(fid,’# of iterations = %6d \n’,results.iter);

fprintf(fid,’**\n’);

bout = results.rho;

% <=================== end of far case

Of course, the code at the end of prt spat that prints the estimates would
also be executed based on the MATLAB variable ‘bout’ and the variable names
vector ‘Vname’ set in the code above. As pointed out in Chapter 2, this occurs at
the end of the prt spat function, since all of the spatial regression functions have
this task in common. For the sake of completeness, we show this code below.
Note that we would not have to write this code as it was already part of the
spatial econometrics library — only the code shown above would be needed to
implement the fars model and add it to the library. One point to note is that we
compute the marginal probability associated with the asymptotic t−ratio using
a normal or z-probability in place of the t−distribution probability. Unlike the
case of least-squares regression the parameters in spatial autogressive models
do not take the on a t−distribution, but represent asymptotic t−statistics so
the marginal probabilities are calculated using the normal distribution. This is
accomplished using the function norm prb which was written for this purpose
since asymptotic t−ratios often arise in econometric analysis. This function is
part of the Econometrics Toolbox and is described in Chapter 8 of the manual
for the toolbox.

% now print coefficient estimates, t-statistics and probabilities

tout = norm_prb(results.tstat); % find asymptotic t-stat z-probabilities

tmp = [bout results.tstat tout]; % matrix to be printed

% column labels for printing results

bstring = ’Coefficient’; tstring = ’Asymptot t-stat’; pstring = ’z-probability’;

cnames = strvcat(bstring,tstring,pstring);

in.cnames = cnames; in.rnames = Vname;

in.fmt = ’%16.6f’; in.fid = fid;

mprint(tmp,in);

As indicated at the outset, the function fars is not part of the spatial econo-
metrics library, it was merely used to motivate our approach to estimating this
model. It has some computational shortcomings when it comes to solving large
sample problems. The computational difficulties are: 1) we require eigenvalues
for the large n by n matrix W , 2) we need to find the determinant of the n by
n related matrix (In − ρW), and 3) matrix multiplications involving the large
matrices W and (In − ρW) are required to compute the information matrix to
produce estimates of dispersion.

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 52

We construct an alternative function far that relies on sparse matrix algo-
rithms available in MATLAB and is part of the spatial econometrics library. We
will demonstrate this function with a sample data set containing observations
for 3,107 U.S. counties. The function can produce estimates for the first-order
spatial autoregressive model in this large problem in 95 seconds on a moderately
fast but inexpensive desktop computer. These MATLAB algorithms for deal-
ing with sparse matrices make the software ideally suited for spatial modeling
because spatial weight matrices are almost always sparse.

Our first task is to construct a function to evaluate the concentrated log
likelihood based on the sparse matrix algorithms. This function named f far is
shown below.

function llike = f_far(rho,y,W)

% PURPOSE: evaluate the concentrated log-likelihood for the first-order

% spatial autoregressive model using sparse matrix algorithms

% ---

% USAGE:llike = f_far(rho,y,W)

% where: rho = spatial autoregressive parameter

% y = dependent variable vector

% W = spatial weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value at the parameter rho

% --

% SEE ALSO: far, f_sar, f_sac, f_sem

% ---

n = length(y); spparms(’tight’);

z = speye(n) - 0.1*sparse(W);

p = colmmd(z);

z = speye(n) - rho*sparse(W);

[l,u] = lu(z(:,p));

detval = sum(log(abs(diag(u))));

epe = y’*z’*z*y;

llike = (n/2)*log(pi) + (n/2)*log(epe) - detval;

The function solves the determinant of (I − ρW) using the LU decomposi-
tion implemented by the MATLAB lu command. This algorithm operates on
sparse matrices in an intelligent way. The command spparms sets options for
operation of the sparse matrix algorithms. The option ‘tight’ sets the minimum
degree ordering parameters to particular settings, which lead to sparse matrix
orderings with less fill-in. As we saw in Section 2.4, this has a great impact on
the execution time. Some experimentation on my part with the various options
that can be set has led me to believe this is an optimal setting for spatial au-
toregressive models. For the reader interested in further details regarding sparse
matrix algorithms in this context, see George and Liu (1981). Pace and Barry
(1998) provide a good discussion of the alternative MATLAB sparse matrix set-
tings in the context of spatial econometric models along with timing results and
operation counts for various settings.

The command sparse informs MATLAB that the matrix W is sparse and
the command speye creates an identity matrix in sparse format. We set up an
initial matrix based on (In − 0.1W) from which we construct a column vector

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 53

of minimum degree orderings for this sparse matrix. Note that we rely on the
function colmmmd rather than symmmd which determines a minimum degree
ordering for symmetric matrices. This allows users to rely on non-symmetric
spatial weight matrices, making the function more generally useful. By execut-
ing the lu command with the minimum degree ordering, we manage to operate
on a sparser set of LU factors than if we operated on the matrix z = (I − ρW).
As we saw in Chapter 2, this improves execution time.

Given this function to evaluate the log likelihood for very large spatial weight
matrices W , we can now rely on the same fmin simplex optimization algorithm
as in the case of the function fars. Another place where we can rely on sparse
matrix functions is in determining the minimum and maximum eigenvalues of
the matrix W . Recall we use these to set the feasible range of values for ρ in
our call to the simplex search function fmin. The code for carrying this out is:

opt.tol = 1e-3; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2);

lmax = 1/lambda(1);

The MATLAB function eigs works to compute selected eigenvalues for a
sparse matrix, and we use the option ‘BE’ to compute only the maximum and
minimum eigenvalues which we need to determine the feasible range for ρ. The
options are set as fields in the ‘opt’ structure variable which is input as an
argument to the eigs function. A tolerance value is one option we use and
the other option is set to prohibit display of the iterative solution results. The
default tolerance is 1e-10, but using a tolerance of 1e-3 or 1e-4 speeds up the
solution by a factor of four times. Since the function eigs works iteratively, we
are trading off some accuracy by truncating the number of iterations with the
larger tolerance values. This seems a reasonable trade-off because we are not
overly concerned about loosing a few decimal digits of accuracy. It is unlikely
that the maximum likelihood values of ρ are near the upper and lower bounds on
the feasible range. If we find a maximum likelihood estimate near these limits,
we can always change the tolerance option used as an input argument to the
eigs function.

Another point is that for the case of standardized weight matrices W , the
maximum eigenvalue will always take on a value of unity, so we could save
time by only computing one eigenvalue. However, not all researchers will use a
row-standardized matrix W , so we make the function more generally useful by
computing both eigenvalues.

We face a design decision regarding whether to provide an optional input
to the function far for the tolerance used by the eigs function. A decision
to keep things simple ruled out an input argument for this option. Readers
however should be aware that for some spatial weight matrices inaccurate or
even imaginary eigenvalues may be found due to the large tolerance value used.
In these cases there are two remedial actions that can be taken. First, you can
change the tolerance value in the function far. A second solution is provided
by input options for user-supplied maximum and minimum values over which

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 54

to search for estimates of ρ. These values wil be used in lieu of the computed
eigenvalues.

An option for user input of the search range is provided for all of the spa-
tial autoregressive models discussed in this chapter. It allows users to save
computing time when estimating several different specifications of a spatial au-
toregressive model. In cases where all of the models rely on the same spatial
weight matrix, you can compute the limits once and then input these limits for
the other models.

The function far is shown below, where the optional inputs ‘rmin’ and ‘rmax’
are documented. This function was written to perform on both large and small
problems. If the problem is small (involving less than 500 observations), the
function far computes measures of dispersion using the theoretical information
matrix. If more observations are involved, the function determines these mea-
sures by computing a numerical hessian matrix. (Users may need to decrease
the number of observations to less than 500 if they have computers without a
large amount of RAM memory.)

function results = far(y,W,rmin,rmax,convg,maxit)

% PURPOSE: computes 1st-order spatial autoregressive estimates

% y = p*W*y + e, using sparse matrix algorithms

% ---

% USAGE: results = far(y,W,rmin,rmax,convg,maxit)

% where: y = dependent variable vector

% W = standardized contiguity matrix

% rmin = (optional) minimum value of rho to use in search

% rmax = (optional) maximum value of rho to use in search

% convg = (optional) convergence criterion (default = 1e-8)

% maxit = (optional) maximum # of iterations (default = 500)

% ---

% RETURNS: a structure

% results.meth = ’far’

% results.rho = rho

% results.tstat = asymptotic t-stat

% results.yhat = yhat

% results.resid = residuals

% results.sige = sige = (y-p*W*y)’*(y-p*W*y)/n

% results.rsqr = rsquared

% results.lik = -log likelihood

% results.nobs = nobs

% results.nvar = nvar = 1

% results.y = y data vector

% results.iter = # of iterations taken

% results.rmax = 1/max eigenvalue of W (or rmax if input)

% results.rmin = 1/min eigenvalue of W (or rmin if input)

% --

% SEE ALSO: prt(results), sar, sem, sac

% ---

options = zeros(1,18); rflag = 0;

options(1) = 0; options(2) = 1.e-6; options(14) = 500;

if nargin == 2, % use default options

elseif nargin == 4, rflag = 1; % set user lmin,lmax

elseif nargin == 5, rflag = 1; % set user convergence option

options(1) = 0; options(2) = convg; options(14) = 500;

elseif nargin == 6, rflag = 1; % set user convg, maxit options

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 55

options(1) = 0; options(2) = convg; options(14) = maxit;

else, error(’Wrong # of arguments to far’);

end;

[n junk] = size(y); results.y = y; results.nobs = n; results.nvar = 1;

results.meth = ’far’;

if rflag == 0, opt.tol = 1e-3; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

rmin = 1/lambda(2); rmax = 1/lambda(1);

end;

results.rmax = rmax; results.rmin = rmin;

% step 1) maximize concentrated likelihood function;

[p options] = fmin(’f_far’,rmin,rmax,options,y,W);

if options(10) == options(14),

fprintf(1,’far: convergence not obtained in %4d iterations’,options(14));

else, results.iter = options(10);

end;

Wy = sparse(W)*y; epe = (y - p*Wy)’*(y-p*Wy); sige = epe/n;

results.rho = p; results.yhat = p*Wy;

results.resid = y - results.yhat; results.sige = sige;

parm = [p

sige];

if n > 500, % asymptotic t-stats using numerical hessian

hessn = hessian(’f2_far’,parm,y,W); xpxi = inv(hessn);

if xpxi(1,1) < 0, xpxi(1,1) = 1;

fprintf(1,’far: negative or zero variance from numerical hessian \n’);

fprintf(1,’far: replacing t-stat with 0 \n’);

end;

results.tstat = results.rho/sqrt(xpxi(1,1));

if xpxi(1,1) < 0, results.tstat(1,1) = 0; end;

else, % asymptotic t-stats based on information matrix (page 50 Anselin, 1980)

B = speye(n) - p*sparse(W); xpxi = zeros(2,2); WB = W*inv(B);

pterm = trace(WB*WB + WB*WB’); % rho,rho term

term1 = trace(inv(B’*B)*(W’*W)); xpxi(1,1) = term1;

xpxi(2,2) = n/(2*sige*sige); % sige,sige term

xpxi(1,2) = -(1/sige)*(p*term1 - trace(inv(B’*B)*W));

xpxi(2,1) = xpxi(1,2); xpxi = inv(xpxi); % sige,rho term

results.tstat = results.rho./(sqrt(xpxi(1,1)));

end;

ym = y - mean(y); rsqr1 = results.resid’*results.resid;

rsqr2 = ym’*ym; results.rsqr = 1.0-rsqr1/rsqr2; % r-squared

results.lik = -f2_far(parm,y,W); % -log likelihood

The function follows our earlier function fars in terms of design, with the
added sparse matrix code. Another change regards computing measures of
dispersion. A subtle point in the function is that sparse matrix operations must
involve two sparse matrices, so we rely on the function speye to create a sparse
version of the identity matrix when computing the matrix In − ρW . If we
used the identity function eye, MATLAB would not carry out sparse matrix
operations.

As already noted, we cannot always rely on the information matrix approach
used in the function fars because this would involve matrix operations on very
large matrices when the sample size is large. In these cases, we produce measures
of dispersion by numerically evaluating the hessian matrix using the maximum
likelihood estimates of ρ and σ2. A function hessian computes the hessian

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 56

matrix given maximum likelihood estimates for ρ and σ and a non-concentrated
version of the log likelihood function named f2 far shown below.

function llike = f2_far(parm,y,W)

% PURPOSE: evaluate the log-likelihood for ML rho,sigma values

% for the first-order spatial autoregressive model

% ---

% USAGE: llike = f2_far(parm,y,W)

% where: parm = 2x1 vector with rho,sigma values

% y = dependent variable vector

% W = spatial weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value at the ML parameters rho,sigma

% --

% SEE ALSO: far, f2_sar, f2_sac, f2_sem

% ---

n = length(y); rho = parm(1,1); sige = parm(2,1);

spparms(’tight’); z = speye(n) - 0.1*sparse(W);

p = colmmd(z); z = speye(n) - rho*sparse(W);

[l,u] = lu(z(:,p));

detval = sum(log(abs(diag(u))));

epe = y’*z’*z*y;

llike = (n/2)*log(pi) + (n/2)*log(epe) +(n/2)*log(sige) - detval;

We do not present the function hessian, as it is a bit off the subject. The
interested reader is free to examine the function which numerically approximates
expression (3.12). A key to using this approach is the ability to evaluate the
log likelihood function in f2 far using the sparse algorithms to handle large
matrices.

A point to note regarding the numerical hessian approach for computing
measures of dispersion is that negative variances might result in cases where the
computational approach encounters difficulty determining accurate gradients.
Users can often avoid these problems by transforming the data to deviations
from the means form, which improves the scaling so that likelihood function
evaluations are more numerically accurate. As a rule, adequately scaled data
is often important when solving non-linear optimization problems and spatial
autoregressive models are no exception to this rule.

If negative variances are encountered, users would see error messages indicat-
ing an attempt to take the square root of negative numbers when the t−statistics
are computed. These messages would be quite confusing, so we rely on the code
below to circumvent these error messages.

if n > 500, % asymptotic t-stats using numerical hessian

hessn = hessian(’f2_far’,parm,y,W); xpxi = inv(hessn);

if xpxi(1,1) <= 0, xpxi(1,1) = 1;

fprintf(1,’far: negative or zero variance from numerical hessian \n’);

fprintf(1,’far: replacing t-stat with 0 \n’);

end;

results.tstat = results.rho/sqrt(xpxi(1,1));

if xpxi(1,1) < 0, results.tstat(1,1) = 0; end;

The code checks for a negative or zero variance, which results in a printed
warning message. Results are still returned and can be printed using the prt

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 57

function, but the t−statistics associated with negative variances will be replaced
with zero values.

It should be noted that Pace and Barry (1997) when confronted with the
task of providing measures of dispersion for spatial autoregressive estimates
based on sparse algorithms suggest using likelihood ratio tests to determine the
significance of the parameters. The approach taken here may suffer from some
numerical inaccuracy relative to measures of dispersion based on the theoretical
information matrix, but has the advantage that users will be presented with
traditional t−statistics on which they can base inferences.

We will have more to say about how our approach to solving large spatial
autoregressive estimation problems using sparse matrix algorithms in MATLAB
compares to one proposed by Pace and Barry (1997), when we apply the function
far to a large data set in the next section.

3.1.2 Applied examples

Given our function far that implements maximum likelihood estimation of small
and large first-order spatial autoregressive models, we turn attention to illus-
trating the use of the function with some spatial data sets. In addition to the
estimation functions, we have functions prt spat and plt spat that are called
by prt and plt to provide printed and graphical presentation of the estimation
results.

Example 3.1 provides an illustration of using these functions to estimate a
first-order spatial autoregressive model for a spatial data sample involving 49
neighborhoods in Columbus, Ohio from the Anselin (1988). The variable vector
y in this model is neighborhood crime incidents.

Note that we convert the variable vector containing crime incidents to de-
viations from the means form. To illustrate the difference in accuracy between
measures of dispersion based on the theoretical information matrix and the nu-
merical hessian approach, we present estimation results from the far function
tricked into computing estimates of dispersion based on the numerical hessian
approach for this small problem.

% ----- Example 3.1 Using the far() function

load Wmat.dat; % standardized 1st-order contiguity matrix

load anselin.dat; % load Anselin (1988) Columbus neighborhood crime data

y = anselin(:,1);

ydev = y - mean(y);

W = wmat;

vnames = strvcat(’crime’,’rho’);

res = far(ydev,W); % do 1st-order spatial autoregression

prt(res,vnames); % print the output

plt(res,vnames); % plot actual vs predicted and residuals

This example produced the following printed output with the graphical out-
put presented in Figure 3.1. Based on the t−statistic of 4.25 for the parameter
ρ shown in the output, we would infer that spatial dependence exists among the
neighborhood crime incidents. We interpret this statistic in the typical regres-
sion fashion to indicate that the estimated ρ lies 4.25 standard deviations away

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 58

from zero. The R2 statistic indicates that this model explains nearly 44% of the
variation in crime incidents (in deviations from the means.)

% Dispersion estimates based on theoretical information matrix

First-order spatial autoregressive model Estimates

Dependent Variable = crime

R-squared = 0.4390

sigma^2 = 153.8452

Nobs, Nvars = 49, 1

log-likelihood = -373.44669

of iterations = 12

min and max rho = -1.5362, 1.0000

Variable Coefficient Asymptot t-stat z-probability

rho 0.669775 4.259172 0.000021

% Dispersion estimates based on numerical hessian

First-order spatial autoregressive model Estimates

Dependent Variable = crime

R-squared = 0.4390

sigma^2 = 153.8452

Nobs, Nvars = 49, 1

log-likelihood = -373.44669

of iterations = 12

min and max rho = -1.5362, 1.0000

Variable Coefficient Asymptot t-stat z-probability

rho 0.669775 6.078831 0.000000

From the example, we see that the inaccuracy from using the numerical hes-
sian to determine the dispersion of ρ would not lead to inferences very different
from those based on dispersion calculated using the theoretical information ma-
trix. We provide additional comparisons in Section 5.7 for a larger problem with
506 observations and 14 explanatory variables.

Another more challenging example involves a large sample of 3,107 observa-
tions representing counties in the continental U.S. from Pace and Barry (1997).
They examine presidential election results for this large sample of observations
covering the U.S. presidential election of 1980 between Carter and Reagan. The
variable we wish to explain using the first-order spatial autoregressive model is
the proportion of total possible votes cast for both candidates. Only persons 18
years and older are eligible to vote, so the proportion is based on those voting
for both candidates divided by the population over 18 years of age.

Pace and Barry (1997) suggest an alternative approach to that implemented
here in the function far. They propose overcoming the difficulty we face in
evaluating the determinant (I − ρW) by computing this determinant once over
a grid of values for the parameter ρ ranging from 1/λmin to 1/λmax prior to
estimation. They suggest a grid based on 0.01 increments for ρ over the feasible
range. Given these pre-determined values for the determinant (I − ρW), they
point out that one can quickly evaluate the log-likelihood function for all values
of ρ in the grid and determine the optimal value of ρ as that which maximizes
the likelihood function value over this grid. Note that their proposed approach
would involve evaluating the determinant around 200 times if the feasible range

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 59

0 5 10 15 20 25 30 35 40 45 50
-40

-20

0

20

40
FAR Actual vs. Predicted

Actual
Predicted

0 5 10 15 20 25 30 35 40 45 50
-60

-40

-20

0

20

40
Residuals

Figure 3.1: Spatial autoregressive fit and residuals

of ρ was -1 to 1. In many cases the range is even greater than this and would
require even more evaluations of the determinant. In contrast, our function
far reports that only 17 iterations requiring log likelihood function evaluations
involving the determinant were needed to solve for the estimates in the case of
the Columbus neighborhood crime data set.

In addition, consider that one might need to construct a finer grid around
the approximate maximum likelihood value of ρ determined from the initial
grid search, whereas our use of the MATLAB simplex algorithm produces an
estimate that is accurate to a number of decimal digits.

To compare our function far with the approach proposed by Pace and Barry,
we implement their approach in example 3.2. We take a more efficient approach
to the grid search over values of the parameter ρ than suggested by Pace and
Barry. Rather than search over a large number of values for ρ, we based our
search on a large increment of 0.1 for an initial grid of values covering ρ from
1/λmin to 1/λmax. Given the determinant of (I − ρW) calculated using sparse
matrix algorithms in MATLAB, we evaluated the negative log likelihood func-
tion values for this grid of ρ values to find the value that minimized the likelihood
function. We then make a second pass based on a tighter grid with increments
of 0.01 around the optimal ρ value found in the first pass. A third and final

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 60

pass is based on an even finer grid with increments of 0.001 around the optimal
estimate from the second pass.

% ----- Example 3.2 Using sparse matrix functions and Pace-Barry approach

% to estimate 1st order autoregressive model rho parameter

load ford.dat; % 1st order contiguity matrix stored in sparse matrix form

ii = ford(:,1); jj = ford(:,2); ss = ford(:,3);

nnzip = length(ii); n = 3107; options.tol = 1e-3;

clear ford; % clear ford matrix to save RAM memory

W = sparse(ii,jj,ss,n,n); I = speye(n,n);

clear ii; clear jj; clear ss; % clear to save RAM memory

tic; lambda = eigs(W,I,2,’BE’,options); toc;

z = I-.1*W; p = colmmd(z);

lmin = 1/lambda(2); lmax = 1/lambda(1);

lgrid = lmin:.1:lmax; iter = length(lgrid);

like = zeros(iter,2);

load elect.dat; % load data on votes

y = elect(:,7)./elect(:,8); % proportion of voters casting votes

ydev = y - mean(y); % deviations from the means form

spparms(’tight’); % set sparse matrix options

tic; for i=1:iter;

rho = lgrid(i); z=(I-rho*W); [l,u]=lu(z(:,p));

detval =sum(log(abs(diag(u))));

epe = ydev’*z’*z*ydev;

like(i,1) = -detval + (n/2)*log(epe); like(i,2) = rho;

end; toc;

% now find rho value that maximized the -log likelihood function

[likemin index] = min(like(:,1)); rhoapprox = like(index,2);

% form another grid around this value

lgrid = rhoapprox-0.1:0.01:rhoapprox+0.1;

iter = length(lgrid); like = zeros(iter,2);

tic; for i=1:iter;

rho = lgrid(i); z=(I-rho*W); [l,u]=lu(z(:,p));

detval =sum(log(abs(diag(u))));

epe = ydev’*z’*z*ydev;

like(i,1) = -detval + (n/2)*log(epe); like(i,2) = rho;

end; toc;

% now find rho value that maximized the -log likelihood function

[likemin index] = min(like(:,1)); rhonext = like(index,2);

% form another grid around this value

lgrid = rhonext-0.01:0.001:rhonext+0.01;

iter = length(lgrid); like = zeros(iter,3);

tic; for i=1:iter;

rho = lgrid(i); z=(I-rho*W); [l,u]=lu(z(:,p));

detval =sum(log(abs(diag(u))));

epe = ydev’*z’*z*ydev;

like(i,1) = -detval + (n/2)*log(epe); like(i,2) = rho;

like(i,3) = epe;

end; toc;

[likemin index] = min(like(:,1));

rhofinal = like(index,2); sigfinal = like(index,3);

fprintf(1,’estimate of rho = %8.4f \n’,rhofinal);

fprintf(1,’estimate of sigma = %8.4f \n’,sigfinal/n);

fprintf(1,’-log likelihood function value = %16.8f \n’,like(index,1));

Note that in example 3.2 we set the tolerance for solving the eigenvalues of
the contiguity matrix W to 1e-3, rather than rely on the default tolerance of 1e-

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 61

10. This speeds the calculation, requiring around 60 seconds to solve this part of
the problem as shown in the output below. The time necessary to perform each
pass over the grid of 21 values for ρ was around 10 seconds. With a total of 3
passes to produce an estimate of ρ accurate to 3 decimal digits, we have a total
elapsed time of 1 minute and 30 seconds to solve for the maximum likelihood
estimate of ρ. This is certainly a reasonable amount of computational time for
such a large problem on a reasonably inexpensive desktop computing platform.
Of course, there is still the problem of producing measures of dispersion for the
estimates that Pace and Barry address by suggesting the use of likelihood ratio
statistics.

The output from the program in example 3.3 was as follows:

elapsed_time = 59.8226 % computing min,max eigenvalues

elapsed_time = 10.5280 % carrying out 1st 21-point grid over rho

elapsed_time = 10.3791 % carrying out 2nd 21-point grid over rho

elapsed_time = 10.3747 % carrying out 3rd 21-point grid over rho

estimate of rho = 0.7220

estimate of sigma = 0.0054

log likelihood function value = 4606.75550074

How does our approach compare to that of Pace and Barry? Example 3.3
shows a program to estimate the same model as that in example 3.2 using our
far function. The first point is that our function is much easier to use than the
approach of Pace and Barry, but their approach could also be encapsulated in
a MATLAB function to make it easier to implement.

% ----- Example 3.3 Solving for rho using the far() function

% with very large data set from Pace and Barry

load elect.dat; % load data on votes

y = elect(:,7)./elect(:,8); % proportion of voters casting votes

ydev = y - mean(y); % deviations from the means form

clear y; % conserve on RAM memory

clear elect; % conserve on RAM memory

load ford.dat; % 1st order contiguity matrix stored in sparse matrix form

ii = ford(:,1); jj = ford(:,2); ss = ford(:,3);

n = 3107;

clear ford; % clear ford matrix to save RAM memory

W = sparse(ii,jj,ss,n,n);

clear ii; clear jj; clear ss; % conserve on RAM memory

tic; res = far(ydev,W); toc;

prt(res);

lmin = res.rmin; lmax = res.rmax;

tic; res = far(ydev,W,lmin,lmax); toc;

prt(res);

In terms of time needed to solve the problem, our use of the simplex opti-
mization algorithm takes only 10.6 seconds to produce a more accurate estimate
than that based on the grid approach of Pace and Barry. Their approach which
we modified took 30 seconds to solve for a ρ value accurate to 3 decimal digits.
Note also in contrast to Pace and Barry, we compute a conventional t−statistic
using the numerical hessian estimates which required only 1.76 seconds. The

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 62

total time required to compute not only the estimates and measures of disper-
sion for ρ and σ, but the R−squared statistics and log likelihood function was
around 100 seconds. One point to note is that the log likelihood function values
are not comparable because: 1) an inessential constant was left out of the log
likelihood in example 3.2 and 2) the function far reports a likelihood function
value based on the non-concentrated likelihood, whereas example 3.2 relies on
the concentrated log likelihood.

elapsed_time = 59.8226 % computing min,max eigenvalues

elapsed_time = 10.6622 % time required for simplex solution of rho

elapsed_time = 1.7681 % time required for hessian evaluation

elapsed_time = 1.7743 % time required for likelihood evaluation

total time = 74.01 % comparable time to Pace and Barry

First-order spatial autoregressive model Estimates

R-squared = 0.5375

sigma^2 = 0.0054

Nobs, Nvars = 3107, 1

log-likelihood = 1727.9824

of iterations = 12

min and max rho = -1.0710, 1.0000

Variable Coefficient Asymptot t-stat z-probability

rho 0.721474 59.495145 0.000000

Another point worth noting is that setting a minimum and maximum value
for the parameter ρ of -1.071 and 1 saves computational time needed to compute
the eigenvalues of the matrix W . Using this option in this application reduced
the time required to 37 seconds, a factor of three improvement in speed. Setting
the limits for the search to the range 0 to 1 speeds up the computation slightly
as it reduces the search range facing the simplex algorithm. This produced
estimates in 10 iterations rather than 12, taking 33 seconds.

For a truly spectacular example of the power of MATLAB sparse matrix
algorithms, we estimated a FAR model using the sample of 35,702 home selling
prices for Lucas county Ohio discussed in Chapter 1. Solving this estimation
problem took 72 minutes when the feasible range for ρ was computed based on
the eigenvalues and 51 minutes when the computations were avoided by setting
a 0,1 range for ρ. The estimation results are presented below for this very large
model.

First-order spatial autoregressive model Estimates

R-squared = 0.6518

sigma^2 = 0.3256

Nobs, Nvars = 35702, 1

log-likelihood = -173518.8

of iterations = 19

min and max rho = -2.0892, 1.0000

Variable Coefficient Asymptot t-stat z-probability

rho 0.996304 3942.332568 0.000000

This solution was produced on an Apple PowerPC computer with a 266 Mhz.
G3 chip. Monitoring actual memory usage is a bit difficult, but indications were

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 63

that only around 32 megabytes of RAM were used to solve this problem. The
amount of computational gain from using the sparse matrix algorithms depends
heavily on the amount of sparsity that exists in the spatial weight matrix. For
this example, there were 414,168 non-zero elements in the 35,702 by 35,702
spatial weight matrix, or a fraction, 0.000168 of the total elements. The average
number of neighbors was very close to 6. This means that on average only 6 of
the 35,702 elements in each row of the spatial weight matrix were non-zero.

For extremely large problems such as this, Pace and Barry (1998) discuss
clever approaches for computing the determinant of (In − ρW) that rely on
polynomial and cubic spline interpolation. Intuitively, the idea is to solve the
determinant of a smaller problem over a rough grid of values for the parameter
ρ and then interpolate these solutions for the larger problem. As demonstrated
by our problem involving 35,702 observations, the far function developed here
can solve these very large problems given adequate time and computer RAM
memory.

Many of the ideas developed in this section regarding MATLAB sparse ma-
trix algorithms will apply equally to the estimation procedures we develop in
the next four sections for other members of the spatial autoregressive model
family.

3.2 The mixed autoregressive-regressive model

This model extends the first-order spatial autoregressive model to include a
matrix X of explanatory variables such as those used in traditional regression
models. Anselin (1988) provides a maximum likelihood method for estimating
the parameters of this model that he labels a ‘mixed regressive - spatial autore-
gressive model’. We will refer to this model as the spatial autoregressive model
(SAR). The SAR model takes the form:

y = ρWy +Xβ + ε (3.13)

ε ∼ N(0, σ2In)

Where y contains an nx1 vector of dependent variables, X represents the usual
nxk data matrix containing explanatory variables and W is our spatial contigu-
ity matrix. The parameter ρ is a coefficient on the spatially lagged dependent
variable, Wy, and the parameters β reflect the influence of the explanatory vari-
ables on variation in the dependent variable y. The model is termed a mixed
regressive - spatial autoregressive model because it combines the standard re-
gression model with a spatially lagged dependent variable, reminiscent of the
lagged dependent variable model from time-series analysis.

Maximum likelihood estimation of this model is based on a concentrated
likelihood function as was the case with the FAR model. A few regressions are
carried out along with a univariate parameter optimization of the concentrated
likelihood function over values of the autoregressive parameter ρ. The steps are
enumerated in Anselin (1988) as:

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 64

1. perform OLS for the model: y = Xβ0 + ε0

2. perform OLS for the model Wy = XβL + εL

3. compute residuals e0 = y −Xβ̂0 and eL = Wy −Xβ̂L

4. given e0 and eL, find ρ that maximizes the concentrated likelihood func-
tion: LC = −(n/2)ln(π)− (n/2)ln(1/n)(e0 − ρeL)′(e0 − ρeL)+ ln|I−ρW |

5. given ρ̂ that maximizes LC , compute β̂ = (β̂0 −ρβ̂L) and σ̂2
ε = (1/n)(e0 −

ρeL)′(e0 − ρeL)

As in the case of the FAR model, the univariate simplex optimization al-
gorithm leaves us with no estimates of dispersion for the parameters. We can
overcome this using the theoretical information matrix for small problems and
the numerical hessian approach introduced for the FAR model in the case of
large problems.

Since this model is quite similar to the FAR model which we already pre-
sented, we will turn to computational implementation issues.

3.2.1 Computational details

Our first task is to construct a function to evaluate the concentrated log-
likelihood function for this model, which is shown below:

function llike = f_sar(rho,eo,el,W)

% PURPOSE: evaluates concentrated log-likelihood for the spatial

% autoregressive model using sparse matrix algorithms

% ---

% USAGE:llike = f_sar(rho,eo,el,W)

% where: rho = spatial autoregressive parameter

% eo = y - X b, (least-squares residuals)

% el = Wy - X b, (residuals from a regression)

% W = spatial weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value at the parameter rho

% --

n = length(eo); spparms(’tight’);

z = speye(n) - 0.1*sparse(W); p = colmmd(z);

z = speye(n) - rho*sparse(W);

[l,u] = lu(z(:,p));

detval = sum(log(abs(diag(u))));

epe = (eo-rho*el)’*(eo-rho*el);

llike = (n/2)*log(pi) + (n/2)*log(epe/n) - detval;

The function sar is fairly similar to our far function, but we present part
of the code below. Code for the information matrix and numerical hessian
estimates was eliminated to conserve on space. As in the case of the FAR
model, information matrix estimates are computed for cases with less than 500
observations and the hessian approach is used in larger problems. Note the
use of the MATLAB ‘slash’ operation on ‘x’ and ‘y’ to solve the least-squares

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 65

estimation problems. This operator invokes Gaussian elimination to solve the
problem: (X ′X)β = X ′y.

function results = sar(y,x,W,lmin,lmax,convg,maxit)

% PURPOSE: computes spatial autoregressive model estimates

% y = p*W*y + X*b + e, using sparse matrix algorithms

% ---

% USAGE: results = sar(y,x,W,rmin,rmax,convg,maxit)

% where: y = dependent variable vector

% x = explanatory variables matrix

% W = standardized contiguity matrix

% rmin = (optional) minimum value of rho to use in search

% rmax = (optional) maximum value of rho to use in search

% convg = (optional) convergence criterion (default = 1e-8)

% maxit = (optional) maximum # of iterations (default = 500)

% ---

% RETURNS: a structure

% results.meth = ’sar’

% results.beta = bhat

% results.rho = rho

% results.tstat = asymp t-stat (last entry is rho)

% results.yhat = yhat

% results.resid = residuals

% results.sige = sige = (y-p*W*y-x*b)’*(y-p*W*y-x*b)/n

% results.rsqr = rsquared

% results.rbar = rbar-squared

% results.lik = -log likelihood

% results.nobs = # of observations

% results.nvar = # of explanatory variables in x

% results.y = y data vector

% results.iter = # of iterations taken

% results.rmax = 1/max eigenvalue of W (or rmax if input)

% results.rmin = 1/min eigenvalue of W (or rmin if input)

% --

options = zeros(1,18); rflag = 0;

options(1,1) = 0; options(1,2) = 1.e-6; options(14) = 500;

if nargin == 3, % use default options

elseif nargin == 5, rflag = 1; % set user supplied lmin,lmax

elseif nargin == 6, options(1,2) = convg; % set converg option

elseif nargin == 7 % set user supplied convg and maxit options

options(1,2) = convg; options(1,14) = maxit;

else, error(’Wrong # of arguments to sar’);

end;

[n nvar] = size(x); [n1 n2] = size(W);

if n1 ~= n2, error(’sar: wrong size weight matrix W’);

elseif n1 ~= n, error(’sar: wrong size weight matrix W’);

end;

results.y = y; results.nobs = n; results.nvar = nvar;

results.meth = ’sar’;

if rflag == 0,

opt.tol = 1e-3; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2); lmax = 1/lambda(1);

end;

results.rmax = lmax; results.rmin = lmin;

% step 1) do regressions

Wy = sparse(W)*y;

bo = x\y; bl = x\Wy; eo = y - x*bo; el = Wy - x*bl;

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 66

% step 2) maximize concentrated likelihood function;

[p options] = fmin(’f_sar’,lmin,lmax,options,eo,el,W);

if options(10) == options(14),

fprintf(1,’sar: convergence not obtained in %4d iterations’,options(14));

else, results.iter = options(10);

end;

% step 3) find b,sige maximum likelihood estimates

results.beta = bo - p*bl; results.rho = p; bhat = results.beta;

results.sige = (1/n)*(eo-p*el)’*(eo-p*el); sige = results.sige;

results.yhat = p*Wy + x*results.beta;

results.resid = y - results.yhat;

The other point to note is that we have a function named f2 sar (not pre-
sented) that evaluates the non-concentrated log likelihood function for our hes-
sian routine to compute the numerical measures of dispersion.

3.2.2 Applied examples

As an illustration of using the sar function, consider the program in example
3.4, where we estimate a model to explain variation in votes casts on a per
capita basis in the 3,107 counties using the Pace and Barry (1997) data set.
The explanatory variables in the model were: the proportion of population with
high school level education or higher, the proportion of the population that are
homeowners and the income per capita. Note that the population deflater used
to convert the variables to per capita terms was the population 18 years or older
in the county.

% ----- Example 3.4 Using the sar() function with a large data set

load elect.dat; % load data on votes in 3,107 counties

y = log(elect(:,7)./elect(:,8)); % convert to per capita variables

x1 = log(elect(:,9)./elect(:,8)); % education

x2 = log(elect(:,10)./elect(:,8));% homeownership

x3 = log(elect(:,11)./elect(:,8));% income

n = length(y); x = [ones(n,1) x1 x2 x3];

clear x1; clear x2; clear x3;

clear elect; % conserve on RAM memory

load ford.dat; % 1st order contiguity matrix stored in sparse matrix form

ii = ford(:,1); jj = ford(:,2); ss = ford(:,3);

n = 3107;

clear ford; % clear ford matrix to save RAM memory

W = sparse(ii,jj,ss,n,n);

clear ii; clear jj; clear ss; % conserve on RAM memory

vnames = strvcat(’voters’,’const’,’educ’,’homeowners’,’income’);

rmin = -1.0710; rmax = 1;

to = clock;

res = sar(y,x,W,rmin,rmax);

etime(clock,to)

prt(res,vnames);

Since we already determined the minimum and maximum eigenvalues for the
spatial weight matrix in this problem when estimating the FAR model, we can
enter these as inputs to the function sar to speed the computations. We use the
MATLAB clock function as well as etime to determine the overall execution

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 67

time needed to solve this problem, which was 150 seconds. Setting the search
range for ρ to 0,1 reduced this time to 103 seconds. The estimation results are
presented below:

Spatial autoregressive Model Estimates

Dependent Variable = voters

R-squared = 0.6356

Rbar-squared = 0.6352

sigma^2 = 0.0143

Nobs, Nvars = 3107, 4

log-likelihood = 3159.4467

of iterations = 11

min and max rho = -1.0710, 1.0000

Variable Coefficient Asymptot t-stat z-probability

const 0.649079 15.363781 0.000000

educ 0.254021 16.117196 0.000000

homeowners 0.476135 32.152225 0.000000

income -0.117354 -7.036558 0.000000

rho 0.528857 36.204637 0.000000

We see from the results that all of the explanatory variables exhibit a signif-
icant effect on the variable we wished to explain. The results also indicate that
the dependent variable y exhibits strong spatial dependence even after taking
the effect of the explanatory variables in X into account. Since all variables
are in log form, the coefficient estimates can be interpreted as elasticities. The
estimates indicate that homeownership exerts the greatest influence on voter
turnout. The elasticity estimate suggests a 10% increase in homeownership
would lead to a 4.7% increase in voter turnout.

In Section 3.1 we discussed the fact that ordinary least-squares estimates are
biased and inconsistent in the face of sample data that exhibits spatial depen-
dence. As an illustration of the bias associated with least-squares estimation
of spatial autoregressive models, we present the following example based on a
spatial sample of 88 observations for counties in the state of Ohio. A sample of
average housing values for each of 88 counties in Ohio will be related to pop-
ulation per square mile, the number of households and unemployment rates in
each county. This regression relationship can be written as:

HOUSEi = α+ βPOPi + γHOUSEHOLDSi + δUNEMPLOYi + εi (3.14)

The motivation for the regression relationship is that population and house-
hold density as well as unemployment rates work to determine house values in
each county. Suburban sprawl and the notion of urban rent gradients suggest
that housing values in contiguous counties should be related. The least-squares
relationship in (3.14) ignores the spatial contiguity information, whereas the
SAR model would allow for this type of variation in the model.

The first task is to construct a spatial contiguity matrix for use with our
spatial autoregressive model. This could be accomplished by examining a map
of the 88 counties and recording neighboring tracts for every observation, a very

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 68

tedious task. An alternative is to use the latitude and longitude coordinates to
construct a contiguity matrix. We rely on a function xy2cont that carries out
this task. This function is part of Pace and Barry’s Spatial Statistics Toolbox
for MATLAB, but has been modified to fit the documentation conventions of
the spatial econometrics library. The function documentation is shown below:

PURPOSE: uses x,y coord to produce spatial contiguity weight matrices

with delaunay routine from MATLAB version 5.2

--

USAGE: [w1 w2 w3] = xy2cont(xcoord,ycoord)

where: xcoord = x-direction coordinate vector (nobs x 1)

ycoord = y-direction coordinate vector (nobs x 1)

--

RETURNS: w1 = W*W*S, a row-stochastic spatial weight matrix

w2 = W*S*W, a symmetric spatial weight matrix (max(eig)=1)

w3 = diagonal matrix with i,i equal to 1/sqrt(sum of ith row)

--

References: Kelley Pace, Spatial Statistics Toolbox 1.0

--

This function essentially uses triangles connecting the x-y coordinates in
space to deduce contiguous entities. As an example of using the function, con-
sider constructing a spatial contiguity matrix for the Columbus neighborhood
crime data set where we know both the first-order contiguity structure taken
from a map of the neighborhoods as well as the x-y coordinates. Here is a
program to generate the first-order contiguity matrix from the latitude and lon-
gitude coordinates and produce a graphical comparison of the two contiguity
structures shown in Figure 3.2.

The errors made by xy2cont are largely a result of the irregular shape of
the Columbus neighborhood data set. For a state like Ohio that is relatively
square, we would expect to see fewer errors.

% ----- Example 3.5 Using the xy2cont() function

load anselin.data; % Columbus neighborhood crime

xc = anselin(:,5); % longitude coordinate

yc = anselin(:,4); % latitude coordinate

load Wmat.data; % load standardized contiguity matrix

% create contiguity matrix from x-y coordinates

[W1 W2 W3] = xy2cont(xc,yc);

% graphically compare the two

spy(W2,’ok’); hold on; spy(Wmat,’+k’);

legend(’generated’,’actual’);

Example 3.6 reads in the data from two files containing a database for the
88 Ohio counties as well as data vectors containing the latitude and longitude
information needed to construct a contiguity matrix. We rely on a log transfor-
mation of the dependent variable house values to provide better scaling for the
data. Note the use of the MATLAB construct: ‘ohio2(:,5)./ohio1(:,2)’, which
divides every element in the column vector ‘ohio(:,5)’ containing total house-
holds in each county by every element in the column vector ‘ohio1(:,2)’, which
contains the population for every county. This produces the number of house-
holds per capita for each county as an explanatory variable measuring household
density.

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 69

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 232

generated
actual

Figure 3.2: Generated contiguity structure results

% ----- Example 3.6 Least-squares bias

% demonstrated with Ohio county data base

load ohio1.dat; % 88 counties (observations)

% 10 columns

% col1 area in square miles

% col2 total population

% col3 population per square mile

% col4 black population

% col5 blacks as a percentage of population

% col6 number of hospitals

% col7 total crimes

% col8 crime rate per capita

% col9 population that are high school graduates

% col10 population that are college graduates

load ohio2.dat; % 88 counties

% 10 columns

% col1 income per capita

% col2 average family income

% col3 families in poverty

% col4 percent of families in poverty

% col5 total number of households

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 70

% col6 average housing value

% col7 unemployment rate

% col8 total manufacturing employment

% col9 manufacturing employment as a percent of total

% col10 total employment

load ohio.xy; % latitude-longitude coordinates of county centroids

[junk W junk2] = xy2cont(ohio(:,1),ohio(:,2)); % make W-matrix

y = log(ohio2(:,6)); n = length(y);

x = [ones(n,1) ohio1(:,3) ohio2(:,5)./ohio1(:,2) ohio2(:,7)];

vnames = strvcat(’hvalue’,’constant’,’popsqm’,’housedensity’,’urate’);

res = ols(y,x); prt(res,vnames);

res = sar(y,x,W); prt(res,vnames);

The results from these two regressions are shown below. The first point to
note is that the spatial autocorrelation coefficient estimate for the SAR model is
statistically significant, indicating the presence of spatial autocorrelation in the
regression relationship. Least-squares ignores this type of variation producing
estimates that lead us to conclude all three explanatory variables are significant
in explaining housing values across the 88 county sample. In contrast, the SAR
model indicates that population density (popsqm) is not statistically significant
at conventional levels. Keep in mind that the OLS estimates are biased and
inconsistent, so the inference of significance from OLS is likely to be incorrect.

Ordinary Least-squares Estimates

Dependent Variable = hvalue

R-squared = 0.6292

Rbar-squared = 0.6160

sigma^2 = 0.0219

Durbin-Watson = 2.0992

Nobs, Nvars = 88, 4

Variable Coefficient t-statistic t-probability

constant 11.996858 71.173358 0.000000

popsqm 0.000110 2.983046 0.003735

housedensity -1.597930 -3.344910 0.001232

urate -0.067693 -7.525022 0.000000

Spatial autoregressive Model Estimates

Dependent Variable = hvalue

R-squared = 0.7298

Rbar-squared = 0.7201

sigma^2 = 0.0153

Nobs, Nvars = 88, 4

log-likelihood = 87.284225

of iterations = 11

min and max rho = -2.0159, 1.0000

Variable Coefficient Asymptot t-stat z-probability

constant 6.300142 6.015811 0.000000

popsqm 0.000037 1.170500 0.241800

housedensity -1.251435 -3.081162 0.002062

urate -0.055474 -6.933049 0.000000

rho 0.504132 5.557773 0.000000

A second point is that incorporating spatial variation using contiguity im-
proves the fit of the model, raising the R-squared statistic for the SAR model.

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 71

Finally, the magnitudes of the OLS parameter estimates indicate that house
values are more sensitive to the household density and unemployment rate vari-
ables than the SAR model. For example, the OLS estimates imply that a one
percentage point increase in the unemployment rate leads to a decrease of 6.76
percent in house values whereas the SAR model places this at 5.54 percent.
Similarly, the OLS estimate for household density is considerably larger in mag-
nitude than that from the SAR model.

The point of this illustration is that ignoring information regarding the spa-
tial configuration of the data observations will produce different inferences that
may lead to an inappropriate model specification. Anselin and Griffith (1988)
also provide examples and show that traditional specification tests are plagued
by the presence of spatial autocorrelation, so that we should not rely on these
tests in the presence of significant spatial autocorrelation.

3.3 The spatial autoregressive error model

Here we turn attention to the spatial errors model shown in (3.15), where the
disturbances exhibit spatial dependence. Anselin (1988) provides a maximum
likelihood method for this model which we label SEM here.

y = Xβ + u (3.15)

u = λWu+ ε

ε ∼ N(0, σ2In)

The nx1 vector y contains the dependent variable and X represents the usual
nxk data matrix containing explanatory variables. W is the spatial weight
matrix and the parameter λ is a coefficient on the spatially correlated errors,
analogous to the serial correlation problem in time series models. The param-
eters β reflect the influence of the explanatory variables on variation in the
dependent variable y.

We introduce a number of statistical tests that can be used to detect the
presence of spatial autocorrelation in the residuals from a least-squares model.
Use of these tests will be illustrated in the next section.

The first test for spatial dependence in the disturbances of a regression model
is called Moran’s I−statistic. Given that this test indicates spatial correlation
in the least-squares residuals, the SEM model would be an appropriate way to
proceed.

Moran’s I−statistic takes two forms depending on whether the spatial weight
matrix W is standardized or not.

1. W not standardized
I = (n/s)[e′We]/e′e (3.16)

2. W standardized
I = e′We/e′e (3.17)

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 72

Where e represent regression residuals. Cliff and Ord (1972, 1973, 1981) show
that the asymptotic distribution for Moran’s I based on least-squares residuals
correspond to a standard normal distribution after adjusting the I−statistic by
subtracting the mean and dividing by the standard deviation of the statistic.
The adjustment takes two forms depending on whether W is standardized or
not. (Anselin, 1988, page 102).

1. W not standardized, let M = (I−X(X ′X)−1X ′) and tr denotes the trace
operator.

E(I) = (n/s)tr(MW)/(n− k)

V (i) = (n/s)2[tr(MWMW ′) + tr(MW)2 + (tr(MW))2]/d− E(I)2

d = (n− k)(n− k + 2)

ZI = [I − E(I)]/V (I)1/2 (3.18)

2. W standardized

E(I) = tr(MW)/(n− k)

V (i) = [tr(MWMW ′) + tr(MW)2 + (tr(MW))2]/d− E(I)2

d = (n− k)(n− k + 2)

ZI = [I − E(I)]/V (I)1/2 (3.19)

We implement this test in the MATLAB function moran, which takes a
regression model and spatial weight matrix W as input and returns a structure
variable containing the results from a Moran test for spatial correlation in the
residuals. The prt function can be used to provide formatted output of the test
results. The help documentation for the function is shown below.

PURPOSE: computes Moran’s I-statistic for spatial correlation

in the residuals of a regression model

USAGE: result = moran(y,x,W)

where: y = dependent variable vector

x = independent variables matrix

W = contiguity matrix (standardized or unstandardized)

RETURNS: a structure variable

result.morani = e’*W*e/e’*e (I-statistic)

result.istat = [i - E(i)]/std(i), standardized version

result.imean = E(i), expectation

result.ivar = var(i), variance

result.prob = std normal marginal probability

result.nobs = # of observations

result.nvar = # of variables in x-matrix

NOTE: (istat > 1.96, => small prob,

=> reject HO: of no spatial correlation

See also: prt(), lmerrors, walds, lratios

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 73

A number of other asymptotic approaches exist for testing whether spatial
correlation is present in the residuals from a least-squares regression model.
Some of these are the likelihood ratio test, the Wald test and a lagrange multi-
plier test, all of which are based on maximum likelihood estimation of the SEM
model.

The likelihood ratio test is based on the difference between the log likelihood
from the SEM model and the log likelihood from a least-squares regression. This
quantity represents a statistic that is distributed χ2(1). A function lratios
carries out this test and returns a results structure that can be passed to the
prt function for presentation of the results. Documentation for the function is:

PURPOSE: computes likelihood ratio test for spatial

correlation in the errors of a regression model

USAGE: result = lratios(y,x,W)

or: result = lratios(y,x,W,sem_result);

where: y = dependent variable vector

x = independent variables matrix

W = contiguity matrix (standardized or unstandardized)

sem_result = a results structure from sem()

RETURNS: a structure variable

result.meth = ’lratios’

result.lratio = likelihood ratio statistic

result.chi1 = 6.635

result.prob = marginal probability

result.nobs = # of observations

result.nvar = # of variables in x-matrix

NOTES: (lratio > 6.635, => small prob,

=> reject HO: of no spatial correlation

calling the function with a results structure from sem()

can save time for large models that have already been estimated

Note that we allow the user to supply a ‘results’ structure variable from the
sem estimation function, which would save time if the SEM model has already
been estimated. This could represent a considerable savings for large problems.

Another approach is based on a Wald test for residual spatial autocorrelation.
This test statistic, shown in (3.20), is distributed χ2(1). (Anselin, 1988, page
104).

W = λ2[t2 + t3 − (1/n)(t21)] ∼ χ2(1) (3.20)

t1 = tr(W. ∗B−1)

t2 = tr(WB−1)2

t3 = tr(WB−1)′(WB−1)

Where B = (In − λW), with the maximum likelihood estimate of λ used, and
.∗ denotes element-by-element matrix multiplication.

We have implemented a MATLAB function walds, that carries out this test.
The function documentation is shown below:

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 74

PURPOSE: Wald statistic for spatial autocorrelation in

the residuals of a regression model

USAGE: result = walds(y,x,W)

where: y = dependent variable vector

x = independent variables matrix

W = contiguity matrix (standardized)

RETURNS: a structure variable

result.meth = ’walds’

result.wald = Wald statistic

result.prob = marginal probability

result.chi1 = 6.635

result.nobs = # of observations

result.nvar = # of variables

NOTE: (wald > 6.635, => small prob,

=> reject HO: of no spatial correlation

See also: lmerror, lratios, moran

A fourth approach is the Lagrange Multiplier (LM) test which is based on
the least-squares residuals and calculations involving the spatial weight matrix
W . The LM statistic takes the form: (Anselin, 1988, page 104), where e denote
least-squares residuals.

LM = (1/T)[(e′We)/σ2]2 ∼ χ2(1) (3.21)

T = tr(W +W ′) ∗W

This test is implemented in a MATLAB function lmerror with the documen-
tation for the function shown below.

PURPOSE: LM error statistic for spatial correlation in

the residuals of a regression model

USAGE: result = lmerror(y,x,W)

where: y = dependent variable vector

x = independent variables matrix

W = contiguity matrix (standardized)

RETURNS: a structure variable

result.meth = ’lmerror’

result.lm = LM statistic

result.prob = marginal probability

result.chi1 = 6.635

result.nobs = # of observations

result.nvar = # of variables

NOTE: (lm > 6.635, => small prob,

=> reject HO: of no spatial correlation

See also: walds, lratios, moran

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 75

Finally, a test based on the residuals from the SAR model can be used to
examine whether inclusion of the spatial lag term eliminates spatial dependence
in the residuals of the model. This test differs from the four tests outlined above
in that we allow for the presence of the spatial lag variable in the model. The
test for spatial dependence is conditional on having a ρ parameter not equal to
zero in the model, rather than relying on least-squares residuals as in the case
of the other four tests.

One could view this test as based on the following model:

y = ρCy +Xβ + u (3.22)

u = λWu+ ε

ε ∼ N(0, σ2In)

Where the focus of the test is on whether the parameter λ = 0. This test
statistic is also a Lagrange Multiplier statistic based on: (Anselin, 1988, page
106).

(e′We/σ2)[T22 − (T21)2var(ρ)]−1 ∼ χ2(1) (3.23)

T22 = tr(W. ∗W +W ′W)

T21 = tr(W. ∗ CA−1 +W ′CA−1)

WhereW is the spatial weight matrix shown in (3.22), A = (In−ρC) and var(ρ)
is the maximum likelihood estimate of the variance of the parameter ρ in the
model.

We have implemented this test in a MATLAB function lmsar with the
documentation for the function shown below.

PURPOSE: LM statistic for spatial correlation in the

residuals of a spatial autoregressive model

USAGE: result = lmsar(y,x,W1,W2)

where: y = dependent variable vector

x = independent variables matrix

W1 = contiguity matrix for rho

W2 = contiguity matrix for lambda

RETURNS: a structure variable

result.meth = ’lmsar’

result.lm = LM statistic

result.prob = marginal probability

result.chi1 = 6.635

result.nobs = # of observations

result.nvar = # of variables

NOTE: (lm > 6.635, => small prob,

=> reject HO: of no spatial correlation

See also: walds, lratios, moran, lmerrors

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 76

It should be noted that a host of other methods to test for spatial dependence
in various modeling situations have been proposed. In addition, the small sample
properties of many alternative tests have been compared in Anselin and Florax
(1994) and Anselin and Rey (1991).

3.3.1 Computational details

To implement estimation of the spatial error model (SEM) we can draw on the
sparse matrix approach we used for the FAR and SAR models. One approach to
estimating this model is based on an iterative approach that: 1) constructs least-
squares estimates and associated residuals, 2) finds a value of λ that maximizes
the log likelihood conditional on the least-squares β values, 3) updates the least-
squares values of β using the value of λ determined in step 2). This process is
continued until convergence in the residuals.

First, we construct a function f sem to evaluate the concentrated log like-
lihood function at values of λ, given values for residuals from the least-squares
estimation of β. This function f sem is shown below:

function lik = f_sem(lam,eD,W)

% PURPOSE: evaluates concentrated log-likelihood for the

% spatial error model using sparse matrix algorithms

% ---

% USAGE:llike = f_sem(lam,eD,W)

% where: lam = spatial error parameter

% eD = begls residuals

% W = spatial weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value at the parameter lambda

% --

% SEE ALSO: sem, f_far, f_sac, f_sar

% ---

n = length(eD); spparms(’tight’);

z = speye(n) - 0.1*sparse(W); p = colmmd(z);

z = speye(n) - lam*sparse(W);

[l,u] = lu(z(:,p));

detval = sum(log(abs(diag(u))));

tmp = speye(n) - lam*sparse(W);

epe = eD’*tmp’*tmp*eD;

sige = epe/n; tmp2 = 1/(2*sige);

lik = (n/2)*log(pi) + (n/2)*log(sige) - detval + tmp2*epe;

Next, we examine the function sem that carries out the iterative estimation
process. This is quite similar in approach to the functions far and sar already
described, so we eliminate the code for computing measures of dispersion.

function results = sem(y,x,W,lmin,lmax,convg,maxit)

% PURPOSE: computes spatial error model estimates

% y = XB + u, u = L*W*u + e, using sparse algorithms

% ---

% USAGE: results = sem(y,x,W,lmin,lmax,convg,maxit)

% where: y = dependent variable vector

% x = independent variables matrix

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 77

% W = contiguity matrix (standardized)

% lmin = (optional) minimum value of lambda to use in search

% lmax = (optional) maximum value of lambda to use in search

% convg = (optional) convergence criterion (default = 1e-8)

% maxit = (optional) maximum # of iterations (default = 500)

% ---

% RETURNS: a structure

% results.meth = ’sem’

% results.beta = bhat

% results.lam = L (lambda)

% results.tstat = asymp t-stats (last entry is lam)

% results.yhat = yhat

% results.resid = residuals

% results.sige = sige = e’(I-L*W)’*(I-L*W)*e/n

% results.rsqr = rsquared

% results.rbar = rbar-squared

% results.lik = log likelihood

% results.nobs = nobs

% results.nvar = nvars (includes lam)

% results.y = y data vector

% results.iter = # of iterations taken

% results.lmax = 1/max eigenvalue of W (or lmax if input)

% results.lmin = 1/min eigenvalue of W (or lmin if input)

% --

options = zeros(1,18); rflag = 0;

options(1,1) = 0; options(1,2) = 1.e-6; options(14) = 500;

if nargin == 3, % use default optimization options

elseif nargin == 5, rflag = 1;

elseif nargin == 6, options(1,2) = convg; % set conv option

elseif nargin == 7 % set user supplied convg and maxit options

options(1,2) = convg; options(1,14) = maxit;

else, error(’Wrong # of arguments to sem’);

end;

[n nvar] = size(x); results.meth = ’sem’;

results.y = y; results.nobs = n; results.nvar = nvar;

if rflag == 0, opt.tol = 1e-3; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2); lmax = 1/lambda(1);

end;

results.lmax = lmax; results.lmin = lmin;

b0 =x\y; % step 1) ols of x on y -> b0

eD = y - x*b0; % step 2) e = y - x*b0

% step 3) find lambda that maximizes Lc

econverge = eD; criteria = 0.0001; converge = 1.0;

iter = 1; itermax = 100;

options = zeros(1,18); options(1,1) = 0; options(1,2) = 1.e-4;

while (converge > criteria & iter < itermax)

[lam, opt] = fmin(’f_sem’,lmin,lmax,options,eD,W);

tmp = speye(n) - lam*sparse(W); % step 4) find Begls

xs = tmp*x; ys = tmp*y;

begls = xs\ys;

eD = y - x*begls; % step 5) find Eegls

converge = sum(abs(eD - econverge));

econverge = eD; % step 6) check convergence

iter = iter + 1;

end; % end of while loop

if (iter == itermax),

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 78

error(’sem: No convergence in sem with 100 iterations’);

end;

Finally, we construct a function f2 sem that evaluates the log likelihood
function for the model given maximum likelihood estimates. This function is
used by the hessian function to determine numerical measures of dispersion in
the case of problems involving a large number of observations. This function is:

function llike = f2_sem(parm,y,x,W)

% PURPOSE: evaluates log-likelihood -- given ML parameters

% spatial error model using sparse matrix algorithms

% ---

% USAGE:llike = f2_sem(parm,y,X,W)

% where: parm = vector of maximum likelihood parameters

% parm(1:k-2,1) = b, parm(k-1,1) = rho, parm(k,1) = sige

% y = dependent variable vector (n x 1)

% X = explanatory variables matrix (n x k)

% W = spatial weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value at the ML parameters

% --

n = length(y); k = length(parm); b = parm(1:k-2,1);

lam = parm(k-1,1); sige = parm(k,1);

spparms(’tight’); z = speye(n) - 0.1*sparse(W);

p = colmmd(z); z = speye(n) - lam*sparse(W);

[l,u] = lu(z(:,p));

detval = sum(log(abs(diag(u))));

eD = y - x*b; epe = eD’*z’*z*eD;

tmp2 = 1/(2*sige);

llike = (n/2)*log(pi) + (n/2)*log(sige) - detval + tmp2*epe;

It should be noted that an alternative approach to estimating this model
would be to directly maximize the log likelihood function set forth in the function
f2 sem. This could be accomplished using a general optimization algorithm.
It might produce an improvement in speed, depending on how many likelihood
function evaluations are needed when solving large problems. We provide an
option for doing this in a function semo that relies on an optimization function
maxlik from the Econometrics Toolbox. One drawback to this approach is that
we cannot impose the restriction on the feasible range for λ because the maxlik
function carries out unconstrained optimization.

3.3.2 Applied examples

We provide examples of using the functions moran, lmerror, walds and lra-
tios that test for spatial correlation in the least-squares residuals as well as
lmsar to test for spatial correlation in the residuals of an SAR model. These
examples are based on the Anselin neighborhood crime data set. It should be
noted that computation of the Moran I−statistic, the LM error statistic, and
the Wald test require matrix multiplications involving the large spatial weight
matrices C and W . This is not true of the likelihood ratio statistic imple-
mented in the function lratios. This test only requires that we compare the

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 79

likelihood from a least-squares model to that from a spatial error model. As we
can produce SEM estimates using our sparse matrix algorithms, this test can
be implemented for large models.

Example 3.7 shows a program that carries out all of the test for spatial
correlation as well as estimating an SEM model.

% ----- Example 3.7 Testing for spatial correlation

load wmat.dat; % standardized 1st-order contiguity matrix

load anselin.dat; % load Anselin (1988) Columbus neighborhood crime data

y = anselin(:,1); nobs = length(y);

x = [ones(nobs,1) anselin(:,2:3)];

W = wmat;

vnames = strvcat(’crime’,’const’,’income’,’house value’);

res1 = moran(y,x,W);

prt(res1);

res2 = lmerror(y,x,W);

prt(res2);

res3 = lratios(y,x,W);

prt(res3);

res4 = walds(y,x,W);

prt(res4);

res5 = lmsar(y,x,W,W);

prt(res5);

res = sem(y,x,W);% do sem estimation

prt(res,vnames); % print the output

Note that we have provided code in the prt spat function (which is called by
prt) to produce formatted output of the test results from our spatial correlation
testing functions. From the results printed below, we see that the least-squares
residuals exhibit spatial correlation. We infer this from the small marginal
probabilities that indicate significance at the 99% level of confidence. With
regard to the LM error test for spatial correlation in the residuals of the SAR
model, we see from the marginal probability of 0.565 that we can reject spatial
dependence in the residuals from this model.

Moran I-test for spatial correlation in residuals

Moran I 0.23610178

Moran I-statistic 2.95890622

Marginal Probability 0.00500909

mean -0.03329718

standard deviation 0.09104680

LM error tests for spatial correlation in residuals

LM value 5.74566426

Marginal Probability 0.01652940

chi(1) .01 value 17.61100000

LR tests for spatial correlation in residuals

LR value 8.01911539

Marginal Probability 0.00462862

chi-squared(1) value 6.63500000

Wald test for spatial correlation in residuals

Wald value 14.72873758

Marginal Probability 0.00012414

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 80

chi(1) .01 value 6.63500000

LM error tests for spatial correlation in SAR model residuals

LM value 0.33872242

Marginal Probability 0.56056759

chi(1) .01 value 6.63500000

Spatial error Model Estimates

Dependent Variable = crime

R-squared = 0.6515

Rbar-squared = 0.6364

sigma^2 = 95.5675

log-likelihood = -166.40057

Nobs, Nvars = 49, 3

iterations = 12

min and max lam = -1.5362, 1.0000

Variable Coefficient Asymptot t-stat z-probability

const 59.878750 11.157027 0.000000

income -0.940247 -2.845229 0.004438

house value -0.302236 -3.340320 0.000837

lambda 0.562233 4.351068 0.000014

As an example of estimating an SEM model on a large data set, we use
the Pace and Barry data set with the same model used to demonstrate the
SAR estimation procedure. Here again, we can take advantage of the option to
supply minimum and maximum values for the optimization search and rely on
the values of -1.017 and 1 calculated in example 3.3.

% ----- Example 3.8 Using the sem() function with a large data set

load elect.dat; % load data on votes in 3,107 counties

y = log(elect(:,7)./elect(:,8)); % convert to per capita variables

x1 = log(elect(:,9)./elect(:,8)); % education

x2 = log(elect(:,10)./elect(:,8));% homeownership

x3 = log(elect(:,11)./elect(:,8));% income

n = length(y); x = [ones(n,1) x1 x2 x3];

clear x1; clear x2; clear x3;

clear elect; % conserve on RAM memory

load ford.dat; % 1st order contiguity matrix stored in sparse matrix form

ii = ford(:,1); jj = ford(:,2); ss = ford(:,3);

n = 3107;

clear ford; % clear ford matrix to save RAM memory

W = sparse(ii,jj,ss,n,n);

clear ii; clear jj; clear ss; % conserve on RAM memory

vnames = strvcat(’voters’,’const’,’educ’,’homeowners’,’income’);

rmin = -1.0710; rmax = 1;

to = clock;

res = sem(y,x,W,rmin,rmax);

etime(clock,to)

prt(res,vnames);

We computed estimates using both the iterative procedure in the function
sem and the optimization procedure implemented in the function semo. The
time required for the optimization procedure was 299 seconds, which compared
to 274 seconds for the iterative procedure. The optimization approach required

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 81

only 7 iterations whereas the iterative procedure required 10. Needless to say,
almost all of the time is spent in the log likelihood function evaluations, so we
might think the iterative procedure would be slower. The fact that maxlik is
only optimizing over two parameters in the SEM function, and five in the case
of SEMO must account for the difference in time.

We present the estimates from both approaches to demonstrate that they
produce estimates that are identical to 3 decimal places. Both of these functions
are part of the spatial econometrics library, as it may be the case that the
optimization approach would produce estimates in less time than the iterative
approach in other applications. This would likely be the case if very good initial
estimates were available as starting values.

% estimates from iterative approach using sem() function

Spatial error Model Estimates

Dependent Variable = voters

R-squared = 0.6606

Rbar-squared = 0.6603

sigma^2 = 0.0133

log-likelihood = 3202.7211

Nobs, Nvars = 3107, 4

iterations = 11

min and max lam = -1.0710, 1.0000

Variable Coefficient Asymptot t-stat z-probability

const 0.543129 8.769040 0.000000

educ 0.293303 12.065152 0.000000

homeowners 0.571474 36.435109 0.000000

income -0.152842 -6.827930 0.000000

lambda 0.650523 41.011556 0.000000

% estimates from optimization approach using semo() function

Spatial error Model Estimates

Dependent Variable = voters

R-squared = 0.6606

Rbar-squared = 0.6603

sigma^2 = 0.0133

log-likelihood = 3202.7208

Nobs, Nvars = 3107, 4

iterations = 5

Variable Coefficient Asymptot t-stat z-probability

const 0.543175 8.770178 0.000000

educ 0.293231 12.061955 0.000000

homeowners 0.571494 36.436805 0.000000

income -0.152815 -6.826670 0.000000

lambda 0.650574 41.019490 0.000000

The SEM estimates indicate that after taking into account the influence of
the explanatory variables, we still have spatial correlation in the residuals of
the model because the parameter λ is significantly different from zero. As a
confirmation of this, consider the results from an LR test implemented with the
function lratios shown below:

LR tests for spatial correlation in residuals

LR value 1163.01773404

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 82

Marginal Probability 0.00000000

chi-squared(1) value 6.63500000

Recall that this is a test of spatial autocorrelation in the residuals from a
least-squares model, and the test results provide a strong indication of spatial
dependence in the least-squares residuals. Note also that this is the only test
from those described in Section 3.3 that can be implemented successfully with
large data sets. An alternative to these tests for large problems would be to
estimate a FAR model using the residuals from least-squares.

3.4 The spatial Durbin model

The model shown in (3.24) is referred to as a spatial Durbin model by Anselin
(1988) due to the analogy with a suggestion by Durbin for the case of a time
series model with residual autocorrelation.

(In − ρW)y = (In − ρW)Xβ + ε (3.24)

y = ρWy +Xβ − ρWXβ + ε

ε ∼ N(0, σ2In)

There is a formal equivalence of this model to a model:

y = Xβ + (In − ρW)−1ε (3.25)

ε ∼ N(0, σ2In)

We implement a variant of this model which we label SDM that is shown in
(3.26), where y contains an nx1 vector of dependent variables and X represents
the usual nxk data matrix containing explanatory variables with an associated
parameter vector β1. W is the spatial weight matrix and the parameter ρ is
a coefficient on the spatial lag of the dependent variable. An additional set
of explanatory variables is added to the model by constructing a spatial lag
of the explanatory variables using the matrix product WX, with associated
parameters β2. This set of variables represent explanatory variables constructed
as averages from neighboring observations.

y = ρWy +Xβ1 +WXβ2 + ε (3.26)

ε ∼ N(0, σ2In)

Note that the model in (3.24) could be viewed as imposing a restriction that
β2 = −ρβ1 on the model in (3.26). This model has been used in spatial econo-
metric analysis by Pace and Barry (1998) and we incorporate a function sdm
in our spatial econometrics library to provide maximum likelihood estimates.
Noting that β1 and β2 can be expressed as:

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 83

β1 = (X̃ ′X̃)−1X̃ ′y (3.27)

β2 = (X̃ ′X̃)−1X̃ ′Wy

we can write the concentrated log-likelihood function for this model as shown
in (3.28) where C denotes an inessential constant.

ln(L) = C + ln|In − ρW | − (n/2)ln(e′1e1 − 2ρe′2e1 + ρ2e′2e2) (3.28)

e1 = y − X̃β1

e2 = Wy − X̃β2

X̃ = [X WX]

Given a value of ρ that maximizes the concentrated likelihood function (say
ρ̂), we compute estimates for β1 and β2 in (3.26) using:

β̂ = (β1 − ρ̂β2) =

(

β̂1

β̂2

)

(3.29)

Finally, an estimate of σ2
ε is calculated using:

σ̂2 = (y − ρ̂Wy − X̃β̂)′(y − ρ̂Wy − X̃β̂)/n (3.30)

(3.31)

A point to note regarding use of this model is that the explanatory variables
matrix [X WX] can suffer from severe collinearity problems in some applica-
tions. A function bkw from the Econometrics Toolbox can be used to diagnose
collinear relationships in this matrix with the methods set forth in Belsley, Kuh
and Welsch (1980). Chapter 3 of the manual for the Econometrics Toolbox

discusses the use of this function for diagnosing collinearity.

3.4.1 Computational details

We use the function f sdm to evaluate the concentrated log-likelihood function,
which depends on the single parameter ρ from the model.

function llike = f_sdm(rho,y,x,W)

% PURPOSE: evaluates concentrated log-likelihood for the

% spatial durbin model using sparse matrix algorithms

% ---

% USAGE:llike = f_sdm(rho,y,x,W)

% where: rho = spatial autoregressive parameter

% y = dependent variable vector

% x = data matrix

% W = spatial weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 84

% function value at the parameter rho

% --

[n k] = size(x); rho2 = rho*rho;

spparms(’tight’);

z = speye(n) - 0.1*sparse(W);

p = colmmd(z);

z = speye(n) - rho*sparse(W);

[l,u] = lu(z(:,p));

detval = sum(log(abs(diag(u))));

dy=W*y; xdx=[x(:,2:k) W*x(:,2:k) ones(n,1)];

xdxtxdx=(xdx’*xdx); xdxinv=inv(xdxtxdx);

xdxy=xdx’*y; xdxdy=xdx’*dy;

bmat=xdxtxdx\[xdxy xdxdy];

bols=bmat(:,1); bolsd=bmat(:,2);

eo=y-xdx*bols; ed=dy-xdx*bolsd;

e2o=(eo’*eo); edo=(ed’*eo); e2d=(ed’*ed);

logsse=log(e2o-2*rho*edo+rho2*e2d);

llike = (n/2)*log(pi) -detval + (n/2)*logsse;

The function sdm carries out estimation using the simplex optimization
algorithm to maximize the concentrated likelihood function in f sdm. This
function relies totally on a numerical hessian matrix approach to calculating
measures of dispersion for the estimates. (This is because problems were en-
countered with the information matrix approach which may be due to incorrect
published formulas for the expressions needed.) Code for computing measures
of dispersion has been eliminated to save space.

function results = sdm(y,x,W,lmin,lmax,convg,maxit)

% PURPOSE: computes spatial durbin model estimates

% (I-rho*W)y = a + X*B1 + W*X*B2 + e, using sparse algorithms

% ---

% USAGE: results = sdm(y,x,W,rmin,rmax,convg,maxit)

% where: y = dependent variable vector

% x = independent variables matrix

% W = contiguity matrix (standardized)

% rmin = (optional) minimum value of rho to use in search

% rmax = (optional) maximum value of rho to use in search

% convg = (optional) convergence criterion (default = 1e-8)

% maxit = (optional) maximum # of iterations (default = 500)

% ---

% RETURNS: a structure

% results.meth = ’sdm’

% results.beta = bhat [a B1 B2]’ a k+(k-1) x 1 vector

% results.rho = rho

% results.tstat = t-statistics (last entry is rho)

% results.yhat = yhat

% results.resid = residuals

% results.sige = sige

% results.rsqr = rsquared

% results.rbar = rbar-squared

% results.lik = log likelihood

% results.nobs = nobs

% results.nvar = nvars (includes lam)

% results.y = y data vector

% results.iter = # of iterations taken

% results.rmax = 1/max eigenvalue of W (or rmax if input)

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 85

% results.rmin = 1/min eigenvalue of W (or rmin if input)

% --

% NOTES: constant term should be in the 1st column of the x-matrix

% constant is excluded from B2 estimates

% ---

options = zeros(1,18); rflag = 0;

options(1,1) = 0; options(1,2) = 1.e-6; options(14) = 500;

if nargin == 3 % use default optimization options

elseif nargin == 5, rflag = 1;

elseif nargin == 6, options(1,2) = convg; % set convg option

elseif nargin == 7 % set user supplied convg and maxit options

options(1,2) = convg; options(1,14) = maxit;

else, error(’Wrong # of arguments to sdm’);

end;

[n nvar] = size(x); results.meth = ’sdm’;

results.y = y; results.nobs = n; results.nvar = nvar;

if rflag == 0, opt.tol = 1e-3; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2); lmax = 1/lambda(1);

end;

results.rmax = lmax; results.rmin = lmin;

[rho, options] = fmin(’f_sdm’,lmin,lmax,options,y,x,W);

if options(10) == options(14),

fprintf(1,’sdm: convergence not obtained in %4d iterations’,options(14));

else, results.iter = options(10);

end;

rho2 = rho*rho; dy=W*y; % find beta hats

xdx=[x(:,2:nvar) W*x(:,2:nvar) ones(n,1)];

xdxtxdx=(xdx’*xdx); xdxinv=inv(xdxtxdx); xdxy=xdx’*y;

xdxdy=xdx’*dy; bmat=xdxtxdx\[xdxy xdxdy]; bols=bmat(:,1);

bolsd=bmat(:,2); beta = bols - rho*bolsd;

results.yhat = xdx*beta + rho*sparse(W)*y;

eo=y-xdx*bols; ed=dy-xdx*bolsd; e2o=(eo’*eo);

edo=(ed’*eo); e2d=(ed’*ed);

epe = (e2o-2*rho*edo+rho2*e2d); sige = epe/n;

results.rho = rho; results.resid = y - results.yhat;

results.sige = sige;

This function requires that the user supply a constant term in the first
column of the explanatory variables matrix in the model. Because we exclude
the constant from the second expression, WX in the augmented matrix X̃ =
[X WX], we need to know which column contains the constant term in the
matrix X input to the function. It seems simplest to require that it be placed
in the first column.

3.4.2 Applied examples

We illustrate the SDM model using Anselin’s neighborhood crime data set in
example 3.9.

% ----- Example 3.9 Using the sdm() function

load anselin.dat; % load Anselin (1988) Columbus neighborhood crime data

y = anselin(:,1); n = length(y); x = [ones(n,1) anselin(:,2:3)];

load Wmat.dat; % load Anselin (1988) 1st order contiguity matrix

W = Wmat;

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 86

vnames = strvcat(’crime’,’constant’,’income’,’hvalue’);

% do sdm regression

res = sdm(y,x,W);

prt(res,vnames);

The results shown below indicate that neither of the spatially lagged ex-
planatory variables labeled ‘W-income’ and ‘W-hvalue’ in the printed output
are statistically significant at conventional levels.

Spatial Durbin model

Dependent Variable = crime

R-squared = 0.6652

Rbar-squared = 0.6348

sigma^2 = 91.8092

log-likelihood = -164.41996

Nobs, Nvars = 49, 3

iterations = 9

min and max rho = -1.5362, 1.0000

Variable Coefficient Asymptot t-stat z-probability

constant 42.780315 3.075397 0.002102

income -0.913522 -2.716256 0.006602

hvalue -0.293785 -3.305459 0.000948

W-income -0.518148 -0.871550 0.383454

W-hvalue 0.245193 1.386415 0.165620

rho 0.426971 2.551811 0.010716

As a large scale problem we implement the SDM model with the Pace and
Barry data set in example 3.10.

% ----- Example 3.10 Using the sdm() function with a large sample

load elect.dat; % load data on votes

y = log(elect(:,7)./elect(:,8));

x1 = log(elect(:,9)./elect(:,8));

x2 = log(elect(:,10)./elect(:,8));

x3 = log(elect(:,11)./elect(:,8));

n = length(y); x = [ones(n,1) x1 x2 x3];

clear x1; clear x2; clear x3;

clear elect; % conserve on RAM memory

load ford.dat; % 1st order contiguity matrix stored in sparse matrix form

ii = ford(:,1); jj = ford(:,2); ss = ford(:,3);

n = 3107;

clear ford; % clear ford matrix to save RAM memory

W = sparse(ii,jj,ss,n,n);

clear ii; clear jj; clear ss; % conserve on RAM memory

vnames = strvcat(’voters’,’const’,’educ’,’homeowners’,’income’);

rmin = -1.0710; rmax = 1;

to = clock;

res = sdm(y,x,W,rmin,rmax);

etime(clock,to)

prt(res,vnames);

This estimation problem took 187 seconds and produced the following re-
sults.

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 87

Spatial Durbin model

Dependent Variable = voters

R-squared = 0.6696

Rbar-squared = 0.6690

sigma^2 = 0.0130

log-likelihood = 3275.3805

Nobs, Nvars = 3107, 4

iterations = 10

min and max rho = -1.0710, 1.0000

Variable Coefficient Asymptot t-stat z-probability

const 0.524818 10.264344 0.000000

educ 0.154564 6.207306 0.000000

homeowners 0.575636 37.112911 0.000000

income -0.090330 -3.962587 0.000074

W-educ 0.116203 3.920690 0.000088

W-homeowners -0.362079 -15.338338 0.000000

W-income -0.069325 -2.396691 0.016544

rho 0.599802 38.409667 0.000000

Here we see that all of the spatially lagged explanatory variables were sta-
tistically significant. The negative sign on the coefficient for ‘W-homeowners’
suggest that an increase in the number of homeowners in neighboring coun-
ties leads to a decrease in voter participation. This is in contrast to the direct
elasticity for homeownership on voter participation, which exhibits a positive
sign. The total effect of homeownership is still positive as the sum of the two
coefficients on homeownership produce a positive magnitude.

We defer discussion of comparisons between spatial autoregressive model
specifications until the last section of Chapter 4, where an applied exercise
deals with comparing models.

3.5 The general spatial model

A general version of the spatial model that we label SAC includes both the
spatial lag term and a spatially correlated error structure as shown in (3.32).

y = ρW1y +Xβ + u (3.32)

u = λW2u+ ε

ε ∼ N(0, σ2
ε)

One point to note about this model is that W1 can equal W2, but there may
be identification problems in this case. The log likelihood for this model can be
maximized using our general optimization algorithm on a concentrated version
of the likelihood function. The parameters β and σ2 are concentrated out of the
likelihood function, leaving the parameters ρ and λ. This eliminates the ability
to use the univariate simplex optimization algorithm fmin that we used with
the other spatial autoregressive models.

We can still produce a sparse matrix algorithm for the log likelihood function
and proceed in a similar fashion to that used for the other spatial autoregressive

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 88

models. One difference is that we cannot easily restrict the parameters ρ and
λ to lie within the ranges defined by the maximum and minimum eigenvalues
from their associated weight matrices W1 and W2. In the next chapter, we will
show how these constraints can be easily imposed in a Bayesian setting that
relies on Gibbs sampling estimation of this model.

When might one rely on this model? If there were evidence that spatial
dependence existed in the error structure from a spatial autoregressive (SAR)
model, the SAC would represent an appropriate approach to modeling this type
of dependence in the errors. Recall, we can use the LM-test implemented in the
function lmsars to see if spatial dependence exists in the residuals of an SAR
model.

We might also rely on this model if we believe that the disturbance structure
involves higher-order spatial dependence, perhaps due to second-round effects
of a spatial phenomena being modeled. The function slag discussed in the next
section can be used to generate a second order spatial weight matrix which can
be added to the model.

A third example of using matrices W1 and W2 might be where W1 repre-
sented a first-order contiguity matrix and W2 was constructed as a diagonal
matrix measuring the inverse distance from the central city. This type of con-
figuration of the spatial weight matrices expresses a belief that contiguity alone
does not suffice to capture the spatial effects. The distance from the central city
may also represent an important factor in the phenomena we are modeling.

This raises the identification issue, should we use the distance weighting
matrix in place of W1 and the first-order contiguity matrix for W2, or rely on
the opposite configuration? Of course, comparing likelihood function values
along with the statistical significance of the parameters ρ and λ from models
estimated using both configurations might point to a clear answer.

The log likelihood function for this model is:

L = C − (n/2)ln(σ2) + ln(|A|) + ln(|B|) − (1/2σ2)(e′B′Be)

e = (Ay −Xβ) (3.33)

A = (In − ρW1)

B = (In − λW2)

We concentrate the function using the following expressions for β and σ2:

β = (X ′A′AX)−1(X ′A′ABy) (3.34)

e = By −Xβ

σ2 = (e′e)/n

Using the expressions in (3.34), we can evaluate the log likelihood for values
of ρ and λ. The values of the other parameters β and σ2 are calculated as a
function of the maximum likelihood values of ρ, λ and the sample data in y,X.

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 89

3.5.1 Computational details

Our first task is to construct a function f sac that provides a sparse matrix
evaluation of the concentrated log likelihood function. This is shown below:

function llike = f_sac(parm,y,x,W1,W2)

% PURPOSE: evaluates log-likelihood for general spatial model

% y = rho*W1*y + X*b + u, u = lam*W2*u + e,

% using sparse matrix algorithms

% ---

% USAGE:llike = f_sac(parm,y,x,W1,W2)

% where: parm = (rho,lam)

% y = dependendent variable vector

% x = explanatory variables matrix

% W1 = spatial lag weight matrix

% W2 = spatial error weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value at the parameters rho, lambda

% --

% NOTE: b,sige is concentrated out of the log-likelihood

% --

% SEE ALSO: sar, f_far, f_sar, f_sem

% ---

lam = parm(1,1); rho = parm(2,1); n = length(y);

z = speye(n) - 0.1*sparse(W1); p = colmmd(z);

z1 = speye(n) - rho*sparse(W1);

[l,u] = lu(z1(:,p)); detval1 = sum(log(abs(diag(u))));

z = speye(n) - 0.1*sparse(W2); p = colmmd(z);

z2 = speye(n) - lam*sparse(W2);

[l,u] = lu(z2(:,p)); detval2 = sum(log(abs(diag(u))));

b = (x’*z1’*z1*x)\(x’*z1’*z1*z2*y);

eD = z2*y-x*b; epe = eD’*z1’*z1*eD; sige = epe/n; tmp2 = 1/(2*sige);

llike = (n/2)*log(pi) + (n/2)*log(sige) - detval1 - detval2 + tmp2*epe;

Note that we need to solve for two determinants in this problem which should
increase the computational intensity and slow down the estimation procedure.
Another point is that we attempt to re-use matrices like z and p to conserve on
RAM memory.

The next task is to construct our MATLAB function sac that solves the the
non-linear optimization problem using this log likelihood function. There are a
number of things to note about this function. First, we provide optimization
options for the user in the form of a structure variable ‘info’. These options
allow the user to control some aspects of the maxlik optimization algorithm
and to print intermediate results while optimization is proceeding.

function results = sac(y,x,W1,W2,info)

% PURPOSE: computes general Spatial Model

% model: y = p*W1*y + X*b + u, u = lam*W2*u + e

% ---

% USAGE: results = sac(y,x,W1,W2)

% where: y = dependent variable vector

% x = independent variables matrix

% W1 = spatial weight matrix (standardized)

% W2 = spatial weight matrix

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 90

% info = a structure variable with optimization options

% info.parm = starting values for parameters, b, rho, lambda

% info.convg = (optional) convergence criterion (default = 1e-7)

% info.maxit = (optional) maximum # of iterations (default = 500)

% info.method = ’bfgs’, ’dfp’ (default bfgs)

% info.pflag = flag for printing of intermediate results

% ---

% RETURNS: a structure

% results.meth = ’sac’

% results.beta = bhat

% results.rho = p (rho)

% results.lam = L (lambda)

% results.tstat = asymptotic t-stats (last 2 are rho,lam)

% results.yhat = yhat

% results.resid = residuals

% results.sige = sige = e’(I-L*W)’*(I-L*W)*e/n

% results.rsqr = rsquared

% results.rbar = rbar-squared

% results.lik = likelihood function value

% results.nobs = nobs

% results.nvar = nvars

% results.y = y data vector

% results.iter = # of iterations taken

% --

% SEE ALSO: prt_spat(results), prt

% ---

% REFERENCES: Luc Anselin Spatial Econometrics (1988)

% pages 64-65 and pages 182-183.

% ---

if nargin == 5

if ~isstruct(info), error(’sac: the options must be a structure’); end;

opti.maxit = 500; bstart = 0; opti.meth = ’bfgs’; opti.ftol = 1e-7;

opti.pflag = 0; fields = fieldnames(info); nf = length(fields);

for i=1:nf

if strcmp(fields{i},’parm’), bstart = 1; parm = info.parm;

elseif strcmp(fields{i},’convg’), opti.ftol = info.convg;

elseif strcmp(fields{i},’maxit’), opti.maxit = info.maxit;

elseif strcmp(fields{i},’method’), opti.meth = info.method;

elseif strcmp(fields{i},’pflag’), opti.pflag = info.pflag;

end; end;

elseif nargin == 4 % use default options

opti.maxit = 500; bstart = 0; opti.meth = ’bfgs’; opti.ftol = 1e-7;

opti.pflag = 0;

else, error(’Wrong # of arguments to sac’); end;

[n nvar] = size(x); results.meth = ’sac’;

[n1 n2] = size(W1);

if n1 ~= n2, error(’sac: wrong size weight matrix W1’);

elseif n1 ~= n, error(’sac: wrong size weight matrix W1’); end;

[n1 n2] = size(W2);

if n1 ~= n2, error(’sac: wrong size weight matrix W2’);

elseif n1 ~= n, error(’sac: wrong size weight matrix W2’); end;

results.y = y; results.nobs = n; results.nvar = nvar;

if bstart == 0, parm = [0.5

0.5]; end;

[pout,f,hessn,gradn,iter,fail]=maxlik(’f_sac’,parm,opti,y,x,W1,W2);

if fail == 1, fprintf(’sac: optimization failure \n’); end;

lam = pout(1,1); rho = pout(2,1); % fill-in results

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 91

A = speye(n) - rho*sparse(W1); B = speye(n) - lam*sparse(W2);

b0 = (x’*A’*A’*x)\(x’*A’*A*B*y); e = A*B*y - A*x*b0;

results.beta = b0; results.rho = rho; results.lam = lam;

A second point is that if failure occurs, we simply print a message and let the
function continue to process and return a results structure consisting of failed
parameter estimates. This approach allows the user to examine the failed esti-
mates and attempt estimation based on alternative optimization options. For
example, the user might elect to attempt a Davidson-Fletcher-Powell (‘dfp’)
algorithm in place of the default Broyden-Fletcher-Goldfarb-Smith (‘bfgs’) rou-
tine.

With regard to optimization algorithm failures, it should be noted that
the Econometrics Toolbox contains alternative optimization functions named
solvopt, dfp min, frpr min, and pow min that can be used in place of max-
lik. Any of these functions could be substituted for maxlik in the function sac.
Chapter 10 in the Econometrics Toolbox provides examples of using these func-
tions as well as their documentation.

Since this is the first function where we use a structure variable as an input,
we might examine how the sac function ‘parses’ this type of input variable.
First note that the user can name the input structure variable anything, it is
the structure fields that the function examines. The use of a structure variable
to input arguments to functions is a useful MATLAB programming construct
that we employ in many spatial econometrics functions. To see how this is ac-
complished consider the following code from sac that parses the input structure
fields for the structure variable named ‘info’ in the function declaration.

opti.maxit = 500; bstart = 0; opti.meth = ’bfgs’;

opti.ftol = 1e-7; opti.pflag = 0;

fields = fieldnames(info);

nf = length(fields);

for i=1:nf

if strcmp(fields{i},’parm’), bstart = 1;

elseif strcmp(fields{i},’convg’), opti.ftol = info.convg;

elseif strcmp(fields{i},’maxit’), opti.maxit = info.maxit;

elseif strcmp(fields{i},’method’), opti.meth = info.method;

elseif strcmp(fields{i},’pflag’), opti.pflag = info.pflag;

end;

end;

We rely on a MATLAB function fieldnames that extracts the field elements
from a structure variable into a cell-array that we name ‘fields’. After determin-
ing how many elements have been entered by the user with the length function,
we use a ‘for loop’ to compare each field element with the valid structure fields
using the string comparison function strcmp. Input fields specified by the user
will be detected by the string comparisons and extracted to overwrite the default
values set prior to parsing the input structure variable.

As we encounter functions to implement Bayesian variants of the spatial
autoregressive models in Chapter 4, we will make extensive use of structure
variables as inputs. This allows us to reduce the number of input arguments,
making the function easier to use, and the programs easier to read.

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 92

The final task is to construct a non-concentrated version of the log likeli-
hood function that will be used by the hessian function to provide numerical
estimates of dispersion. A function f2 sac provides the non-concentrated log
likelihood function.

function llike = f2_sac(parm,y,x,W1,W2)

% PURPOSE: evaluates log-likelihood for ML values general spatial model

% y = rho*W1*y + X*b + u, u = lam*W2*u + e,

% using sparse matrix algorithms

% ---

% USAGE:llike = f2_sac(parm,y,x,W1,W2)

% where: parm = (beta,rho,lam,sige) ML values

% y = dependendent variable vector

% x = explanatory variables matrix

% W1 = spatial lag weight matrix

% W2 = spatial error weight matrix

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value at the ML parameters

% --

% SEE ALSO: sac, f2_far, f2_sar, f2_sem

% ---

k = length(parm); b = parm(1:k-3,1);

rho = parm(k-2,1); lam = parm(k-1,1); sige = parm(k,1);

n = length(y); z = speye(n) - 0.1*sparse(W1);

p = colmmd(z); z1 = speye(n) - rho*sparse(W1);

[l,u] = lu(z1(:,p)); detval1 = sum(log(abs(diag(u))));

z = speye(n) - 0.1*sparse(W2);

p = colmmd(z); z2 = speye(n) - lam*sparse(W2);

[l,u] = lu(z2(:,p)); detval2 = sum(log(abs(diag(u))));

eD = z2*y-x*b; epe = eD’*z1’*z1*eD; tmp2 = 1/(2*sige);

llike = (n/2)*log(pi) + (n/2)*log(sige) - detval1 - detval2 + tmp2*epe;

The next section turns to illustrating the use of the estimation functions we
have constructed for the general spatial autoregressive model.

3.5.2 Applied examples

Our first example illustrates the general spatial model with the Anselin Colum-
bus neighborhood crime data set. We construct a spatial lag matrix W 2 for use
in the model. As discussed in Chapter 1, higher-order spatial lags require that
we eliminate redundancies that arise. Anselin and Smirnov (1994) provide de-
tails regarding the procedures as well as a comparison of alternative algorithms
and their relative performance.

A function slag can be used to produce higher order spatial lags. The
documentation for the function is:

PURPOSE: compute spatial lags

USAGE: Wp = slag(W,p)

where: W = input spatial weight matrix, sparse or full

(0,1 or standardized form)

p = lag order (an integer)

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 93

RETURNS: Wp = W^p spatial lag matrix

in standardized form if W standardized was input

in 0,1 form in W non-standardized was input

One point about slag is that it returns a standardized contiguity matrix
even if a non-standardized matrix is used as an input. This seemed a useful
approach to take. There is a function normw that standardizes spatial weight
matrices so the row-sums are unity. It takes a single input argument containing
the non-standardized weight matrix and returns a single argument containing
the standardized matrix.

Example 3.11 uses the sac function to estimate three alternative models.
Our example illustrates the point discussed earlier regarding model specification
with respect to the use of W and W 2 by producing estimates for three models
based on alternative configurations of these two spatial weight matrices.

% ----- Example 3.11 Using the sac function

load Wmat.dat; % standardized 1st-order contiguity matrix

load anselin.dat; % load Anselin (1988) Columbus neighborhood crime data

y = anselin(:,1); nobs = length(y);

x = [ones(nobs,1) anselin(:,2:3)];

W = Wmat;

vnames = strvcat(’crime’,’const’,’income’,’house value’);

W2 = slag(W,2); % standardized W2 result from slag

subplot(2,1,1), spy(W);

xlabel(’First-order contiguity structure’);

subplot(2,1,2), spy(W2);

xlabel(’Second-order contiguity structure’);

pause;

res1 = sac(y,x,W2,W);% general spatial model W2,W

prt(res1,vnames); % print the output

res2 = sac(y,x,W,W2);% general spatial model W,W2

prt(res2,vnames); % print the output

res3 = sac(y,x,W,W); % general spatial model W,W

prt(res3,vnames); % print the output

plt(res3);

The estimation results are shown below for all three versions of the model.
The first two models produced estimates that suggest W 2 is not significant, as
the coefficients for both ρ and λ are small and insignificant when this contiguity
matrix is applied. In contrast, the first-order contiguity matrix is always asso-
ciated with a significant ρ or λ coefficient in the first two models, indicating the
importance of first-order effects.

The third model that uses the first-order W for both ρ and λ produced
insignificant coefficients for both of these parameters.

General Spatial Model Estimates

Dependent Variable = crime

R-squared = 0.6527

Rbar-squared = 0.6376

sigma^2 = 95.2471

log-likelihood = -165.36509

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 94

Nobs, Nvars = 49, 3

iterations = 5

Variable Coefficient t-statistic t-probability

const 45.421239 6.863214 0.000000

income -1.042733 -3.226112 0.002313

house value -0.268027 -2.935739 0.005180

rho -0.094359 -0.392131 0.696773

lambda 0.429926 6.340856 0.000000

General Spatial Model Estimates

Dependent Variable = crime

R-squared = 0.6520

Rbar-squared = 0.6369

sigma^2 = 95.4333

log-likelihood = -166.39931

Nobs, Nvars = 49, 3

iterations = 5

Variable Coefficient t-statistic t-probability

const 60.243770 4.965791 0.000010

income -0.937802 -3.005658 0.004281

house value -0.302261 -3.406156 0.001377

rho 0.565853 4.942206 0.000011

lambda -0.010726 -0.151686 0.880098

General Spatial Model Estimates

Dependent Variable = crime

R-squared = 0.6514

Rbar-squared = 0.6362

sigma^2 = 95.6115

log-likelihood = -165.25612

Nobs, Nvars = 49, 3

iterations = 7

Variable Coefficient t-statistic t-probability

const 47.770500 4.338687 0.000078

income -1.024966 -3.119166 0.003127

house value -0.281714 -3.109463 0.003213

rho 0.167197 0.497856 0.620957

lambda 0.368187 1.396173 0.169364

By way of summary, I would reject all three SAC model specifications, think-
ing that the SAR or SEM models (presented below) appear preferable. Note
that the second SAC model specification collapses to an SAR model by virtue
of the fact that the parameter λ is not significant and the parameter ρ in this
model is associated with the first-order weight matrix W .

Spatial error Model Estimates

Dependent Variable = crime

R-squared = 0.6515

Rbar-squared = 0.6364

sigma^2 = 95.5675

log-likelihood = -166.40057

Nobs, Nvars = 49, 3

iterations = 12

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 95

min and max lam = -1.5362, 1.0000

Variable Coefficient t-statistic t-probability

const 59.878750 11.157027 0.000000

income -0.940247 -2.845229 0.006605

house value -0.302236 -3.340320 0.001667

lambda 0.562233 4.351068 0.000075

Spatial autoregressive Model Estimates

Dependent Variable = crime

R-squared = 0.6518

Rbar-squared = 0.6366

sigma^2 = 95.5033

Nobs, Nvars = 49, 3

log-likelihood = -165.41269

of iterations = 11

min and max rho = -1.5362, 1.0000

Variable Coefficient t-statistic t-probability

const 45.056482 6.186276 0.000000

income -1.030647 -3.369256 0.001533

house value -0.265970 -3.004718 0.004293

rho 0.431377 3.587351 0.000806

An LM error test for spatial correlation in the residuals of the SAR model
confirms that there is no spatial dependence in the residuals of this model. The
LM error test results are shown below and they would lead us to conclude that
the SAR model adequately captures spatial dependence in this data set.

LM error tests for spatial correlation in SAR model residuals

LM value 0.33002340

Marginal Probability 0.56564531

chi(1) .01 value 6.63500000

We will take a more detailed look at comparing alternative specifications for
spatial autoregressive models in Chapter 4.

An important point regarding any non-linear optimization problem such as
that involved in the SAC model is that the estimates may not reflect global
solutions. A few different solutions of the optimization problem based on al-
ternative starting values is usually undertaken to confirm that the estimates do
indeed represent global solutions to the problem. The function sac allows the
user to input alternative starting values, making this relatively easy to do.

A final example uses the large Pace and Barry data set to illustrate the sac
function in operation on large problems. Example 3.12 turns on the printing
flag so we can observe intermediate results from the optimization algorithm as
it proceeds.

% ----- Example 3.12 Using sac() on a large data set

load elect.dat; % load data on votes in 3,107 counties

y = log(elect(:,7)./elect(:,8)); % convert to per capita variables

x1 = log(elect(:,9)./elect(:,8)); % education

x2 = log(elect(:,10)./elect(:,8));% homeownership

x3 = log(elect(:,11)./elect(:,8));% income

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 96

n = length(y); x = [ones(n,1) x1 x2 x3];

clear x1; clear x2; clear x3;

clear elect; % conserve on RAM memory

load ford.dat; % 1st order contiguity matrix stored in sparse matrix form

ii = ford(:,1); jj = ford(:,2); ss = ford(:,3);

n = 3107;

clear ford; % clear ford matrix to save RAM memory

W = sparse(ii,jj,ss,n,n); W2 = slag(W,2);

clear ii; clear jj; clear ss; % conserve on RAM memory

vnames = strvcat(’voters’,’const’,’educ’,’homeowners’,’income’);

to = clock; info.pflag = 1;

res = sac(y,x,W,W2,info);

etime(clock,to)

prt(res,vnames);

The results are shown below, including intermediate results that were dis-
played by setting ‘info.plag=1’. It took 535 seconds to solve this problem involv-
ing 5 iterations by the maxlik function. This function tends to be faster than
the alternative optimization algorithms available in the Econometrics Toolbox.

==== Iteration ==== 2

log-likelihood bconvergence fconvergence

7635.7620 0.2573 0.0017

Parameter Estimates Gradient

Parameter 1 0.4210 -232.2699

Parameter 2 0.4504 -162.1438

==== Iteration ==== 3

log-likelihood bconvergence fconvergence

7635.6934 0.0304 0.0000

Parameter Estimates Gradient

Parameter 1 0.4163 -2.3017

Parameter 2 0.4591 13.0082

==== Iteration ==== 4

log-likelihood bconvergence fconvergence

7635.6920 0.0052 0.0000

Parameter Estimates Gradient

Parameter 1 0.4151 -1.8353

Parameter 2 0.4601 0.4541

==== Iteration ==== 5

log-likelihood bconvergence fconvergence

7635.6920 0.0001 0.0000

Parameter Estimates Gradient

Parameter 1 0.4150 -0.0772

Parameter 2 0.4601 -0.0637

General Spatial Model Estimates

Dependent Variable = voters

R-squared = 0.6653

Rbar-squared = 0.6650

sigma^2 = 0.0131

log-likelihood = 3303.143

Nobs, Nvars = 3107, 4

iterations = 5

CHAPTER 3. SPATIAL AUTOREGRESSIVE MODELS 97

Variable Coefficient t-statistic t-probability

const 0.683510 13.257563 0.000000

educ 0.247956 12.440953 0.000000

homeowners 0.555176 35.372538 0.000000

income -0.117151 -5.858600 0.000000

rho 0.415024 16.527947 0.000000

lambda 0.460054 17.827407 0.000000

From the estimation results we see evidence that a general spatial model
might be appropriate for this modeling problem. The parameters ρ and λ are
both statistically significant. In addition, the log-likelihood for this model is
slightly higher than the SAR, SEM and SDM models (see examples 3.4, 3.8 and
3.10).

3.6 Chapter Summary

We have seen that spatial autoregressive models can be estimated using univari-
ate and bivariate optimization algorithms to solve for estimates by maximizing
the likelihood function. The sparse matrix routines in MATLAB allow us to
write functions that evaluate the log likelihood for large models rapidly and with
a minimum of computer RAM memory. This approach was used to construct
a library of estimation functions that were used to solve a problem involving a
large sample of 3,107 counties in the continental U.S., as well as a problem with
35,702 observations. These large-scale problems were solved on an inexpensive
desktop computer in a relatively short amount of time.

In addition to providing functions that estimate these models, the use of
a general software design allowed us to provide both printed and graphical
presentation of the estimation results.

Another place where we produced functions that can be used in spatial
econometric analysis was in the area of testing for spatial dependence in the
residuals from least-squares and SAR models. Functions were devised to im-
plement Moran’s i−statistic as well as likelihood ratio and Lagrange multiplier
tests for spatial autocorrelation in the residuals from least-squares and SAR
models. These tests are a bit more hampered by large-scale data sets, but we
will illustrate some alternative approaches in the next chapter where Bayesian
methods are introduced for estimation of spatial autoregressive models.

Chapter 4

Bayesian Spatial
autoregressive models

This chapter discusses spatial autoregressive models from a Bayesian perspec-
tive. It is well-known that Bayesian regression methods implemented with dif-
fuse prior information can replicate maximum likelihood estimation results. We
demonstrate this type of application, but focus on some extensions that are
available with the Bayesian approach. The maximum likelihood estimation
methods set forth in the previous chapter are based on the presumption that
the underlying disturbance process involved in generating the model is normally
distributed.

Further, many of the formal tests for spatial dependence and heterogeneity
including those introduced in the previous chapter rely on characteristics of
quadratic forms for normal variates to derive the asymptotic distribution of the
test statistics.

There is a history of Bayesian literature that deals with heteroscedastic and
leptokurtic disturbances, treating these two phenomena in a similar fashion.
Lange, Little and Taylor (1989) propose a non-Bayesian regression methodology
based on an independent Student-t distribution for the disturbances. They show
their approach provides robust results in a wide range of applied data settings.
Geweke (1993) points out that the non-Bayesian methodology of Lange, Little
and Taylor (1989) is identical to a Bayesian heteroscedastic linear regression
model and argues that the same robust results arise. Geweke (1993) also makes
a connection between the Bayesian heteroscedastic linear regression model and a
Bayesian literature that treats symmetric leptokurtic disturbance distributions
through the use of scale mixtures of normal distributions.

We adopt the approach of Geweke (1993) to extend the spatial autoregressive
models introduced in Chapter 3.

The extended version of the model is:

y = ρW1y +Xβ + u (4.1)

98

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 99

u = λW2u+ ε

ε ∼ N(0, σ2V)

V = diag(v1, v2, . . . , vn)

Where the change made to the basic model is in the assumption regarding the
disturbances ε. We assume that they exhibit non-constant variance, taking
on difference values for every observation. The magnitudes vi, i = 1, , n
represent parameters to be estimated. This assumption of inherent spatial het-
eroscedasticity seems more appropriate than the traditional Gauss-Markov as-
sumption that the variance of the disturbance is constant over space.

The first section of this chapter introduces a Bayesian heteroscedastic regres-
sion model and the topic of Gibbs sampling estimation without complications
introduced by the spatial autoregressive model. The next section applies these
ideas to the simple FAR model and implements a Gibbs sampling estimation
procedure for this model. Following sections deal with the other spatial autore-
gressive models that we introduced in the previous chapter.

A final section provides a detailed applied exercise where we apply the models
from Chapter 3 as well as the Bayesian models introduced here. Issues relating
to the choice of a model specification are illustrated with this exercise based on
a spatial data set for Boston area census tracts.

4.1 The Bayesian regression model

We consider the case of a heteroscedastic linear regression model with an infor-
mative prior that can be written as in (4.2).

y = Xβ + ε (4.2)

ε ∼ N(0, σ2V)

V = diag(v1, v2, . . . , vn)

β ∼ N(c, T)

σ ∼ (1/σ)

r/vi ∼ ID χ2(r)/r

r ∼ Γ(m, k)

Where y is an nx1 vector of dependent variables and X represents the nxk
matrix of explanatory variables. We assume that ε is an nx1 vector of normally
distributed random variates with non-constant variance. We place a normal
prior on the parameters β and a diffuse prior on σ. The relative variance terms
(v1, v2, . . . , vn), are assumed fixed but unknown parameters that need to be
estimated. The thought of estimating n parameters, v1, v2, . . . , vn, in addition
to the k+1 parameters, β and σ using n data observations seems problematical
from a degrees of freedom perspective. Bayesian methods don’t encounter the
same degrees of freedom constraints, because we can rely on an informative

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 100

prior for the vi parameters. This prior distribution for the vi terms will take the
form of an independent χ2(r)/r distribution. Recall that the χ2 distribution is
a single parameter distribution, where we have represented this parameter as
r. This allows us to estimate the additional n parameters vi in the model by
adding the single parameter r to our estimation procedure.

This type of prior has been used by Lindley (1971) for cell variances in an
analysis of variance problem, and Geweke (1993) in modeling heteroscedasticity
and outliers in the context of linear regression. The specifics regarding the prior
assigned to the vi terms can be motivated by considering that the mean of
prior equals unity and the variance of the prior is 2/r. This implies that as r
becomes very large, the terms vi will all approach unity, resulting in V = In,
the traditional Gauss-Markov assumption. We will see that the role of V �= In
is to robustify against outliers and observations containing large variances by
downweighting these observations. Large r values are associated with a prior
belief that outliers and non-constant variances do not exist, since this type of
prior would produce V = In.

Now consider the posterior distribution from which we would derive our
estimates. Following the usual Bayesian methodology, we would combine the
likelihood function for our simple model with the prior distributions for β, σ
and V to arrive at the posterior. For the case of an improper prior for β ∝
constant, and the parameter σ ∝ σ−1, the product of these prior densities and
the likelihood function produces:

p(β, σ, V |y,X) = (r/2)nr/2[Γ(r/2)]−nσ−(n+1)
n

∏

i=1

v
−(r+3)/2
i (4.3)

· exp{−

n
∑

i=1

[σ−2(yi − x
′
iβ)2 + r]/2vi}

The posterior density in (4.3) is is not amenable to analysis, a problem that
has often plagued Bayesian methods in the past. We can however derive the
posterior distribution for the parameters in our model using a recent method-
ology known as Markov Chain Monte Carlo, sometimes referred to as Gibbs
sampling.

Markov Chain Monte Carlo is based on the idea that rather than compute
the posterior density of our parameters based on the expression in (4.3), we
would be just as happy to have a large random sample from the posterior of
our parameters, which we designate p(θ|D), using θ to denote the parameters
and D the sample data. If the sample from p(θ|D) were large enough, we could
approximate the form of the probability density using kernel density estimators
or histograms, eliminating the need to know the precise analytical form of the
density.

In addition, we could compute accurate measures of central tendency and
dispersion for the density, using the mean and standard deviation of the large
sample. This insight leads to the question of how to efficiently simulate a large
number of random samples from p(θ|D).

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 101

Metropolis, et al. (1953) showed that one could construct a Markov chain
stochastic process for (θt, t ≥ 0) that unfolds over time such that: 1) it has the
same state space (set of possible values) as θ, 2) it is easy to simulate, and 3) the
equilibrium or stationary distribution which we use to draw samples is p(θ|D)
after the Markov chain has been run for a long enough time. Given this result,
we can construct and run a Markov chain for a very large number of iterations
to produce a sample of (θt, t = 1, . . .) from the posterior distribution and use
simple descriptive statistics to examine any features of the posterior in which
we are interested.

This approach, known as Markov Chain Monte Carlo, (MCMC) to deter-
mining posterior densities has greatly reduced the computational problems that
previously plagued application of the Bayesian methodology. Gelfand and Smith
(1990), as well as a host of others, have popularized this methodology by demon-
strating its use in a wide variety of statistical applications where intractable
posterior distributions previously hindered Bayesian analysis. A simple intro-
duction to the method can be found in Casella and George (1990) and an expos-
itory article dealing specifically with the normal linear model is Gelfand, Hills,
Racine-Poon and Smith (1990). Two recent books that deal in detail with all
facets of these methods are: Gelman, Carlin, Stern and Rubin (1995) and Gilks,
Richardson and Spiegelhalter (1996).

The most widely used approach to MCMC is due to Hastings (1970) which
generalizes a method of Metropolis et al. (1953). A second approach (that
we focus on) is known as Gibbs sampling due to Geman and Geman (1984).
Hastings (1970) suggests that given an initial value θ0 we can construct a chain
by recognizing that any Markov chain that has found its way to a state θt can
be completely characterized by the probability distribution for time t + 1. His
algorithm relies on a proposal or candidate distribution, f(θ|θt) for time t+ 1,
given that we have θt. A candidate point θ⋆ is sampled from the proposal
distribution and:

1. This point is accepted as θt+1 = θ⋆ with probability:

αH(θt, θ
⋆) = min

[

1,
p(θ⋆|D)f(θt|θ

⋆)

p(θt|D)f(θ⋆|θt)

]

(4.4)

2. otherwise, θt+1 = θt, that is we stay with the current value of θ.

In other words, we can view the Hastings algorithm as indicating that we
should toss a Bernoulli coin with probability αH of heads and make a move to
θt+1 = θ⋆ if we see a heads, otherwise set θt+1 = θt. Hastings demonstrates
that this approach to sampling represents a Markov chain with the correct
equilibrium distribution capable of producing samples from the posterior p(θ|D)
we are interested in.

The MCMC method we will rely on is known as Gibbs sampling and dates
to the work of Geman and Geman (1984) in image analysis. It is related to
the EM algorithm (Dempster, Laird and Rubin, 1977) which has been used

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 102

for maximum likelihood estimation in problems involving missing information.
Assume a parameter vector θ = (θ1, θ2), a prior p(θ), and likelihood l(θ|y), that
produces a posterior distribution p(θ|D) = cp(θ)l(θ|y), with c a normalizing
constant. It is often the case that the posterior distribution over all parameters
is difficult to work with. On the other had, if we partition our parameters into
two sets θ1, θ2 and had initial estimates for θ1 (treated like missing information

in the EM algorithm), we could estimate θ2 conditional on θ1 using p(θ2|D, θ̂1).
(Presumably, this estimate is much easier to derive. We will provide details

illustrating this case in section 4.2.1.) Denote the estimate, θ̂2 derived by using

the posterior mean or mode of p(θ2|D, θ̂1), and consider than we are now able to

construct a new estimate of θ1 based on the conditional distribution p(θ1|D, θ̂2),
which can be used to construct another value for θ2, and so on.

In general, for the case of k parameters, the algorithm can be summarized
as:

Initialize θ0

Repeat {

Sample θt+1
1 ∼ p[θ1|D, (θ

t
2, . . . , θ

t
k)]

Sample θt+1
2 ∼ p[θ2|D, (θ

t+1
1 , θt

3, . . . , θ
t
k)]

...

Sample θt+1
k ∼ p[θk|D, (θ

t+1
1 , θt+1

2 , . . . , θt+1
k−1)]

t = t+ 1

}

Geman and Geman (1984) demonstrated that the stochastic process θt from
this approach to sampling the complete sequence of conditional distributions
represents a Markov chain with the correct equilibrium distribution. Gibbs
sampling is in fact closely related to Hastings and Metropolis MCMC meth-
ods. For the case of the spatial autoregressive models, we will need to rely on
Metropolis sampling within a sequence of Gibbs sampling, a procedure that is
often labeled “Metropolis within Gibbs sampling”.

Section 4.1.1 derives a Gibbs sampling approach to estimate the parameters
of our Bayesian heteroscedastic linear model. In Section 4.2 we extend this to
the case of a Bayesian FAR model which requires that we introduce “Metropolis
within Gibbs sampling”. Section 4.2 puts all of these ideas into practice by im-
plementing a MATLAB function far g that produces Gibbs sampling estimates
for the Bayesian heteroscedastic FAR model.

4.1.1 The heteroscedastic Bayesian linear model

To produce estimates using Gibbs sampling, we need to consider the conditional
distributions for each of the parameters, β, σ and V in our model. These distri-
butions are those that would arise from assuming each of the other parameters

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 103

were known. For example, the conditional distribution for β assuming that we
knew σ and V would looks as follows:

β|(σ, V) ∼ N [H(X ′V −1y + σ2T−1c) , σ2H]. (4.5)

H = (X ′V −1X + T−1)−1

Note that this is quite analogous to a generalized least-squares (GLS) version
of the Theil and Goldberger (1961) estimation formulas, known as the “mixed
estimator”. Consider also that this would be fast and easy to compute. It is
often the case that complicated joint posterior distributions for Bayesian models
are associated with relatively simple conditional distributions as this example
illustrates.

Next consider the conditional distribution for the parameter σ assuming that
we knew the parameters β and V in the problem. This distribution would be:

[
n

∑

i=1

(e2i /vi)/σ
2]|(β, V) ∼ χ2(n) (4.6)

Where we let ei = yi−x
′
iβ. This result parallels the simple regression case where

we know that the residuals are χ2 distributed. A difference from the standard
case is that we adjust the ei using the relative variance terms vi as deflators.

Finally, Geweke (1993) shows that the conditional distribution for the pa-
rameters V represent a χ2 distribution with r + 1 degrees of freedom as shown
in (4.7)

[(σ−2e2i + r)/vi]|(β, σ) ∼ χ2(r + 1) (4.7)

Having specified the conditional distributions for all of the parameters in
the model, we proceed to carry out random draws from these distributions until
we collect a large sample of parameter draws. Given our earlier discussion, this
sequence of draws from the series of conditional distributions for all parameters
in the model represents a set of draws that converge in the limit to the true
(joint) posterior distribution of the parameters. That is, despite the use of
conditional distributions in our sampling scheme, a large sample of the draws
can be used to produce valid posterior inferences about the mean and moments
of the multivariate posterior parameter distribution for our model.

The Gibbs sampler for our heteroscedastic Bayesian regression model based
on the three conditional posterior densities in (4.5) through (4.7) involves using
the following steps:

1. Begin with arbitrary values for the parameters β0, σ0 and v0i which we
designate with the superscript 0.

2. Compute the mean and variance of β using (4.5) conditional on the initial
values σ0 and v0i .

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 104

3. Use the computed mean and variance of β to draw a multivariate normal
random vector, which we label β1.

4. Calculate expression (4.6) using β1 determined in step 3 and use this value
along with a random χ2(n) draw to determine σ1.

5. Using β1 and σ1, calculate expression (4.7) and use the value along with
an n−vector of random χ2(r + 1) draws to determine vi, i = 1, . . . , n.

These steps constitute a single pass of the Gibbs sampler. We wish to make
a large number of passes to build up a sample (βj , σj , vj

i) of j values from which
we can approximate the posterior distributions for our parameters.

To illustrate this approach in practice, Example 4.1 shows the MATLAB
code for estimation using the Gibbs sampler set forth above. In this example,
we generate a regression model data set that contains a heteroscedastic set of
disturbances based on a time trend variable. Only the last 50 observations in
the generated data sample contain non-constant variances. This allows us to
see if the estimated vi parameters detect this pattern of non-constant variance
over the last half of the sample.

The generated data set used values of unity for the intercept term β0 and
the two slope parameters, β1 and β2. The prior means for the β parameters
were set to zero with prior variances of 1e+12, reflecting a diffuse prior because
of the very large prior uncertainty.

% ----- Example 4.1 Heteroscedastic Gibbs sampler

n=100; k=3; % set number of observations and variables

x = randn(n,k); b = ones(k,1); % generate data set

tt = ones(n,1); tt(51:100,1) = [1:50]’;

y = x*b + randn(n,1).*sqrt(tt); % heteroscedastic disturbances

ndraw = 1100; nomit = 100; % set the number of draws

bsave = zeros(ndraw,k); % allocate storage for results

ssave = zeros(ndraw,1);

vsave = zeros(ndraw,n);

c = [0.0 0.0 0.0]’; % diffuse prior b means

T = eye(k)*1e+12; % diffuse prior b variance

Q = chol(inv(T)); q = Q*c;

b0 = x\y; % use ols starting values

sige = (y-x*b0)’*(y-x*b0)/(n-k);

V = ones(n,1); in = ones(n,1); % initial value for V

rval = 4; % initial value for rval

qpq = Q’*Q; qpv = Q’*q; % calculate Q’Q, Q’q only once

tic; % start timing

for i=1:ndraw; % Start the sampling

ys = y.*sqrt(V); xs = matmul(x,sqrt(V));

xpxi = inv(xs’*xs + sige*qpq);

b = xpxi*(xs’*ys + sige*qpv); % update b

b = norm_rnd(sige*xpxi) + b; % draw MV normal mean(b), var(b)

bsave(i,:) = b’; % save b draws

e = ys - xs*b; ssr = e’*e; % update sige

chi = chis_rnd(1,n); % do chisquared(n) draw

sige = ssr/chi; ssave(i,1) = sige; % save sige draws

chiv = chis_rnd(n,rval+1); % update vi

e = y - x*b; % redefine e

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 105

vi = ((e.*e./sige) + in*rval)./chiv;

V = in./vi; vsave(i,:) = vi’; % save the draw

end; % End the sampling

toc; % stop timing

bhat = mean(bsave(nomit+1:ndraw,:)); % calculate means and std deviations

bstd = std(bsave(nomit+1:ndraw,:)); tstat = bhat./bstd;

smean = mean(ssave(nomit+1:ndraw,1)); vmean = mean(vsave(nomit+1:ndraw,:));

tout = tdis_prb(tstat’,n); % compute t-stat significance levels

% set up for printing results

in.cnames = strvcat(’Coefficient’,’t-statistic’,’t-probability’);

in.rnames = strvcat(’Variable’,’variable 1’,’variable 2’,’variable 3’);

in.fmt = ’%16.6f’; tmp = [bhat’ tstat’ tout];

fprintf(1,’Gibbs estimates \n’); % print results

mprint(tmp,in);

fprintf(1,’Sigma estimate = %16.8f \n’,smean);

result = theil(y,x,c,R,T); % compare to Theil-Golberger estimates

prt(result); plot(vmean); % plot vi-estimates

title(’mean of vi-estimates’);

We rely on MATLAB functions norm rnd and chis rnd to provide the
multivariate normal and chi-squared random draws. These functions are part
of the Econometrics Toolbox and are discussed in Chapter 8 of the manual.
Note also, we omit the first 100 draws at start-up to allow the Gibbs sampler to
achieve a steady state before we begin sampling for the parameter distributions.

One aspect of the code that is tricky involves the way we deflate the terms
e2i /vi indicated in (4.6). We use ‘e=ys-xs*b’, where ‘ys,xs’ represent the vector
y and matrix X in our model divided by the vi terms. Therefore ‘ssr’ represents
e2i /vi. We then re-define e using ‘y,x’ when computing the vi terms since (4.7)
implies that vi = ι/((e2i /σ

2) + r), where the e2i terms are not deflated.
The results are shown below, where we find that it took only 11.9 seconds to

carry out the 1100 draws. This provides a sample of 1000 draws (after discard-
ing the initial 100 draws for start-up) on which to base our posterior inferences
regarding the parameters β and σ. For comparison purposes, we produced esti-
mates using the theil function from the Econometrics Toolbox that implements
Theil and Goldberger (1961) mixed estimation. These estimates are similar, but
the t−statistics are lower because they suffer from the heteroscedasticity. Our
Gibbs sampled estimates take this into account increasing the precision of the
estimates as indicated by the larger t−statistics.

elapsed_time = 11.9025 seconds

Gibbs estimates

Variable Coefficient t-statistic t-probability

variable 1 0.792589 3.042734 0.002995

variable 2 1.196825 3.802015 0.000247

variable 3 1.007050 3.507125 0.000680

Sigma estimate = 5.00810138

Theil-Goldberger Regression Estimates

R-squared = 0.2360

Rbar-squared = 0.2202

sigma^2 = 10.6332

Durbin-Watson = 2.0750

Nobs, Nvars = 100, 3

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 106

Variable Prior Mean Std Deviation

variable 1 0.000000 1000000.000000

variable 2 0.000000 1000000.000000

variable 3 0.000000 1000000.000000

Posterior Estimates

Variable Coefficient t-statistic t-probability

variable 1 0.845653 0.768487 0.444065

variable 2 1.566902 1.143459 0.255662

variable 3 0.848771 0.761171 0.448401

Figure 4.1 shows the mean of the 1,000 draws for the parameters vi plotted
for the 100 observation sample. Recall that the last 50 observations contained
a generated time-trend pattern of non-constant variance. This pattern was
detected quite accurately by the estimated vi terms.

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10
mean of vi-estimates

Figure 4.1: Vi estimates from the Gibbs sampler

One point that should be noted about Gibbs sampling estimation is that con-
vergence of the sampler needs to be diagnosed by the user. The Econometrics

Toolbox provides a set of convergence diagnostic functions that we demonstrate
in Section 4.3. Fortunately, for simple regression models (and spatial autoregres-

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 107

sive models) convergence of the sampler is usually a certainty, and convergence
occurs quite rapidly. A simple approach to testing for convergence is to run the
sampler once to carry out a small number of draws, say 300 to 500, and a second
time to carry out a larger number of draws, say 1000 to 2000. If the means and
variances for the posterior estimates are similar from both runs, convergence
seems assured.

4.2 The Bayesian FAR model

In this section we turn attention to implementing a Gibbs sampling approach
for the FAR model that can accommodate heteroscedastic disturbances and
outliers. Note that the presence of a few spatial outliers due to enclave effects
or other aberrations in the spatial sample will produce a violation of normality
in small samples. The distribution of disturbances will take on a fat-tailed or
leptokurtic shape. This is precisely the type of problem that the heteroscedastic
modeling approach of Geweke (1993) based on Gibbs sampling estimation was
designed to address.

The Bayesian extension of the FAR model takes the form:

y = ρWy + ε (4.8)

ε ∼ N(0, σ2V)

V = diag(v1, v2, . . . , vn)

ρ ∼ N(c, T)

r/vi ∼ ID χ2(r)/r

r ∼ Γ(m, k)

σ ∼ Γ(ν0, d0)

Where as in Chapter 3, the spatial contiguity matrix W has been standardized
to have row sums of unity and the variable vector y is expressed in deviations
from the means to eliminate the constant term in the model. We allow for an
informative prior on the spatial autoregressive parameter ρ, the heteroscedastic
control parameter r and the disturbance variance σ. This is the most general
Bayesian model, but most practitioners might rely on diffuse priors for σ and ρ.

A diffuse prior for ρ would be implemented by setting the prior mean (c) to
zero and using a large prior variance for T , say 1e+12. To implement a diffuse
prior for σ we would set ν0 = 0, d0 = 0. The prior for r is based on a Γ(m, k)
distribution which has a mean equal to m/k and a variance equal to m/k2.
Recall our discussion of the role of the prior hyperparameter r in allowing the
vi estimates to deviate from their prior means of unity. Small values for r around
2 to 7 allow for non-constant variance and are associated with a prior belief that
outliers or non-constant variance exist. Large values such as r = 30 or r = 50
would produce vi estimates that are all close to unity, forcing the model to take
on a homoscedastic character and produce estimates equivalent to those from

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 108

the maximum likelihood FAR model discussed in Chapter 3. This would make
little sense — if we wished to produce maximum likelihood estimates, it would
be much quicker to use the far function from Chapter 3.

In example 4.1, we set r = 4 to allow ample opportunity for the vi parameters
to deviate from unity. Figure 4.1 shows vi estimates close to unity for the first
50 observations despite our prior setting of r = 4. We will provide examples
that suggests an optimal strategy for setting r is to use small values in the range
from 2 to 7. If the sample data exhibits homoscedastic disturbances that are free
from outliers, the vi estimates will reflect this fact. On the other hand, if there is
evidence of heterogeneity in the errors, these settings for the hyperparameter r
will allow the vi estimates to deviate substantially from unity. Estimates for the
vi parameters that deviate from unity are needed to produce an adjustment in
the estimated parameters ρ and σ that take non-constant variance into account
or robustify our estimates in the presence of outliers.

Econometric estimation problems amenable to Gibbs sampling methods can
take one of two forms. The simplest case is where all of the conditional dis-
tributions are from well-known distributions allowing us to sample random de-
viates using standard computational algorithms. This was the case with our
heteroscedastic Bayesian regression model in example 4.1.

A second more complicated case is where one or more of the conditional
distributions can be expressed mathematically, but take an unknown form. It
is still possible to implement a Gibbs sampler for these models using a host
of alternative methods that are available to produce draws from distributions
taking non-standard forms.

One of the more commonly used ways to deal with this situation is the
Metropolis algorithm presented in Section 4.1. All spatial autoregressive models
require that we sample from the conditional distribution for the parameters ρ
and λ which take a non-standard form. To accomplish this, we rely on what is
known as a “Metropolis within Gibbs” sampler.

To explore the nature of the non-standard conditional distribution for ρ that
arises, consider the conditional distributions for the FAR model parameters
where we rely on diffuse priors, π(ρ) and π(σ) for the parameters (ρ, σ) shown
in (4.9). We also eliminate the individual variance terms vi from the model to
keep things simple.

π(ρ) ∝ constant (4.9)

π(σ) ∝ (1/σ), 0 < σ < +∞

These priors can be combined with the likelihood for this model producing a
joint posterior distribution for the parameters, p(ρ, σ|y).

p(ρ, σ|y) ∝ |In − ρW |σ−(n+1)exp{−
1

2σ2
(y − ρWy)′(y − ρWy)} (4.10)

If we treat ρ as known, the kernel for the conditional posterior (that part of
the distribution that ignores inessential constants) for σ given ρ takes the form:

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 109

p(σ|ρ, y) ∝ σ−(n+1)exp{−
1

2σ2
ε′ε} (4.11)

where ε = y−ρWy. It is important to note that by conditioning on ρ (treating it
as known) we can subsume the determinant, |In−ρW |, as part of the constant of
proportionality, leaving us with one of the standard distributional forms. From
(4.11) we conclude that σ2 ∼ χ2(n).

Unfortunately, the conditional distribution of ρ given σ takes the following
non-standard form:

p(ρ|σ, y) ∝ σ−n/2|In − ρW |{(y − ρWy)′(y − ρWy)}−n/2 (4.12)

To sample from (4.12) we can rely on Metropolis sampling, within the Gibbs
sampling sequence, hence it is often labeled “Metropolis within Gibbs”.

Implementation of the Metropolis sampling algorithm from Section 4.1 is
described here for the case of a symmetric normal candidate generating density,
which we denoted f(θ|θt) in (4.4). This candidate generating density should
work well for the conditional distribution of ρ because, as Figure 4.2 shows, the
conditional distribution of ρ is similar to a normal distribution with the same
mean value. The figure also shows a t−distribution with 3 degrees of freedom,
which would also work well in this application.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

conditional distribution of ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

normal distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

t-distribution with 3 dof

Figure 4.2: Conditional distribution of ρ

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 110

To sample from the conditional distribution p(ρ|σ, y), let ρ0 denote an initial
value of ρ. We generate a value ρc from the candidate normal density using:
ρc = ρ0 + cZ, where Z is a draw from a standard normal distribution and c is
a known constant. (If we wished to rely on a t−distribution as the candidate
density, we could simply replace Z with a random draw from the t−distribution.)

An acceptance probability is computed using: p = min{1, f(ρc)/f(ρ0}. We
then draw a uniform random deviate we label U , and if U < p, the next draw
from f is given by ρ1 = ρc. If on the other hand, U ≥ p, the draw is taken to
be the current value, ρ1 = ρ0.

A MATLAB program to implement this approach for the case of the ho-
moscedastic first-order spatial autoregressive (FAR) model is shown in example
4.2. We use this simple case as an introduction before turning to the slightly
more complicated case of the heteroscedastic FAR model. Note also that we do
not rely on the sparse matrix algorithms which we introduce after this simple
example.

An implementation issue is that we need to impose the restriction:

1/λmin < ρ < 1/λmax

where λmin and λmax are the minimum and maximum eigenvalues of the stan-
dardized spatial weight matrixW . We impose this restriction using an approach
that has been labeled ‘rejection sampling’. Restrictions such as this, as well as
non-linear restrictions, can be imposed on the parameters during Gibbs sam-
pling by simply rejecting values that do not meet the restrictions (see Gelfand,
Hills, Racine-Poon and Smith, 1990).

% ----- Example 4.2 Metropolis within Gibbs sampling FAR model

n=49; ndraw = 1100; nomit = 100; nadj = ndraw-nomit;

% generate data based on a given W-matrix

load wmat.dat; W = wmat; IN = eye(n); in = ones(n,1); weig = eig(W);

lmin = 1/min(weig); lmax = 1/max(weig); % bounds on rho

rho = 0.5; % true value of rho

y = inv(IN-rho*W)*randn(n,1); ydev = y - mean(y); Wy = W*ydev;

% set starting values

rho = -0.5; % starting value for the sampler

sige = 100.0; % starting value for the sampler

c = 0.5; % for the Metropolis step (adjusted during sampling)

rsave = zeros(nadj,1); % storage for results

ssave = zeros(nadj,1); rtmp = zeros(nomit,1);

iter = 1; cnt = 0;

while (iter <= ndraw); % start sampling;

e = ydev - rho*Wy; ssr = (e’*e); % update sige;

chi = chis_rnd(1,n); sige = (ssr/chi);

% metropolis step to get rho update

rhox = c_rho(rho,sige,ydev,W); % c_rho evaluates conditional

rho2 = rho + c*randn(1); accept = 0;

while accept == 0; % rejection bounds on rho

if ((rho2 > lmin) & (rho2 < lmax)); accept = 1; end;

rho2 = rho + c*randn(1); cnt = cnt+1;

end; % end of rejection for rho

rhoy = c_rho(rho2,sige,ydev,W); % c_rho evaluates conditional

ru = unif_rnd(1,0,1); ratio = rhoy/rhox; p = min(1,ratio);

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 111

if (ru < p)

rho = rho2; rtmp(iter,1) = rho; iter = iter+1;

end;

if (iter >= nomit);

if iter == nomit % update c based on initial draws

c = 2*std(rtmp(1:nomit,1));

end;

ssave(iter-nomit+1,1) = sige; rsave(iter-nomit+1,1) = rho;

end; % end of if iter > nomit

end; % end of sampling loop

% print-out results

fprintf(1,’hit rate = %6.4f \n’,ndraw/cnt);

fprintf(1,’mean, std and t-statistic for rho %6.3f %6.3f %6.3f \n’, ...

mean(rsave),std(rsave),mean(rsave)/std(rsave));

fprintf(1,’mean and std of sig %6.3f %6.3f \n’,mean(ssave),std(ssave));

% maximum likelihood estimation for comparison

res = far(ydev,W);

prt(res);

Rejection sampling is implemented in the example with the following code
fragment that examines the candidate draws in ‘rho2’ to see if they are in the
feasible range. If ‘rho2’ is not in the feasible range, another candidate value
‘rho2’ is drawn and we increment a counter variable ‘cnt’ to keep track of how
many candidate values are found outside the feasible range. The ‘while loop’
continues to draw new candidate values and examine whether they are in the
feasible range until we find a candidate value within the limits. Finding this
value terminates the ‘while loop’. This approach ensures than any values of ρ
that are ultimately accepted as draws will meet the constraints.

% metropolis step to get rho update

rho2 = rho + c*randn(1); accept = 0;

while accept == 0; % rejection bounds on rho

if ((rho2 > lmin) & (rho2 < lmax)); accept = 1; end;

rho2 = rho + c*randn(1); cnt = cnt+1;

end; % end of rejection for rho

Another point to note about the example is that we adjust the variable ‘c’
used as the standard deviation for the normally distributed candidate values.
The adjustment relies on the initial 100 draws of ‘rho’ to compute a new value
for ‘c’ based on two standard deviations of the initial draws. The following code
fragment carries this out, where the initial ‘rho’ draws have been stored in a
vector ‘rtmp’.

if iter == nomit % update c based on initial draws

c = 2*std(rtmp(1:nomit,1));

end;

Consider also, that we delay collecting our sample of draws for the param-
eters ρ and σ until we have executed ‘nomit’ burn-in draws, which is 100 in
this case. This allows the sampler to settle into a steady state, which might
be required if poor values of ρ and σ were used to initialize the sampler. In
theory, any arbitrary values can be used, but a choice of good values will speed

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 112

up convergence of the sampler. A plot of the first 100 values drawn from this
example is shown in Figure 4.3. We used ρ = −0.5 and σ2 = 100 which were
deliberately chosen as very poor starting values since the true value of ρ = 0.5
and σ2 = 1. The plots of the first 100 values indicate that even if we start
with very poor values, far from the true values used to generate the data, only
a few iterations are required to reach a steady state. This is usually true for
regression-based Gibbs samplers. Section 4.2 deals with the issue of testing for
convergence of the sampler in detail.

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

first 100 draws for rho

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

first 100 draws for sige

Figure 4.3: First 100 Gibbs draws for ρ and σ

The function c rho evaluates the conditional distribution for ρ given σ2 at
any value of ρ. Of course, we could use our sparse matrix algorithms in this
function to handle large data sample problems, a subject we will turn to later.

function cout = c_rho(rho,sige,y,W)

% evaluates conditional distribution of rho

% given sige for the spatial autoregressive model

n = length(y);

IN = eye(n); B = IN - rho*W;

detm = log(det(B));

epe = (n/2)*log(y’*B’*B*y);

cout = -epe -(n/2)*log(sige) + detm; cout = exp(cout);

We present results from executing the code shown in example 4.2, where both

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 113

Gibbs estimates based on the mean of the 1,000 draws for ρ and σ as well as the
standard deviations are shown. For contrast, we present maximum likelihood
estimates, which for the case of the homoscedastic Gibbs sampler implemented
here with a diffuse prior on ρ and σ should produce similar estimates.

hit rate = 0.3325

mean, std and t-statistic for rho 0.434 0.180 2.413

mean and std of sig 1.006 0.210

First-order spatial autoregressive model Estimates

R-squared = 0.1729

sigma^2 = 0.9408

Nobs, Nvars = 49, 1

log-likelihood = -121.7366

of iterations = 11

min and max rho = -1.5362, 1.0000

Variable Coefficient t-statistic t-probability

rho 0.457534 2.146273 0.036935

The time needed to generate 1,100 draws was around 10 seconds, which
represents 100 draws per second. We will see that similar speed can be achieved
even for large data samples.

From the results we see that the mean and standard deviations from the
Gibbs sampler produce estimates close to the maximum likelihood estimates,
and to the true values used to generate the model data.

The reader should keep in mind that we do not advocate using the Gibbs
sampler in place of maximum likelihood estimation. That is, we don’t really wish
to implement a homoscedastic version of the FAR model using Gibbs sampling.
We turn attention to the more general heteroscedastic case that allows for either
diffuse or informative priors in the next section.

4.2.1 Constructing a function far g()

We focus attention on implementation details concerned with constructing a
MATLAB function far g that will produce estimates for the Bayesian FAR
model. This function will rely on a sparse matrix algorithm approach to handle
problems involving large data samples. It will also allow for diffuse or informa-
tive priors and handle the case of heterogeneity in the disturbance variance.

The first thing we need to consider is that to produce a large number of
draws, say 1,000, we would need to evaluate the conditional distribution of ρ
2,000 times. (Note that we called this function twice in example 4.2). Each
evaluation would require that we compute the determinant of the matrix (In −
ρW), which we have already seen is a non-trivial task for large data samples.
To avoid this, we rely on the Pace and Barry (1997) approach discussed in the
previous chapter. Recall that they suggested evaluating this determinant over
a grid of values in the feasible range of ρ once at the outset. Given that we
have carried out this evaluation and stored the values for the determinant and
associated values of ρ, we can simply “look-up” the appropriate determinant in

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 114

our function that evaluates the conditional distribution. That is, the call to the
conditional distribution function will provide a value of ρ for which we need to
evaluate the conditional distribution. If we already know the determinant for a
grid of all feasible ρ values, we can simply look up the determinant value closest
to the ρ value and use it during evaluation of the conditional distribution. This
saves us the time involved in computing the determinant twice for each draw of
ρ.

The code that we execute at the outset in our function far g to compute
determinant values over a grid of ρ values is shown below. It should not be new,
as it was already used in Chapter 3 when we illustrated the Pace and Barry
approach to spatial autoregressive estimation of large problems.

opt.tol = 1e-3; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2); lmax = 1/lambda(1);

results.rmax = lmax; results.rmin = lmin;

% compute a detval vector based on Pace and Berry’s approach

rvec = lmin-0.005:.005:lmax+0.005;

spparms(’tight’);

z = speye(n) - 0.1*sparse(W);

p = colmmd(z);

niter = length(rvec);

detval = zeros(niter,2);

for i=1:niter;

rho = rvec(i); z = speye(n) - rho*sparse(W);

[l,u] = lu(z(:,p));

detval(i,1) = sum(log(abs(diag(u)))); detval(i,2) = rho;

end;

Note that we save the values of the determinant alongside the associated
values of ρ in a 2-column matrix named detval. We will simply pass this
matrix to the conditional distribution function c far which is shown below:

function cout = c_far(rho,y,W,detval,sige,c,T)

% PURPOSE: evaluate the conditional distribution of rho given sige

% 1st order spatial autoregressive model using sparse matrix algorithms

% ---

% USAGE:cout = c_far(rho,y,W,detval,sige,c,T)

% where: rho = spatial autoregressive parameter

% y = dependent variable vector

% W = spatial weight matrix

% detval = an (ngrid,2) matrix of values for det(I-rho*W)

% over a grid of rho values

% detval(:,1) = determinant values

% detval(:,2) = associated rho values

% sige = sige value

% c = optional prior mean for rho

% T = optional prior variance for rho

% ---

% RETURNS: a conditional used in Metropolis-Hastings sampling

% NOTE: called only by far_g

% --

% SEE ALSO: far_g, c_sar, c_sac, c_sem

% ---

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 115

i1 = find(detval(:,2) <= rho + 0.005);

i2 = find(detval(:,2) <= rho - 0.005);

i1 = max(i1); i2 = max(i2);

index = round((i1+i2)/2);

detm = detval(index,1); n = length(y);

z = speye(n) - rho*sparse(W);

if nargin == 5, % diffuse prior

epe = (n/2)*log(y’*z’*z*y);

elseif nargin == 7 % informative prior

epe = (n/2)*log(y’*z’*z*y + (rho-c)^2/T);

end;

cout = -epe -(n/2)*log(sige) + detm;

In the function c far, we find the determinant value that is closest to the
ρ value for which we are evaluating the conditional distribution. This is very
fast in comparison to calculating the determinant. Since we need to carry out a
large number of draws, this approach works better than computing determinants
for every draw. Note that in the case of maximum likelihood estimation, the
opposite was true. There we only needed to 10 to 20 evaluations of the likelihood
function, making the initial grid calculation approach of Pace and Barry much
slower.

The other point to note about our conditional distribution function c far
is that we allow for an informative prior mean and variance for the spatial
autoregressive parameter ρ in the model.

The function far g that implements the Gibbs sampler for this model is
shown below, where we rely on a structure variable ‘prior’ to input informa-
tion regarding the Bayesian priors for ρ and the hyperparameter r regarding
heteroscedasticity.

function results = far_g(y,W,ndraw,nomit,prior,start)

% PURPOSE: Gibbs sampling estimates of the 1st-order Spatial

% model: y = alpha + rho*W*y + e, e = N(0,sige*V),

% V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)

% rho = N(c,T), sige = gamma(nu,d0)

%--

% USAGE: result = far_g(y,W,ndraw,nomit,prior,start)

% where: y = nobs x 1 independent variable vector

% W = nobs x nobs 1st-order contiguity matrix (standardized)

% ndraw = # of draws

% nomit = # of initial draws omitted for burn-in

% prior = a structure variable for prior information input

% prior.rho, prior mean for rho, c above, default = diffuse

% priov.rcov, prior rho variance, T above, default = diffuse

% prior.nu, informative Gamma(nu,d0) prior on sige

% prior.d0 informative Gamma(nu,d0) prior on sige

% default for above: nu=0,d0=0 (diffuse prior)

% prior.rval, r prior hyperparameter, default=4

% prior.m, informative Gamma(m,k) prior on r

% prior.k, informative Gamma(m,k) prior on r

% prior.rmin, (optional) min value of rho to use in sampling

% prior.rmax, (optional) max value of rho to use in sampling

% start = (optional) (2x1) vector of rho, sige starting values

% (defaults, rho = 0.5, sige = 1.0)

%---

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 116

% RETURNS: a structure:

% results.meth = ’far_g’

% results.pdraw = rho draws (ndraw-nomit x 1)

% results.sdraw = sige draws (ndraw-nomit x 1)

% results.vmean = mean of vi draws (nobs x 1)

% results.rdraw = r-value draws (ndraw-nomit x 1)

% results.pmean = rho prior mean (if prior input)

% results.pstd = rho prior std dev (if prior input)

% results.nu = prior nu-value for sige (if prior input)

% results.d0 = prior d0-value for sige (if prior input)

% results.r = value of hyperparameter r (if input)

% results.m = m prior parameter (if input)

% results.k = k prior parameter (if input)

% results.nobs = # of observations

% results.ndraw = # of draws

% results.nomit = # of initial draws omitted

% results.y = actual observations

% results.yhat = mean of posterior for y-predicted (nobs x 1)

% results.time = time taken for sampling

% results.accept = acceptance rate

% results.pflag = 1 for prior, 0 for no prior

% results.rmax = 1/max eigenvalue of W (or rmax if input)

% results.rmin = 1/min eigenvalue of W (or rmin if input)

%--

% NOTES: use either improper prior.rval

% or informative Gamma prior.m, prior.k, not both of them

%--

[n n2] = size(W);

if n ~= n2, error(’far: Wrong size 1st-order contiguity matrix’); end;

nu = 0; d0 = 0; mm = 0; c = 0; T = 1000.0; rval = 4; % default values

pflag = 0; rflag = 0; rho = 0.5; sige = 1.0; % default starting values

if nargin == 6 % user supplied starting values

rho = start(1,1); sige = start(2,1);

fields = fieldnames(prior); nf = length(fields);

for i=1:nf

if strcmp(fields{i},’nu’), nu = prior.nu;

elseif strcmp(fields{i},’d0’), d0 = prior.d0;

elseif strcmp(fields{i},’rho’), c = prior.rho; pflag = 1;

elseif strcmp(fields{i},’rcov’), T = prior.rcov;

elseif strcmp(fields{i},’rval’), rval = prior.rval;

elseif strcmp(fields{i},’m’), mm = prior.m; kk = prior.k;

rval = gamm_rnd(1,1,mm,kk); % initial rval

elseif strcmp(fields{i},’rmin’)

lmin = prior.rmin; lmax = prior.rmax; rflag = 1;

end;

end;

elseif nargin == 4 % user wants all default values

else, error(’Wrong # of arguments to far_g’); end;

if (c == 0 & T == 1000.0), pflag = 0; end;

V = ones(n,1); in = ones(n,1); vi = in; ys = y.*sqrt(V); % initialize

bsave = zeros(ndraw-nomit,1); % allocate storage for results

ssave = zeros(ndraw-nomit,1); vmean = zeros(n,1); yhat = zeros(n,1);

if mm~= 0, rsave = zeros(ndraw-nomit,1); end;

t0 = clock;

if rflag == 0, opt.tol = 1e-3; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2); lmax = 1/lambda(1);

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 117

end;

results.rmax = lmax; results.rmin = lmin;

% compute a detval vector based on Pace and Barry’s approach

rvec = lmin-0.005:.005:lmax+0.005; spparms(’tight’);

z = speye(n) - 0.1*sparse(W); p = colmmd(z);

niter = length(rvec); detval = zeros(niter,2);

for i=1:niter;

rho = rvec(i); z = speye(n) - rho*sparse(W); [l,u] = lu(z(:,p));

detval(i,1) = sum(log(abs(diag(u)))); detval(i,2) = rho;

end;

cc = 0.2; rtmp = zeros(nomit,1); iter = 1; cnt = 0; cntr = 0;

while (iter <= ndraw); % start sampling;

% update sige;

nu1 = n + nu; e = ys - rho*sparse(W)*ys; d1 = d0 + e’*e;

chi = chis_rnd(1,nu1); t2 = chi/d1; sige = 1/t2;

% update vi

e = y - rho*sparse(W)*y; chiv = chis_rnd(n,rval+1);

vi = ((e.*e./sige) + in*rval)./chiv; V = in./vi;

ys = y.*sqrt(V);

% update rval (if needed)

if mm ~= 0, rval = gamm_rnd(1,1,mm,kk); end;

% metropolis step to get rho update

if pflag == 0; % case of diffuse prior

rhox = c_far(rho,ys,W,detval,sige); % c_rho evaluates conditional function

else % an informative prior

rhox = c_far(rho,ys,W,detval,sige,c,T); % c_rho evaluates conditional function

end;

rho2 = rho + cc*randn(1); accept = 0;

while accept == 0; % rejection bounds on rho

if ((rho2 > lmin) & (rho2 < lmax)), accept = 1;

else, rho2 = rho + cc*randn(1); cntr = cntr+1;

end;

end; % end of rejection for rho

if pflag == 0 % case of diffuse prior

rhoy = c_far(rho2,ys,W,detval,sige); % c_rho evaluates conditional function

else % an informative prior

rhoy = c_far(rho2,ys,W,detval,sige,c,T);% c_rho evaluates conditional function

end;

ru = unif_rnd(1,0,1);

if ((rhoy - rhox) > exp(1)), p = 1;

else, ratio = exp(rhoy-rhox); p = min(1,ratio);

end;

if (ru < p), rho = rho2; rtmp(iter,1) = rho; end;

if (iter >= nomit);

if iter == nomit % update cc based on initial draws

tst = 2*std(rtmp(1:nomit,1));

if tst > 0.05,cc = 2*std(rtmp(1:nomit,1)); end;

end;

ssave(iter-nomit+1,1) = sige; bsave(iter-nomit+1,1) = rho;

vmean = vmean + vi;

yhat = yhat + randn(n,1).*sqrt(sige*vi) + rho*sparse(W)*y;

if mm~= 0, rsave(iter-nomit+1,1) = rval; end;

end; % end of if iter > nomit

iter = iter+1;

end; % end of sampling loop

vmean = vmean/(iter-nomit-1); yhat = yhat/(iter-nomit-1);

gtime = etime(clock,t0);

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 118

results.accept = 1 - cntr/(iter+cntr);

results.meth = ’far_g’; results.pdraw = bsave; results.sdraw = ssave;

results.vmean = vmean; results.yhat = yhat;

if pflag == 1

results.pmean = c; results.pstd = sqrt(diag(T));

results.nu = nu; results.d0 = d0;

end;

results.nobs = n; results.ndraw = ndraw; results.nomit = nomit;

results.time = gtime; results.y = y; results.nvar = 1;

results.pflag = pflag;

if mm~= 0

results.rdraw = rsave; results.m = mm; results.k = kk;

else, results.r = rval; results.rdraw = 0;

end;

4.2.2 Using the function far g()

As the documentation makes clear, there are a number of user options to fa-
cilitate models based on alternative prior specifications. We will discuss and
illustrate the use of these alternative approaches to using the model.

First, we illustrate a diffuse prior for ρ and σ along with a prior belief in
homoscedastic disturbances with example 4.3 that relies on the Gypsy moth
data set introduced in Chapter 1.

% ----- Example 4.3 Using the far_g() function

load moth.dat; % moth counts 1986 to 1993 for 68 Michigan counties

load first.dat; % non-standardized 1st-order spatial weight matrix

W = normw(first); % standardize the contiguity matrix

y91 = moth(:,6); % 1991 moth counts for 68 counties

ydev = y91 - mean(y91); % put data in deviations from means form

% do maximum likelihood for comparison

resl = far(ydev,W);

ndraw = 1100; nomit = 100;

prior.rval = 30; % homoscedastic model,

% diffuse prior for rho is the default

resg = far_g(ydev,W,ndraw,nomit,prior);

prt(resl); prt(resg);

For comparison, we also produce maximum likelihood estimates which should
be similar given our use of a diffuse prior for ρ and σ as well as the homoscedastic
prior for the vi terms. The results from example 4.3 are shown below where we
see a warning printed by MATLAB indicating that matrix inversion in the far
function was ill-conditioned. A check of line 101 in the function far.m shows
that the warning arose when attempting to compute the t−statistic for our
parameter ρ using formulas based on the theoretical information matrix. This
warning should make us suspect inaccuracy in the t−statistic reported for the
maximum likelihood estimate.

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.130879e-16.

> In MATLAB5:Toolbox:jpl:spatial:far.m at line 101

First-order spatial autoregressive model Estimates

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 119

R-squared = 0.6881

sigma^2 = 27459712.7303

Nobs, Nvars = 68, 1

log-likelihood = -1356.3526

of iterations = 13

min and max rho = -1.2918, 1.0000

Variable Coefficient t-statistic t-probability

rho 0.853698 9.941171 0.000000

Gibbs sampling First-order spatial autoregressive model

R-squared = 0.6998

sigma^2 = 13618041.4212

r-value = 30

Nobs, Nvars = 68, 1

ndraws,nomit = 1100, 100

acceptance rate = 0.5416

time in secs = 20.9827

min and max rho = -1.2918, 1.0000

Variable Coefficient t-statistic t-probability

rho 0.892970 18.122507 0.000000

The Bayesian and maximum likelihood estimates for ρ are similar as is the
fit indicated by the R−squared statistic. The t−statistic from Gibbs sampling
is nearly twice the maximum likelihood value. Estimates of σ2 are also quite
different, with the maximum likelihood estimate twice the magnitude of that
from the Gibbs sampler. This would of course explain the difference in the
t−statistics, since the t−statistic involves the parameter σ.

The printed output for the Bayesian FAR model reports the time taken to
carry out the draws as well as the acceptance rate. We will see in the next
example that setting a smaller value for the hyperparameter r speeds up the
Gibbs sampler. Another way to increase the speed of the sampler is to input
limits for the feasible range on ρ so these need not be computed.

What explains the large difference in the estimates for σ2 produced by the
two models? A plot of the posterior means for the parameters vi is shown in
Figure 4.4, where we see evidence of non-constant variance or outliers indicated
by the large vi estimates. These relatively large estimates arise even with a
homoscedastic prior imposed by the large value of r = 30 used to estimate the
model. This indicates that the sample data contradicts our homoscedastic prior,
suggesting a more appropriate model would rely on a heteroscedastic prior based
on a small value for r.

Bayesian methods are often used to solve problems of ill-conditioning in
regression problems and we might take advantage of our ability to specify a
prior for the parameter ρ in the Bayesian model to overcome the possible ill-
conditioning in this problem. To specify a prior for the parameter ρ, we can
rely on an estimate based on the sample data from the previous year, 1990.
In addition, we will rely on a prior setting for the hyperparameter r = 4 to
robustify against the heteroscedasticity.

Example 4.4 illustrates how to accomplish estimates that rely on the poste-

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 120

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

P
o

s
te

ri
o

r
m

e
a

n
 o

f
v i e

s
ti
m

a
te

s

Michigan counties

Figure 4.4: Posterior means for vi estimates

rior mean and variance for ρ from the 1990 sample as a prior mean for the 1991
sample.

% ----- Example 4.4 An informative prior for far_g()

load moth.dat; % moth counts 1986 to 1993 for 68 Michigan counties

load first.dat; % non-standardized 1st-order spatial weight matrix

W = normw(first); % standardize the contiguity matrix

y90 = moth(:,5); % 1990 moth counts for 68 counties

y91 = moth(:,6); % 1991 moth counts for 68 counties

ydev = y90 - mean(y90); % put data in deviations from means form

ndraw = 1100; nomit = 100;

prior.rval = 4; % heteroscedastic model,

% diffuse prior for rho is the default

resg = far_g(ydev,W,ndraw,nomit,prior);

% recover the posterior mean and variance

prior.rho = mean(resg.pdraw);

prior.rcov = std(resg.pdraw)^2;

ydev = y91 - mean(y91);

resg = far_g(ydev,W,ndraw,nomit,prior);

prt(resg);

The results from example 4.4 are shown below. Notice that the printing
function detects the presence of an informative prior and prints information
regarding the prior mean and standard deviation used in the problem. The

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 121

time required for this model was 15 seconds compared to nearly 21 seconds for
the model based on r = 30. This speed difference is due to the fact that the
function chis rnd uses rejection sampling to produce random draws from the
chi-squared distribution. The rejection rate increases for larger values of r, so
this slows down the function slightly. I will argue below that an optimal strategy
is to set values for r between 2 and 7 for all Bayesian FAR model estimation
problems, which eliminates this as a concern.

These estimation results point to an even smaller estimate for σ2 as they
should. The maximum likelihood model estimates σ2In, whereas the Bayesian
model estimates σ2V and we have already seen that V �= In for this sample
data set.

Gibbs sampling First-order spatial autoregressive model

R-squared = 0.6923

sigma^2 = 10870996.0768

r-value = 4

Nobs, Nvars = 68, 1

ndraws,nomit = 1100, 100

acceptance rate = 0.5740

time in secs = 15.1158

min and max rho = -1.2917, 1.0000

Variable Prior Mean Std Deviation

rho 0.826548 0.077213

Posterior Estimates

Variable Coefficient t-statistic t-probability

rho 0.859211 13.603231 0.000000

The mean of the posterior estimates for vi returned by the model in example
4.4 with r = 4 are shown in Figure 4.5, where we see very large departures from
unity. This explains the large difference between the maximum likelihood and
Bayesian estimate for σ2. It also suggests the Bayesian estimate is closer to
truth.

One question that arises regards setting a value for the hyperparameter r
in the Bayesian FAR model. It has been my experience that a good rule-of-
thumb is to use values of r between 2 and 7 for all models. If the sample data
do not contain outliers or non-constant variance, these values for r produce
vi estimates that are relatively constant and close to unity. If on the other
hand, heteroscedasticity exists, these settings will allow for sufficient divergence
of the vi parameters from unity to accommodate the non-constant variance or
robustify against the outliers. Posterior estimates for the other parameters in
the spatial autoregressive models tend not to differ much over a range of values
for r from 2 to 7.

Another possibility is to assign a proper prior for the parameter r. Use
of a single setting for this hyperparameter in the model is improper from
a strict Bayesian perspective. The function far g allows the user to spec-
ify a Gamma(m, k) prior for the parameter r in the problem. Recall, the
Gamma(m, k) distribution has a mean of m/k and variance equal to m/k2.

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 122

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

P
o
s
te

ri
o
r

m
e
a
n
s
 f
o
r

v i

Michigan counties

Figure 4.5: Posterior vi estimates based on r = 4

A setting of m = 8, k = 2 indicates a prior mean of 4 and variance of 2, which
is consistent with my rule-of-thumb range for r between 2 and 7.

Example 4.5 illustrates use of an informative Gamma(8,2) prior for r and
eliminates the informative prior for ρ as a test of how sensitive the posterior
estimate in example 4.4 is to the use of a prior for ρ and the improper prior
setting of r = 4.

% ----- Example 4.5 An informative prior for r

load moth.dat; % moth counts 1986 to 1993 for 68 Michigan counties

load first.dat; % non-standardized 1st-order spatial weight matrix

W = normw(first); % standardize the contiguity matrix

y91 = moth(:,6); % 1991 moth counts for 68 counties

ydev = y91 - mean(y91); % standardize y

ndraw = 1100; nomit = 100;

prior.m = 8; % informative prior for rval

prior.k = 2; % with mean=4, variance = 2

% diffuse prior for rho is the default

resg = far_g(ydev,W,ndraw,nomit,prior);

prt(resg);plt(resg);

One point to note regarding use of an informative prior for r is that a larger
number of draws may be needed to achieve convergence. This is because we are

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 123

sampling on another parameter in the model. The use of an improper prior pro-
duces estimates that are conditional on the value of r that we set, whereas use of
a proper prior distribution results in unconditional estimates. The estimates are
unconditional because they represent an average over the values sampled for r,
producing a situation where this parameter is “integrated out” of the posterior.
My applied experience suggests that the estimates based on an improper setting
of r between 2 and 7 versus the use of a proper Gamma(m, k) prior centered
on this range seldom differ. The results from example 4.5 shown below confirm
this. We increased the draws to 2100 for this model as indicated in the printed
output.

Gibbs sampling First-order spatial autoregressive model

R-squared = 0.6841

sigma^2 = 11228592.3742

rmean = 4.0104

Nobs, Nvars = 68, 1

ndraws,nomit = 2100, 100

acceptance rate = 0.5692

time in secs = 27.2387

min and max rho = -1.2918, 1.0000

Variable Coefficient t-statistic t-probability

rho 0.840064 11.313753 0.000000

We see that the estimates are reasonably insensitive to the use of the infor-
mative prior for ρ based on the 1990 sample and the improper setting of r = 4.
A function plt exists that presents the actual versus the mean of the posterior
for the predicted values, the residuals and a plot of the posterior density for
the parameter ρ. In the next section we will demonstrate the use of a function
pltdens to produce a nonparametric density estimate of any parameter based
on the draws from the Gibbs sampler. The graphical presentation of results
produced by plt for example 4.5 are shown in Figure 4.6

An important issue in using Gibbs sampling is convergence of the sampler
to the posterior distribution. We know from theory that the sampler converges
in the limit as n → ∞, but in any applied problem one must determine how
many draws to make with the sampler. Ad-hoc convergence tests usually work
well in simple regression models of the type considered here. For example,
Smith and Roberts (1992) proposed a test they label the ‘felt-tip pen test’,
that compares smoothed histograms or distributions from earlier draws in the
sequence of passes through the sampler to those from later draws. If the two
distributions are similar — within the tolerance of the felt-tip pen, convergence
is assumed to have taken place.

The next section is devoted to an explanation and demonstration of functions
that carry out convergence diagnostics for a sequence of Gibbs draws. These
may be helpful in applied spatial econometric problems involving any of the
Bayesian spatial autoregressive models.

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 124

0 10 20 30 40 50 60 70
-2

0

2

4

6
x 10

4 FAR Gibbs Actual vs. Predicted

0 10 20 30 40 50 60 70
-2

0

2

4
x 10

4 Residuals

0.5 0.6 0.7 0.8 0.9 1 1.1

0

1

2

3

Posterior density for rho

Figure 4.6: Graphical output for far g

4.3 Monitoring convergence of the sampler

There is some evidence that linear regression models exhibit rapid convergence,
and we might suppose this to be the case for spatial autoregressive models as
well. It should be noted that once convergence occurs, we need to continue
making passes to build up a sample from the posterior distribution which we
use to make inferences about the parameters. As one might expect, convergence
is a function of how complicated the set of conditional distributions are. For
example, Geweke (1993) found that Gibbs sampling the tobit censured regres-
sion model produced poor results with 400 passes and much better results with
10,000 passes. We will illustrate tobit censored spatial autoregressive models in
Chapter 5.

Best et al., 1995 provide a set of Splus functions that implement six dif-
ferent MCMC convergence diagnostics, some of which have been implemented
in a MATLAB function coda. This function provides: autocorrelation esti-
mates, Rafterty-Lewis (1995) MCMC diagnostics, Geweke (1992) NSE, (numer-
ical standard errors) RNE (relative numerical efficiency) estimates, and Geweke
Chi-squared test on the means from the first 20% of the sample versus the
last 50%. We describe the role of each of these diagnostic measures using the

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 125

Bayesian FAR model in example 4.6.

% ----- Example 4.6 Using the coda() function

load Wmat.dat; % standardized 1st-order contiguity matrix

n=49; % from Anselin (1988) Columbus data set

W = Wmat; IN = eye(n);

rho = 0.75; % true value of rho

y = inv(IN - rho*W)*randn(n,1); % general FAR model y

ndraw = 1100; nomit = 100;

prior.rval = 30;

% rely on a diffuse prior for rho

result = far_g(y,W,ndraw,nomit,prior);

vnames = strvcat(’rho’,’sigma’);

coda([result.pdraw result.sdraw],vnames);

The example program generates a sample y containing 49 observations based
on a first-order contiguity matrix from Anselin’s (1988) Columbus neighborhood
crime data set. A Bayesian FAR model is estimated using the far g function
and the sample of 1000 draws for ρ and σ returned by the function are input to
the function coda that carries out the convergence diagnostics.

The sample Gibbs draws for the parameter ρ are in the results structure
variable, ‘result.pdraw’ which we send down to the coda function to produce
convergence diagnostics along with the draws for the parameter σ which are
in ‘result.sdraw’. These two vectors of draws are combined to form a matrix
“on-the-fly” using the square brackets. We also include a variable names string
for labeling the output from coda.

The function coda uses a MATLAB variable ‘nargout’ to determine if the
user has called the function with an output argument. If so, the function returns
a result structure variable that can be printed later using the prt function. In
the case where the user supplies no output argument, (as in example 4.6 above)
the convergence diagnostics will be printed to the MATLAB command window.

A partial listing of the documentation for the function coda is shown below,
where the form of the structure variable returned by coda when called with an
output argument has been eliminated to save space.

PURPOSE: MCMC convergence diagnostics, modeled after Splus coda

--

USAGE: coda(draws,vnames,info)

or: result = coda(draws)

where: draws = a matrix of MCMC draws (ndraws x nvars)

vnames = (optional) string vector of variable names (nvar x 1)

info = (optional) structure setting input values

info.q = Raftery quantile (default = 0.025)

info.r = Raftery level of precision (default = 0.01)

info.s = Rafterty probability for r (default = 0.950)

info.p1 = 1st % of sample for Geweke chi-sqr test (default = 0.2)

info.p2 = 2nd % of sample for Geweke chi-sqr test (default = 0.5)

--

NOTES: you may supply only some of the info-structure arguments

the remaining ones will take on default values

--

RETURNS: output to command window if nargout = 0

autocorrelation estimates

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 126

Rafterty-Lewis MCMC diagnostics

Geweke NSE, RNE estimates

Geweke chi-sqr prob on means from info.p1 vs info.p2

a results structure if nargout = 1

The results from executing the example program as are follows:

MCMC CONVERGENCE diagnostics

Based on sample size = 1000

Autocorrelations within each parameter chain

Variable Lag 1 Lag 5 Lag 10 Lag 50

rho 0.761 0.263 0.128 -0.011

sigma 0.214 0.001 -0.084 0.016

Raftery-Lewis Diagnostics for each parameter chain

(q=0.0250, r=0.010000, s=0.950000)

Variable Thin Burn Total(N) (Nmin) I-stat

rho 1 25 6703 937 7.154

sigma 1 25 6703 937 7.154

Geweke Diagnostics for each parameter chain

Variable Mean std dev NSE iid RNE iid

rho 0.781235 0.097552 0.003085 1.000000

sigma 1.217190 0.341255 0.010791 1.000000

Variable NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15%

rho 0.007297 0.178744 0.006446 0.229030 0.005731 0.289777

sigma 0.013207 0.667631 0.011375 0.900001 0.009856 1.198759

Geweke Chi-squared test for each parameter chain

First 20% versus Last 50% of the sample

Variable rho

NSE estimate Mean N.S.E. Chi-sq Prob

i.i.d. 0.784250 0.003733 0.337867

4% taper 0.785617 0.007915 0.630768

8% taper 0.784889 0.007811 0.631370

15% taper 0.784199 0.007105 0.616461

Variable sigma

NSE estimate Mean N.S.E. Chi-sq Prob

i.i.d. 1.208643 0.012847 0.715432

4% taper 1.209183 0.015739 0.756729

8% taper 1.209553 0.015622 0.750423

15% taper 1.209950 0.014466 0.727674

The role of each convergence diagnostic measure is described in the following
sections.

4.3.1 Autocorrelation estimates

The role of the time-series autocorrelation estimates is to provide an indication
of how much independence exists in the sequence of ρ and σ parameter draws.
From time-series analysis we know that if ρ, i = 1, . . . , n is a stationary corre-
lated process, then ρ̄ = (1/n)

∑n
i=1 ρi is a consistent estimate of E(ρ) as n→ ∞,

so it is permissible to simulate correlated draws from the posterior distribution

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 127

to summarize the features of the posterior. This is provided that we produce
a large enough sample of draws, and the amount of correlation plays a role in
determining the number of draws necessary. A high degree of autocorrelation
indicates that we may need to carry out more draws to achieve a sample of
sufficient size to draw accurate posterior estimates.

The coda results indicate that our draws for the parameter ρ exhibit a
large autocorrelation at lag 1, but then tails off at lags 5, 10 and 50. The
autocorrelation structure for the parameter σ reflects a smaller value at lag 1
and then tails off as well. The autocorrelation structure for these two parameters
indicate that we may need to produce a larger number of draws with our Gibbs
sampler.

4.3.2 Raftery-Lewis diagnostics

Raftery and Lewis (1992a, 1992b, 1995) proposed a set of diagnostics that they
implemented in a FORTRAN program named Gibbsit, which were converted
to a MATLAB function raftery. This function is called by coda, but can also
be used independently of coda. Given some output from a Gibbs (or MCMC)
sampler, Raftery and Lewis provide an answer regarding how long to monitor the
chain of draws that is based on the accuracy of the posterior summaries desired
by the user. They require that the user specify three pieces of information
that are set to default values by coda, or can be user-defined with a structure
variable ‘info’ that is an input argument to the coda and raftery functions.

1. Which quantiles of the marginal posteriors are you interested in? Usually
the answer is the 2.5% and 97.5% points, because these are the basis for
a 95% interval estimate. This information is set using ‘info.q’, which has
a default value of 0.025.

2. What is the minimum probability needed to archive the accuracy goals. A
default value of 95% is used, or can be set by the user with ‘info.s’, which
has a default value of 0.95.

3. How much accuracy is desired in the estimated quantiles? Raftery and
Lewis specify this using the area to the left (in the case of info.q = 0.025)
or right (in the case of info.q=0.975) of the reported quantile in the CDF.
By default info.r=0.01, so that nominal reporting based on a 95% interval
using the 0.025 and 0.975 quantile points should result in actual posterior
values that lie between 0.94 and 0.96.

Given our draws for ρ, raftery dichotomizes the draws using a binary time-
series that is unity if ρi ≤ ‘info.q’ and zero otherwise. This binary chain should
be approximately Markovian so standard results for two-state Markov chains
can be used to estimate how long the chain should be run to achieve the desired
accuracy for the chosen quantile ‘info.q’.

The function coda prints out three different estimates from the raftery
function. A thinning ratio which is a function of the amount of autocorrelation

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 128

in the draws, the number of draws to use for ‘burn-in’ before beginning to
sample the draws for purposes of posterior inference, and the total number of
draws needed to achieve the accuracy goals.

Some terminology will help to understand the raftery output. It is always
a good idea to discard a number of initial draws referred to as “burn-in” draws
for the sampler. Starting from arbitrary parameter values makes it unlikely
that initial draws come from the stationary distribution needed to construct
posterior estimates. Another practice followed by researchers involves saving
only every third, fifth, tenth, etc. draw since the draws from a Markov chain
are not independent. This practice is labeled “thinning” the chain. Neither
thinning or burn-in are mandatory in Gibbs sampling and they tend to reduce
the effective number of draws on which posterior estimates are based.

From the coda output, we see that the thinning estimate provided by
raftery in the second column is 1, which seems inconsistent with the lag 1
autocorrelation in the sequence of draws. It is however consistent with the fact
that the autocorrelation structure tails off rapidly for both ρ and σ. The third
column reports that only 25 draws are required for burn-in, which is quite small.
In the fourth column, we find the total number of draws needed to achieve the
desired accuracy for each parameter. This is given as 6,703, which greatly ex-
ceeds the 1,000 draws we used. It might be advisable to run the sampler again
using this larger number of draws.

On the other hand, a call to the function raftery with the desired accuracy
(‘info.r’) set to 0.02, so that nominal reporting based on a 95% interval using
the 0.05 and 0.95 quantile points should result in actual posterior values that lie
between 0.93 and 0.97, produces the results shown below. These indicate that
1,695 draws would be adequate to produce this desired level of accuracy for the
posterior.

% ----- Example 4.7 Using the raftery() function

q = 0.025;

r = 0.02;

s = 0.95;

res = raftery([result.pdraw result.sdraw],q,r,s);

prt(res,vnames);

Raftery-Lewis Diagnostics for each parameter chain

(q=0.0250, r=0.020000, s=0.950000)

Variable Thin Burn Total(N) (Nmin) I-stat

rho 1 25 1695 235 7.213

sigma 1 25 1695 235 7.213

The Nmin reported in the fifth column represents the number of draws that
would be needed if the draws represented an iid chain, which is not true in our
case as indicated by the autocorrelation structure. Finally, the i−statistic is the
ratio of the fourth to the fifth column. Raftery and Lewis indicate that values
exceeding 5 for this statistic are indicative of convergence problems with the
sampler and the need to carry out more draws.

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 129

4.3.3 Geweke diagnostics

The function coda also produces estimates of the numerical standard errors
(NSE) and relative numerical efficiency (RNE) proposed by Geweke (1992).
Using spectral analysis of time-series methods, we can produce an estimate of
the variance of the ρ parameters we are interested in based on the sampled
values using:

var(ρ̂i) = S(0)/k (4.13)

where S(0) is the spectral density of ρi evaluated at ω = 0. Issues arise in how
one approximates S(ω), so alternative tapering of the spectral window is used.
The coda function reports estimates of the NSE and RNE based on 4%, 8% and
15% tapering or truncation of the periodgram window. The MATLAB functions
that implement these calculations are adaptions of routines provided by Geweke
and Chib, that can be found on the internet at http://www.econ.umn.edu/bacc.

The first set of NSE and RNE estimates reported are based on the assump-
tion that the draws come from an iid process. These are reported along with
the means and standard deviations of the chain of draws. A second set of NSE
and RNE estimates are reported based on alternative tapering of the spectral
window, where the non-iid nature of the draws is taken into account by the
NSE and RNE estimates. Dramatic differences between these estimates would
lead one to rely on the latter set of estimates, as these differences would reflect
autocorrelation in the draws.

The RNE estimates provide an indication of the number of draws that would
be required to produce the same numerical accuracy if the draws represented had
been made from an iid sample drawn directly from the posterior distribution.
In our example, the RNE’s for σ are close to unity, indicative of an iid sample.
RNE estimates greater than unity, say around 3, would indicate that only 33%
of the number of draws would be required to achieve the same accuracy from
an iid set of draws.

These results are produced by a call to the MATLAB function momentg,
which is called by coda. As with the function raftery, this function can be
called by itself without invoking coda. As an example:

% ----- Example 4.8 Geweke’s convergence diagnostics

result = far_g(y,W,ndraw,nomit,prior);

vnames = strvcat(’rho’,’sigma’);

geweke = momentg([result.pdraw result.sdraw]);

prt(geweke,vnames);

Geweke Diagnostics for each parameter chain

Variable Mean std dev NSE iid RNE iid

rho 0.781235 0.097552 0.003085 1.000000

sigma 1.217190 0.341255 0.010791 1.000000

Variable NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15%

rho 0.007297 0.178744 0.006446 0.229030 0.005731 0.289777

sigma 0.013207 0.667631 0.011375 0.900001 0.009856 1.198759

We see some evidence of the autocorrelation because the tapered estimates
of the numerical standard errors increase slightly relative to those based on the

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 130

iid assumption. Again, this points towards increasing the number of draws used
in our Gibbs sampling estimation.

A second set of diagnostics suggested by Geweke are printed by coda after
the NSE and RNE estimates. These diagnostics represent a test of whether the
sample of draws has attained an equilibrium state based on the means of the first
20% of the sample draws versus the last 50% of the sample. If the Markov chain
of draws from the Gibbs sampler has reached an equilibrium state, we would
expect the means from these two splits of the sample to be roughly equal. A
Z−test of the hypothesis of equality for these two means is carried out and the
chi-squared marginal significance is reported. For our illustrative example, both
parameters pass these tests. We cannot reject the hypothesis of equal means.

Geweke Chi-squared test for each parameter chain

First 20% versus Last 50% of the sample

Variable rho

NSE estimate Mean N.S.E. Chi-sq Prob

i.i.d. 0.784250 0.003733 0.337867

4% taper 0.785617 0.007915 0.630768

8% taper 0.784889 0.007811 0.631370

15% taper 0.784199 0.007105 0.616461

Variable sigma

NSE estimate Mean N.S.E. Chi-sq Prob

i.i.d. 1.208643 0.012847 0.715432

4% taper 1.209183 0.015739 0.756729

8% taper 1.209553 0.015622 0.750423

15% taper 1.209950 0.014466 0.727674

The coda function allows the user to specify the proportions of the sample
used to carry out this test as ‘info.p1’ and ‘info.p2’ in the structure variable
used to input options to coda. The default values based on the first 20% of the
sample versus the last 50% are values used by the Splus version of CODA.

The chi-squared tests are implemented by a call inside coda to a MATLAB
function apm. This function allows one to produce posterior moment estimates
that represent an average over two sets of draws and can be used without invok-
ing coda. This would be useful in cases where one wished to combine smaller
samples from multiple MCMC or Gibbs sampling runs and examine the impact
of the additional draws on NSE or test for equality of the means from the two
samples. The documentation for apm is:

PURPOSE: computes Geweke’s chi-squared test for

two sets of MCMC sample draws

--

USAGE: result = apm(results1,results2)

where: results1 = a structure returned by gmoment

results2 = a structure returned by gmoment

--

RETURNS: a structure:

results(i).pmean(k) = posterior mean for variable i

for k = nse, nse1,nse2,nse3

results(i).nse(k) = nse for variable i

for k = nse, nse1,nse2,nse3

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 131

results(i).prob(k) = chi-sq test prob for variable i

for k = nse, nse1,nse2,nse3

--

As an illustration, suppose we started our far g sampler at different starting
values. A input variable ‘start’ can be used in far g to set starting values for
the parameters ρ and σ in the sampler as illustrated in example 4.9 below. To
test convergence, we call the apm function with results structures returned by
momentg based on the two sets of draws. We then use prt to print the means,
NSE and chi-squared test results.

% ----- Example 4.9 Using the momentg() function

load Wmat.dat; % standardized 1st-order contiguity matrix

n=49; % from Anselin (1988) Columbus data set

W = Wmat; IN = eye(n);

rho = 0.75; % true value of rho

y = inv(IN - rho*W)*randn(n,1); % general FAR model y

ndraw = 1100; nomit = 100;

prior.rval = 30;

% rely on a diffuse prior for rho

result = far_g(y,W,ndraw,nomit,prior);

ndraw1 = 1100; ndraw2 = 1100; nomit = 100;

rval = 30; % homoscedastic prior for r-value

start1(1,1) = 0.5; start1(2,1) = 1.0;

start2(1,1) = -0.5; start2(2,1) = 100;

result1 = far_g(y,W,ndraw1,nomit,prior,start1);

gres1 = momentg(result1.pdraw);

result2 = far_g(y,W,ndraw2,nomit,prior,start2);

gres2 = momentg(result2.pdraw);

result = apm(gres1,gres2);

prt(result)

Geweke Chi-squared test for each parameter chain

based on 2000 draws

First 50% versus Last 50% of the sample

Variable variable 1

NSE estimate Mean N.S.E. Chi-sq Prob

i.i.d. 0.788819 0.001679 0.562483

4% taper 0.788849 0.004363 0.822815

8% taper 0.788974 0.004371 0.821527

15% taper 0.788879 0.003911 0.802018

The results from example 4.9 indicate that the means from the two samples
are equal. When executing programs that generate data as in example 4.9, a
new sample of y values is generated for each program execution because we
apply the random normal function randn without setting a seed value. If we
wished to produce the same results each time, we would use the command:
‘randn(’seed’,123456)’ to fix the random number seed value.

Another useful function for examining MCMC output is the function plt-
dens from the Econometrics Toolbox. This function produces density plots
based on a non-parametric kernel density estimator. Samples of MCMC draws
can be used to produce posterior density plots with a simple call such as:

pltdens(result.pdraw);

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 132

% demo of pltdens options

bandwidth = 0.2; % a kernel density smoothing parameter option

positive = 1; % a flag for densities with zero mass at negative values

kerneltype = 1; % a Gaussian kernel type

pltdens(result.sdraw,bandwidth,positive,kerneltype);

4.3.4 Other tests for convergence

The conclusion from using the coda diagnostics point towards to increasing
the number of draws used in example 4.6. It should be kept in mind that the
ultimate test of how many draws are needed can be settled by comparing the
inferences one would make based on a smaller set of draws to those resulting from
a larger set of draws. If the inferences are identical, then the formal diagnostics
may have been misleading.

Example 4.10 illustrates this approach, producing two sets of estimates, one
based on 1,100 draws with the first 100 omitted and a second set of 11,000
draws with the first 1,000 omitted. We also use a value of r = 4 to illustrate
the point made regarding using this type of value as a rule-of-thumb even in
homoscedastic situations.

% ----- Example 4.10 Testing convergence

load Wmat.dat; % standardized 1st-order contiguity matrix

n=49; % from Anselin (1988) Columbus data set

W = Wmat; IN = eye(n);

randn(’seed’,654321);

rho = 0.5; % true value of rho

y = inv(IN - rho*W)*randn(n,1); % general FAR model y

ndraw = 1100; nomit = 100;

prior.rval = 4;

result1 = far_g(y,W,ndraw,nomit,prior);

ndraw = 11000; nomit = 1000;

result2 = far_g(y,W,ndraw,nomit,prior);

prt(result1); prt(result2);

[h1 f1 y1] = pltdens(result1.pdraw);

[h2 f2 y2] = pltdens(result2.pdraw);

plot(y1,f1,’-k’,y2,f2,’--k’);

legend(’1000 draws’,’10,000 draws’);

xlabel(’\rho values’); ylabel(’Posterior distributions’);

The program in example 4.10 produces kernel density estimates for the pos-
terior distributions based on the small and large samples to graphically examine
the similarity of the two posterior distributions. The printed results are shown
below, where we see that the two estimates for ρ are identical to three decimal
places. The estimates for σ are very close as are the t−statistics, R−squared
statistics and even the acceptance rates. This provides strong evidence that
only 1,000 draws are required for this problem.

Gibbs sampling First-order spatial autoregressive model

R-squared = 0.1395

sigma^2 = 0.7758

r-value = 4

Nobs, Nvars = 49, 1

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 133

ndraws,nomit = 1100, 100

acceptance rate = 0.8608

time in secs = 12.0600

min and max rho = -1.5362, 1.0000

Variable Coefficient t-statistic t-probability

rho 0.411721 2.388924 0.020877

Gibbs sampling First-order spatial autoregressive model

R-squared = 0.1473

sigma^2 = 0.7818

r-value = 4

Nobs, Nvars = 49, 1

ndraws,nomit = 11000, 1000

acceptance rate = 0.8741

time in secs = 114.7680

min and max rho = -1.5362, 1.0000

Variable Coefficient t-statistic t-probability

rho 0.411666 2.284735 0.026790

The graphical portrait of the two posterior distributions for ρ are also nearly
identical as can be seen from Figure 4.7.

-1 -0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

2

2.5

ρ values

P
o

s
te

ri
o

r
d

is
tr

ib
u

ti
o

n
s

1000 draws
10,000 draws

Figure 4.7: Posterior densities for ρ

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 134

Finally, note that the time required for 11,000 draws was almost exactly 10
times that required for 1,100 draws, and both times are quite reasonable.

4.4 Other Bayesian spatial autoregressive mod-
els

It should be clear that implementation of Gibbs samplers for the other spatial
autoregressive models is straightforward. We need simply to determine the
complete sequence of conditional distributions for the parameters in the model
and code a loop to carry out the draws.

All of the spatial autoregressive models will have in common the need to
produce a Metropolis within Gibbs estimate for ρ based on a conditional dis-
tribution involving the determinant (In − ρW). In the case of the SAC model,
we need two determinants, one for (In − ρW1) and another for (In − λW2). Of
course we will carry this out initially over a grid of values and store the results.
These will be passed to the functions that perform the conditional distribution
calculations.

There are functions sar g, sem g and sac g that implement Gibbs sampling
estimation for the Bayesian variants of the spatial autoregressive models. The
function sar g (which is similar to that for the other models) is shown below:

function results = sar_g(y,x,W,ndraw,nomit,prior,start);

% PURPOSE: Gibbs sampling estimates of the heteroscedastic

% spatial autoregressive model:

% y = p*Wy + XB + e, e is N(0,sige*V)

% V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)

% B = N(c,T), sige = gamma(nu,d0), p = diffuse prior

%---

% USAGE: results = sar_g(y,x,W,ndraw,nomit,prior,start)

% where: y = dependent variable vector (nobs x 1)

% x = independent variables matrix (nobs x nvar)

% W = 1st order contiguity matrix (standardized, row-sums = 1)

% (either full or sparse)

% prior = a structure for: B = N(c,T), sige = gamma(nu,d0)

% prior.beta, prior means for beta, c above (default 0)

% priov.bcov, prior beta covariance , T above (default 1e+12)

% prior.rval, r prior hyperparameter, default=4

% prior.m, informative Gamma(m,k) prior on r

% prior.k, (default: not used)

% prior.nu, a prior parameter for sige

% prior.d0, (default: diffuse prior for sige)

% prior.rmin = (optional) min rho used in sampling

% prior.rmax = (optional) max rho used in sampling

% ndraw = # of draws

% nomit = # of initial draws omitted for burn-in

% start = (optional) structure containing starting values:

% defaults: beta=ones(k,1),sige=1,rho=0.5, V=ones(n,1)

% start.b = beta starting values (nvar x 1)

% start.p = rho starting value (scalar)

% start.sig = sige starting value (scalar)

% start.V = V starting values (n x 1)

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 135

%---

% NOTE: if the model contains a constant term,

% 1st column of x-matrix must contain the constant

%---

% RETURNS: a structure:

% results.meth = ’sar_g’

% results.bdraw = bhat draws (ndraw-nomit x nvar)

% results.pdraw = rho draws (ndraw-nomit x 1)

% results.sdraw = sige draws (ndraw-nomit x 1)

% results.vmean = mean of vi draws (nobs x 1)

% results.yhat = mean of posterior y-predicted (nobs x 1)

% results.rdraw = r draws (ndraw-nomit x 1) (if m,k input)

% results.bmean = b prior means, prior.beta from input

% results.bstd = b prior std deviations sqrt(diag(prior.bcov))

% results.r = value of hyperparameter r (if input)

% results.nobs = # of observations

% results.nvar = # of variables in x-matrix

% results.ndraw = # of draws

% results.nomit = # of initial draws omitted

% results.y = actual observations (nobs x 1)

% results.yhat = predicted values

% results.nu = nu prior parameter

% results.d0 = d0 prior parameter

% results.time = time taken for sampling

% results.accept= acceptance rate

% results.rmax = 1/max eigenvalue of W (or rmax if input)

% results.rmin = 1/min eigenvalue of W (or rmin if input)

% --

% set default values

mm = 0; rval = 4; nu = 0; d0 = 0; c = zeros(k,1); T = eye(k)*1e+12;

b0 = ones(k,1); sige = 1; V = ones(n,1); p0 = 0.5; rflag = 0;

[n junk] = size(y); results.y = y; [n1 k] = size(x); results.x = x;

if nargin == 7

b0 = start.b; sige = start.sig; V = start.V; p0 = start.p;

fields = fieldnames(prior); nf = length(fields);

for i=1:nf

if strcmp(fields{i},’rval’), rval = prior.rval;

elseif strcmp(fields{i},’m’), mm = prior.m; kk = prior.k;

rval = gamm_rnd(1,1,mm,kk); % initial value for rval

elseif strcmp(fields{i},’beta’), c = prior.beta;

elseif strcmp(fields{i},’bcov’), T = prior.bcov;

elseif strcmp(fields{i},’nu’), nu = prior.nu;

elseif strcmp(fields{i},’d0’), d0 = prior.d0;

elseif strcmp(fields{i},’rmin’)

lmin = prior.rmin; lmax = prior.rmax; rflag = 1;

end;

end;

elseif nargin == 5 % default prior and starting values

else, error(’Wrong # of arguments to sar_g’);

end;

Q = inv(chol(T)); QpQ = Q’*Q; Qpc = Q’*c;

cc=0.2; [n k] = size(x); rho = p0;

t0 = clock;

if rflag == 0, opt.tol = 1e-4; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2); lmax = 1/lambda(1);

end;

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 136

results.rmax = lmax; results.rmin = lmin;

% compute a detval vector based on Pace and Berry’s approach

rvec = lmin-0.005:.005:lmax+0.005; spparms(’tight’);

z = speye(n) - 0.1*sparse(W); p = colmmd(z); niter = length(rvec);

detval = zeros(niter,2);

for i=1:niter;

rho = rvec(i); z = speye(n) - rho*sparse(W); [l,u] = lu(z(:,p));

detval(i,1) = sum(log(abs(diag(u)))); detval(i,2) = rho;

end;

bsave = zeros(ndraw-nomit,k); in = ones(n,1);

if mm~= 0, rsave = zeros(ndraw-nomit,1); end;

ssave = zeros(ndraw-nomit,1); psave = zeros(ndraw-nomit,1);

vmean = zeros(n,1); yhat = zeros(n,1); rtmp = zeros(nomit,1);

cntr = 0; iter = 1; rho = p0;

% scale y,x for the conditional distribution function evaluation

yd = y - mean(y);

if (ones(n,1) == x(:,1))

xd = x(:,2:k) - matmul(mean(x(:,2:k)),ones(n,k-1)); cflag = 1;

else, xd = x - matmul(mean(x),ones(n,k)); cflag = 0;

end;

while (iter <= ndraw); % start sampling;

B = speye(n) - rho*sparse(W); ys = y.*sqrt(V); xs = matmul(x,sqrt(V));

ysd = yd.*sqrt(V); xsd = matmul(xd,sqrt(V));

% update beta

xpxi = inv(xs’*xs + sige*QpQ); xpy = (xs’*B*ys + sige*Qpc);

b0 = xpxi*xpy; bhat = norm_rnd(sige*xpxi) + b0;

% update sige

nu1 = n + nu; e = B*ys - xs*bhat; d1 = d0 + e’*e;

chi = chis_rnd(1,nu1); t2 = chi/d1; sige = 1/t2;

% update vi

e = B*y - x*bhat; chiv = chis_rnd(n,rval+1);

vi = ((e.*e./sige) + in*rval)./chiv; V = in./vi;

% update rval (if needed)

if mm ~= 0, rval = gamm_rnd(1,1,mm,kk); end;

% metropolis step to get rho update

bt = bhat(cflag+1:length(bhat),1);

rhox = c_sar(rho,ysd,xsd,bt,sige,W,detval);

accept = 0; rho2 = rho + cc*randn(1,1);

while accept == 0

if ((rho2 > lmin) & (rho2 < lmax)), accept = 1;

else, rho2 = rho + cc*randn(1,1); cntr = cntr+1;

end;

end;

rhoy = c_sar(rho2,ysd,xsd,bt,sige,W,detval);

ru = unif_rnd(1,0,1);

if ((rhoy - rhox) > exp(1)), p = 1;

else, ratio = exp(rhoy-rhox); p = min(1,ratio);

end;

if (ru < p), rho = rho2; end;

if iter > nomit % if we are past burn-in, save the draws

bsave(iter-nomit,1:k) = bhat’; ssave(iter-nomit,1) = sige;

psave(iter-nomit,1) = rho; vmean = vmean + vi;

yhat = yhat + rho*sparse(W)*y + x*bhat;

if mm~= 0, rsave(iter-nomit+1,1) = rval; end;

end;

rtmp(iter,1) = rho;

if iter == nomit % update cc based on initial draws

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 137

cc = 2*std(rtmp(1:nomit,1));

end;

iter = iter + 1;

end; % end of sampling loop

vmean = vmean/(iter-nomit); yhat = yhat/(iter-nomit);

gtime = etime(clock,t0);

% find acceptance rate

results.accept = 1 - cntr/(iter+cntr); results.meth = ’sar_g’;

results.bdraw = bsave; results.pdraw = psave;

results.sdraw = ssave; results.vmean = vmean;

results.yhat = yhat; results.bmean = c;

results.bstd = sqrt(diag(T)); results.nobs = n;

results.nvar = k; results.ndraw = ndraw;

results.nomit = nomit; results.time = gtime;

results.nu = nu; results.d0 = d0;

if mm~= 0, results.rdraw = rsave; results.m = mm; results.k = kk;

else, results.r = rval;results.rdraw = 0;

end;

Some implementation details regarding the code used in sar g need to be
discussed. The most important detail is that Metroplis sampling relies heavily
on good “coverage” by the proposal density, and my experience has shown that
scaling the data used to evaluate the conditional distribution for ρ (and λ) is
required to achieve this coverage.

The scaling is accomplished by transforming y and X to deviation from the
means form which is carried out by the following code fragment:

% scale y,x for the conditional distribution function evaluation

yd = y - mean(y);

if (ones(n,1) == x(:,1))

xd = x(:,2:k) - matmul(mean(x(:,2:k)),ones(n,k-1)); cflag = 1;

else, xd = x - matmul(mean(x),ones(n,k)); cflag = 0;

end;

These variables are then transformed by V −1 to produce variables ‘ysd’ and
‘xsd’ that are passed to the conditional distribution function c sar. This also
requires that we exclude the constant term, which is obliterated by the trans-
formation to deviation from the means form. This exclusion is accomplished by
the statement:

bt = bhat(cflag+1:length(bhat),1);

This is inserted prior to calling c sar. Note that we pass the variable ‘bt’ that
excludes the intercept term to c sar, not the vector ‘bhat’ that includes the
intercept. This scaling accounts for the requirement that users with models
including a constant term must place the vector of ones for the constant term in
the first column of the matrix X, a point made in the function documentation
NOTES section.

If you need convincing that scaling is essential, modify the function to use
the unscaled variables ‘ys’ and ‘xs’ in the call to the conditional distribution
function and examine the sequence of Gibbs draws for the parameter ρ. (If you

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 138

make this modification, you also need to call c sar using the ‘bhat’ variable in
place of ‘bt’.)

An important point when programming Gibbs sampling functions is that
diffuse priors for all parameters in the model should result in estimates that
replicate maximum likelihood results. This is a convenient way to check your
Gibbs sampling functions. You will find that using the scaled variables ‘ysd’ and
‘xsd’ produces estimates that replicate maximum likelihood results, whereas the
unscaled variables produce estimates that tend to center ρ on zero.

Another implementation detail is that we allow for an informative prior on
the parameters β in the model, but none on ρ. This was partially a design
consideration since most users will likely rely on a diffuse prior for the spatial
autoregressive parameters ρ and λ in these models. It was also necessitated
by the fact that a normal prior seems inappropriate for these models given
the restriction on the feasible range for the spatial autoregressive parameters.
LeSage (1997) suggests an alternative to using a normal prior distribution for
ρ, but I believe it lacks intuitive appeal.

As the other Bayesian spatial autoregressive functions are quite similar, we
leave it to the reader to examine the code for these functions. We turn attention
to illustrating the use of these functions with some applied data sets.

4.4.1 Applied examples

First we present example 4.11 that generates SEM models for a set of λ pa-
rameters ranging from 0.1 to 0.9, based on the spatial weight matrix from the
Columbus neighborhood crime data set. Both maximum likelihood and Gibbs
estimates are produced by the program and a table is printed that compares the
estimation results. The hyperparameter r was set to 30 in this example, which
should produce estimates similar to the maximum likelihood results.

% ----- Example 4.11 Using the sem_g function

load wmat.dat; % standardized 1st-order contiguity matrix

load anselin.dat; % load Anselin (1988) Columbus neighborhood crime data

y = anselin(:,1); n = length(y);

x = [ones(n,1) anselin(:,2:3)];

W = wmat; IN = eye(n);

vnames = strvcat(’crime’,’const’,’income’,’house value’);

rvec = 0.1:.1:.9; b = ones(3,1);

nr = length(rvec); results = zeros(nr,6);

ndraw = 1100; nomit = 100; prior.rval = 30; bsave = zeros(nr,6);

for i=1:nr, rho = rvec(i);

u = (inv(IN-rho*W))*randn(n,1);

y = x*b + u;

% do maximum likelihood for comparison

resml = sem(y,x,W); prt(resml);

results(i,1) = resml.lam;

results(i,2) = resml.tstat(4,1);

bsave(i,1:3) = resml.beta’;

% call Gibbs sampling function

result = sem_g(y,x,W,ndraw,nomit,prior); prt(result);

results(i,3) = mean(result.pdraw);

results(i,4) = results(i,3)/std(result.pdraw);

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 139

results(i,5) = result.time;

results(i,6) = result.accept;

bsave(i,4:6) = mean(result.bdraw);

end;

in.rnames = strvcat(’True lam’,’0.1’,’0.2’,’0.3’, ...

’0.4’,’0.5’,’0.6’,’0.7’,’0.8’,’0.9’);

in.cnames = strvcat(’ML lam’,’lam t’,’Gibbs lam’,’lam t’, ...

’time’,’accept’);

mprint(results,in);

in2.cnames = strvcat(’b1 ML’,’b2 ML’,’b3 ML’,...

’b1 Gibbs’,’b2 Gibbs’,’b3 Gibbs’);

mprint(bsave,in2);

From the results presented in Table 4.1, we see that 1100 draws took around
22 seconds and the acceptance rate was between 44 and 49 percent. Note that
the acceptance rate falls to around 44 percent for the λ value of 0.9, which is
close to the upper limit of unity. This creates a slight increase in rejections of
candidate values for λ that lie outside the feasible range for this parameter.

The Gibbs estimates are very similar to the maximum likelihood results,
as they should be. In addition to presenting estimates for λ, we provide esti-
mates for the parameters β in the problem and find that Gibbs and maximum
likelihood estimates for these parameters are also very similar.

Table 4.1: SEM model comparative estimates

True λ ML λ t−statistic Gibbs λ t−statistic time in acceptance
seconds rate

0.1 -0.1858 -0.8888 -0.1231 -0.5077 22.5557 0.4953
0.2 0.1928 1.0508 0.1898 0.9126 21.8660 0.4964
0.3 0.3538 2.1617 0.3383 2.0643 22.0213 0.4955
0.4 -0.0269 -0.1334 0.0020 0.0104 21.9332 0.4959
0.5 0.5436 4.0958 0.5060 3.7862 29.3263 0.4808
0.6 0.2343 1.3098 0.2335 1.1521 27.6904 0.4802
0.7 0.5987 4.9053 0.5888 4.8577 22.1155 0.4900
0.8 0.7815 9.7816 0.7621 9.2089 22.1736 0.4701
0.9 0.9064 21.2946 0.8764 16.3488 22.3031 0.4434

True λ β1 ML β2 ML β3 ML β1 Gibbs β2 Gibbs β3 Gibbs
0.1 0.7492 1.0102 0.9991 0.7691 1.0070 0.9998
0.2 1.3577 0.9529 1.0091 1.3410 0.9541 1.0091
0.3 1.6000 0.9909 0.9949 1.5478 0.9926 0.9953
0.4 1.4806 0.9565 1.0084 1.5306 0.9554 1.0078
0.5 0.7884 0.9863 0.9990 0.8304 0.9822 0.9993
0.6 0.8175 0.9959 1.0123 0.8767 0.9962 1.0115
0.7 1.6407 0.9889 0.9922 1.7074 0.9903 0.9914
0.8 1.7638 0.9761 1.0198 1.7549 0.9790 1.0198
0.9 0.5776 1.0480 0.9817 0.5472 1.0422 0.9824

As another example, we use the large data set from Pace and Barry contain-
ing 3,107 observations to estimate an SAR model with the function sar g. We

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 140

sort the data from west to east using longitude to facilitate our examination of
the vi estimates.

% ----- Example 4.12 Using sar_g with a large data set

load elect.dat; % load data on votes in 3,107 counties

lat = elect(:,5); lon = elect(:,6);

[lons li] = sort(lon); % sort from west to east

lats = lat(li,1); % apply the sort index to others

elects = elect(li,:); % apply the sort index to others

y = elects(:,7)./elects(:,8); % convert to per capita variables

x1 = log(elects(:,9)./elects(:,8)); % education

x2 = log(elects(:,10)./elects(:,8));% homeownership

x3 = log(elects(:,11)./elects(:,8));% income

n = length(y); x = [ones(n,1) x1 x2 x3];

clear x1; clear x2; clear x3;

clear elect; % conserve on RAM memory

[junk W junk] = xy2cont(lons,lats);

vnames = strvcat(’voters’,’const’,’educ’,’homeowners’,’income’);

rmin = 0; rmax = 1;

ndraw = 2100; nomit=1100;

resml = sar(y,x,W,rmin,rmax);

prt(resml,vnames);

prior.rmin = rmin; prior.rmax = rmax; prior.rval = 4;

res = sar_g(y,x,W,ndraw,nomit,prior);

prt(res,vnames);

We might expect to see differences in this example between the maximum
likelihood and Gibbs estimates depending on the amount of heteroscedasticity
in the Pace and Barry data set. Both sets of estimates are reported below. As
a test for convergence of the Gibbs sampler we produced two sets of estimates,
one based on 1100 draws with the first 100 omitted and a second based on 2100
draws with the first 1100 omitted. As the results indicate, both sets of estimates
were nearly identical.

Spatial autoregressive Model Estimates

Dependent Variable = voters

R-squared = 0.6546

Rbar-squared = 0.6543

sigma^2 = 0.0040

Nobs, Nvars = 3107, 4

log-likelihood = 5107.4582

of iterations = 10

min and max rho = 0.0000, 1.0000

Variable Coefficient t-statistic t-probability

const 0.686229 23.685701 0.000000

educ 0.129302 15.126176 0.000000

homeowners 0.212400 27.112444 0.000000

income -0.074652 -8.334795 0.000000

rho 0.623363 42.450682 0.000000

% results based on 1100 draws with 100 omitted

Gibbs sampling spatial autoregressive model

Dependent Variable = voters

R-squared = 0.5621

sigma^2 = 0.0175

r-value = 4

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 141

Nobs, Nvars = 3107, 4

ndraws,nomit = 1100, 100

acceptance rate = 0.9991

time in secs = 843.1012

min and max rho = 0.0000, 1.0000

Posterior Estimates

Variable Coefficient t-statistic t-probability

const 0.893489 15.435189 0.000000

educ 0.175233 10.146969 0.000000

homeowners 0.240468 11.324459 0.000000

income -0.110930 -5.498762 0.000000

rho 0.559845 27.827889 0.000000

% results based on 2100 draws with 1100 omitted

Gibbs sampling spatial autoregressive model

Dependent Variable = voters

R-squared = 0.5622

sigma^2 = 0.0174

r-value = 4

Nobs, Nvars = 3107, 4

ndraws,nomit = 2100, 1100

acceptance rate = 0.9915

time in secs = 1402.3937

min and max rho = 0.0000, 1.0000

Posterior Estimates

Variable Coefficient t-statistic t-probability

const 0.898655 15.021938 0.000000

educ 0.176437 10.009073 0.000000

homeowners 0.241422 11.122395 0.000000

income -0.112253 -5.333194 0.000000

rho 0.558832 24.127430 0.000000

The Gibbs sampler required 843 seconds to generate 1100 draws and 1402
seconds for 2100 draws, which compares to around 150 seconds for maximum
likelihood estimates. An important point regarding the timing comparison is
that the Bayesian heteroscedastic model estimates more parameters than the
maximum likelihood model, because it includes the variance scaling terms vi.
If one wished to estimate a heteroscedastic version of the maximum likelihood
model, it would be possible to specify a relationship for the non-constant vari-
ance and produce maximum likelihood estimates using methods described in
Anselin (1988). This would require additional specification and estimation work
that would make the Bayesian approach look more competitive in terms of time
required to produce estimates. Further, the Bayesian model does not require a
restrictive specification for the heteroscedastic disturbance term.

We see a difference between the maximum likelihood and the heteroscedastic
Bayesian estimates based on Gibbs sampling. This difference is explained by
the presence of five vi estimates greater than three in magnitude, indicating the
presence of a handful of outliers. A plot of the mean from the vi draws is shown
in Figure 4.8.

It is interesting that only 5 outlying observations produced a fairly dramatic
difference between the maximum likelihood and Bayesian parameter estimates.
As we would expect, the robust Bayesian estimates lead to a lower R−squared

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 142

0 500 1000 1500 2000 2500 3000 3500
1

2

3

4

5

6

7

Observations sorted west to east

P
o
s
te

ri
o
r

m
e
a
n
 o

f
V

i e
s
ti
m

a
te

s

Figure 4.8: Vi estimates for Pace and Barry dataset

statistic, since robust estimates avoid any attempt to fit outlying sample data
observations.

Given the evidence of outlying sample data points, it would be difficult to
accept the maximum likelihood estimates that rely on normality. The robust
Bayesian estimates should provide a better basis for statistical inference. For
inferences regarding the spatial autoregressive parameter ρ in the SAR model,
only 2 of the 1000 draws from the sample of 2100 with the first 1100 omitted were
greater than or equal to the maximum likelihood estimate of 0.623. This can
literally be interpreted as the posterior probability that ρ ≥ 0.623, suggesting a
99.80 percent probability that ρ < 0.623, the maximum likelihood estimate.

4.5 An applied exercise

We carry out an applied exercise using the Pace and Barry data set for the 1980
presidential election. A series of alternative spatial autoregressive models are
estimated using both maximum likelihood and Bayesian methods and we take
up the issue of an appropriate specification for the model relationship.

Example 4.13 estimates SAR, SEM, and SAC models with four variants of

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 143

the SAC models based on a first and second-order spatial weight matrix used
in all four possible alternative configurations. One point to note is that these
models are not comparable to the one from example 4.12 because the variable
y was transformed to logs in example 4.13. This was done to create some
variety, not for substantive reasons. In fact, the log transformation seems more
appropriate given that the explanatory variables in the matrix X are in logged
form.

Another reason for differences in results is that we rely on a first-order con-
tiguity matrix here and we generate the matrix using the function xy2cont in
example 4.12 which might produce slightly different results.

% ----- Example 4.13 Model specification

load elect.dat; % load data on votes in 3,107 counties

y = log(elect(:,7)./elect(:,8)); % convert to per capita variables

x1 = log(elect(:,9)./elect(:,8)); % education

x2 = log(elect(:,10)./elect(:,8));% homeownership

x3 = log(elect(:,11)./elect(:,8));% income

n = length(y); x = [ones(n,1) x1 x2 x3];

clear x1; clear x2; clear x3;

clear elect; % conserve on RAM memory

load ford.dat; % 1st order contiguity matrix stored in sparse matrix form

ii = ford(:,1); jj = ford(:,2); ss = ford(:,3);

n = 3107;

clear ford; % clear ford matrix to save RAM memory

W1 = sparse(ii,jj,ss,n,n);

W2 = slag(W1,2);

clear ii; clear jj; clear ss; % conserve on RAM memory

vnames = strvcat(’voters’,’const’,’educ’,’homeowners’,’income’);

result1 = sar(y,x,W1); % do sar model based on W matrix

rmin1 = result1.rmin; rmax1 = result1.rmax;

result2 = sar(y,x,W2); % do sar model based on W2 matrix

rmin2 = result2.rmin; rmax2 = result2.rmax;

result3 = sem(y,x,W1,rmin1,rmax1); % do sem model based on W1 matrix

result4 = sem(y,x,W2,rmin2,rmax2); % do sem model based on W2 matrix

result5 = sac(y,x,W1,W2); % do sac model based on W1,W2 matrix

result6 = sac(y,x,W2,W1); % do sac model based on W2,W1 matrix

result7 = sac(y,x,W1,W1); % do sac model based on W1,W1 matrix

result8 = sac(y,x,W2,W2); % do sac model based on W2,W2 matrix

% do Bayesian models

ndraw = 1100; nomit = 100;

prior1.rmin = rmin1; prior1.rmax = rmax1; prior1.rval = 4;

bresult1 = sar_g(y,x,W1,ndraw,nomit,prior1);

prior2.rmin = rmin2; prior2.rmax = rmax2; prior2.rval = 4;

bresult2 = sar_g(y,x,W2,ndraw,nomit,prior2);

bresult3 = sem_g(y,x,W1,ndraw,nomit,prior1);

bresult4 = sem_g(y,x,W2,ndraw,nomit,prior2);

prior3.rmin = rmin1; prior3.rmax = rmax1;

prior3.lmin = rmin2; prior3.lmax = rmax2; prior3.rval = 4;

bresult5 = sac_g(y,x,W1,W2,ndraw,nomit,prior3);

prior4.rmin = rmin2; prior4.rmax = rmax2;

prior4.lmin = rmin1; prior4.lmax = rmax1; prior4.rval = 4;

bresult6 = sac_g(y,x,W2,W1,ndraw,nomit,prior4);

prior5.rmin = rmin1; prior5.rmax = rmax1;

prior5.lmin = rmin1; prior5.lmax = rmax1; prior5.rval = 4;

bresult7 = sac_g(y,x,W1,W1,ndraw,nomit,prior5);

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 144

prior6.rmin = rmin2; prior6.rmax = rmax2;

prior6.lmin = rmin2; prior6.lmax = rmax2; prior6.rval = 4;

bresult8 = sac_g(y,x,W2,W2,ndraw,nomit,prior6);

% print all results

prt(result1,vnames); prt(bresult1,vnames);

prt(result2,vnames); prt(bresult2,vnames);

prt(result3,vnames); prt(bresult3,vnames);

prt(result4,vnames); prt(bresult4,vnames);

prt(result5,vnames); prt(bresult5,vnames);

prt(result6,vnames); prt(bresult6,vnames);

prt(result7,vnames); prt(bresult7,vnames);

prt(result8,vnames); prt(bresult8,vnames);

A question we can pose is which model specification represents the most
appropriate model? The alternative models can be viewed as nesting each other,
making this question easier to deal with. For example, the SAC model nests
both the SAR and SEM models. An insignificant λ coefficient estimate in the
SAC model would point to an SAR model as more appropriate, whereas an
insignificant ρ estimate suggests the SEM model would be more appropriate.

Another criterion we might use is rejection of negative spatial autocorrelation
estimates for either ρ or λ, as these suggest that neighboring counties exhibit
more dissimilar relationships than distant counties, a result counter to intuition.

A final specification issue is the choice between heteroscedastic and ho-
moscedastic models. As we already saw in example 4.12, there is some evidence
of a handful of outlying sample data observations, making us lean towards the
Bayesian heteroscedastic models. It may be the case that the model specifica-
tion we select as most appropriate does not exhibit different parameter estimates
for the homoscedastic versus heteroscedastic models, making this an irrelevant
issue.

We present a table of results for each spatial autoregressive model with a
discussion of these results. The spatial autoregressive models based on W1 and
W2 weight matrices are presented in Table 4.2.

Table 4.2: SAR model comparisons

Variable sar(t−stat) sar g(t−stat) sar(t−stat) sar g(t−stat)
W1 matrix W1 matrix W2 matrix W2 matrix

const 0.6490 (15.36) 0.8039 (12.66) 0.6240 (14.66) 0.7825 (11.75)
educ 0.2540 (16.11) 0.3425 (15.67) 0.2108 (12.88) 0.3048 (12.43)
homeown 0.4761 (32.15) 0.4471 (15.54) 0.4859 (32.75) 0.4487 (15.89)
income -0.1173 (-7.03) -0.1955 (-7.94) -0.0916 (-5.41) -0.1793 (-6.75)
rho 0.5288 (36.20) 0.5078 (30.12) 0.6190 (36.95) 0.5835 (27.54)
R2 0.6356 0.5986 0.6321 0.5877
ln likel 3159.4467 3186.9297

By virtue of the log transformation, we can interpret the coefficient estimates
as elasticities. What we see is that the Bayesian estimates indicate a larger pos-
itive elasticity with respect to education and a larger negative elasticity for
income than the maximum likelihood estimates. Given the large t−statistics,

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 145

these differences are significant using conventional tests. This pattern will be
repeated in the other model specifications that are presented below. The elas-
ticity with respect to homeownership is fairly similar, and this pattern will be
repeated in the other specifications as well.

Again, the large difference in these elasticities is somewhat surprising given
that only a handful of outliers exist in the sample of 3,107 observations. Another
pattern that arises here and in the SAC model (presented below) is that R2

values for the Bayesian models are a bit lower than the maximum likelihood,
suggesting some robustification is taking place.

With regard to the use of W1 or W2 as a weight matrix, the model based
on W2 exhibits a slightly higher log likelihood function value, but a lower R2.
There is little to recommend one of these specifications over the other.

We turn attention to the spatial error model estimates presented in Table 4.3.
Here again we see larger Bayesian estimates for the education and income elas-
ticities for both the case of W1 and W2 spatial weight matrices. Again, the
likelihood function is slightly higher for the model based on the second order
weight matrix W2, and the R2 is slightly higher for the model based on W1.
These differences are small however, and it is difficult to choose between these
alternative weight matrix specifications.

Table 4.3: SEM model comparisons

Variable sem(t−stat) sem g(t−stat) sem(t−stat) sem g(t−stat)
W1 matrix W1 matrix W2 matrix W2 matrix

const 0.5431 (8.76) 0.7007 (11.15) 0.3922 (6.34) 0.5447 (8.97)
educ 0.2933 (12.06) 0.3391 (13.69) 0.2300 (9.61) 0.2782 (11.93)
homeown 0.5714 (36.43) 0.5279 (29.39) 0.5686 (36.54) 0.5325 (28.28)
income -0.1528 (-6.82) -0.2324 (-10.22) -0.1083 (-4.93) -0.1830 (-8.51)
lambda 0.6505 (41.01) 0.7213 (49.84) 0.7714 (46.46) 0.8275 (60.84)
R2 0.6606 0.6663 0.6539 0.6555
ln likel 3202.7211 3233.4214

What we find in the results for the SAC model presented in Table 4.4 is that
both W1 and W2 are significant. This may explain the results for the SAR and
SEM models, where support for the significance of both W1 and W2 is provided
by the sample data.

In these models we see a Bayesian elasticity estimate for education that is
nearly double the maximum likelihood estimates. The negative income elasticity
estimate from Bayesian estimation is more than double the maximum likelihood
estimate. As in the SAR and SEM models, the elasticity for homeownership
is very similar from the two estimation methods. There is also evidence of
robustification in that the R2 for the Bayesian estimates is lower than that from
maximum likelihood.

The model based on W1,W2 exhibits a slightly higher likelihood function
value than the model based on W2,W1. In addition, this model exhibits a higher
likelihood function value than the SAR and SEM models examined above.

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 146

Table 4.4: SAC model comparisons

Variable sac(t−stat) sac g(t−stat) sac(t−stat) sac g(t−stat)
W1,W2 matrix W1,W2 matrix W2,W1 matrix W2,W1 matrix

const 0.6835 (13.25) 0.9460 (13.21) 0.5857 (10.24) 0.8675 (13.24)
educ 0.2479 (12.44) 0.4166 (15.17) 0.2450 (11.48) 0.4166 (17.05)
homeown 0.5551 (35.37) 0.5155 (19.93) 0.5567 (35.77) 0.5381 (23.37)
income -0.1171 (-5.85) -0.2601 (-9.24) -0.1128 (-5.50) -0.2541 (-10.19)
rho 0.4150 (16.52) 0.4700 (15.96) 0.5907 (18.94) 0.6529 (23.60)
lambda 0.4600 (17.82) 0.3861 (11.61) 0.3108 (11.76) 0.2666 (10.13)
R2 0.6656 0.6114 0.6619 0.6251
ln likel 3303.143 3290.8999

The SAC model would appear to be the best specification. We also examine
two more SAC models. The first is based on W1 for both the spatial autoregres-
sive lag and the spatially correlated disturbances, and the second model relies
on W2 for both spatial correlation terms. These results presented in Table 4.5
rule out either of these models based on our criterion that rejects models with
negative spatial autoregressive coefficient estimates.

Table 4.5: Alternative SAC model comparisons

Variable sac(t−stat) sac g(t−stat) sac(t−stat) sac g(t−stat)
W1,W1 matrix W1,W1 matrix W2,W2 matrix W2,W2 matrix

const -0.0339 (-0.48) 0.6599 (8.82) -0.1588 (-2.12) 0.6522 (10.04)
educ 0.1707 (7.16) 0.3321 (11.47) 0.1708 (7.61) 0.3451 (13.82)
homeown 0.5015 (33.31) 0.4063 (16.65) 0.5180 (34.76) 0.4343 (20.73)
income -0.0917 (-4.33) -0.2331 (-8.46) -0.0816 (-3.94) -0.2186 (-9.15)
rho 0.8681 (75.01) 0.8701 (40.71) 0.9340 (100.12) 0.9412 (98.89)
lambda -0.4767 (-13.80) -0.4665 (-7.53) -0.6324 (-13.74) -0.6014 (-13.84)
R2 0.7251 0.6602 0.6968 0.5885
ln likel 3250.7121 3298.5278

By way of conclusion, the evidence points to an SAC model based on W1 or
W2 for the spatially lagged dependent variable and W1 or W2 for the spatial
error term. Interestingly, we need not worry about which specification we use as
the elasticity estimates for the variables in both specifications of the model are
almost identical. There is however a large difference in the elasticity estimates
produced by the Bayesian and maximum likelihood estimation methods.

The Bayesian elasticity estimates for education and income are roughly dou-
ble the maximum likelihood estimates. The estimates for the variance scaling
parameters indicate only a handful of outliers for this large data sample, but
these outliers appear to make a difference in the inferences one would draw from
robust versus non-robust estimates.

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 147

4.6 Chapter Summary

We have seen that the spatial autoregressive models can be extended to allow for
Bayesian prior information as well as non-constant variances over space. These
models require a Gibbs sampling estimation approach, making them more time
intensive than maximum likelihood estimation methods. Nonetheless, the time
required is quite reasonable, even for large sample problems. As in the case of
maximum likelihood estimation, we rely on MATLAB sparse matrix algorithms
for our Gibbs sampler. Estimation of these models takes around five to six
times as long as maximum likelihood methods, but the estimates produced are
robust with respect to non-constant variance of the disturbances over space and
aberrant or outlying sample observations. Both of these situations are often en-
countered in applied work with spatial data sets. A fair comparison of the time
required to produce maximum likelihood versus Bayesian estimates would re-
quire that we extend the maximum likelihood model to include a heteroscedastic
disturbance relationship. This would involve specification and estimation not
considered in the comparison times noted above.

There are several advantages to the Bayesian spatial autoregressive models.
One advantage is that they provide a simple way to check the assumption of
homogeneity in the disturbances made by maximum likelihood methods. Imple-
mented with a diffuse prior for the parameters ρ, λ and β, but a prior belief in
heteroscedasticity of the disturbances, the Bayesian spatial autoregressive mod-
els will produce estimates very similar to maximum likelihood in the absence
of non-constant variance or aberrant observations. In the case of non-constant
variance or outliers, the Bayesian estimates will diverge from maximum likeli-
hood, indicating a violation of homoscedasticity. Because maximum likelihood
estimates require normality in the disturbances, this check is quite useful.

A second advantage of the Bayesian models is that unlike the methods used
to accommodate non-constant variance in maximum likelihood methods, (see
Anselin, 1988), the practitioner need not specify a model for the changing vari-
ance over space. The Bayesian approach set forth here can automatically detect
both non-constant variance as well as the presence of aberrant observations or
outliers in the spatial sample.

A third advantage of the Bayesian models is the ability to introduce prior
information regarding the parameters in the form of subjective non-sample in-
formation. This can be helpful in overcoming collinearity and other weak data
problems that degrade the precision of the estimates. Practitioners may en-
counter cases where Gibbs sampling estimation can produce estimates when
ill-conditioning or identification problems prevent maximization of the likeli-
hood function with optimization methods. There are other situations where
maximum likelihood computation of the information matrix or numerical hes-
sian matrix used to obtain estimates of dispersion for the parameters may be
plagued by ill-conditioning preventing calculation of estimates for dispersion.

A final advantage lies in the variance estimates for every point in space
produced by the Bayesian model. This allows one to identify and examine
observations that may represent outliers or neighborhood enclave effects. It can

CHAPTER 4. BAYESIAN SPATIAL AUTOREGRESSIVE MODELS 148

also be used to suggest changes in the model specification when systematic non-
constant variance over space arises. For example, one might map the estimated
vi to study systematic drift in the disturbances of the model over space. If we
observe higher disturbance variances in eastern regions of our spatial sample and
lower disturbance variances in western regions, it might indicate an important
explanatory variable is missing from the model.

Chapter 5

Limited dependent variable
models

This chapter extends spatial autoregressive models to the case of limited depen-
dent variables where we devise logit and probit variants of the spatial autore-
gressive models. Spatial autoregressive tobit models are also developed to deal
with cases where sample observations are censored or truncated.

Logit and probit models arise when the dependent variable y in our spatial
autoregressive model takes values 0, 1, 2, . . ., representing counts of some event
or a coding system for qualitative outcomes. For example, y = 0 might represent
a coding scheme indicating a lack of highways in our sample of geographical
regions, and y = 1 denotes the presence of a highway. Another example is
where the values taken by y represent counts. We might have y = 0, 1, 2, . . .,
denoting the number of foreign direct investment projects in a given county
where our sample of observations represent counties for a particular state.

Tobit models reflect situations where the dependent variable y contains ob-
servations that are unobserved because of censoring. We present an example
where all house values greater than $50,000 were assigned a constant magni-
tude of $50,000, reflecting a censoring or truncation process that took place in
reporting house values.

Despite the fact that spatial samples often involve limited dependent vari-
ables (see Bolduc, 1989, 1995, and Dubin, 1995), McMillen (1992) is the only
literature regarding estimation of spatial autoregressive models for this type of
sample data. He proposed an approach based on the EM algorithm for esti-
mating heteroscedastic spatial autoregressive probit models. McMillen (1995)
investigates the impact of heteroscedasticity that is often present in spatial
models on probit estimation for ordinary regression models. This line of work
was motivated by a feeling that large sample models could not be handled by
the EM method in McMillen (1992). McMillen and McDonald (1998) propose
a non-parametric locally linear probit method for GWR models that we will
discuss in Chapter 6. This represents an ordinary regression model applied to

149

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 150

a spatially weighted subset of the sample observations, not the case of spatial
autoregressive estimation. I am unaware of any literature for the case of spatial
autoregressive tobit models where the dependent variables are censored.

In this chapter we show how Bayesian methods can be used to produce esti-
mates for spatial autoregressive logit, probit and tobit models by simply adding
one additional conditional distribution to the Gibbs sampling methods we devel-
oped in Chapter 4. This provides a unified treatment of spatial autoregressive
logit, probit and tobit models that is easy to implement.

5.1 Introduction

Spatial autoregressive modeling of limited dependent variable data samples
would be interpreted in the framework of a probability model that attempts
to describe the Prob(event i occurs) = F (W1y,W2u,X: parameters). If the
outcomes represent two possibilities, y = 0, 1, the model is said to be binary,
whereas models with more than two outcomes are referred to as multinomial or
polychotomous. We restrict attention to binary models.

Traditional spatial autoregressive models could be used to carry out a spatial
autoregression using the binary response variable y = 0, 1, but two problems
arise. To illustrate the nature of these problems, consider the SAR model. The
first problem that arises is that the errors are by construction heteroscedastic.
Because the actual y values take on either 0 or 1 values, the errors for the
SAR model would take values of ρWy + Xβ = −ρWy − Xβ when y = 0 and
ι − ρWy −Xβ, when y = 1. Note also that these heteroscedastic errors are a
function of the parameter vector β and the scalar parameter ρ.

The second problem with using spatial autoregressive models in this setting
is that the predicted values can take on values outside the (0,1) interval, which
is problematic given a probability model framework. In this setting we would
like to see:

limρWy+Xβ→+∞Prob(y = 1) = 1 (5.1)

limρWy+Xβ→−∞Prob(y = 1) = 0 (5.2)

Two distributions that have been traditionally used to produce an outcome
that ensures predicted values between zero and one are the logisitic and normal
distributions. For the case of a simple regression model, these result in the logit
model shown in (5.3) and probit model shown in (5.4), where Φ denotes the
cumulative normal probability function.

Prob(y = 1) = eXβ/(1 + eXβ) (5.3)

Prob(y = 1) = Φ(Xβ) (5.4)

The logistic distribution is similar to the normal except in the tails where it
is fatter, resembling a Student t−distribution. Green (1997) and others indicate

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 151

that the logistic distribution resembles a t−distribution with seven degrees of
freedom.

McMillen (1992) proposed methods for estimating SAR and SEM probit
models containing spatial heteroscedasticity that rely on the EM algorithm.
Bayesian methods for logit/probit and tobit variants of spatial autoregressive
models that exhibit heteroscedasticity are developed in this chapter. The ap-
proach taken draws on work by Chib (1992) and Albert and Chib (1993) as
well as the Bayesian estimation of spatial autoregressive models set forth in
Chapter 4.

Accounting for heteroscedasticity in logit/probit and tobit models is im-
portant because estimates based on the assumption of homoscedasticity in the
presence of heteroscedastic disturbances are inconsistent (see Green, 1997). The
proposed Bayesian estimation methodology overcomes several drawbacks asso-
ciated with McMillen’s (1992) EM approach to estimating these models in the
presence of heteroscedastic disturbances.

EM estimation methods rely on an iterative sequencing between the E-step
that involves estimation and the M-step that solves a conditional maximization
problem. The maximization problem is conditional on parameters determined
in the E-step, making it easier to solve than the entire problem involving all of
the parameters in the problem.

The Bayesian approach proposed here extends work of Chib (1992) for the
tobit model and Albert and Chib (1993) for the probit model to the case of
spatial autoregressive models. The basic idea exhibits a similarity to the EM
algorithm proposed by McMillen (1992), where the censored or latent unob-
served observations on the dependent variable y in the model are replaced by
estimated values. Given estimates of the missing y values, the EM algorithm
proceeds to estimate the other parameters in the model using methods applied
to non-binary data samples. In other words, conditional on the estimated y-
values, the estimation problem is reduced to a traditional estimation problem
which can be solved using maximum likelihood methods.

There are some drawbacks to McMillen’s EM estimator that we will over-
come using the Bayesian approach set forth in this chapter. One drawback
to McMillen’s EM estimator is that the information matrix approach to deter-
mining measures of precision for the parameter estimates cannot be used. The
likelihood function for the heteroscedastic probit model contains a number of
integrals equal to the number of observations, so evaluating the likelihood func-
tion for these models is impossible. McMillen (1992) overcomes this problem
using a non-linear weighted least-squares interpretation of the probit estimator
conditional on the spatial lag parameters ρ in the SAR model and λ in the
SEM model. This rules out estimates of dispersion for these important param-
eters. The use of a covariance matrix conditional on the spatial lag parameters
produces biased, but consistent confidence intervals that may be too small.

Another problem with McMillen’s approach is the need to specify a func-
tional form for the non-constant variance over space. That is, one must specify
a model for the noise vector ε such that, [var(εi)]

1/2 = g(Zi)γ, where g is a
continuous, twice differentiable function and Zi is a vector of explanatory vari-

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 152

ables for var(εi). This approach was illustrated by McMillen (1992) for a simple
2-variable model where both of the variables in squared form were used to form
the Zi vector, i.e., gi = exp(γ1X

2
1i + γ2X

2
2i). In larger models a practitioner

would need to devote considerable effort to testing the functional form and
variables involved in the model for var(εi). Assuming success in finding a few
candidate specifications, there is still the problem of inferences that may vary
across alternative specifications for the non-constant variance.

We rely on Gibbs sampling to estimate the spatial logit/probit and tobit
models. During sampling, we introduce a conditional distribution for the cen-
sored or latent observations conditional on all other parameters in the model.
This distribution is used to produce a random draw for each censored value of
yi in the case of tobit, and for all yi in the probit model. The conditional distri-
bution for the latent variables takes the form of a normal distribution centered
on the predicted value truncated at the right (or left) at the censoring point
in the case of tobit, and truncated by 0 from the left and right in the case of
probit, for yi = 1 and yi = 0 respectively.

An important difference between the EM approach and the Gibbs sampling
approach set forth here is the proof outlined by Gelfand and Smith (1990)
that Gibbs sampling from the sequence of complete conditional distributions
for all parameters in the model produces a set of draws that converge in the
limit to the true (joint) posterior distribution of the parameters. Because of
this, we overcome the bias inherent in the EM algorithm’s use of conditional
distributions. Valid measures of dispersion for all parameters in the model can
be constructed from the large sample of parameter draws produced by the Gibbs
sampler.

The Gibbs sampling approach to estimating heteroscedastic spatial autore-
gressive models presented in Chapter 4 can be adapted to produce probit and
tobit estimates by adding a single conditional distribution for the censored or
latent observations. Intuitively, once we have a sample for the unobserved latent
dependent variables, the problem reduces to the Bayesian heteroscedastic spa-
tial autoregressive models presented in Chapter 4. The conditional distributions
presented in Chapter 4 remain valid for all other parameters in the model.

Another important advantage of the method proposed here is that het-
eroscedasticity and outliers can be easily accommodated with the use of the
methods outlined in Chapter 4. For the case of the probit model, an inter-
esting interpretation can be given to the family of t−distributions that arise
from theχ2(r) prior introduced in Chapter 4. Recall that models involving bi-
nary data can rely on any continuous probability function as the probability
rule linking fitted probabilities with the binary observations. Probit models
arise from a normal probability rule and logit models from a logistic probability
rule. When one introduces the latent variables zi in the probit model to reflect
unobserved values based on the binary dependent variables yi, we have an un-
derlying conditional spatial autoregression involving z and the model variables
X,W1,W2, where X represents the explanatory variables and W1,W2 denotes
the spatial weight matrices. The heteroscedastic spatial autoregressive model
introduced in Chapter 4 can be viewed in the case of binary dependent vari-

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 153

ables as a probability rule based on a family of t−distributions that represent
a mixture of the underlying normal distribution used in the probit regression.
(It is well known that the normal distribution can be modeled as a mixture of
t−distributions, see Albert and Chib, 1993).

The most popular choice of probability rule to relate fitted probabilities
with binary data is the logit function corresponding to a logistic distribution
for the cumulative density function. Albert and Chib (1993) show that the
quantiles of the logistic distribution correspond to a t-distribution around 7
or 8 degrees of freedom. We also know that the normal probability density is
similar to a t−distribution when the degrees of freedom are large. This allows
us to view both the probit and logit models as special cases of the family of
models introduced here using a chi-squared prior based on our hyperparameter
r specifying alternative degrees of freedom to model spatial heterogeneity and
outliers.

By using alternative values for the prior hyperparameter that we labeled r in
Chapter 4, one can test the sensitivity of the fitted probabilities to alternative
distributional choices for the model. For example, if we rely on a value of r near
7 or 8, the estimates resulting from the Bayesian version of the heteroscedastic
probit model correspond to those one would achieve using a logit model. On the
other hand, using a large degrees of freedom parameter, say r = 30 would lead
to estimates that produce fitted probabilities based on the probit model choice
of a normal probability rule. The implication of this is that the heteroscedas-
tic spatial probit model we introduce represents a more general model than
either probit or logit. The generality derives from the family of t−distributions
associated with alternative values of the hyperparameter r in the model.

A final advantage of the method described here is that estimates of the non-
constant variance for each point in space are provided, and the practitioner need
not specify a functional form for the non-constant variance. Spatial outliers
or aberrant observations as well as patterns of spatial heterogeneity will be
identified in the normal course of estimation. This represents an improvement
over the approach described by McMillen (1992), where a separate model for
the non-constant variance needs to be specified.

5.2 The Gibbs sampler

For spatial autoregressive models with uncensored y observations where the error
process is homoscedastic and outliers are absent, the computational intensity of
the Gibbs sampler is a decided disadvantage over maximum likelihood methods.
As demonstrated in Chapter 4, it takes three to five times as long to compute
these estimates. For the case of probit and tobit models, the Gibbs sampler is
very competitive to the EM algorithm presented in McMillen (1992), because
numerous probit or tobit maximum likelihood problems need to be solved to
implement the EM method.

Before turning attention to the heteroscedastic version of the Bayesian spa-
tial autoregressive logit/probit and tobit models, consider the case of a ho-

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 154

moscedastic spatial autoregressive tobit model where the observed y variable is
censored. One can view this model in terms of a latent but unobservable vari-
able z such that values of zi ≤ limit, produce an observed variable yi = limit. It
can also be the case that censoring occurs for values that exceed a limit value,
when zi ≥ limit produce an observed variable yi = limit.

Similarly, spatial autoregressive probit models can be associated with a la-
tent variable zi < 0 that produce an observed variable yi = 0 and zi ≥ 0
resulting in yi = 1. In both the tobit and probit models the posterior distribu-
tion of z conditional on all other parameters takes the form of truncated normal
distribution (see Chib, 1992, Albert and Chib, 1993).

For the spatial tobit model, the conditional distribution of zi given all
other parameters is a truncated normal distribution constructed by truncating
a N [ỹi, σ

2
ti] distribution from the right (or left) at the limit value. We denote

the predicted value for zi by ỹi which represents:

1. the ith row of ỹ = B−1Xβ for the SAR model

2. the ith row of ỹ = Xβ for the SEM model

3. the ith row of ỹ = A−1Xβ +A−1B−1u for the SAC model

4. A = (In − ρW1), B = (In − λW2)

The variance of the prediction is σ2
ti = σ2

ε

∑

j ω
2
ij , where ωij denotes the ijth

element of (In − ρW)−1ε for the SAR, SEM and SAC models.
The pdf of the latent variables zi is then:

f(zi|ρ, β, σ) =

{

[1 − Φ(ỹi/σti)]
−1exp[−(zi − ỹi)

2/2σit], if zi ≤ k
yi if zi > k

(5.5)

Where we assume left truncation without loss of generality and k denotes the
truncation limit.

Similarly, for the case of probit, the conditional distribution of zi given all
other parameters is:

f(zi|ρ, β, σ) ∼

{

N(ỹi, σ
2
pi), truncated at the left by 0 if yi = 1

N(ỹi, σ
2
pi), truncated at the right by 0 if yi = 0

(5.6)

Where σ2
pi =

∑

j ω
2
ij . In the case of maximum likelihood probit the model is

unable to identify both β and σ2
ε , and there is a need to scale the problem so σ2

ε

equals unity. For our Gibbs sampler, we can produce an estimate of σ2
ε using

the draws for the latent variable zi. The predicted value ỹi takes the same form
for the SAR, SEM and SAC models as described above for the case of tobit. We
rely on the latent draws for zi to calculate the predicted values.

The tobit expression (5.5) indicates that we rely on the actual observed y
values for non-censored observations and use the sampled latent variables for

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 155

the unobserved values of y. For the case of the probit model, we replace values
of yi = 1 with the sampled normals truncated at the left by 0 and values of
yi = 0 with sampled normals truncated at the right by 0.

Given these sampled continuous variables from the conditional distribution
of zi, we can implement the remaining steps of the Gibbs sampler described in
Chapter 4 to determine draws from the conditional distributions for ρ, β and σ
using the sampled zi values in place of the censored or binary variables yi.

5.3 Heteroscedastic models

The models described in this section can be expressed in the form shown in (5.5),
where we relax the usual assumption of homogeneity for the disturbances used
in SAR, SEM and SAC modeling. Given the discussion in Section 5.2, we can
initially assume the existence of non-censored observations on the dependent
variable y because these can be replaced with sampled values z as motivated in
the previous section.

y = ρW1y +Xβ + u (5.7)

u = λW2u+ ε

ε ∼ N(0, σ2V), V = diag(v1, v2, . . . , vn)

Where vi, i = 1, . . . , n represent a set of relative variance parameters to be
estimated. We restrict the spatial lag parameters to the interval 1/µmin <
ρ, λ < 1/µmax.

It should be clear that we need only add one additional step to the Gibbs
sampler developed in Chapter 4 for Bayesian heteroscedastic spatial autoregres-
sive models. The additional step will provide truncated draws for the censored
or limited dependent variables.

The above reasoning suggest the following Gibbs sampler. Begin with arbi-
trary values for the parameters σ0, β0, ρ0 and v0i , which we designate with the
superscript 0.

1. Calculate p(σ|ρ0, β0, v0i), which we use along with a random χ2(n) draw
to determine σ1.

2. Calculate p(β|ρ0, σ1v0i) using σ1 from the previous step. Given the means
and variance-covariance structure for β, we carry out a multivariate ran-
dom draw based on this mean and variance to determine β1.

3. Calculate p(vi|ρ
0, σ1β1), which is based on an n−vector of random χ2(r+

1) draws to determine v1i , i = 1, . . . , n.

4. Use metropolis within Gibbs sampling to determine ρ1 as explained in
Chapter 4, using the the values σ1, β1 and v1i , i = 1, . . . , n determined in
the previous steps.

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 156

5. Sample the censored yi observations from a truncated normal centered
on the predictive mean and variance determined using ρ1, σ1, β1, v1i (as
described in Section 5.2) for the probit and tobit models.

In the above development of the Gibbs sampler we assumed the hyperparam-
eter r that determines the extent to which the disturbances take on a leptokurtic
character was known. It is unlikely in practice that investigators would have
knowledge regarding this parameter, so an issue that confronts us when at-
tempting to implement the heteroscedastic model is setting the hyperparameter
r. As already discussed in Chapter 4, using a small value near r = 4, pro-
duces estimates that will be robust in the presence of non-constant variance
and outliers. For the probit model, use of small values of r between 2 and 7 will
produce estimates close to those based on a logit probability rule. To examine
the sensitivity of inferences to use of a logit versus probit probability rule, one
can produce estimates based on a larger value of r = 30 for comparison.

Regarding the use of logit versus probit probability rules, Green (1997) states
that the issue of which distributional form should be used on applied econometric
problems is unresolved. He further indicates that inferences from either logit or
probit models are often the same.

5.4 Implementing probit models

We have functions sarp g, semp g, sacp g that carry out Gibbs sampling
estimation of the heteroscedastic probit spatial autoregressive models. The
function sarp g which we use to discuss implementation of the probit models
is shown below.

PURPOSE: Gibbs sampling spatial autoregressive Probit model

y = p*Wy + Xb + e, e is N(0,sige*V)

y is a 0,1 vector

V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)

B = N(c,T), sige = gamma(nu,d0), p = diffuse prior

USAGE: results = sarp_g(y,x,W,ndraw,nomit,prior,start)

where: y = dependent variable vector (nobs x 1)

x = independent variables matrix (nobs x nvar)

W = 1st order contiguity matrix (standardized, row-sums = 1)

ndraw = # of draws

nomit = # of initial draws omitted for burn-in

prior = a structure for: B = N(c,T), sige = gamma(nu,d0)

prior.beta, prior means for beta, c above (default 0)

prior.bcov, prior beta covariance , T above (default 1e+12)

prior.rval, r prior hyperparameter, default=4

prior.m, informative Gamma(m,k) prior on r

prior.k, (default: not used)

prior.nu, a prior parameter for sige

prior.d0, (default: diffuse prior for sige)

prior.rmin = (optional) min rho used in sampling

prior.rmax = (optional) max rho used in sampling

start = (optional) structure containing starting values:

defaults: beta=1,sige=1,rho=0.5, V= ones(n,1)

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 157

start.b = beta starting values (nvar x 1)

start.p = rho starting value (scalar)

start.sig = sige starting value (scalar)

start.V = V starting values (n x 1)

NOTE: if the model contains a constant term,

1st column of x-matrix must contain constant term

RETURNS: a structure:

results.meth = ’sarp_g’

results.bdraw = bhat draws (ndraw-nomit x nvar)

results.sdraw = sige draws (ndraw-nomit x 1)

results.vmean = mean of vi draws (1 x nobs)

results.ymean = mean of y draws (1 x nobs)

results.rdraw = r draws (ndraw-nomit x 1) (if m,k input)

results.pdraw = p draws (ndraw-nomit x 1)

results.pmean = b prior means, prior.beta from input

results.pstd = b prior std deviations sqrt(diag(T))

results.r = value of hyperparameter r (if input)

results.r2mf = McFadden R-squared

results.rsqr = Estrella R-squared

results.nobs = # of observations

results.nvar = # of variables in x-matrix

results.zip = # of zero y-values

results.ndraw = # of draws

results.nomit = # of initial draws omitted

results.y = actual observations (nobs x 1)

results.yhat = predicted values

results.nu = nu prior parameter

results.d0 = d0 prior parameter

results.time = time taken for sampling

results.accept= acceptance rate

results.rmax = 1/max eigenvalue of W (or rmax if input)

results.rmin = 1/min eigenvalue of W (or rmin if input)

--

[n junk] = size(y); yin = y; results.y = y; [n1 k] = size(x);

[n3 n4] = size(W); rflag = 0;

if nargin == 7

b0 = start.b; sige = start.sig; V = start.V; p0 = start.p;

elseif nargin == 6 % we supply starting values

b0 = ones(k,1); sige = 1; V = ones(n,1); p0 = 0.5;

else, error(’Wrong # of arguments to sarp_g’);

end;

fields = fieldnames(prior); nf = length(fields);

mm = 0; rval = 4; nu = 0; d0 = 0; c = zeros(k,1); T = eye(k)*1e+12;

for i=1:nf

if strcmp(fields{i},’rval’), rval = prior.rval;

elseif strcmp(fields{i},’m’), mm = prior.m; kk = prior.k;

rval = gamm_rnd(1,1,mm,kk); % initial value for rval

elseif strcmp(fields{i},’beta’), c = prior.beta;

elseif strcmp(fields{i},’bcov’), T = prior.bcov;

elseif strcmp(fields{i},’nu’), nu = prior.nu;

elseif strcmp(fields{i},’d0’), d0 = prior.d0;

elseif strcmp(fields{i},’rmin’), lmin = prior.rmin;

lmax = prior.rmax; rflag = 1;

end;

end;

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 158

Q = inv(chol(T)); QpQ = Q’*Q; Qpc = Q’*c;

cc=0.2; t0 = clock;

if rflag == 0, opt.tol = 1e-4; opt.disp = 0;

lambda = eigs(sparse(W),speye(n),2,’BE’,opt);

lmin = 1/lambda(2); lmax = 1/lambda(1);

end; results.rmax = lmax; results.rmin = lmin;

% compute a detval vector based on Pace and Barry’s approach

rvec = lmin-0.005:.005:lmax+0.005; spparms(’tight’);

z = speye(n) - 0.1*sparse(W); p = colmmd(z);

niter = length(rvec); detval = zeros(niter,2);

for i=1:niter;

rho = rvec(i); z = speye(n) - rho*sparse(W); [l,u] = lu(z(:,p));

detval(i,1) = sum(log(abs(diag(u)))); detval(i,2) = rho;

end;

rho = p0; IN = eye(n); in = ones(n,1);

index = zeros(n,1); % find an index of censored values

for i=1:n;

if y(i,1) == 0, index(i,1) = 1.0; end;

end;

nzip = sum(index); B = speye(n) - rho*sparse(W);

bsave = zeros(ndraw-nomit ,k); % storage for samples values

if mm~= 0, rsave = zeros(ndraw-nomit ,1); end;

vmean = zeros(n,1); ymean = zeros(n,1);

yhat = zeros(n,1); ssave = zeros(ndraw-nomit ,1);

psave = zeros(ndraw-nomit,1); rtmp = zeros(nomit,1);

cntr = 0; iter = 1;

% scale x for the conditional distribution function evaluation

if (ones(n,1) == x(:,1))

xd = x(:,2:k) - matmul(mean(x(:,2:k)),ones(n,k-1)); cflag = 1;

else, xd = x - matmul(mean(x),ones(n,k)); cflag = 0;

end;

while (iter <= ndraw); % start sampling;

% update beta

ys = y.*sqrt(V); xs = matmul(x,sqrt(V));

yd = y - mean(y); ysd = yd.*sqrt(V);

xsd = matmul(xd,sqrt(V));

xpxi = inv(xs’*xs + sige*QpQ);

xpy = (xs’*B*ys + sige*Qpc);

bhat = xpxi*xpy;

bhat = norm_rnd(sige*xpxi) + bhat;

% update sige

nu1 = n + nu; e = B*ys - xs*bhat;

d1 = d0 + e’*e; chi = chis_rnd(1,nu1);

t2 = chi/d1; sige = 1/t2;

% update vi

e = B*y - x*bhat; chiv = chis_rnd(n,rval+1);

vi = ((e.*e./sige) + in*rval)./chiv; V = in./vi;

% update rval

if mm ~= 0, rval = gamm_rnd(1,1,mm,kk); end;

% metropolis step to get rho update

bt = bhat(cflag+1:length(bhat),1);

rhox = c_sar(rho,ysd,xsd,bt,sige,W,detval);

accept = 0; rho2 = rho + cc*randn(1,1);

while accept == 0

if ((rho2 > lmin) & (rho2 < lmax)), accept = 1;

else, rho2 = rho + cc*randn(1,1);

cntr = cntr+1; % counts acceptance rate

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 159

end;

end;

rhoy = c_sar(rho2,ysd,xsd,bt,sige,W,detval);

ru = unif_rnd(1,0,1);

if ((rhoy - rhox) > exp(1)), p = 1;

else, ratio = exp(rhoy-rhox); p = min(1,ratio);

end;

if (ru < p), rho = rho2; end;

rtmp(iter,1) = rho;

% update 0,1 y-values

B = speye(n) - rho*sparse(W);

yh = x*bhat + rho*sparse(W)*y; BIB = inv(B’*B);

for i=1:n;

aa = yh(i,1); sigi = BIB(i,i);

if yin(i,1) == 0;

y(i,1) = aa + sqrt(sigi)*nmrt_rnd(-aa/sqrt(sigi));

elseif yin(i,1) == 1

y(i,1) = aa + sqrt(sigi)*nmlt_rnd(-aa/sqrt(sigi));

end;

end;

if iter > nomit % if we are past burn-in, save the draws

bsave(iter-nomit,1:k) = bhat’; ssave(iter-nomit,1) = sige;

psave(iter-nomit,1) = rho; vmean = vmean + vi;

ymean = ymean + y;

yhat = yhat + norm_cdf(x*bhat + rho*sparse(W)*y);

if mm~= 0, rsave(iter-nomit,1) = rval; end;

end;

if iter == nomit, cc = 2*std(rtmp(1:nomit,1)); end;

iter = iter + 1;

end; % end of sampling loop

gtime = etime(clock,t0); vmean = vmean/(ndraw-nomit);

ymean = ymean/(ndraw-nomit); yhat = yhat/(ndraw-nomit);

bmean = mean(bsave); rmean = mean(psave);

bout = [bmean’

rmean];

tmp = find(yin ==1); P = length(tmp); cnt0 = n-P; cnt1 = P;

P = P/n; % proportion of 1’s

like0 = n*(P*log(P) + (1-P)*log(1-P)); % restricted likelihood

Wy = sparse(W)*yin;

like1 = pr_like(bout,yin,[x Wy]); % unrestricted Likelihood

r2mf = 1-(abs(like1)/abs(like0)); % McFadden pseudo-R2

term0 = (2/n)*like0; term1 = 1/(abs(like1)/abs(like0))^term0;

rsqr = 1-term1; % Estrella R2

results.accept = 1 - cntr/(iter+cntr); results.r2mf = r2mf;

results.rsqr = rsqr; results.meth = ’sarp_g’;

results.bdraw = bsave; results.pdraw = psave;

results.sdraw = ssave; results.vmean = vmean;

results.yhat = yhat; results.ymean = ymean;

results.pmean = c; results.pstd = sqrt(diag(T));

results.nobs = n; results.nvar = k;

results.ndraw = ndraw; results.nomit = nomit;

results.time = gtime; results.nu = nu;

results.d0 = d0;

if mm~= 0, results.rdraw = rsave; results.m = mm; results.k = kk;

else, results.r = rval; results.rdraw = 0;

end;

results.zip = nzip;

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 160

This function is similar to the sar g function from Chapter 4, with the
added code fragment shown below to carry out draws for the latent variable
zi. These draws are made using a right-truncated normal distribution function
nmrt rnd and left-truncated normal distribution function nmlt rnd from the
Econometrics Toolbox.

% update 0,1 y-values

B = speye(n) - rho*sparse(W);

yh = x*bhat + rho*sparse(W)*y; BIB = inv(B’*B);

for i=1:n;

aa = yh(i,1); sigi = BIB(i,i);

if yin(i,1) == 0;

y(i,1) = aa + sqrt(sigi)*nmrt_rnd(-aa/sqrt(sigi));

elseif yin(i,1) == 1

y(i,1) = aa + sqrt(sigi)*nmlt_rnd(-aa/sqrt(sigi));

end;

end;

Another difference relates to the measures of fit calculated. These are
R−squared measures proposed by McFadden (1984) and a more recent proposal
by Estrella (1998) for use with limited dependent variable models. Computing
these measures of fit requires that we evaluate the likelihood function, so we use
the means of the sampled parameter draws.

We produce a predicted value that will lie between 0 and 1 using the normal
probability density function, norm pdf from the Econometrics Toolbox. We
also return the mean of the draws for the latent variable zi as these might be
useful for inference, especially in tobit models where interest often centers on
the truncated or censored sample values. The code for this is shown in the lines
below:

ymean = ymean + y;

yhat = yhat + norm_cdf(x*bhat + rho*sparse(W)*y);

5.5 Comparing EM and Bayesian probit models

Following an example provided by McMillen (1992) for his EM algorithm ap-
proach to estimating SAR and SEM probit models, we employ the data set from
Anselin (1988) on crime in Columbus, Ohio. McMillen censored the dependent
variable on crime such that yi = 1 for values of crime greater than 40 and yi = 0
for values of crime less than or equal to 40. The explanatory variables in the
model are neighborhood housing values and neighborhood income. Example 5.1
carried out the same data transformation and estimates SAR logit and probit
models.

Logit model estimates are generated by setting r = 7 and probit estimates
are those based on r = 40. For comparison we also present results from sar g
that ignore the limited dependent variable nature of the y variable and maximum
likelihood estimates produced by the sar function.

% ----- Example 5.1 Gibbs sampling probit models

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 161

load anselin.data;

y = anselin(:,1); [n junk] = size(y);

x = [ones(n,1) anselin(:,2:3)];

vnames = strvcat(’crime’,’constant’,’income’,’hvalue’);

load Wmat.data; W = Wmat;

yc = zeros(n,1);

% now convert the data to 0,1 values

for i=1:n

if y(i,1) > 40.0, yc(i,1) = 1; end;

end;

ndraw = 1100; nomit = 100;

prior.rval = 7; % logit estimates

prt(sar(yc,x,W),vnames);

result = sar_g(yc,x,W,ndraw,nomit,prior);

prt(result,vnames);

plt(result,vnames);

pause;

result2 = sarp_g(yc,x,W,ndraw,nomit,prior);

prt(result2,vnames);

plt(result2,vnames);

prior.rval = 40; % probit estimates

result3 = sarp_g(yc,x,W,ndraw,nomit,prior);

prt(result3,vnames);

plt(result3,vnames);

The printed results are shown below and the graphical results provided by
the plt function are shown in Figure 5.1 for the case of the logit model.

Spatial autoregressive Model Estimates

Dependent Variable = crime

R-squared = 0.5216

Rbar-squared = 0.5008

sigma^2 = 0.1136

Nobs, Nvars = 49, 3

log-likelihood = -1.1890467

of iterations = 12

min and max rho = -1.5362, 1.0000

Variable Coefficient t-statistic t-probability

constant 0.679810 2.930130 0.005259

income -0.019912 -1.779421 0.081778

hvalue -0.005525 -1.804313 0.077732

rho 0.539201 2.193862 0.033336

Gibbs sampling spatial autoregressive model

Dependent Variable = crime

R-squared = 0.5066

sigma^2 = 0.1279

r-value = 7

Nobs, Nvars = 49, 3

ndraws,nomit = 1100, 100

acceptance rate = 0.9718

time in secs = 25.5119

min and max rho = -1.5362, 1.0000

Posterior Estimates

Variable Coefficient t-statistic t-probability

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 162

constant 0.815839 3.854791 0.000358

income -0.026239 -2.011421 0.050161

hvalue -0.005526 -1.586039 0.119582

rho 0.480589 3.495093 0.001061

Gibbs sampling spatial autoregressive Probit model

Dependent Variable = crime

McFadden R^2 = 0.4048

Estrella R^2 = 0.4999

sigma^2 = 1.3547

r-value = 7

Nobs, Nvars = 49, 3

0, 1 y-values = 30, 19

ndraws,nomit = 1100, 100

acceptance rate = 0.9982

time in secs = 78.4667

min and max rho = -1.5362, 1.0000

Posterior Estimates

Variable Coefficient t-statistic t-probability

constant 3.350147 2.899936 0.005705

income -0.177615 -2.062167 0.044866

hvalue -0.035168 -1.515838 0.136403

rho 0.268768 1.545313 0.129123

Gibbs sampling spatial autoregressive Probit model

Dependent Variable = crime

McFadden R^2 = 0.4034

Estrella R^2 = 0.4983

sigma^2 = 1.3484

r-value = 40

Nobs, Nvars = 49, 3

0, 1 y-values = 30, 19

ndraws,nomit = 1100, 100

acceptance rate = 0.9822

time in secs = 79.0866

min and max rho = -1.5362, 1.0000

Posterior Estimates

Variable Coefficient t-statistic t-probability

constant 3.689735 3.104312 0.003259

income -0.196563 -2.362067 0.022461

hvalue -0.037356 -1.658856 0.103949

rho 0.352575 2.298016 0.026158

There is a remarkable difference between the maximum likelihood estimates
that ignore the limited dependent nature of the variable y and the logit/probit
estimates, which we would expect. The logit and probit estimates for the β
coefficients are relatively similar, but the estimate for ρ from these two mod-
els differ. The logit model produces an estimate of ρ that is not significantly
different from zero whereas the probit model estimate is significant.

A final point with respect to interpreting the estimates is that the marginal
impacts of the variables on the fitted probabilities is usually the inference aim
of these models. The estimates would need to be converted according to the
probability rule implied by the alternative underlying t−distributions associated

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 163

10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2
SAR Probit Gibbs Actual vs. Predicted

0 10 20 30 40 50
-1

-0.5

0

0.5

1
Residuals

0 10 20 30 40 50
1.5

2

2.5

Mean of V
i
 draws

-0.5 0 0.5 1

0

0.5

1

1.5

2

Posterior Density for rho

Figure 5.1: Results of plt() function for SAR logit

with the r value employed. These marginal impacts would be very similar
(as in the case of non-spatial maximum likelihood logit versus probit marginal
impacts) despite the apparent differences in the coefficients. For the purpose
of computing marginal impacts, one needs to evaluate the posterior density of
pk, which we denote π̂(pk) for k ranging over all sample observations. (It is
conventional to assess marginal impacts across all observations in the model
and then average these.) For the heteroscedastic model pk will take the form:

Φ(ỹk) = Φ(ρWkv
(−1/2)
k y + v

(−1/2)
k x′kβ). To find the posterior density estimate

of π̂(pk) we would employ the draws for ρi, vi
k, β

i in normal densities, denoted
N(µ, σ) as indicated in (5.8)

π̂(pk) = (1/m)

m
∑

i=1

N[ỹi
k, (1/v

i
k)x′k(X ′V −1

i X)−1xk]/N[0, 1] (5.8)

ỹi
k = ρiWk(1/

√

vi
k)y + (1/

√

vi
k)x′kβ

i

V −1
i = diag(1/vi

j), j = 1, . . . , n

Table 5.1 shows a comparison of McMillen’s EM algorithm estimates and
those from Gibbs sampling. The Gibbs estimates are based on 2,500 draws with
the first 100 discarded for startup or burn-in. Gibbs SAR and SEM estimates

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 164

are reported for both r = 4 which should be close to a logit model and r = 40
which would represent the probit case. Results for two values of r were reported
because the inferences are different from these two models.

Table 5.1: EM versus Gibbs estimates

EM Gibbs Gibbs EM Gibbs Gibbs
SAR SAR r = 4 SAR r = 40 SEM SEM r = 4 r = 40

CONSTANT 2.587 3.237 3.548 2.227 4.842 3.293
t−value 2.912 2.708 3.294 3.115 2.195 2.672
INCOME -0.128 -0.176 -0.181 -0.123 -0.284 -0.186
t−value -2.137 -2.124 -2.598 -2.422 -1.898 -2.075
HOUSING -0.029 -0.032 -0.038 -0.025 -0.046 -0.035
t−value -1.617 -1.264 -1.777 -1.586 -1.560 -1.677
ρ 0.429 0.245 0.359 0.279 0.105 0.185
t−value — 1.319 2.128 — 0.373 0.621

The greatest difference between the EM and Gibbs estimates resides in the
estimates for ρ in the SAR model and λ in the SEM model.

One reason why the EM and Gibbs estimates may be different is that
McMillen’s approach requires a model for the non-constant variance which was
specified as: vi = 0.0007INCOME2 + 0.0004HOUSING2. This is quite different
from the approach taken in the Bayesian model that relies on vi estimates from
Gibbs sampling.

5.6 Implementing tobit models

We have functions sart g, semt g, sact g for heteroscedastic tobit spatial
autoregressive models. Documentation for the function sart g which we use to
discuss implementation of the tobit models is shown below.

Tobit models can involve either left or right truncation. That is, censored
observations can be y values that fall below a limiting value or censoring can
take place above a limit value. The functions allow the user to specify the type
of censoring and a limit value. This defaults to the typical case of left censoring
at zero.

PURPOSE: Gibbs sampling spatial autoregressive Tobit model

y = p*Wy + Xb + e, e is N(0,sige*V)

y is a censored vector (assumed to be at zero)

V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)

B = N(c,T), sige = gamma(nu,d0), p = diffuse prior

USAGE: results = sart_g(y,x,W,prior,ndraw,nomit,start)

where: y = dependent variable vector (nobs x 1)

x = independent variables matrix (nobs x nvar)

W = 1st order contiguity matrix (standardized, row-sums = 1)

ndraw = # of draws

nomit = # of initial draws omitted for burn-in

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 165

prior = a structure for: B = N(c,T), sige = gamma(nu,d0)

prior.beta, prior means for beta, c above (default 0)

prior.bcov, prior beta covariance , T above (default 1e+12)

prior.rval, r prior hyperparameter, default=4

prior.m, informative Gamma(m,k) prior on r

prior.k, (default: not used)

prior.nu, a prior parameter for sige

prior.d0, (default: diffuse prior for sige)

prior.trunc = ’left’ or ’right’ censoring (default = left)

prior.limit = value for censoring (default = 0)

start = (optional) structure containing starting values:

defaults: beta=1,sige=1,rho=0.5, V= ones(n,1)

start.b = beta starting values (nvar x 1)

start.p = rho starting value (scalar)

start.sig = sige starting value (scalar)

start.V = V starting values (n x 1)

NOTE: 1st column of x-matrix must contain iota vector (constant term)

RETURNS: a structure:

results.meth = ’sart_g’

results.bdraw = bhat draws (ndraw-nomit x nvar)

results.sdraw = sige draws (ndraw-nomit x 1)

results.vmean = mean of vi draws (1 x nobs)

results.rdraw = sige draws (ndraw-nomit x 1)

results.pdraw = p draws (ndraw-nomit x 1)

results.ymean = mean of y draws (1 x nobs)

results.pmean = b prior means, prior.beta from input

results.pstd = b prior std deviations sqrt(diag(T))

results.r = value of hyperparameter r (if input)

results.nobs = # of observations

results.nvar = # of variables in x-matrix

results.nobsc = # of censored y-values

results.ndraw = # of draws

results.nomit = # of initial draws omitted

results.y = actual observations (nobs x 1)

results.yhat = predicted values

results.nu = nu prior parameter

results.d0 = d0 prior parameter

results.time = time taken for sampling

results.accept= acceptance rate

results.rmax = 1/max eigenvalue of W (or rmax if input)

results.rmin = 1/min eigenvalue of W (or rmin if input)

The major difference between the tobit and probit models resides in sampling
for the latent variable zi, with the code for this shown below:

% update censored y-values

yh = y - e;

for i=1:n;

if tflag == 0 % left censoring

if (yin(i,1) <= vflag)

aa = yh(i,1);

y(i,1) = aa + sqrt(sige)*nmrt_rnd(-aa/sqrt(sige));

end;

else % right censoring

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 166

if (yin(i,1) >= vflag)

aa = yh(i,1);

y(i,1) = aa + sqrt(sige)*nmlt_rnd(-aa/sqrt(sige));

end;

end;

end;

For the case of left censoring we draw from a right-truncated normal distribu-
tion using the nmrt rnd function and for right censoring we rely on nmlt rnd
to produce a draw from a left-truncated normal. The variable ‘vflag’ is nothing
more than the user-supplied truncation limit value or the default value of zero.
Note that we only sample censored observations and rely on the actual y values
for the case of uncensored observations.

A key to understanding how the Gibbs sampler works on these problems is
the generation of predicted values for the censored observations. These values
may also be useful for purposes of inference regarding the censored observations.
The tobit spatial autoregressive functions return a structure variable field ‘re-
sults.ymean’ that represents the mean of the sampled values for the censored
observations as well as the actual values for uncensored observations.

To illustrate, example 5.2 demonstrates using data generated for an SAR
model based on the contiguity matrix from Anselin’s neighborhood crime data.
We censor y values less than zero. Because we know the value of the censored
observations in this example, we can see how accurate the mean of the draws for
these observations is. The mean of the posterior distribution for the censored
observations would be represented by the mean of these draws. One can also
use the standard deviation of these draws for purposes of inference.

% ----- Example 5.2 SAR Tobit Model

load anselin.dat;

xt = [anselin(:,2:3)]; n = length(xt);

% center and scale the data so our y-values

% are evenly distributed around zero, the censoring point

xs = studentize(xt);

x = [ones(n,1) xs]; [n k] = size(x);

load wmat.dat; W = wmat;

sige = 5.0; evec = randn(n,1)*sqrt(sige);

rho = 0.65; beta = ones(k,1);

B = eye(n) - rho*W; BI = inv(B);

y = BI*x*beta + BI*evec; % generate SAR model

yc = y;

% now censor negative values

for i=1:n

if y(i,1) <= 0, yc(i,1) = 0; end;

end;

Vnames = strvcat(’crime’,’constant’,’income’,’hvalue’);

ndraw = 1100; nomit = 100;

prior.rval = 4;

prior.limit = 0; prior.trunc = ’left’;

result = sart_g(yc,x,W,ndraw,nomit,prior);

prt(result,Vnames);

tt=1:n;

plot(tt,y,’-k’,tt,result.ymean,’--k’);

%title(’actual vs mean of draws for latent variable’);

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 167

xlabel(’Observations’);

ylabel(’actual vs posterior mean of latent draws’);

Figure 5.2 shows a plot of the mean of the simulated values for the censored
observations against the actual y variables. Ordinarily, we wouldn’t know the
values of the censored y values, but in this case the generated data set provides
this information.

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

4

6

8

10

12

Observations

a
c
tu

a
l
v
s
 p

o
s
te

ri
o

r
m

e
a

n
 o

f
la

te
n

t
d

ra
w

s

Figure 5.2: Actual vs. simulated censored y-values

The printed results for an SAR tobit model based on the censored data as
well as a set of SAR maximum likelihood estimates based on the actual data
are presented below.

Spatial autoregressive Model Estimates

Dependent Variable = crime

R-squared = 0.6018

Rbar-squared = 0.5845

sigma^2 = 4.8963

Nobs, Nvars = 49, 3

log-likelihood = -93.625028

of iterations = 11

min and max rho = -1.5362, 1.0000

Variable Coefficient t-statistic t-probability

constant 1.279824 1.996443 0.051824

income 0.599044 1.496695 0.141303

hvalue 1.146929 3.066180 0.003624

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 168

rho 0.564742 2.988512 0.004487

Gibbs sampling spatial autoregressive Tobit model

Dependent Variable = crime

R-squared = 0.5546

Imputed R-squared = 0.5860

sigma^2 = 4.8531

r-value = 4

Nobs, Nvars = 49, 3

censored values = 8

ndraws,nomit = 1100, 100

acceptance rate = 0.9683

time in secs = 21.9479

min and max rho = -1.5362, 1.0000

Posterior Estimates

Variable Coefficient t-statistic t-probability

constant 1.491787 4.158658 0.000138

income 0.707966 1.669128 0.101885

hvalue 1.246787 2.858284 0.006379

rho 0.481235 3.282253 0.001971

We see that these two sets of estimates would lead to very similar inferences,
so the tobit model is correctly imputing the censored observations.

5.7 An applied example

In a well-known paper, Harrison and Rubinfeld (1978) used a housing data set
for the Boston SMSA with 506 observations (one observation per census tract)
containing 14 variables. We will use this spatial data set to illustrate specifica-
tion and testing for spatial autoregressive models. Our dependent variable will
be median housing prices for each of the 506 census tracts. The explanatory
variables in the data set are shown in Table 5.2.

Table 5.2: Variables in the Boston data set

CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy (= 1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
LSTAT percent lower status of the population
MEDV Median value of owner-occupied homes in $1000’s

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 169

Belsley, Kuh, and Welsch (1980) used the data to examine the effects of
robust estimation and published the observations in an appendix on pages 244-
261. It should be noted that their published data was transformed in various
ways, so the data in their appendix does not match our data which is in the raw
untransformed format. Pace (1993), Gilley and Pace (1996), and Pace and Gilley
(1997) have used this data set with spatial econometric models and longitude-
latitude coordinates for the census tracts have been added to the dataset. Pace
and Gilley (1997) point out that this data set included 16 censored observations
for housing values greater than $50,000. For these observations, values were set
to $50,000. This enables us to compare tobit spatial autoregressive estimates
to maximum likelihood and Bayesian heteroscedastic estimates that ignore the
sample truncation.

Our regression model will simply relate the median house values to all of
the explanatory variables, simplifying our specification task. We will focus on
alternative spatial autoregressive model specifications.

The first task involves scaling and standardization of the data set. Bel-
sley, Kuh and Welsch (1980) used this data set to illustrate numerically ill-
conditioned data that contained outliers and influential observations. Poor
scaling will adversely impact our numerical hessian approach to determining
the variance-covariance structure for maximum likelihood spatial autoregressive
parameter estimates. Intuitively, the hessian function attempts to compute a
numerical derivative by perturbing each parameter in turn and examining the
impact on the likelihood function. If the parameters vary widely in magnitude
because the data is poorly scaled, this task will be more difficult and we may
calculate negative variances.

Example 5.3 demonstrates the nature of these scaling problems, carrying out
a least-squares regression. We see that the coefficient estimates vary widely in
magnitude, so we scale the variables in the model using a function studentize
from the Econometric Toolbox that subtracts the means and divides by the
standard deviations. Another least-squares regression is then carried out to
illustrate the impact of scaling on the model coefficients.

% ----- Example 5.3 Least-squares on the Boston dataset

load boston.raw; % Harrison-Rubinfeld data

[n k] = size(boston);y = boston(:,k); % median house values

x = [ones(n,1) boston(:,1:k-1)]; % other variables

vnames = strvcat(’hprice’,’constant’,’crime’,’zoning’,’industry’, ...

’charlesr’,’noxsq’,’rooms2’,’houseage’,’distance’, ...

’access’,’taxrate’,’pupil/teacher’,’blackpop’,’lowclass’);

res = ols(y,x); prt(res,vnames);

ys = studentize(y); xs = studentize(x(:,2:k));

res2 = ols(ys,xs);

vnames2 = strvcat(’hprice’,’crime’,’zoning’,’industry’,’charlesr’, ...

’noxsq’,’rooms2’,’houseage’,’distance’,’access’,’taxrate’, ...

’pupil/teacher’,’blackpop’,’lowclass’);

prt(res2,vnames2);

% sort actual and predicted by housing values from low to high

yhat = res2.yhat; [ysort yi] = sort(ys); yhats = yhat(yi,1);

tt=1:n; % plot actual vs. predicted

plot(tt,ysort,’ok’,tt,yhats,’+k’);

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 170

ylabel(’housing values’);

xlabel(’census tract observations’);

The results indicate that the coefficient estimates based on the unscaled data
vary widely in magnitude from 0.000692 to 36.459, whereas the scaled variables
produce coefficients ranging from 0.0021 to -0.407.

Ordinary Least-squares Estimates (non-scaled variables)

Dependent Variable = hprice

R-squared = 0.7406

Rbar-squared = 0.7338

sigma^2 = 22.5179

Durbin-Watson = 1.2354

Nobs, Nvars = 506, 14

Variable Coefficient t-statistic t-probability

constant 36.459488 7.144074 0.000000

crime -0.108011 -3.286517 0.001087

zoning 0.046420 3.381576 0.000778

industry 0.020559 0.334310 0.738288

charlesr 2.686734 3.118381 0.001925

noxsq -17.766611 -4.651257 0.000004

rooms2 3.809865 9.116140 0.000000

houseage 0.000692 0.052402 0.958229

distance -1.475567 -7.398004 0.000000

access 0.306049 4.612900 0.000005

taxrate -0.012335 -3.280009 0.001112

pupil/teacher -0.952747 -7.282511 0.000000

blackpop 0.009312 3.466793 0.000573

lowclass -0.524758 -10.347146 0.000000

Ordinary Least-squares Estimates (scaled variables)

Dependent Variable = hprice

R-squared = 0.7406

Rbar-squared = 0.7343

sigma^2 = 0.2657

Durbin-Watson = 1.2354

Nobs, Nvars = 506, 13

Variable Coefficient t-statistic t-probability

crime -0.101017 -3.289855 0.001074

zoning 0.117715 3.385011 0.000769

industry 0.015335 0.334650 0.738032

charlesr 0.074199 3.121548 0.001905

noxsq -0.223848 -4.655982 0.000004

rooms2 0.291056 9.125400 0.000000

houseage 0.002119 0.052456 0.958187

distance -0.337836 -7.405518 0.000000

access 0.289749 4.617585 0.000005

taxrate -0.226032 -3.283341 0.001099

pupil/teacher -0.224271 -7.289908 0.000000

blackpop 0.092432 3.470314 0.000565

lowclass -0.407447 -10.357656 0.000000

The program in example 5.3 also produces a plot of the actual versus pre-
dicted values from the model sorted by housing values from low to high. From

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 171

this plot (shown in Figure 5.3), we see large predicted errors for the highest
housing values. This suggests a log transformation on the dependent variable
y in the model would be appropriate. The figure also illustrates that housing
values above $50,000 have been censored to a value of $50,000.

0 100 200 300 400 500 600
-3

-2

-1

0

1

2

3

h
o
u
s
in

g
 v

a
lu

e
s

census tract observations

Figure 5.3: Actual vs. Predicted housing values

We adopt a model based on the scaled data and a log transformation for the
dependent variable and carry out least-squares estimation again in example 5.4.
As a test for spatial autocorrelation in the least-squares residuals, we employ
a first-order spatial autoregressive model on the residuals. We also carry out a
Moran’s I test for spatial autocorrelation, which may or may not work depending
on how much RAM memory you have in your computer. Note that we can
directly use the prt function without first returning the results from moran
to a results structure. (This is true of all functions in the spatial econometrics
toolbox.) We rely on our function xy2cont to generate a spatial contiguity
matrix needed by far and moran to test for spatial autocorrelation.

% ----- Example 5.4 Testing for spatial correlation

load boston.raw; % Harrison-Rubinfeld data

load latitude.data; load longitude.data;

[W1 W W3] = xy2cont(latitude,longitude); % create W-matrix

[n k] = size(boston);y = boston(:,k); % median house values

x = boston(:,1:k-1); % other variables

vnames = strvcat(’hprice’,’crime’,’zoning’,’industry’,’charlesr’, ...

’noxsq’,’rooms2’,’houseage’,’distance’,’access’,’taxrate’, ...

’pupil/teacher’,’blackpop’,’lowclass’);

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 172

ys = studentize(log(y)); xs = studentize(x);

res = ols(ys,xs); prt(res,vnames);

resid = res.resid; % recover residuals

rmin = 0; rmax = 1;

res2 = far(resid,W,rmin,rmax); prt(res2);

prt(moran(ys,xs,W));

The results shown below indicate strong evidence of spatial autocorrelation
in the residuals from the least-squares model. Our FAR model produced a
spatial correlation coefficient estimate of 0.647 with a large t−statistic and this
indication of spatial autocorrelation in the residuals is confirmed by the Moran
test results.

Ordinary Least-squares Estimates

Dependent Variable = hprice

R-squared = 0.7896

Rbar-squared = 0.7845

sigma^2 = 0.2155

Durbin-Watson = 1.0926

Nobs, Nvars = 506, 13

Variable Coefficient t-statistic t-probability

crime -0.216146 -7.816230 0.000000

zoning 0.066897 2.136015 0.033170

industry 0.041401 1.003186 0.316263

charlesr 0.062690 2.928450 0.003564

noxsq -0.220667 -5.096402 0.000000

rooms2 0.156134 5.435516 0.000000

houseage 0.014503 0.398725 0.690269

distance -0.252873 -6.154893 0.000000

access 0.303919 5.377976 0.000000

taxrate -0.258015 -4.161602 0.000037

pupil/teacher -0.202702 -7.316010 0.000000

blackpop 0.092369 3.850718 0.000133

lowclass -0.507256 -14.318127 0.000000

(Test for spatial autocorrelation using FAR model)

First-order spatial autoregressive model Estimates

R-squared = 0.3085

sigma^2 = 0.1452

Nobs, Nvars = 506, 1

log-likelihood = -911.39591

of iterations = 9

min and max rho = 0.0000, 1.0000

Variable Coefficient t-statistic t-probability

rho 0.647624 14.377912 0.000000

Moran I-test for spatial correlation in residuals

Moran I 0.35833634

Moran I-statistic 14.70009315

Marginal Probability 0.00000000

mean -0.01311412

standard deviation 0.02526858

Example 5.5 estimates a series of alternative spatial autoregressive models
using maximum likelihood in an attempt to find the most appropriate model.

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 173

% ----- Example 5.5 Spatial autoregressive model estimation

load boston.raw; % Harrison-Rubinfeld data

load latitude.data; load longitude.data;

[W1 W W3] = xy2cont(latitude,longitude); % create W-matrix

W2 = slag(W,2); % 2nd order W-matrix

[n k] = size(boston);y = boston(:,k); % median house values

x = boston(:,1:k-1);; % other variables

vnames = strvcat(’hprice’,’constant’,’crime’,’zoning’,’industry’,’charlesr’, ...

’noxsq’,’rooms2’,’houseage’,’distance’,’access’,’taxrate’, ...

’pupil/teacher’,’blackpop’,’lowclass’);

ys = studentize(log(y)); xs = [ones(n,1) studentize(x)];

rmin = 0; rmax = 1;

tic; res1 = sar(ys,xs,W,rmin,rmax); prt(res1,vnames); toc;

tic; res2 = sem(ys,xs,W,rmin,rmax); prt(res2,vnames); toc;

tic; res3 = sac(ys,xs,W,W2); prt(res3,vnames); toc;

The results from example 5.5 are presented in Table 5.3. We see that all
three models produced estimates indicating significant spatial autocorrelation.
For example, the SAR model produced a coefficient estimate for ρ equal to
0.4508 with a large t−statistic, and the SEM model produced an estimate for
λ of 0.7576 that was also significant. The SAC model produced estimates of ρ
and λ that were both significant at the 99% level.

Which model is best? The log-likelihood function values are much higher for
the SEM and SAC models, so this would be evidence against the SAR model. A
further test of the SAR model would be to use the function lmsar that tests for
spatial autocorrelation in the residuals of the SAR model. If we find evidence of
residual spatial autocorrelation, it suggests that the SAC model might be most
appropriate. Note that the SAC model exhibits the best log-likelihood function
value.

The results from the lmsar test shown below indicate the presence of spatial
autocorrelation in the residuals of the SAR model, suggesting that the SEM or
SAC models would be more appropriate.

LM error tests for spatial correlation in SAR model residuals

LM value 60.37309581

Marginal Probability 0.00000000

chi(1) .01 value 6.63500000

It seems difficult to choose between the SEM and SAC models as their like-
lihood function values are very similar, but the lack of statistical significance of
the coefficient λ in the SAC model might make us lean toward the SEM model.

Regarding inferences, an interesting point is that the Charles River location
dummy variable was statistically significant in the least-squares version of the
model, but not in any of the three spatial autoregressive models. Intuitively,
taking explicit account of the spatial nature of the data eliminates the need for
this locational dummy variable. Other differences in the inferences that would
be made from least-squares versus the SEM and SAC models center on the
magnitudes of ‘pupil/teacher’ ratio and ‘lower class’ population variables. The
least-squares estimates for these two variables are roughly twice the magnitude
of those from the SAC model. Since the other two spatial autoregressive models

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 174

Table 5.3: SAR,SEM,SAC model comparisons

Variable sar t−stat sem t−stat sac t−statistic
constant -0.0019 -0.11 -0.0079 -0.12 -0.0073 -0.13
crime -0.1653 -6.88 -0.1867 -8.44 -0.1895 -8.47
zoning 0.0806 3.00 0.0563 1.81 0.0613 1.97
industry 0.0443 1.25 -0.0002 -0.00 0.0041 0.08
charlesr 0.0171 0.91 -0.0145 -0.67 -0.0118 -0.55
noxsq -0.1296 -3.43 -0.2202 -3.68 -0.2133 -3.65
rooms2 0.1608 6.54 0.1985 8.32 0.2001 8.30
houseage 0.0185 0.59 -0.0649 -1.74 -0.0567 -1.50
distance -0.2152 -6.10 -0.2245 -3.42 -0.2549 -3.96
access 0.2722 5.62 0.3521 5.44 0.3538 5.56
taxrate -0.2212 -4.16 -0.2575 -4.52 -0.2582 -4.53
pup/teach -0.1023 -4.08 -0.1223 -3.83 -0.1213 -3.85
blackpop 0.0775 3.77 0.1290 4.80 0.1260 4.70
lowclass -0.3376 -10.14 -0.3803 -10.62 -0.3805 -10.72
rho 0.4509 12.34 0.7123 13.61
lambda 0.7576 19.13 0.1269 1.49
R2 0.8421 0.8708 0.8688
ln likel -85.0928 -58.5977 -57.6506

produce similar estimates for these two variables, we would infer that the least-
squares estimates for these coefficients are exhibiting upward bias.

To a lesser extent, we would draw a different inference regarding the mag-
nitude of impact for the ‘rooms2’ variable from the two spatial autoregressive
models that we think most appropriate (SEM and SAC) and least-squares. The
SEM and SAC models produce estimates around 0.2 compared to a value of
0.156 from least-squares. Interestingly, the SAR model estimate for this vari-
able is 0.160, close to that from least-squares.

We used this data set to explore the accuracy of the numerical hessian versus
information matrix approach to determining the variance-covariance matrix for
the estimates. Since this is a reasonably large dataset with a large number
of explanatory variables, it should provide a good indication of how well the
numerical hessian approach does. The t−statistics from the SAR, SEM and
SAC models estimated with both the information matrix approach and the
numerical hessian are presented in Table 5.4.

The numerical approach appears to work very well, producing identical infer-
ences for all coefficients except λ in the SAC model. The SAC model produced
the greatest divergence between the t−statistics and unfortunately large dis-
crepancies exists for both spatial parameters ρ and λ in this model. With the
exception of the coefficient for λ in the SAC model, we would draw the same
inferences regarding the significance of these parameters from both approaches
to computing measures of dispersion. Pace and Barry (1998) express the belief
that the information matrix approach (whether computed numerically or an-
alytically) may not work well for spatial autoregressive models because of the

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 175

Table 5.4: Information matrix vs. numerical hessian measures of dispersion

time 10.6 51.9 77.4 67.8 207.7 398.1
Variable SAR SAR SEM SEM SAC SAC

(info) (hess) (info) (hess) (info) (hess)
const -0.111 -0.111 -0.120 -0.120 -0.132 -0.401
crime -6.888 -6.763 -8.440 -8.475 -8.476 -8.467
zoning 3.009 3.007 1.819 1.819 1.971 2.440
indus 1.255 1.255 -0.004 -0.004 0.087 0.124
chas 0.918 0.922 -0.679 -0.691 -0.555 -0.686
noxsq -3.433 -3.397 -3.683 -3.687 -3.653 -5.687
rooms2 6.547 6.521 8.324 8.344 8.308 8.814
age 0.595 0.593 -1.741 -1.753 -1.505 -1.909
dis -6.103 -6.037 -3.420 -3.433 -3.968 -7.452
access 5.625 5.577 5.446 5.476 5.569 7.669
taxrate -4.166 -4.147 -4.526 -4.526 -4.530 -5.233
ptratio -4.088 -4.025 -3.838 -3.885 -3.856 -5.116
b 3.772 3.744 4.803 4.808 4.708 6.364
lstat -10.149 -9.900 -10.626 -10.954 -10.729 -12.489
rho 12.349 10.353 19.135 20.892 13.616 38.140
lam 2.904 1.491

asymmetry of the profile likelihood that arises from the restricted range of the
parameter ρ. Additionally, they argue that the necessary “smoothness” needed
to compute well-behaved second derivatives may not always occur as Ripley
(1988) documents for a particular case. Given this, we should perhaps qualify
our evaluation of success regarding the variance-covariance calculations. On
the other hand, for this particular data set and model, the variance-covariance
structure for the spatial autoregressive models is remarkably similar to that
from the least-squares model as indicated by the similar magnitudes for the
t−statistics. Further, for the single case of the Charles River dummy variable
where the least-squares and spatial t−statistics differed, we have a plausible
explanation for this difference.

Another point to keep in mind is that normality and constant variance of
the disturbances may not be a good assumption. The presence of outliers and
non-constant variance might impact on the use of both the information matrix
and numerical hessian approaches to calculating measures of dispersion.

The times (in seconds) required by both information matrix and numeri-
cal hessian approaches to estimating the variance-covariance structure of the
parameters are reported in Table 5.4. We see that the information matrix ap-
proach was quite a bit faster for the SAR and SAC models and slightly slower
for the SEM model. One point to consider regarding execution times is that the
spatial contiguity weight matrix is not exceptionally sparse for this problem.
Of the (506x506)=256,036 elements, there are 3,006 non-zero entries which is
1.17 percent of the elements. This would bias upward the times reported for
the numerical hessian approach since the sparse algorithms can’t work to their

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 176

fullest.
Example 5.6 turns attention to the Bayesian heteroscedastic models for this

data set. Spatial autoregressive models are estimated that ignore the sample
truncation along with a series of tobit spatial autoregressive models for compar-
ison.

Example 5.6 sorts by the dependent variable, median housing values and
also sorts the explanatory variables using the index vector ‘yind’ returned by
the sort function applied to the y values. We also need to sort the latitude and
longitude vectors. After carrying out Gibbs sampling estimation for the SAR,
SEM and SAC models, we add to the prior structure variable a field for right-
truncation and we supply the limit value which is the log of 50,000 standardized.
Since the y vector is sorted, this transformed limit value must equal the last 16
observations, so we use the last to define the limit value.

% ----- Example 5.6 Right-censored Tobit for the Boston data

load boston.raw; % Harrison-Rubinfeld data

load latittude.data; load longitude.data;

[n k] = size(boston);y = boston(:,k); % median house values

% sort by median house values

[ys yind] = sort(y); xs = boston(yind,1:k-1);

lats = latittude(yind,1); lons = longitude(yind,1);

[W1 W W3] = xy2cont(lats,lons); % create W-matrix

W2 = slag(W,2);

clear W1 W3;

vnames = strvcat(’hprice’,’constant’,’crime’,’zoning’,’industry’, ...

’charlesr’,’noxsq’,’rooms2’,’houseage’,’distance’,’access’,’taxrate’, ...

’pupil/teacher’,’blackpop’,’lowclass’);

y = studentize(log(ys)); x = [ones(n,1) studentize(xs)];

% define censoring limit

limit = y(506,1); % median values >=50,000 are censored to 50

ndraw = 1100; nomit = 100; prior.rval = 4;

% do maximum likelihood

res1 = sar(y,x,W); prt(res1,vnames);

rmin = res1.rmin; rmax = res1.rmax;

res2 = sem(y,x,W); prt(res2,vnames);

lmin = res2.lmin; lmax = res2.lmax;

res3 = sac(y,x,W,W2); prt(res3,vnames);

res4 = sac(y,x,W2,W); prt(res4,vnames);

% ignore censoring

prior.rmin = rmin; prior.rmax = rmax; prior.rval = 4;

res1g = sar_g(y,x,W,ndraw,nomit,prior); prt(res1g,vnames);

prior.lmin = rmin; prior.lmax = rmax;

res2g = sem_g(y,x,W,ndraw,nomit,prior); prt(res2g,vnames);

prior.rmin = rmin; prior.rmax = rmax;

prior.lmin = lmin; prior.lmax = lmax;

res3g = sac_g(y,x,W,W2,ndraw,nomit,prior); prt(res3g,vnames);

% use Tobit for censoring

prior.trunc = ’right’; prior.limit = limit;

res1t = sart_g(y,x,W,ndraw,nomit,prior); prt(res1t,vnames);

prior.lmin = rmin; prior.lmax = rmax;

res2t = semt_g(y,x,W,ndraw,nomit,prior); prt(res2t,vnames);

prior.rmin = rmin; prior.rmax = rmax;

prior.lmin = lmin; prior.lmax = lmax;

res3t = sact_g(y,x,W,W2,ndraw,nomit,prior); prt(res3t,vnames);

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 177

Intuitively, we might not expect a large difference in the parameter estimates
for this case where only 16 of the 506 sample observations are censored. The
results are presented in Table 5.5 for the SAR and tobit version of the SAR
model along with a discussion of these results.

Table 5.5: SAR and SAR tobit model comparisons

Variable sar t−statistic sar tobit t−statistic
constant -0.0346 -2.28 -0.0358 -2.27
crime -0.1552 -5.31 -0.1250 -4.43
zoning 0.0442 1.99 0.0539 2.13
industry 0.0456 1.65 0.0290 0.99
charlesr 0.0250 1.59 -0.0038 -0.21
noxsq -0.0807 -2.41 -0.0471 -1.46
rooms2 0.3111 10.34 0.2475 7.98
houseage -0.0493 -1.69 -0.0481 -1.60
distance -0.1640 -5.34 -0.1577 -4.98
access 0.1633 3.61 0.1655 3.48
taxrate -0.2059 -4.41 -0.2074 -4.21
pupil/teacher -0.1220 -6.13 -0.0754 -3.60
blackpop 0.1190 5.49 0.0926 4.21
lowclass -0.3044 -7.64 -0.2323 -6.35
rho 0.2466 8.34 0.4243 15.81
R2 0.8098 0.8116

Contrary to our expectation that these two sets of estimates would produce
identical inferences, some interesting and perhaps substantive differences arise.
First, we see a difference in the autoregressive parameter ρ which is nearly twice
as large for the tobit model.

In comparing the estimates that ignore sample censoring to the tobit esti-
mates, we find evidence that the ‘noxsq’ air pollution variable is insignificant
in the tobit model. Both the maximum likelihood and Bayesian SAR estimates
indicate this variable is significant, whereas the tobit version of the SAR model
points to insignificance. Figure 5.4 shows a plot of the posterior mean of the Vi

estimates from both the Bayesian SAR model and the Bayesian tobit model. An
interesting difference arises in the Vi estimates for the censored observations at
the end of the sample. The tobit model does not produce large values whereas
the non-tobit model detects these observations as outliers and produces large
Vi estimates for these observations. This might explain the difference in the
estimates since the non-tobit model is downweighting the censored observations
whereas the tobit model is imputing values for these observations using the
draws for the latent variable zi in this model.

With the exception of the ‘noxsq’ variable, none of the other variables in the
SAR and tobit SAR models would lead to different inferences using the 0.05 level
of significance. This is as we would expect, given only 16 censored observations
in a relatively large sample of 506 observations. Nonetheless, the dramatic
difference in the estimate for ρ between the tobit and non-tobit versions of the

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 178

0 100 200 300 400 500 600
0

5

10

15

20

25

Observations

V
i e

s
ti
m

a
te

s

SAR model
SAR tobit model

Figure 5.4: Vi estimates for the Boston data set

model suggest that one shouldn’t ignore sample censoring.
The estimates from the Bayesian spatial error model and the tobit version

of this model are presented in Table 5.6.
As in the case of the SAR model, we see a large difference in the magnitude

of the spatial autoregressive parameter λ in these two versions of the model.
There is also a difference in the inferences one would draw regarding the ‘zoning’
variable, which is significant in the non-tobit model and insignificant in the tobit
model. The ‘noxsq’ variable is not significant at the 0.01 level in either the tobit
or non-tobit versions of the model.

Finally, we present estimates from the SAC model and the SAC tobit version
of the model in Table 5.7. Here we see a difference in the inference one would
draw regarding the significance of the spatial coefficient λ which is insignificant
in the non-tobit model and significant in the tobit version of the model.

We see similar evidence regarding the weak significance of the ‘noxsq’ vari-
able in both of these models since this variable is not significant at the 0.01
level.

Summarizing, we found important differences in the inferences one would
draw from the Bayesian heteroscedastic and maximum likelihood estimates. The
maximum likelihood estimates for all spatial autoregressive model specifications
indicated that air pollution measured by ‘noxsq’ was negative and significant at
the 0.01 level. None of the Bayesian heteroscedastic models produced estimates
for this variable that were significant at the 0.01 level. This might represent a

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 179

Table 5.6: SEM and SEM tobit model comparisons

Variable sem t−statistic sem tobit t−statistic
constant -0.0626 -0.89 -0.0320 -1.01
crime -0.1627 -5.89 -0.1567 -5.58
zoning 0.0480 2.04 0.0410 1.32
industry -0.0067 -0.18 0.0102 0.25
charlesr -0.0175 -0.99 0.0060 0.24
noxsq -0.1249 -2.45 -0.1142 -2.32
rooms2 0.3850 17.46 0.3049 7.71
houseage -0.1537 -5.38 -0.0985 -2.72
distance -0.1493 -2.59 -0.1807 -4.02
access 0.2550 4.10 0.2165 3.61
taxrate -0.2293 -4.82 -0.2290 -4.17
pupil/teacher -0.0717 -3.16 -0.1153 -4.41
blackpop 0.1445 6.93 0.1375 5.63
lowclass -0.1872 -5.14 -0.3062 -6.69
lambda 0.8195 24.75 0.6736 12.62
R2 0.8565 0.8301

Table 5.7: SAC and SAC tobit model comparisons

Variable sac t−statistic sac tobit t−statistic
constant -0.0395 -1.14 -0.0495 -1.52
crime -0.1553 -5.70 -0.1458 -5.29
zoning 0.0434 1.83 0.0426 1.77
industry 0.0166 0.46 0.0079 0.21
charlesr 0.0078 0.41 -0.0051 -0.28
noxsq -0.1070 -2.23 -0.1002 -2.34
rooms2 0.3677 13.57 0.3291 12.05
houseage -0.1192 -3.73 -0.1110 -3.60
distance -0.1762 -4.05 -0.1696 -3.98
access 0.1980 3.13 0.1957 3.48
taxrate -0.2237 -4.11 -0.2324 -4.37
pupil/teacher -0.1017 -4.39 -0.1000 -4.24
blackpop 0.1406 6.33 0.1335 6.30
lowclass -0.2616 -6.08 -0.2681 -7.00
rho 0.7420 14.52 0.7031 13.48
lambda 0.1113 1.62 0.1479 2.52
R2 0.8544 0.8363

difference in inferences that would have important policy ramifications.
In addition to the differences between maximum likelihood and Bayesian

heteroscedastic estimates, there are also differences between the Bayesian SAR,
SEM and SAC models and the tobit variants of these models. All three models
exhibits differences regarding the spatial autoregressive parameters ρ and λ.
A plot of the vi parameters estimated by these models showed that the non-

CHAPTER 5. LIMITED DEPENDENT VARIABLE MODELS 180

tobit versions of the models treated the censored observations as outliers and
downweighted them. In addition to the differences in the spatial autoregressive
parameters from these models there were also other parameters where we would
draw a different inference from the two versions of the models.

5.8 Chapter Summary

A Gibbs sampling approach to estimating heteroscedastic spatial autoregressive
probit and tobit models was presented. With the exception of McMillen (1992)
who set forth an EM algorithm approach to estimating spatial autoregressive
models in the presence of heteroscedastic disturbances, no other methods exist
for producing estimates under these conditions. It was argued that the Bayesian
approach set forth here has several advantages over the EM algorithm approach
suggested by McMillen (1992). First, the method produces posterior distribu-
tions for all parameters in the model whereas McMillen’s approach does not
provide estimates of precision for the spatial parameters ρ and λ. The poste-
riors allow for inferences regarding the mean and dispersion of all parameters,
including the important spatial parameters.

A second advantage is that the Gibbs sampled measures of dispersion based
on the posterior distributions are valid whereas the EM algorithm produces con-
sistent estimates of dispersion that are likely to overstate parameter precision.

Perhaps the greatest advantage of the Bayesian approach introduced here
is that no model for the non-constant variance need be specified by the inves-
tigator. The Gibbs sampling approach produces estimates of the non-constant
variance for every observation in space. These estimates can be used to draw
inferences regarding the presence of spatial outliers or general patterns of non-
constant variance over space.

Another point is that the EM methods introduced in McMillen do not apply
to tobit models where the likelihood function takes a more complicated form
than the probit model. The Gibbs sampling approach introduced here applies to
the tobit model as well as probit and is equally easy to implement. In addition,
the Gibbs sampling approach to estimating the heteroscedastic spatial probit
model subsumes a logit version of the model as a special case.

Finally, because the approach introduced here is quite similar to the Gibbs
sampling approach for spatial autoregressive models presented in Chapter 4,
it provides a unified methodology for estimating spatial autoregressive models
that involve continuous or dichotomous dependent variables.

An applied example demonstrated that ignoring sample truncation or cen-
soring may lead to important differences in the inferences one would make.
These differences arose in a sample of 506 observations with only 16 censored
observations.

Chapter 6

Locally linear spatial
models

This chapter discusses estimation methods that attempt to accommodate spatial
heterogeneity by allowing the parameters of the model to vary with the spatial
location of the sample data. The first section deals with spatial and distance
expansion models introduced by Casetti (1972,1992). A more recent variant
labeled a DARP model in Casetti (1982) and Casetti and Can (1998) is the
subject of Section 6.2.

Non-parametric locally linear regression models (sometimes labeled geo-
graphically weighted regression) represent another way to deal with spatial het-
erogeneity. These models are covered in Section 6.3. Section 6.4 provides applied
illustrations of the methods with the Pace and Barry data set and the Boston
data set from Harrison and Rubinfeld (1978). These models are extended to
the case of limited dependent variables in Section 6.5. Chapter 7 sets forth a
Bayesian approach to locally linear spatial regression models.

6.1 Spatial expansion

The first model of this type was introduced by Casetti (1972) and labeled a
spatial expansion model. The model is shown in (6.1), where y denotes an nx1
dependent variable vector associated with spatial observations andX is an nxnk
matrix consisting of terms xi representing kx1 explanatory variable vectors, as
shown in (6.2). The locational information is recorded in the matrix Z which has
elements Zxi, Zyi, i = 1, . . . , n, that represent latitude and longitude coordinates
of each observation as shown in (6.2).

The model posits that the parameters vary as a function of the latitude and
longitude coordinates. The only parameters that need be estimated are the pa-
rameters in β0 that we denote, βx, βy. These represent a set of 2k parameters.
Recall our discussion about spatial heterogeneity and the need to utilize a par-
simonious specification for variation over space. This represents one approach

181

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 182

to this type of specification.
We note that the parameter vector β in (6.1) represents an nkx1 matrix in

this model that contains parameter estimates for all k explanatory variables at
every observation. The parameter vector β0 contains the 2k parameters to be
estimated.

y = Xβ + ε

β = ZJβ0 (6.1)

Where:

y =

y1
y2
...
yn

X =

x′1 0 . . . 0
0 x′2
...

. . .

0 x′n

β =

β1

β2

...
βn

ε =

ε1
ε2
...
εn

Z =

Zx1 ⊗ Ik Zy1 ⊗ Ik 0 . . .

0
. . .

. . .
... Zxn ⊗ Ik Zyn ⊗ Ik

J =

Ik 0
0 Ik
...
0 Ik

β0 =

(

βx

βy

)

(6.2)

This model can be estimated using least-squares to produce estimates of
the 2k parameters βx, βy. Given these estimates, the remaining estimates for
individual points in space can be derived using the second equation in (6.1).
This process is referred to as the “expansion process”. To see this, substitute
the second equation in (6.1) into the first, producing:

y = XZJβ0 + ε (6.3)

Here it is clear that X,Z and J represent available information or data obser-
vations and only β0 represent parameters in the model that need be estimated.

The model would capture spatial heterogeneity by allowing variation in the
underlying relationship such that clusters of nearby or neighboring observations
measured by latitude-longitude coordinates take on similar parameter values.
As the location varies, the regression relationship changes to accommodate a
linear fit through clusters of observations in close proximity to one another.

Another way to implement this model is to rely on a vector of distances
rather than the latitude-longitude coordinates. This implementation defines
the distance from a central observation as:

di =
√

(Zxi − Zxc)2 + (Zyi − Zyc)2 (6.4)

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 183

Where Zxc, Zyc denote the latitude-longitude coordinates of the centrally lo-
cated observation and Zxi, Zyi denote the latitude-longitude coordinates for
observation i in the data sample.

This approach allows one to ascribe different weights to observations based
on their distance from the central place origin. The formulation discussed above
would result in a distance vector that increased with distance from the central
observation. This would be suitable if one were modeling a phenomena reflecting
a “hollowing out” of the central city or a decay of influence with distance from
the central point.

The distance expansion model can be written as:

y = Xβ + ε

β = DJβ0 (6.5)

Where D = diag(d1, d2, . . . , dn), represents the distance of each observation
from the central place and β0 represents a kx1 vector of parameters for the
central place. The matrix J in (6.5) is an nxk matrix, J = (Ik, Ik, . . . , Ik)′.

6.1.1 Implementing spatial expansion

Estimating this model is relatively straightforward as we can rely on least-
squares. One issue is that there are a number of alternative expansion specifica-
tions. For example, one approach would be to construct a model that includes
the base k explanatory variables in the matrix X, estimated with fixed param-
eters, plus an additional 2k expansion variables based on the latitude-longitude
expansion. Another approach would be to include the base k variables in the
matrix X and only 2(k − 1) variables in expansion form by excluding the con-
stant term from the expansion process. Yet another approach would be to rely
on a simple expansion of all variables as was illustrated in (6.1). The second ap-
proach was taken in implementing the MATLAB function casetti that carries
out spatial expansion estimation.

This choice was made because it seems unwise to include the constant term
in the expansion as one can overfit the sample data when the intercept is allowed
to vary over space. A motivation for not relying on a simple expansion of all
variables is that we would like our model to partition the influence of explanatory
variables into fixed plus spatial effects. A simple expansion assigns all influence
to spatial effects and also falls prey to the overfitting problem by allowing the
intercept term to vary.

The expansion implemented by our function casetti can be written as:

y = α+Xβ +XZxβx +XZyβy + ε (6.6)

The function allows the user to specify an option for distance expansion
based on a particular point in the spatial data sample or the latitude-longitude
expansion. In the case of distance expansion, all k explanatory variables in-
cluding the constant term are used as non-expansion variables estimated with

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 184

fixed parameters and k − 1 variables excluding the constant are included as
distance-expanded variables. This version of the model can be written as:

y = α+Xβ +XDβ0 + ε (6.7)

For the case of distance expansion, a distance vector is calculated as: di =
√

(Zxi − Zxc)2 + (Zyi − Zyc)2, where Zxc, Zyc denote the latitude-longitude co-
ordinates of the centrally located observation and Zxi, Zyi denote the coordi-
nates for observation i in the data sample. The distance of the central point is
zero of course.

An optional input is provided to carry out isotropic normalization of the x-y
coordinates which essentially puts the coordinates in deviations from the means
form then standardizes by using the square root of the sum of the variances in
the x-y directions. That is:

x⋆ = (x− x̄)/
√

(σ2
x + σ2

y)

y⋆ = (y − ȳ)/
√

(σ2
x + σ2

y) (6.8)

This normalization is carried out by a function normxy in the spatial econo-
metrics library. This normalization should make the center points xc, yc close
to zero and produces a situation where the coefficients for the “base model”
represent a central observation. The distance-expanded estimates provide infor-
mation about variation in the model parameters with reference to the central
point.

The function casetti is presented below.

function results=casetti(y,x,xc,yc,option)

% PURPOSE: computes Casetti’s spatial expansion regression

% y = a + X*Bo + X*Zx*Bx + X*Zy*By + e

% or: y = a + X*Bo + X*D*Bd + e

%---

% USAGE: results = casetti(y,x,xc,yc,option)

% where: y = dependent variable vector

% x = independent variables matrix

% xc = latittude (or longitude) coordinate

% yc = longitude (or latittude) coordinate

% option = a structure variable containing options

% option.exp = 0 for x-y expansion (default)

% = 1 for distance from ctr expansion

% option.ctr = central point observation # for distance expansion

% option.norm = 1 for isotropic x-y normalization (default=0)

%---

% RETURNS:

% results.meth = ’casetti’

% results.b0 = bhat (underlying b0x, b0y)

% results.t0 = t-stats (associated with b0x, b0y)

% results.beta = spatially expanded estimates (nobs x nvar)

% results.yhat = yhat

% results.resid = residuals

% results.sige = e’*e/(n-k)

% results.rsqr = rsquared

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 185

% results.rbar = rbar-squared

% results.nobs = nobs

% results.nvar = # of variables in x

% results.y = y data vector

% results.xc = xc

% results.yc = yc

% results.ctr = ctr (if input)

% results.dist = distance vector (if ctr used)

% results.exp = exp input option

% results.norm = norm input option

% --

% NOTES: assumes x(:,1) contains a constant term

% --

nflag = 0; exp = 0; ctr = 0; nflag = 0;

if nargin == 5 % user options

if ~isstruct(option)

error(’casetti: must supply the option argument as a structure variable’);

else, fields = fieldnames(option); nf = length(fields);

for i=1:nf

if strcmp(fields{i},’exp’), exp = option.exp;

elseif strcmp(fields{i},’ctr’), ctr = option.ctr;

elseif strcmp(fields{i},’norm’) nflag = option.norm;

end;

end; % end of for i

end; % end of if else

elseif nargin == 4 % x-y expansion

exp = 0; option.exp = 0;

else, error(’Wrong # of arguments to casetti’);

end;

[nobs nvar] = size(x);

if x(:,1) ~= ones(nobs,1)

error(’casetti: first column in x-matrix must be a constant vector’);

end;

if nflag == 1, [xc yc] = normxy(xc,yc); end;

results.meth = ’casetti’; results.y = y;

results.nobs = nobs; results.nvar = nvar;

results.xc = xc; results.yc = yc;

results.option = option; results.exp = exp;

results.norm = nflag;

switch exp

case {0} % x-y expansion

xt = x(:,2:nvar); xx = matmul(xt,xc); xy = matmul(xt,yc);

xmat = [x xx xy]; b0 = xmat\y;

xpxi = inv(xmat’*xmat); results.b0 = b0;

beta = zeros(nobs,2*(nvar-1)); yhat = zeros(nobs,1);

xx = matmul(ones(nobs,nvar-1),xc); xy = matmul(ones(nobs,nvar-1),yc);

xxxy = [x xx xy]; tvar = length(b0);

yhat(:,1) = xmat(:,1:nvar)*b0(1:nvar,1);

for j=nvar+1:tvar

beta(:,j-nvar) = xxxy(:,j)*b0(j,1);

yhat(:,1) = yhat(:,1) + xmat(:,j)*b0(j,1);

end;

results.beta = beta; results.yhat = yhat;

e = results.y - results.yhat; results.resid = e;

sigu = e’*e; results.sige = sigu/(nobs-tvar);

tmp2 = results.sige*(diag(xpxi));

results.t0 = results.b0./(sqrt(tmp2));

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 186

ym = y - mean(y); rsqr1 = sigu; rsqr2 = ym’*ym;

results.rsqr = 1.0 - rsqr1/rsqr2; % r-squared

rsqr1 = rsqr1/(nobs-nvar-2*(nvar-1));

rsqr2 = rsqr2/(nobs-1.0);

results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared

case{1} % distance from the center expansion

xi = xc(ctr); yi = yc(ctr);

d = sqrt((xc-xi).*(xc-xi) + (yc-yi).*(yc-yi));

dvec = d; % distance weighting function

results.dist= dvec;

% transform x-variables using distance vector

xt = x(:,2:nvar); xx = matmul(xt,dvec);

xmat = [x xx]; b0 = xmat\y;

xpxi = inv(xmat’*xmat); results.b0 = b0;

beta = zeros(nobs,(nvar-1)); yhat = zeros(nobs,1);

xx = matmul(ones(nobs,nvar-1),dvec); xxxy = [x xx]; tvar = length(b0);

yhat(:,1) = xmat(:,1:nvar)*b0(1:nvar,1);

for j=nvar+1:tvar

beta(:,j-nvar) = xxxy(:,j)*b0(j,1);

yhat(:,1) = yhat(:,1) + xmat(:,j)*b0(j,1);

end;

results.beta = beta; results.yhat = yhat;

results.b0 = b0; results.nvar = nvar; results.ctr = ctr;

results.resid = y - results.yhat;

sigu = results.resid’*results.resid;

results.sige = sigu/(nobs-tvar);

xpxi = inv(xmat’*xmat);

tmp = results.sige*(diag(xpxi));

results.t0 = results.b0./(sqrt(tmp));

ym = y - mean(y); rsqr1 = sigu; rsqr2 = ym’*ym;

results.rsqr = 1.0 - rsqr1/rsqr2; % r-squared

rsqr1 = rsqr1/(nobs-2*nvar);

rsqr2 = rsqr2/(nobs-1.0);

results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared

otherwise

error(’casetti: check option input argument’);

end;

Note that given the exclusion of the constant term from the spatial expansion
formulation, we need to impose that the user place the constant term vector in
the first column of the explanatory variables matrix X input to the function.
We perform a check of this using the following MATLAB code:

[nobs nvar] = size(x);

if x(:,1) ~= ones(nobs,1)

error(’casetti: first column in x-matrix must be a constant vector’);

end;

Another point to note about the code is use of the matmul command from
the Econometrics Toolbox. This command allows non-conformable matrix mul-
tiplication where the two matrices involved are conformable in at least one
dimension. This is a useful programming device in situations where we wish to
multiply a vector times each column of a matrix. There are also corresponding
functions matadd, matdiv, matsub for addition, division and subtraction
that can be used in these situations.

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 187

A code fragment below from casetti shows how we implement the distance
expansion estimation. The case of latitude-longitude expansion is similar. Af-
ter computing the distance, we use the function matmul to carry out a non-
conformable matrix multiplication of the nxk − 1 matrix ‘xt’ (that excludes
the constant term) times the nx1 vector of distance coordinates. (Note that
MATLAB doesn’t allow non-conformable matrix multiplications.) The function
matmul will multiply the distance vector times every column of the ‘xt’ matrix
which is what we wish to accomplish.

xi = xc(ctr); yi = yc(ctr);

d = sqrt((xc-xi).*(xc-xi) + (yc-yi).*(yc-yi));

dvec = d; % distance weighting function

results.dist= dvec;

% transform x-variables using distance vector

xt = x(:,2:nvar); xx = matmul(xt,dvec);

xmat = [x xx]; b0 = xmat\y;

xpxi = inv(xmat’*xmat); results.b0 = b0;

beta = zeros(nobs,(nvar-1)); yhat = zeros(nobs,1);

xx = matmul(ones(nobs,nvar-1),dvec); xxxy = [x xx]; tvar = length(b0);

yhat(:,1) = xmat(:,1:nvar)*b0(1:nvar,1);

for j=nvar+1:tvar

beta(:,j-nvar) = xxxy(:,j)*b0(j,1);

yhat(:,1) = yhat(:,1) + xmat(:,j)*b0(j,1);

end;

After transforming the data matrix X using the distance vector, we place
the two matrices together in a MATLAB variable ‘xmat’ and carry out our
regression to calculate the ‘base’ coefficients β0. We rely on the MATLAB ‘slash’
operator to solve the problem β̂0 = (X ′X)−1X ′y. These base model estimates
are then subjected to the distance expansion process to arrive at estimates for
each point in space. While carrying out the expansion process, we also compute
the predicted values and store them in a MATLAB variable ‘yhat’. Note that
the prediction involves using both the constant or base coefficient estimates
associated with the k elements in the X matrix, as well as the k − 1 expanded
estimates based on the variables excluding the constant term in the last k − 1
columns of the matrix ‘xmat’.

Given the estimates and predicted values, we are in a position to fill-in the
remaining fields of the results structure that will be returned by casetti.

Of course, we have an associated function to print the results structure and
another to provide graphical presentation of the estimation results. Printing
these estimation results is a bit challenging because of the large number of
parameter estimates that we produce using this method. Graphical presentation
may provide a clearer picture of the variation in coefficients over space. A call to
plt using the ‘results’ structure variable will produce plots of the coefficients in
both the x- and y-directions. For the case of the latitude-longitude expansion,
we sort the x- and y-directions from left to right. This provides a visual picture
of how the coefficients vary over space. If the x-coordinates are largest for the
east and smallest for the west, the plot will show coefficient variation from west
to east as in map space. Similarly, if the y-coordinates are smallest for the south

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 188

and largest in the north, the plot will present coefficient variation from south
to north. (Note that if you enter latitude-longitude coordinates, the x-direction
plots will be from east to west, but the y-direction plots will be south to north.)

For the case of distance expansion estimates, the plots present coefficients
sorted by distance from the central point given in the input structure field
‘option.ctr’. The central observation (smallest distance) will be on the left of
the graph and the largest distance on the right.

Another point to note regarding graphical presentation of the estimates re-
lates to the fact that we present the coefficients in terms of the individual
variables total impact on the dependent variable y. It was felt that users would
usually be concerned with the total impact of a particular variable on the depen-
dent variable as well as the decomposition of impacts into spatial and non-spatial
effects. The printed output provides the coefficient estimates for the base model
as well as the expansion coefficients that can be used to analyze the marginal
effects from the spatial and non-spatial decomposition. To provide another view
of the impact of the explanatory variables on the dependent variable, the graph-
ical presentation plots the coefficient estimates in a form representing their total
impact on the dependent variable. That is we graph:

γxi = βi + Zxβxi

γyi = βi + Zyβyi

γdi = βi +Dβ0i (6.9)

Where γx, γy are plotted for the x-y expansion and γd is graphed for the distance
expansion. This should provide a feel for the total impact of variable i on the
dependent variable since it takes into account the non-spatial impact attributed
to βi, as well as the spatially varying impacts in the x-y direction or with respect
to distance.

6.1.2 Applied examples

Example 6.1 provides an illustration of using the function casetti based on
the Columbus neighborhood crime data set from Anselin (1988). Both types
of expansion models are estimated by changing the structure variable ‘option’
field ‘.exp’. For the case of distance expansion, we rely on a central observation
number 32 which lies near the center of the spatial sample of neighborhoods.
One point to note is that the x-coordinate in Anselin’s data set represents the
south-north direction and the y-coordinate reflects the west-east direction.

% ----- Example 6.1 Using the casetti() function

% load Anselin (1988) Columbus neighborhood crime data

load anselin.dat;

y = anselin(:,1); n = length(y); x = [ones(n,1) anselin(:,2:3)];

% Anselin (1988) x-y coordinates

xc0 = anselin(:,4); yc0 = anselin(:,5);

vnames = strvcat(’crime’,’const’,’income’,’hse value’);

% do Casetti regression using x-y expansion (default)

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 189

res1 = casetti(y,x,xc,yc);

prt(res1,vnames); % print the output

plt(res1,vnames); % graph the output

pause;

% do Casetti regression using distance expansion

option.exp = 1; option.ctr = 32;

res2 = casetti(y,x,xc,yc,option);

prt(res2,vnames); % print the output

plt(res2,vnames); % graph the output

The default option is to implement an x-y expansion, which produces the
result structure variable ‘res1’. The next case relies on the structure variable
‘option’ to select distance expansion. The printed output is shown below where
the expansion estimates are shown for only the first five observations to save
space. Both the base estimates as well as the expansion estimates are presented
in the printed output. If you are working with a large model containing numer-
ous observations, you can rely on the printing option that places the output in
a file. Recall from Chapter 2, we need simply open an output file and input the
‘file-id’ as an option to the prt function.

Another point to note regarding the printed output is that in the case of a
large number of explanatory variables, the printed estimates will ‘wrap’. A set
of estimates that take up 80 columns will be printed for all observations, and
remaining estimates will be printed below for all observations. This ‘wrapping’
will continue until all of the parameter estimates are printed.

Casetti X-Y Spatial Expansion Estimates

Dependent Variable = crime

R-squared = 0.6330

Rbar-squared = 0.5806

sige = 117.4233

Nobs, Nvars = 49, 3

Base x-y estimates

Variable Coefficient t-statistic t-probability

const 69.496160 15.105146 0.000000

income -4.085918 -1.951941 0.057048

hse value 0.403956 0.517966 0.606965

x-income -0.046062 -1.349658 0.183731

x-hse value 0.026732 2.027587 0.048419

y-income 0.121440 2.213107 0.031891

y-hse value -0.048606 -2.341896 0.023571

Expansion estimates

Obs# x-income x-hse value y-income y-hse value

1 -1.6407 0.9522 5.1466 -2.0599

2 -1.6813 0.9757 4.9208 -1.9695

3 -1.6909 0.9813 4.7009 -1.8815

4 -1.5366 0.8918 4.6645 -1.8670

5 -1.7872 1.0372 5.3519 -2.1421

Casetti Distance Spatial Expansion Estimates

Dependent Variable = crime

R-squared = 0.6568

Rbar-squared = 0.6169

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 190

sige = 107.2568

Nobs, Nvars = 49, 3

central obs = 32

Base centroid estimates

Variable Coefficient t-statistic t-probability

const 57.818344 11.071091 0.000000

income 0.192534 0.217136 0.829063

hse value -0.318927 -1.162013 0.251224

d-income -1.124634 -1.647297 0.106312

d-hse value 0.073983 0.310034 0.757935

Expansion estimates

Obs# income hse value

1 -1.4229 0.0936

2 -1.1369 0.0748

3 -0.8925 0.0587

4 -1.1372 0.0748

5 -1.5614 0.1027

We turn attention to interpreting the output from this example. For this
purpose we compare the ‘base’ spatial expansion estimates to those from least-
squares which are presented below. The addition of the four x-y expansion
variables increased the fit of the model slightly as indicated by the higher ad-
justed R2 statistic. We see that the intercept estimate is relatively unaffected
by the inclusion of expansion variables, but the coefficients on income and house
value take on very different magnitudes. The significance of the income variable
falls as indicated by the lower t−statistic, and the house value variable becomes
insignificant.

Three of the four x-y expansion variables are significant at the 0.05 level,
providing evidence that the influence of these variables on neighborhood crime
varies over space. Keep in mind that depending on the amount of inherent
variation in the x-y coordinates, we may introduce a substantial amount of
collinearity into the model when we add expansion variables. These are likely
highly correlated with the base variables in the model, and this may account
for the lack of significance of the house value variable in the ‘base model’. A
strict interpretation of these ‘base’ estimates would be that income expansion in
the x-direction (south-north) is not significant, whereas it is in the y-direction
(west-east).

Ordinary Least-squares Estimates

Dependent Variable = crime

R-squared = 0.5521

Rbar-squared = 0.5327

sigma^2 = 130.8386

Durbin-Watson = 1.1934

Nobs, Nvars = 49, 3

Variable Coefficient t-statistic t-probability

const 68.609759 14.484270 0.000000

income -1.596072 -4.776038 0.000019

house value -0.274079 -2.655006 0.010858

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 191

In order to interpret the x-y expansion estimates, we need to keep in mind
that the x-direction reflects the south-north direction with larger values of xc
indicating northward movement. Similarly, larger values for yc reflect west-east
movement. Using these interpretations, the base model estimates indicate that
income exerts an insignificant negative influence on crime as we move from south
to north. Considering the y-direction representing west-east movement, we find
that income exerts a positive influence as we move in the easterly direction.
One problem with interpreting the expansion estimates is that the base model
coefficient is -4.085, indicating that income exerts a negative influence on crime.
It is difficult to assess the total impact on neighborhood crime from both the
base model coefficient representing non-spatial impact plus the small 0.121 value
for the expanded coefficient reflecting the impact of spatial variation.

If we simply plotted the expansion coefficients, they would suggest that
income in the y-direction has a positive influence on crime, a counterintuitive
result. This is shown in the plot of the expanded coefficients sorted by the
south-north and east-west directions in Figure 6.1. We are viewing a positive
coefficient on the y-income variable in the graph.

Figure 6.2 shows a graph of the total impact of income on the dependent
variable crime that takes into account both the base model non-spatial impact
plus the spatial impact indicated by the expansion coefficient. Here we see that
the total impact of income on crime is negative, except for neighborhoods in the
extreme east at the right of the graph. The coefficient graphs produced using
the plt function on the results structure from casetti are identical to those
shown in Figure 6.2. You can of course recover the spatial expansion estimates
from the results structure returned by casetti, sort the estimates in the x-y
directions and produce your own plots of just the expansion estimates if this is
of interest. As an example, the following code would produce this type of graph,
where we are assuming the existence of a structure ‘result’ returned by casetti.

[xcs xci] = sort(result.xc);

[ycs yci] = sort(result.yc);

beta = result.beta;

[nobs nvar] = size(beta);

nvar = nvar/2;

betax = beta(xci,1:nvar); % sort estimates

betay = beta(yci,nvar+1:2*nvar);

tt=1:nobs;

for j=1:nvar

plot(tt,betax(:,j)); pause;

end;

for j=1:nvar

plot(tt,betay(:,j)); pause;

end;

The distance expansion method produced a slightly better fit to the data
as indicated by the adjusted R2 statistic. This is true despite the fact that
only the constant term is statistically significant at conventional levels, with
the distance-expanded income variable significant at the 90% level in the base
model.

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 192

0 10 20 30 40 50
-2.5

-2

-1.5

-1

sorted by x-direction, left=smallest x

x
-i
n
c
o
m

e

0 10 20 30 40 50
0.6

0.8

1

1.2

1.4

x
-h

o
u
s
e
 v

a
lu

e

sorted by x-direction, left=smallest x

0 10 20 30 40 50
3

3.5

4

4.5

5

5.5

sorted by y-direction, left=smallest x

y
-i
n
c
o
m

e

0 10 20 30 40 50
-2.2

-2

-1.8

-1.6

-1.4

-1.2

y
-h

o
u
s
e
 v

a
lu

e

sorted by y-direction, left=smallest x

Figure 6.1: Spatial x-y expansion estimates

These estimates take on a value of zero for the central observation since the
distance is zero at that point. This makes them somewhat easier to interpret
than the estimates for the case of x-y coordinates. Given that the expansion
coefficients take on values of zero at the central point, estimates at this point
reflect the non-spatial base coefficients. As we move outward from the center,
the expansion estimates take over and adjust the constant coefficients to account
for variation over space. The printed distance expansion estimates reported for
the base model reflect values near the distance-weighted average of all points
in space. Given this, we would interpret the coefficients for the model at the
central point to be (62.349, -0.855, -0.138) for the intercept, income and house
value variables respectively. In Figure 6.3 we see the total impact of income
and house values on neighborhood crime as we move away from the central
point. Both income and house values have a negative effect on neighborhood
crime as we move away from the central city. Note that this is quite different
from the pattern shown for the x-y expansion. Anselin (1988) in analyzing
the x-y model shows that heteroscedastic disturbances produce problems that
plague inferences for the model. Adjusting for the heteroscedastic disturbances
dramatically alters the inferences. We turn attention to this issue when we
discuss the DARP version of this model in Section 6.2.

The plots of the coefficient estimates provide an important source of infor-
mation about the nature of coefficient variation over space, but you should keep
in mind that they do not indicate levels of significance, simply point estimates.

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 193

0 10 20 30 40 50
-7

-6.5

-6

-5.5

-5

sorted by x-direction, left=smallest x

x
-i
n
c
o
m

e

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

x
-h

o
u
s
e
 v

a
lu

e

sorted by x-direction, left=smallest x

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

sorted by y-direction, left=smallest x

y
-i
n
c
o
m

e

0 10 20 30 40 50
-1.8

-1.6

-1.4

-1.2

-1

-0.8

y
-h

o
u
s
e
 v

a
lu

e

sorted by y-direction, left=smallest x

Figure 6.2: Spatial x-y total impact estimates

Our plt wrapper function works to call the appropriate function plt cas
that provides individual graphs of each coefficient in the model as well as a
two-part graph showing actual versus predicted and residuals. Figure 6.4 shows
the actual versus predicted and residuals from the distance expansion model.
This plot is produced by the plt function when given a results structure from
the casetti function.

6.2 DARP models

A problem with the spatial expansion model is that heteroscedasticity is inherent
in the way the model is constructed. To see this, consider the slightly altered
version of the distance expansion model shown in (6.10), where we have added
a stochastic term u to reflect some error in the expansion relationship.

y = Xβ + e

β = DJβ0 + u (6.10)

Now consider substituting the second equation from (6.10) into the first,
producing:

y = XDJβ0 +Xu+ e (6.11)

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 194

0 5 10 15 20 25 30 35 40 45 50
-1.8

-1.6

-1.4

-1.2

-1

-0.8

distance from the center, left=center

d
-i
n
c
o
m

e

0 5 10 15 20 25 30 35 40 45 50
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

d
-h

o
u
s
e
 v

a
lu

e

distance from the center, left=center

Figure 6.3: Distance expansion estimates

It should be clear that the new composite disturbance term Xu+ e will reflect
heteroscedasticity unless the expansion relationship is exact and u = 0.

Casetti (1982) and Casetti and Can (1998) propose a model they label
DARP, an acronym for Drift Analysis of Regression Parameters, that aims at
solving this problem. This model case be viewed as an extended expansion
model taking the form:

y = Xβ + e

β = f(Z, ρ) + u (6.12)

Where f(Z, ρ) represents the expansion relationship based on a function f ,
variables Z and parameters ρ. Estimation of this model attempts to take into
account that the expanded model will have a heteroscedastic error as shown in
(6.11).

To keep our discussion concrete, we will rely on f(Z, ρ) = DJβ0, the dis-
tance expansion relationship in discussing this model. To take account of the
spatial heteroscedasticity, an explicit model of the composite disturbance term:
ε = Xu + e is incorporated during estimation. This disturbance is assumed
to have a variance structure that can be represented in alternative ways shown
below. We will rely on these alternative scalar and matrix representations in
the mathematical development and explanation of the model.

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 195

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70
CASETTI Actual vs. Predicted

0 5 10 15 20 25 30 35 40 45 50
-40

-30

-20

-10

0

10

20

30
Residuals

Figure 6.4: Actual versus Predicted and residuals

E(εε′) = Φ = σ2Ψ

Ψ = exp(diag(γd1, γd2, . . . , γdn))

Φ = diag(σ2
1 , σ

2
2 , . . . , σ

2
n)

σ2
i = exp(γ0 + γidi) (6.13)

Where di denotes the squared distance between the ith observation and the
central point, and σ2, γ0, γ1 are parameters to be estimated. Of course, a more
general statement of the model would be that σ2

i = g(hi, γ), indicating that any
functional form g involving some known variable hi and associated parameters
γ could be employed to specify the non-constant variance over space.

Note that the alternative specifications in (6.13) imply σ2
i has two compo-

nents, a constant scalar component exp(γ0) and exp(γidi) reflecting the non-
constant component modeled as a function of distance from the central point.

An intuitive motivation for this type of variance structure is based on con-
sidering the nature of the composite disturbance: Xu+ e. The constant scalar
σ2 reflects the constant component e, while the role of the scalar parameter γ1
associated with distance measures the average impact of Xu, the non-constant
variance component. Somewhat loosely, consider a linear regression involving
the residuals on a constant term plus a vector of distances from the central

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 196

place. The constant term estimate would reflect σ2 = exp(γ0), while the dis-
tance coefficient is intended to capture the influence of the non-constant Xu
component: Ψ = exp(γ1d).

If γ1 = 0, we have that Ψ = σ2In, a constant scalar value across all ob-
servations in space. This would be indicative of a situation where u, the error
made in the expansion specification is small. This homoscedastic case indicates
that a simple deterministic spatial expansion specification for spatial coefficient
variation is performing well.

On the other hand, if γ1 > 0, we find that moving away from the central point
produces a positive increase in the variance. This is interpreted as evidence that
‘parameter drift’ is present in the relationship being modeled. The motivation is
that increasing variance would be indicative of larger errors (u) in the expansion
relationship as we move away from the central point.

Note that one can assume a value for γ1 rather than estimate this parameter.
If you impose a positive value, you are assuming a DARP model that will
generate locally linear estimates since movement in the parameters will increase
with movement away from the central point. This is because allowing increasing
variance in the stochastic component of the expansion relation brings about
more rapid change or adjustment in the parameters. Another way to view this
is that the change in parameters need not adhere as strictly to the deterministic
expansion specification. We will argue in Chapter 7 that a Bayesian approach
to this type of specification is more intuitively appealing.

On the other hand, negative values for γ1 suggest that the errors made by
the deterministic expansion specification are smaller as we move away from
the central point. This indicates that the expansion relation works well for
points farther from the center, but not as well for the central area observations.
Casetti and Can (1998) interpret this as suggesting “differential performance”
of the base model with movement over space, and they label this phenomena as
‘performance drift’. The intuition here is most likely based on the fact that the
expansion relationship is of a locally linear nature. Given this, better perfor-
mance with distance is indicative of a need to change the deterministic expansion
relationship to improve performance. Again, I will argue that a Bayesian model
represents a more intuitively appealing way to deal with these issues in the next
chapter.

Estimation of the parameters of the model require either feasible generalized
least squares (FGLS) or maximum likelihood (ML) methods. Feasible general-
ized least squares obtains a consistent estimate of the unknown parameter γ1
and then proceeds to estimate the remaining parameters in the model condi-
tional on this estimate.

As an example, consider using least-squares to estimate the expansion model
and associated residuals, ê = y−XDJβ̂0. We could then carry out a regression
of the form:

log(ê2) = γ0 + γ1d+ ν (6.14)

Casetti and Can (1998) argue that the estimate γ̂1 from this procedure would

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 197

be consistent. Given the estimate γ̂1 and our knowledge of the distances in the
vector d, we can construct an estimate of Ψ, which we designate Ψ̂. We can
then proceed with generalized least-squares to produce:

β̂FGLS = (X ′Ψ̂1X)−1X ′Ψ̂−1y

σ̂2
FGLS = (y −Xβ̂FGLS)Ψ̂−1(y −Xβ̂FGLS)/(n− k)

Of course, the usual GLS variance-covariance matrix for the estimates ap-
plies:

var − cov(β̂FGLS) = σ̂2(X ′Ψ̂−1X)−1 (6.15)

Casetti and Can (1998) also suggest using a statistic: γ̂2
1/4.9348

∑

di that is
chi-squared distributed with one degree of freedom to test the null hypothesis
that γ1 = 0.

Maximum likelihood estimation involves using optimization routines to solve
for a minimum of the negative of the log-likelihood function. We have already
seen how to solve optimization problems in the context of spatial autoregressive
models in Chapter 3. We will take the same approach for this model. The
log-likelihood is:

L(β, γ1|y,X, d) = C − (1/2)ln|σ2Ψ| − (1/2)(y −Xβ)′Ψ−1(y −Xβ) (6.16)

As in Chapter 3 we can construct a MATLAB function to evaluate the
negative of this log-likelihood and rely on our function maxlik. The asymptotic
variance-covariance matrix for the estimates β is equal to that for the FGLS
estimates shown in (6.15). The asymptotic variance-covariance matrix for the
parameters (σ2, γ1) is given by:

var − cov(σ2, γ1) = 2(D′D)−1D = (ι, d) (6.17)

In the case of maximum likelihood estimates, a Wald statistic based on
γ̂2
1/2

∑

di which is chi-squared distributed with one degree of freedom can be
used to test the null hypothesis that γ1 = 0. Note that the maximum likelihood
estimate of γ1 is more efficient than the FGLS estimate. This can be seen
by comparing the ML estimate’s asymptotic variance of 2

∑

di, to that for the
FGLS which equals 4.9348

∑

di. Bear in mind, tests regarding the parameter γ1
are quite often the focus of this methodology as it provides exploratory evidence
regarding ‘performance drift’ versus ‘parameter drift’, so increased precision
regarding this parameter may be important.

We have two functions to evaluate the negative of the log likelihood function
for the DARP model, one for the case of an x-y expansion and another for
distance expansion. The function used for distance expansion is shown below:

function llike = darp_lik2(parm,y,x,d)

% PURPOSE: evaluate the log-likelihood for the DARP model

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 198

% based on distance expansion model

% ---

% USAGE:llike = darp_lik2(parm,y,x,d)

% where: parm = a parameter vector containing:

% parm(1,1) = sige

% parm(2,1) = gamma

% parm(3:k+2,1) = beta

% y = dependent variable vector

% x = explanatory variables matrix

% d = distance from central place

% ---

% RETURNS: a scalar equal to minus the log-likelihood

% function value given the parameters

% --

% SEE ALSO: darp

% ---

[n k] = size(x); evar = length(parm);

sige = parm(1,1); if sige < 0.0001; sige = 0.0001; end;

gamma = parm(2,1); beta = parm(3:evar,1);

phi = exp(sige + gamma*d); phii = ones(n,1)./phi;

detphi = 0.5*log(prod(phi)); ys = sqrt(phii).*y;

% form expansion x-matrix

xt = x(:,2:k); xx = matmul(xt,d); xmat = [x xx];

xs = matmul(xmat,sqrt(phii));

e = (ys-xs*beta); epe = (e’*e);

llike = 0.5*epe + detphi;

The documentation for the function darp along with the portion of the
function that implements DARP for distance expansion is shown below. The
x-y expansion is similar.

function results=darp(y,x,xc,yc,option)

% PURPOSE: computes Casetti’s DARP model

%---

% USAGE: results = darp(y,x,xc,yc,option)

% where: y = dependent variable vector

% x = independent variables matrix

% xc = lattitude (or longitude) coordinate

% yc = longitude (or lattitude) coordinate

% option = a structure variable containing options

% option.exp = 0 for x-y expansion (default)

% = 1 for distance from ctr expansion

% option.ctr = central point observation # for distance expansion

% option.iter = # of iterations for maximum likelihood routine

% option.norm = 1 for isotropic x-y normalization (default=0)

%---

% RETURNS:

% results.meth = ’darp’

% results.b0 = bhat (underlying b0x, b0y)

% results.t0 = t-stats (associated with b0x, b0y)

% results.beta = spatially expanded estimates (nobs x nvar)

% results.yhat = yhat

% results.resid = residuals

% results.sige = e’*e/(n-k)

% results.rsqr = rsquared

% results.rbar = rbar-squared

% results.nobs = nobs

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 199

% results.nvar = # of variables in x

% results.y = y data vector

% results.xc = xc

% results.yc = yc

% results.ctr = ctr (if input)

% results.dist = distance vector

% results.exp = exp input option

% results.norm = norm input option

% results.iter = # of maximum likelihood iterations

% --

% NOTES: assumes x(:,1) contains a constant term

% --

if nargin == 5 % user options

if ~isstruct(option)

error(’darp: must supply the option argument as a structure variable’);

else, fields = fieldnames(option); nf = length(fields);

expand = 0; ctr = 0; iter = 0; nflag = 0;

for i=1:nf

if strcmp(fields{i},’exp’), expand = option.exp;

elseif strcmp(fields{i},’ctr’), ctr = option.ctr;

elseif strcmp(fields{i},’iter’), iter = option.iter;

elseif strcmp(fields{i},’norm’), nflag = option.norm;

end;

end; % end of for i

end; % end of if else

elseif nargin == 4, expand = 0; option.exp = 0; iter = 0; nflag = 0;

else, error(’Wrong # of arguments to darp’);

end;

[nobs nvar] = size(x);

if x(:,1) ~= ones(nobs,1)

error(’darp: first column in x-matrix must be a constant vector’);

end;

if nflag == 1, [xc yc] = normxy(xc,yc); end;

results.meth = ’darp’; results.y = y; results.nobs = nobs;

results.nvar = nvar; results.xc = xc; results.yc = yc;

results.option = option;results.exp = expand; results.norm = nflag;

switch expand

case{1} % distance from the center expansion

xi = xc(ctr); yi = yc(ctr);

% calculate distance weighting function

d = (xc-xi).*(xc-xi) + (yc-yi).*(yc-yi); dvec = d;

results.dist= dvec;

% transform x-variables using distance vector

xt = x(:,2:nvar); xx = matmul(xt,dvec);

xmat = [x xx]; b0 = xmat\y; % get base model estimates

% find FGLS expansion estimates and residuals

beta = zeros(nobs,(nvar-1)); yhat = zeros(nobs,1);

xx = matmul(ones(nobs,nvar-1),dvec); xxxy = [x xx];

tvar = length(b0);

yhat(:,1) = xmat(:,1:nvar)*b0(1:nvar,1);

for j=nvar+1:tvar

beta(:,j-nvar) = xxxy(:,j)*b0(j,1);

yhat(:,1) = yhat(:,1) + xmat(:,j)*b0(j,1);

end;

% use residuals to provide an initial set of FGLS estimates

e = y - yhat; e2 = log(e.*e);

% regress residuals on distance vector

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 200

n = length(e); res = ols(e2,[ones(n,1) dvec]);

% pull out sige, gamma1

sige = res.beta(1,1); gamma1 = res.beta(2,1);

% do FGLS

xt = x(:,2:nvar); xx = matmul(xt,dvec);

xmat = [x xx]; phi = exp(sige + gamma1*dvec); phii = ones(n,1)./phi;

ys = sqrt(phii).*y; xs = matmul(xmat,sqrt(phii));

b0 = xs\ys; % FGLS estimates

% do maximum likelihood estimation

if iter == 0, info.maxit = 500;

else, info.maxit = iter;

end;

parm = zeros(tvar+2,1); parm(1,1) = sige;

parm(2,1) = gamma1; parm(3:tvar+2,1) = b0;

[b,llf,hessn,grad,iter,fail] = maxlik(’darp_lik2’,parm,info,y,x,dvec);

if fail == 1

% warn user and rely on FGLS estimates

fprintf(1,’darp: convergence failure --- returning FGLS estimates\n’);

results.b0 = b0; results.gamma(1) = gamma1;

results.iter = iter; results.lik = 0; fflag = 1;

elseif iter == info.maxit

fprintf(1,’darp: no convergence in %d iterations\n’,iter);

fprintf(1,’increase # of iterations -- FGLS estimates are being returned \n’)

results.b0 = b0; results.gamma(1) = gamma1;

results.iter = iter; results.lik = 0; fflag = 1;

elseif fail == 0, results.b0 = b(3:tvar+2,1); sige = b(1,1);

results.gamma(1) = b(2,1); results.iter = iter; results.lik = llf;

gamma1 = b(2,1); fflag = 0;

end;

% find FGLS or ML expansion estimates and residuals

beta = zeros(nobs,(nvar-1)); yhat = zeros(nobs,1);

xx = matmul(ones(nobs,nvar-1),dvec); xxxy = [x xx];

tvar = length(b0);

yhat(:,1) = xmat(:,1:nvar)*b0(1:nvar,1);

for j=nvar+1:tvar

beta(:,j-nvar) = xxxy(:,j)*b0(j,1);

yhat(:,1) = yhat(:,1) + xmat(:,j)*b0(j,1);

end;

results.beta = beta; results.yhat = yhat;

results.nvar = nvar; results.ctr = ctr;

results.resid = y - results.yhat;

sigu = results.resid’*results.resid;

results.sige = sigu/(n-tvar);

phi = exp(sige + gamma1*dvec); phii = ones(n,1)./phi;

xs = matmul(xmat,sqrt(phii)); xpxi = inv(xs’*xs);

tmp = sige*(diag(xpxi)); results.t0 = results.b0./(sqrt(tmp));

% compute chi-squared(1) statistic for gamma1

if fflag == 0, results.chi(1) = (gamma1*gamma1)/2*sum(dvec);

results.cprob(1) = 1-chis_prb(results.chi(1),1);

else, results.chi(1) = (gamma1*gamma1)/4.9348*sum(dvec);

results.cprob(1) = 1-chis_prb(results.chi(1),1);

end;

ym = y - mean(y); rsqr1 = sigu; rsqr2 = ym’*ym;

results.rsqr = 1.0 - rsqr1/rsqr2; % r-squared

rsqr1 = rsqr1/(nobs-2*nvar); rsqr2 = rsqr2/(nobs-1.0);

results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared

otherwise

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 201

error(’darp: check option input argument’);

end;

Because we are relying on maximum likelihood estimation which may not
converge, we provide FGLS estimates as output in the event of failure. A mes-
sage is printed to the MATLAB command window indicating that this has
occurred. We also rely on the FGLS estimates to provide starting values for the
maxlik routine, which should speed up the optimization process.

The function also computes and returns probabilities for the chi-squared
distributed statistics that are used to draw inferences regarding the parameters
γ1 in the case of distance expansion and both γ1, γ2 for x-y expansion.

The DARP model can be invoked with either the x-y or distance expansion
as in the case of the spatial expansion model. Specifically, for x-y expansion the
variance specification is based on:

log(ê2) = γ0 + γ1xc+ γ2yc+ ν (6.18)

This generalizes the distance expansion approach presented in the text. Of
course, we have an accompanying prt and plt function to provide printed and
graphical presentation of the estimation results.

Example 6.2 shows how to use the function darp for both x-y and distance
expansion using the Columbus neighborhood crime data set.

% ----- Example 6.2 Using the darp() function

% load Anselin (1988) Columbus neighborhood crime data

load anselin.dat; y = anselin(:,1); n = length(y);

x = [ones(n,1) anselin(:,2:3)];

xc = anselin(:,4); yc = anselin(:,5); % Anselin x-y coordinates

vnames = strvcat(’crime’,’const’,’income’,’hse value’);

% do Casetti darp using x-y expansion

res1 = darp(y,x,xc,yc);

prt(res1,vnames); % print the output

plt(res1,vnames); % plot the output

pause;

% do Casetti darp using distance expansion from observation #32

option.exp = 1; option.ctr = 32;

res2 = darp(y,x,xc,yc,option);

prt(res2,vnames); % print the output

plt(res2,vnames); % plot the output

The printed results are shown below, where we report not only the estimates
for β0 and the first five expansion estimates, but estimates for the parameters γ
as well. A chi-squared statistic to test the null hypothesis that γ1 = 0 is provided
as well as a marginal probability level. For the case of the x-y expansion, we see
that γ1 parameter is negative and significant by virtue of the large chi-squared
statistic and associated marginal probability level of 0.0121. The inference we
would draw is that performance drift occurs the south-north direction. For
the γ2 parameter, we find a positive value that is not significantly different
from zero because of the marginal probability level of 0.8974. This indicates
that the simple deterministic expansion relationship is working well in the west-
east direction. Note that these results conform to those found with the spatial

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 202

expansion model, where we indicated that parameter variation in the west-east
direction was significant, but not for the south-north.

DARP X-Y Spatial Expansion Estimates

Dependent Variable = crime

R-squared = 0.6180

Rbar-squared = 0.5634

sige = 122.2255

gam1,chi(1),prob = -0.0807, 6.2924, 0.0121

gam2,chi(1),prob = 0.0046, 0.0166, 0.8974

of iterations = 16

log-likelihood = -181.3901

Nobs, Nvars = 49, 3

Base x-y estimates

Variable Coefficient t-statistic t-probability

const 66.783527 6.024676 0.000000

income -2.639184 -0.399136 0.691640

hse value 0.249214 0.095822 0.924078

x-income -0.048337 -0.537889 0.593247

x-hse value 0.021506 0.640820 0.524819

y-income 0.084877 0.564810 0.574947

y-hse value -0.037460 -0.619817 0.538436

Expansion estimates

Obs# x-income x-hse value y-income y-hse value

1 -1.3454 0.6595 4.0747 -1.6828

2 -1.3786 0.6758 3.8959 -1.6089

3 -1.3865 0.6796 3.7218 -1.5370

4 -1.2600 0.6176 3.6930 -1.5251

5 -1.4655 0.7183 4.2372 -1.7499

DARP Distance Expansion Estimates

Dependent Variable = crime

R-squared = 0.6142

Rbar-squared = 0.5693

sige = 117.8286

gamma,chi(1),prob = -0.0101, 0.1603, 0.6889

of iterations = 10

log-likelihood = -137.10461

Nobs, Nvars = 49, 3

central obs = 32

Base centroid estimates

Variable Coefficient t-statistic t-probability

const 58.914770 5.499457 0.000002

income -0.712425 -0.717969 0.476407

hse value -0.303043 -0.922558 0.361051

d-income -0.005250 -0.874035 0.386639

d-hse value 0.000899 0.432865 0.667135

Expansion estimates

Obs# income hse value

1 -0.6848 0.0980

2 -0.4372 0.0626

3 -0.2694 0.0386

4 -0.4374 0.0626

5 -0.8247 0.1180

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 203

For the case of the distance expansion we find a single γ parameter that
is negative but insignificant. This would be interpreted to mean that the de-
terministic expansion relationship is not suffering from performance drift over
space.

A comparison of the base model estimates from darp versus those from
casetti show relatively similar coefficient estimates as we would expect. In the
case of the x-y expansion all of the signs are the same for spatial expansion and
darp models. The distance expansion does exhibit a sign change for the coeffi-
cient on income, which goes from positive in the expansion model to negative in
the darp model. Correcting for the heteroscedastic character of the estimation
problem produces dramatic changes in the statistical significance found for the
base model estimates. They all become insignificant, a finding consistent with
results reported by Anselin (1988) based on a jacknife approach to correcting
for heteroscedasticity in this model. (Anselin finds that the income coefficient
is still marginally significant after the correction.)

One approach to using this model is to expand around every point in space
and examine the parameters γ for evidence that indicates where the model
is suffering from performance or parameter drift. Example 4.3 shows how this
might be accomplished using a ‘for loop’ over all observations. For this purpose,
we wish to recover only the estimated values for the parameter γ along with the
marginal probability levels.

% ----- Example 6.3 Using darp() over space

% load Anselin (1988) Columbus neighborhood crime data

load anselin.dat; y = anselin(:,1); n = length(y);

x = [ones(n,1) anselin(:,2:3)];

xc = anselin(:,4); yc = anselin(:,5); % Anselin x-y coordinates

vnames = strvcat(’crime’,’const’,’income’,’hse value’);

% do Casetti darp using distance expansion from all

% observations in the data sample

option.exp = 1;

output = zeros(n,2);

tic;

for i=1:n % loop over all observations

option.ctr = i;

res = darp(y,x,xc,yc,option);

output(i,1) = res.gamma(1);

output(i,2) = res.cprob(1);

end;

toc;

in.cnames = strvcat(’gamma estimate’,’marginal probability’);

in.rflag = 1;

mprint(output,in)

We use the MATLAB ‘tic’ and ‘toc’ commands to time the operation of
producing maximum likelihood estimates across the entire sample. The results
are shown in Table 6.1. It took 70 seconds to solve the maximum likelihood
estimation problem 49 times, calculate expansion estimates and produce all of
the ancillary statistics.

From the estimated values of γ and the associated marginal probabilities,
we infer that the model suffers from performance drift over the initial 9 obser-

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 204

Table 6.1: DARP model results for all observations

Obs# γ̂ probability Obs# γ̂ probability
1 -0.2198 0.0714 26 0.1142 0.4264
2 -0.2718 0.0494 27 0.1150 0.4618
3 -0.3449 0.0255 28 0.0925 0.5584
4 -0.4091 0.0033 29 0.1070 0.5329
5 -0.2223 0.0532 30 -0.2765 0.1349
6 -0.3040 0.0266 31 0.0453 0.8168
7 -0.4154 0.0126 32 -0.6580 0.0012
8 -0.2071 0.1477 33 -0.3293 0.0987
9 -0.5773 0.0030 34 -0.5949 0.0024
10 0.1788 0.1843 35 -0.8133 0.0000
11 0.1896 0.1526 36 -0.5931 0.0023
12 0.1765 0.1621 37 -0.4853 0.0066
13 0.1544 0.1999 38 -0.4523 0.0121
14 0.1334 0.2214 39 -0.5355 0.0016
15 0.1147 0.2708 40 -0.6050 0.0005
16 0.1429 0.2615 41 -0.6804 0.0001
17 0.1924 0.2023 42 -0.7257 0.0001
18 -0.1720 0.3112 43 -0.7701 0.0000
19 0.1589 0.3825 44 -0.5150 0.0001
20 -0.3471 0.0810 45 -0.3997 0.0005
21 0.2020 0.2546 46 -0.3923 0.0003
22 0.1862 0.2809 47 -0.3214 0.0004
23 0.1645 0.3334 48 -0.3586 0.0001
24 0.0904 0.6219 49 -0.4668 0.0000
25 0.1341 0.4026

vations and observations 32 to 49. We draw this inference from the negative
γ estimates that are statistically significant for these observations. (Note that
observation #8 is only marginally significant.) Over the middle range of the
sample, from observations 10 to 31 we find that the deterministic distance ex-
pansion relationship works well. This inference arises from the fact that none
of the estimated γ parameters are significantly different from zero.

In the next chapter we will provide evidence that observations 2, 4 and 34
represent potential outliers whose influence extends over neighboring observa-
tions in the range of observations 1 to 9 and 31 to 45. The ability of outliers
to impact an entire sub-sequence of the estimates when using locally linear re-
gression methods is taken up in detail. These related findings suggest that the
DARP model is performing well in detecting these aberrant observations.

6.3 Non-parametric locally linear models

These models represent an attempt to draw on the flexibility and tractability
of non-parametric estimators. It is generally believed that these methods hold

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 205

a computational advantage over spatial autoregressive models because large
matrix manipulations or inversion of large sparse matrices are not required to
produce estimates. We present evidence contrary to this belief with applied
examples based on the large Pace and Barry (1997) data set.

Locally linear regression methods introduced in McMillen (1996,1997) and
labeled geographically weighted regressions (GWR) in Brunsdon, Fotheringham
and Charlton (1996) (BFC hereafter) are discussed in this section. The main
contribution of the GWR methodology is the use of distance-weighted sub-
samples of the data to produce locally linear regression estimates for every
point in space. Each set of parameter estimates is based on a distance-weighted
sub-sample of “neighboring observations”, which has a great deal of intuitive
appeal in spatial econometrics. While this approach has a definite appeal, it also
presents some problems and a Bayesian approach to these models that corrects
these problems is set forth in the next chapter.

The distance-based weights used by BFC for data at observation i take
the form of a vector Wi determined using a vector of distances, di between
observation i and all other observations in the sample. This distance vector
along with a distance decay parameter are used to construct a weighting function
that places relatively more weight on neighboring sample observations from the
spatial data sample.

A host of alternative approaches have been suggested for constructing the
weight function. One approach suggested by BFC is:

Wi =
√

exp(−di/θ) (6.19)

The parameter θ is a decay parameter that BFC label “bandwidth”. Chang-
ing the bandwidth results in a different exponential decay profile, which in turn
produces estimates that vary more or less rapidly over space.

Another weighting scheme is the tri-cube function proposed by McMillen
(1998):

Wi = (1 − (di/qi)
3)3 I(di < qi) (6.20)

Where qi represents the distance of the qth nearest neighbor to observation i
and I() is an indicator function that equals one when the condition is true and
zero otherwise. Still another approach is to rely on a Gaussian function φ:

Wi = φ(di/σθ) (6.21)

Where φ denotes the standard normal density and σ represents the standard
deviation of the distance vector di.

The notation used here may be confusing since we usually rely on subscripted
variables to denote scalar elements of a vector. Our notation uses the subscripted
variable di to represent a vector of distances between observation i and all other
sample data observations.

BFC use a single value of θ, the bandwidth parameter for all observations.
This value is determined using a cross-validation procedure often used in locally

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 206

linear regression methods. Cross-validation relies on a score function taking the
form shown in (6.22) to determine a value for θ.

n
∑

i=1

[yi − ŷ �=i(θ)]
2 (6.22)

Where ŷ �=i(θ) denotes the fitted value of yi with the observations for point i omit-
ted from the calibration process. A value of θ that minimizes this score function
is used as the distance-weighting bandwidth to produce GWR estimates. Note
that for the case of the tri-cube weighting function, we would compute a value
for q denoting the number of nearest neighbors beyond which we impose zero
weights. The score function would be evaluated using alternative values of q to
find a value that minimizes the function.

The non-parametric GWR model relies on a sequence of locally linear re-
gressions to produce estimates for every point in space by using a sub-sample
of data information from nearby observations. Let y denote an nx1 vector of
dependent variable observations collected at n points in space, X an nxk matrix
of explanatory variables, and ε an nx1 vector of normally distributed, constant
variance disturbances. Letting Wi represent an nxn diagonal matrix contain-
ing distance-based weights for observation i that reflect the distance between
observation i and all other observations, we can write the GWR model as:

W
1/2
i y = W

1/2
i Xβi +W

1/2
i εi (6.23)

The subscript i on βi indicates that this kx1 parameter vector is associated
with observation i. The GWR model produces n such vectors of parameter
estimates, one for each observation. These estimates are calculated using:

β̂i = (X ′WiX)−1(X ′Wiy) (6.24)

Keep in mind the confusing notation,W
1/2
i y denotes an n-vector of distance-

weighted observations used to produce estimates for observation i. Note also,

thatW
1/2
i X represents a distance-weighted data matrix, not a single observation

and W
1/2
i εi represents an n-vector.

Note that these GWR estimates for βi are conditional on the bandwidth
parameter θ or q the number of neighbors we select in the case of the tri-cube
weighting function. That is, changing θ (or q), will produce a different set of
GWR estimates.

6.3.1 Implementing GWR

The first step in computing GWR estimates is to find an optimal bandwidth
θ or q-value that minimizes the score function. We construct two MATLAB
functions, one to compute the scores associated with different bandwidths and
another to determine scores associated with different q−values, where q repre-
sents the number of nearest neighbors in the tri-cube weighting method. These

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 207

univariate functions can be minimized using the MATLAB simplex algorithm
fmin to find an optimal bandwidth or q value.

The function scoref is used for exponential and Gaussian weights to deter-
mine a value for θ, and the function scoreq is used to determine q, the number
of nearest neighbors in the tri-cube weighting function.

function score = scoref(bdwt,y,x,east,north,flag)

% PURPOSE: evaluates cross-validation score to determine optimal

% bandwidth for gwr with gauusian or exponential weighting

% --

% USAGE: score = scoref(y,x,east,north,bdwt,flag);

% where: y = dependent variable

% x = matrix of explanatory variables

% east = longitude (x-direction) coordinates

% north = lattitude (y-direction) coordinates

% bdwt = a bandwidth to use in computing the score

% flag = 0 for Gaussian weights

% = 1 for BFG exponential

% --

% RETURNS: score = a cross-validation criterion

% --

[n k] = size(x); res = zeros(n,1); wt = zeros(n,1); d = zeros(n,1);

for iter = 1:n;

dx = east - east(iter,1); dy = north - north(iter,1);

d = (dx.*dx + dy.*dy); sd = std(sqrt(d));

if flag == 0, % Gausian weights

wt = sqrt(stdn_pdf(sqrt(d)/(sd*bdwt)));

elseif flag == 1, % exponential weights

wt = sqrt(exp(-d/bdwt));

end;

wt(iter,1) = 0.0;

% computational trick to speed things up

nzip = find(wt >= 0.01); % pull out non-zero obs

ys = y(nzip,1).*sqrt(wt(nzip,1));

xs = matmul(x(nzip,:),sqrt(wt(nzip,1)));

bi = xs\ys;

yhat = x(iter,:)*bi; % compute predicted values

res(iter,1) = y(iter,1) - yhat; % compute residuals

end; % end of for iter loop

tmp = res’*res; score = sqrt(tmp/n);

We rely on some computational tricks in scoref to improve the speed and
reduce memory requirements. The distance computations are “vectorized’ so
we generate an entire vector of weights d rather than use a ‘for loop’ over the
elements of the vector. This dramatically increases the speed because MAT-
LAB is relatively slow in executing ‘for loops’. A second trick is to calculate
the regression based only on observations associated with non-negligible weight
elements. In a large data set it may be the case that the weight assigned to
most observations is near zero and these observations can be excluded from the
regression. The code to accomplish this trick is:

nzip = find(wt >= 0.01); % pull out non-zero obs

ys = y(nzip,1).*sqrt(wt(nzip,1));

xs = matmul(x(nzip,:),sqrt(wt(nzip,1)));

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 208

Non-zero weights are somewhat arbitrary in the case of Gaussian and expo-
nential weighting methods. Consider that the Gaussian function assigns positive
weight to everything between −∞ and +∞, but we only consider weights tak-
ing on values greater than 0.01 as non-zero. Since the maximum weight will
be unity in the case of exponential weighting because exp(0) equals unity, this
cut-off value for non-negligible weights seems appropriate.

The function scoreq is a bit more complicated because we need to carry out
a grid search over integer values of q, the number of nearest neighbors to use.

function q = scoreq(qmin,qmax,y,x,east,north)

% PURPOSE: evaluates cross-validation score to determine optimal

% q for gwr based on tricube weighting

% --

% USAGE: score = scoreq(qmin,qmax,y,x,east,north);

% where: qmin = minimum # nearest neighbors to use in CV search

% qmax = maximum # nearest neighbors to use in CV search

% y = dependent variable

% x = matrix of explanatory variables

% east = longitude (x-direction) coordinates

% north = lattitude (y-direction) coordinates

% --

% RETURNS: q = # of nearest neighbors that minimum the score

% function

% --

[n k] = size(x); res = zeros(n,1); d = zeros(n,1);

qgrid = qmin:qmax; nq = length(qgrid); wt = zeros(n,nq);

for iter = 1:n;

dx = east - east(iter,1); dy = north - north(iter,1);

d = (dx.*dx + dy.*dy);

% sort distance to find q nearest neighbors

ds = sort(d); dmax = ds(qmin:qmax,1);

for j=1:nq;

nzip = find(d <= dmax(j,1));

wt(nzip,j) = (1-(d(nzip,1)/dmax(j,1)).^3).^3;

wt(iter,j) = 0.0;

end; % end of j loop

for j=1:nq;

% computational trick to speed things up

% use wt to pull out non-zero observations

nzip = find(wt(:,j) > 0);

ys = y(nzip,1).*sqrt(wt(nzip,j));

xs = matmul(x(nzip,:),sqrt(wt(nzip,j)));

bi = xs\ys;

yhat = x(iter,:)*bi; % compute predicted values

res(iter,j) = y(iter,1) - yhat; % compute residuals

end; % end of for j loop over q-values

end; % end of for iter loop

tmp = res.*res; score = sum(tmp);

[smin sind] = min(score); q = qgrid(sind);

In the case of the tri-cube weighting function, zero weights are assigned to
neighbors at a greater distance than the qth neighbor. This means that zero
weights are well-defined for this case and we modify the code for finding non-zero
weights and associated y,X observations as follows:

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 209

nzip = find(wt(:,j) > 0);

ys = y(nzip,1).*sqrt(wt(nzip,j));

xs = matmul(x(nzip,:),sqrt(wt(nzip,j)));

The function sorts distances and finds a vector of maximum distances associ-
ated with the grid of q values being searched. A weight matrix is then generated
for the entire grid of q values and regressions are carried out for every value of
q in the grid. After collecting a matrix of scores, the minimum is found and the
associated q value that produced the minimum score is returned by the function.

Both scoref and scoreq implement the weighted least-squares regressions

using y and X pre-multiplied by W
1/2
i , which conserves on memory compared

to the mathematical notion that is often used:

βi = (X ′WiX)−1(X ′Wiy) (6.25)

Computing expression (6.25) requires a diagonal matrix Wi that uses a great
deal more RAM memory.

Another aspect of scoref and scoreq is that they exclude the ith observa-
tion in the sample when producing an estimate βi for observation i by setting
the weight vector element ‘wt’ to zero. This is required for cross-validation
computation of the score function as indicated in the discussion surrounding
(6.22).

Given the optimal bandwidth or q value indicating the optimal number of
nearest neighbors, estimation of the GWR parameters β and associated statistics
can proceed via generalized least-squares. The function gwr that produces these
estimates is shown below.

function result = gwr(y,x,east,north,info);

% PURPOSE: compute geographically weighted regression

%--

% USAGE: results = gwr(y,x,east,north,info)

% where: y = dependent variable vector

% x = explanatory variable matrix

% east = x-coordinates in space

% north = y-coordinates in space

% info = a structure variable with fields:

% info.bwidth = scalar bandwidth to use or zero

% for cross-validation estimation (default)

% info.dtype = ’gaussian’ for Gaussian weighting (default)

% = ’exponential’ for exponential weighting

% = ’tricube’ for tri-cube weighting

% info.q = q-nearest neighbors to use for tri-cube weights

% (default: CV estimated)

% info.qmin = minimum # of neighbors to use in CV search

% info.qmax = maximum # of neighbors to use in CV search

% defaults: qmin = nvar+2, qmax = 5*nvar

% ---

% NOTE: res = gwr(y,x,east,north) does CV estimation of bandwidth

% ---

% RETURNS: a results structure

% results.meth = ’gwr’

% results.beta = bhat matrix (nobs x nvar)

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 210

% results.tstat = t-stats matrix (nobs x nvar)

% results.yhat = yhat

% results.resid = residuals

% results.sige = e’e/(n-dof) (nobs x 1)

% results.nobs = nobs

% results.nvar = nvars

% results.bwidth = bandwidth for gaussian or exponential weights

% results.q = q nearest neighbors for tri-cube weights

% results.dtype = input string for Gaussian, exponential weights

% results.iter = # of simplex iterations for cv

% results.north = north (y-coordinates)

% results.east = east (x-coordinates)

% results.y = y data vector

%---

if nargin == 5 % user options

if ~isstruct(info)

error(’gwr: must supply the option argument as a structure variable’);

else, fields = fieldnames(info); nf = length(fields);

[n k] = size(x); bwidth = 0; dtype = 0; q = 0; qmin = k+2; qmax = 5*k;

for i=1:nf

if strcmp(fields{i},’bwidth’), bwidth = info.bwidth;

elseif strcmp(fields{i},’dtype’), dstring = info.dtype;

if strcmp(dstring,’gaussian’), dtype = 0;

elseif strcmp(dstring,’exponential’), dtype = 1;

elseif strcmp(dstring,’tricube’), dtype = 2;

end;

elseif strcmp(fields{i},’q’), q = info.q;

elseif strcmp(fields{i},’qmax’), qmax = info.qmax;

elseif strcmp(fields{i},’qmin’), qmin = info.qmin;

end;

end; % end of for i

end; % end of if else

elseif nargin == 4, bwidth = 0; dtype = 0; dstring = ’gaussian’;

else, error(’Wrong # of arguments to gwr’);

end;

result.north = north; result.east = east;

switch dtype

case{0,1} % set bandwidth

if bwidth == 0 % cross-validation determination

options = zeros(1,18); options(1,1) = 0; options(1,2) = 1.e-3; options(14) = 500;

if dtype == 0 % Gaussian weights

[bdwt options] = fmin(’scoref’,0.1,10,options,y,x,east,north,dtype);

elseif dtype == 1 % exponential weights

[bdwt options] = fmin(’scoref’,0.25,20,options,y,x,east,north,dtype);

end;

if options(10) == options(14),

fprintf(1,’gwr: cv convergence not obtained in %4d iterations’,options(14));

else, result.iter = options(10);

end;

else, bdwt = bwidth*bwidth; % user supplied bandwidth

end;

case{2} % set q-nearest neigbhor

if q == 0 % cross-validation determination

q = scoreq(qmin,qmax,y,x,east,north);

else, % rely on user-supplied q-value

end;

otherwise

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 211

end;

% do GWR using bdwt as bandwidth

[n k] = size(x); bsave = zeros(n,k); ssave = zeros(n,k);

sigv = zeros(n,1); yhat = zeros(n,1); resid = zeros(n,1);

wt = zeros(n,1); d = zeros(n,1);

for iter=1:n;

dx = east - east(iter,1);

dy = north - north(iter,1);

d = (dx.*dx + dy.*dy);

sd = std(sqrt(d));

% sort distance to find q nearest neighbors

ds = sort(d);

if dtype == 2, dmax = ds(q,1); end;

if dtype == 0, % Gausian weights

wt = stdn_pdf(sqrt(d)/(sd*bdwt));

elseif dtype == 1, % exponential weights

wt = exp(-d/bdwt);

elseif dtype == 2, % tricube weights

wt = zeros(n,1);

nzip = find(d <= dmax);

wt(nzip,1) = (1-(d(nzip,1)/dmax).^3).^3;

end; % end of if,else

% computational trick to speed things up

% use non-zero wt to pull out y,x observations

nzip = find(wt >= 0.01); ys = y(nzip,1).*sqrt(wt(nzip,1));

xs = matmul(x(nzip,:),sqrt(wt(nzip,1)));

xpxi = inv(xs’*xs); b = xpxi*xs’*ys;

yhatv = xs*b; % compute predicted values

yhat(iter,1) = x(iter,:)*b;

resid(iter,1) = y(iter,1) - yhat(iter,1);

e = ys - yhatv; % compute residuals

nadj = length(nzip); sige = (e’*e)/nadj;

sdb = sqrt(sige*diag(xpxi)); % compute t-statistics

% store coefficient estimates and std errors in matrices

% one set of beta,std for each observation

bsave(iter,:) = b’; ssave(iter,:) = sdb’; sigv(iter,1) = sige;

end;

% fill-in results structure

result.meth = ’gwr’; result.nobs = nobs; result.nvar = nvar;

if (dtype == 0 | dtype == 1), result.bwidth = sqrt(bdwt);

else, result.q = q;

end;

result.beta = bsave; result.tstat = bsave./ssave;

result.sige = sigv; result.dtype = dstring;

result.y = y; result.yhat = yhat;

% compute residuals and conventional r-squared

result.resid = resid;

sigu = result.resid’*result.resid;

ym = y - mean(y); rsqr1 = sigu; rsqr2 = ym’*ym;

result.rsqr = 1.0 - rsqr1/rsqr2; % r-squared

rsqr1 = rsqr1/(nobs-nvar); rsqr2 = rsqr2/(nobs-1.0);

result.rbar = 1 - (rsqr1/rsqr2); % rbar-squared

Some important points about the function that might affect users are that
the default range of values searched for an optimal q value is k+ 2 to 5k, where
k is the number of variables in the X matrix. We need to use at least k + 1
parameters to carry out a regression, and using k + 1 produced some problems

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 212

with inversion of X ′X, so k + 2 was chosen. This seems to work in practice
without matrix inversion problems. An input option allows users to specify
‘info.qmin’ and ‘info.qmax’ to define the range used in the search. A grid search
is done which is relatively inefficient, so selection of a wide range of q values
for the search will slow down the estimation process. If the optimal value of q
reported in the printed output is at the upper limit of 5k, you should use the
input options ‘info.qmin’ and ‘info.qmax’ and produce another set of estimates.

There are also ranges set for the simplex optimization function fmin when
searching for an optimal bandwidth parameter in the case of Gaussian or ex-
ponential weighting methods. The range used for Gaussian weighting is 0.1 to
10 and for the exponential weighting 0.25 to 20. No input options are provided
for these ranges which appear to work well in applied situations. Nonetheless,
knowledge of these limits is helpful when examining the optimal bandwidth
printed in the output. If the optimal bandwidth falls near the upper limits, it
may suggest that a constant parameter regression model is more appropriate
than a locally linear model.

This function also relies on the computational tricks for conserving memory
and speed, using observations associated with non-negligible weights. Another
point to note regarding the function is that an estimate of σ2 for each observation
is produced based on the number of non-zero observations contained in the
variable ‘nadj’ as a divisor for the sum of squared residuals. This divisor is
different from BFC where n minus the trace of the matrix X ′WiX is used, so
their estimates may differ from those produced by the gwr function.

6.3.2 Applied examples

Example 6.4 demonstrates using the function gwr on Anselin’s Columbus neigh-
borhood crime data set with all three weighting methods. The estimates are
plotted by the program with the graph shown in Figure 6.5.

% ----- Example 6.4 Using the gwr() function

% load the Anselin data set

load anselin.dat; y = anselin(:,1); nobs = length(y);

x = [ones(nobs,1) anselin(:,2) anselin(:,3)];

[n k] = size(x); north = anselin(:,4); east = anselin(:,5);

vnames = strvcat(’crime’,’constant’,’income’,’hvalue’);

info.dtype = ’gaussian’; % gaussian distance weighting

tic; result1 = gwr(y,x,east,north,info); toc;

info.dtype = ’exponential’; % exponential distance weighting

tic; result2 = gwr(y,x,east,north,info); toc;

info.dtype = ’tricube’; % tri-cube distance weighting

tic; result3 = gwr(y,x,east,north,info); toc;

% plot results for comparison

tt=1:nobs;

subplot(3,1,1),

plot(tt,result1.beta(:,1),tt,result2.beta(:,1),’--’,tt,result3.beta(:,1),’-.’);

ylabel(’Constant term’);

subplot(3,1,2),

plot(tt,result1.beta(:,2),tt,result2.beta(:,2),’--’,tt,result3.beta(:,2),’-.’);

ylabel(’Household income’);

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 213

subplot(3,1,3),

plot(tt,result1.beta(:,3),tt,result2.beta(:,3),’--’,tt,result3.beta(:,3),’-.’);

ylabel(’House value’);

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

C
o
n
s
ta

n
t
te

rm

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

H
o
u
s
e
h
o
ld

 i
n
c
o
m

e gaussian
exponential
tri-cube

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

H
o
u
s
e
 v

a
lu

e

Figure 6.5: GWR estimates

From the graph we see that alternative weighting methods have some impact
on the resulting estimates. Printed results from these models can be voluminous,
so we present estimates for only a handful of observations below.

It might be of interest that our work in programming for speed appears to
have paid off as the execution times required for the three models in example
6.4 were 4.16, 2.48 and 1.56 seconds respectively. The nature of our trick that
operates only on observations with non-negligible weights means that even in
very large samples the actual work involved in computing the estimates may
involve only small matrix inversions. Execution times will of course slow down
as the number of observations increase because more of these small matrix
inversions will be required.

Geometrically weighted regression estimates

Dependent Variable = crime

R-squared = 0.9417

Rbar-squared = 0.9392

Bandwidth = 0.6519

iterations = 15

Decay type = gaussian

Nobs, Nvars = 49, 3

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 214

Obs = 1, x-coordinate= 42.3800, y-coordinate= 35.6200, sige= 1.4026

Variable Coefficient t-statistic t-probability

constant 51.208258 14.379087 0.000000

hvalue -0.434424 -5.767336 0.000001

income -0.460959 -2.618684 0.011713

Obs = 2, x-coordinate= 40.5200, y-coordinate= 36.5000, sige= 3.2344

Variable Coefficient t-statistic t-probability

constant 63.569815 14.426028 0.000000

hvalue -0.683569 -6.747911 0.000000

income -0.370017 -1.436461 0.157226

Obs = 3, x-coordinate= 38.7100, y-coordinate= 36.7100, sige= 4.6286

Variable Coefficient t-statistic t-probability

constant 72.673700 12.846078 0.000000

hvalue -0.826778 -7.338805 0.000000

income -0.161602 -0.369296 0.713498

6.4 Applied exercises

We produce GWR estimates for the Pace and Barry (1997) data set as an applied
illustration. Example 6.5 estimates the same model that we used in Chapters 4
and 5 for the spatial autoregressive methods. One difference is that we use
latitude and longitude coordinates (in the 5th and 6th columns of the data file)
needed for the GWR method.

The example program sorts by longitude from low to high so we can produce
a graph of the estimates over space moving from the western to eastern U.S.
Of course, sorting the data has no impact on the estimates, because regression
estimates are unchanged by a re-ordering the observations.

% ----- Example 6.5 GWR on the Pace and Barry data set

load elect.dat; % load data on votes in 3,107 counties

north = elect(:,5); east = elect(:,6);

% sort the data from west to east

[easts ind] = sort(east); norths = north(ind,1);

elects = elect(ind,:); nobs = 3107;

clear elect; % save RAM memory

y = log(elects(:,7)./elects(:,8)); % convert to per capita variables

x1 = log(elects(:,9)./elects(:,8)); % education

x2 = log(elects(:,10)./elects(:,8));% homeownership

x3 = log(elects(:,11)./elects(:,8));% income

n = length(y); x = [ones(n,1) x1 x2 x3]; clear elects x1 x2 x3;

vnames = strvcat(’votes’,’constant’,’education’,’homeowners’,’income’);

info.dtype = ’gaussian’;

info.bwidth = 0.3528;

tic; result = gwr(y,x,easts,norths,info); toc;

% plot estimates from west to east

subplot(2,2,1),

plot(easts/1000000,result.beta(:,1),’.k’);

ylabel(’Constant term’);

xlabel(’longitude west-east’);

subplot(2,2,2),

plot(easts/1000000,result.beta(:,2),’.k’);

ylabel(’education’);

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 215

xlabel(’longitude west-east’);

subplot(2,2,3),

plot(easts/1000000,result.beta(:,3),’.k’);

ylabel(’homeowners’);

xlabel(’longitude west-east’);

subplot(2,2,4),

plot(easts/1000000,result.beta(:,4),’.k’);

ylabel(’income’);

xlabel(’longitude west-east’);

Despite our efforts to code the gwr function for speed, it took 47 minutes
to produce estimates based on a Gaussian weighting scheme. The number of
iterations required to find the optimal bandwidth using the simplex search was
15, so we averaged over 3 minutes for one pass through the observations to
produce a set of 3,107 estimates. Using the optimal bandwidth of 0.3511 as an
input to the gwr function eliminates the need for the simplex search, producing
estimates in 239 seconds.

One way to speed up the estimation procedure would be to change the
tolerance used by the simplex optimization function fmin. This is set to 1e-3,
in the function gwr. My experience indicates that the estimates are not very
sensitive to changes in the third decimal place of the bandwidth parameter,
making this a feasible option. Another way to speed up estimation without
sacrificing accuracy is to place a narrower range on the simplex search. In
large problems, a sub-sample might be used to estimate a bandwidth parameter
that would allow an intelligent range to be set. If you encounter a bandwidth
estimate near the boundary of your range, you should then adjust the range
and produce another set of estimates.

Somewhat worse timing results were found for the case of the tri-cube weight-
ing where it took 69 minutes to find an optimal q = 19 nearest neighbors. Again,
given a value of q, the function can produce estimates in around 200 seconds.
We could have reduced the estimation time by supplying inputs for the grid
search range over alternative q values. The optimal q was found to be 19, which
was near the upper limit of 5k = 20 in this problem. Another strategy would
be to attempt a more intelligent approach than the grid search over alternative
values of q. We will provide some additional timing results for the Boston data
set containing 506 observations shortly.

A graph of the four parameters as they vary over space from west to east
is shown in Figure 6.6. This set of estimates was produced using the Gaussian
weighting method and the estimated bandwidth of 0.3511 reported in the printed
output. By virtue of the log transformation for all variables in the model, these
parameters can be interpreted as elasticities of voter turn-out with respect to
the explanatory variables. It is interesting that all the elasticities span zero,
having a positive impact on voter turnout in some regions of the county and
negative impacts in others.

To test the sensitivity of the estimates to small changes in the bandwidth
parameter, a second set of estimates was generated using a bandwidth of 0.37,
which is fairly near the estimated optimal value of 0.3511. These estimates are
shown in Figure 6.7, where we see only slight differences in the estimates based

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 216

-140 -120 -100 -80 -60
-4

-2

0

2

4

C
o
n
s
ta

n
t
te

rm

longitude west-east
-140 -120 -100 -80 -60

-1.5

-1

-0.5

0

0.5

1

1.5

2

e
d
u
c
a
ti
o
n

longitude west-east

-140 -120 -100 -80 -60
-1

0

1

2

3

h
o
m

e
o
w

n
e
rs

longitude west-east
-140 -120 -100 -80 -60
-2

-1.5

-1

-0.5

0

0.5

1

1.5

in
c
o
m

e

longitude west-east

Figure 6.6: GWR estimates based on bandwidth=0.3511

on a slightly larger bandwidth value of 0.37 versus those generated with 0.3511,
indicating that the estimates are not extremely sensitive to small changes in
this parameter.

The estimates for this large data set that contains outliers (as we saw in
Chapter 4) are also sensitive to the weighting method used. Figure 6.8 shows
a set of estimates produced using tri-cube weighting that indicated an optimal
q nearest neighbors of 19. These estimates are much more sensitive to the
outliers, producing estimates with more variation as indicated by the vertical
scale in Figure 6.8. There are a handful of outlying estimates with the most
dramatic case being a single estimate above 6 for the homeownership variable as
well as some large negative estimates near -2 and -3 for the education variable.
Gaussian weighting relies on more of the sample observations because the normal
probability density assigns positive weight for all values on the real line. In
contrast, the tri-cube weighting function sets weights of zero to observations
beyond the distance of the q nearest neighbors (19 in this case).

The exponential weighting method produced matrix inversion problems pre-
cluding estimates for this method. This can occur when the simplex search
attempts to explore bandwidth values that reduce the number of observations
with non-negligible weight to less than the number of variables in the model.

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 217

-140 -120 -100 -80 -60
-4

-2

0

2

4

C
o

n
s
ta

n
t

te
rm

longitude west-east
-140 -120 -100 -80 -60
-1

-0.5

0

0.5

1

1.5

2

e
d

u
c
a

ti
o

n

longitude west-east

-140 -120 -100 -80 -60
-1

-0.5

0

0.5

1

1.5

2

2.5

h
o

m
e

o
w

n
e

rs

longitude west-east
-140 -120 -100 -80 -60

-1.5

-1

-0.5

0

0.5

1

1.5

in
c
o

m
e

longitude west-east

Figure 6.7: GWR estimates based on bandwidth=0.37

It is also possible that a particular set of weights might generate an extremely
ill-conditioned matrix X. The weights can interact with the levels of the vari-
ables in unpredictable ways. A solution to this type of problem would be to
use a ridge regression method in place of least-squares. Ridge regression based
on estimation of the Hoerl-Kennard optimal ridge parameter is available in the
Econometrics Toolbox. This function takes around 1.8 times as long as least-
squares estimation so this would impose a penalty. Note also that bias would
be introduced in the estimates, and in the case of GWR estimates for every
observation it would be difficult to assess the amount of bias introduced.

As another example of using GWR estimation, we apply the method to our
Boston data set. A first issue we need to deal with is the fact that many of the
explanatory variables in this data set represent dummy variables. For example,
there is a dummy variable for location near the Charles River. When carrying
out local linear regressions, these variables will create problems as they will take
on constant values for subsamples of the observations. In the case of the Charles
River dummy variable, subsets of observations away from the river will all take
on values of zero, producing an invertibility problem.

In addition to the dummy variables in the data set, other variables such as
the property tax rates are uniform over municipal areas like the city of Boston.

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 218

-140 -120 -100 -80 -60
-10

-5

0

5

10

C
o

n
s
ta

n
t

te
rm

longitude west-east
-140 -120 -100 -80 -60
-3

-2

-1

0

1

2

3

e
d

u
c
a

ti
o

n

longitude west-east

-140 -120 -100 -80 -60
-2

0

2

4

6

8

h
o

m
e

o
w

n
e

rs

longitude west-east
-140 -120 -100 -80 -60
-3

-2

-1

0

1

2

in
c
o

m
e

longitude west-east

Figure 6.8: GWR estimates based on tri-cube weighting

Here too, when we attempt to produce estimates for a subset of observations in
the city of Boston the tax rate variable will take on constant values creating a
perfect linear combination with the intercept term in the model.

For large data sets, examining these issues could be quite a task. Further
complicating the task is the fact that one does not know a priori what the
sample size will be as it is a function of the estimated bandwidth parameter in
the model.

Example 6.6 produces estimates for a truncated version of the Harrison-
Rubinfeld Boston data set where we eliminated problematical variables that
would produce perfect linear combinations over locally linear subsets of the
observations. This left us with five explanatory variables plus a constant term.
(The program does not contain all of the plot statements to save space.)

% ----- Example 6.6 GWR estimates for the Boston data set

load boston.trunc; % Harrison-Rubinfeld data

load latitude.data; load longitude.data;

[n k] = size(boston); y = boston(:,k); % median house values

x = boston(:,1:k-1); % other variables

vnames = strvcat(’hprice’,’crime’,’rooms2’,’houseage’, ...

’distance’,’blackpop’,’lowclass’);

ys = studentize(y); n = length(y); xs = [ones(n,1) studentize(x)];

clear x; clear y; clear boston;

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 219

0 200 400 600
-5

0

5

10
exponential weighting

constant
0 200 400 600

-0.5

0

0.5

1

1.5

crime

0 200 400 600
-1

0

1

2

rooms2
0 200 400 600

-1

-0.5

0

0.5

1

distance

0 200 400 600
-2

0

2

4

6

blackpop
0 200 400 600

-3

-2

-1

0

1

lowclass

Figure 6.9: Boston GWR estimates - exponential weighting

info.dtype = ’exponential’;

tic; res1 = gwr(ys,xs,latitude,longitude,info); toc;

info.dtype = ’gaussian’;

tic; res2 = gwr(ys,xs,latitude,longitude,info); toc;

info.dtype = ’tricube’;

tic; res3 = gwr(ys,xs,latitude,longitude,info); toc;

% plot estimates for comparison

tt=1:n;

subplot(3,2,1), plot(tt,res1.beta(:,1),’-k’);

title(’exponential weighting’); xlabel(’constant’);

subplot(3,2,2), plot(tt,res1.beta(:,2),’-k’); xlabel(’crime’);

subplot(3,2,3), plot(tt,res1.beta(:,3),’-k’); xlabel(’rooms2’);

subplot(3,2,4), plot(tt,res1.beta(:,4),’-k’); xlabel(’distance’);

subplot(3,2,5), plot(tt,res1.beta(:,5),’-k’); xlabel(’blackpop’);

subplot(3,2,6), plot(tt,res1.beta(:,6),’-k’); xlabel(’lowclass’);

This program took 306 seconds to produce estimates based on exponen-
tial weights, 320 seconds for the gaussian weights and 294 seconds for tri-cube
weights.

Recall that this data set contains outliers as well as 16 sample censored
observations. The impact of the outliers on the locally linear estimates is clearly
visible in Figures 6.9 to 6.11 where the estimates for each of the three weighting
methods are shown.

These estimates are extremely sensitive to the weighting method used with

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 220

0 200 400 600
-2

0

2

4

6
gaussian weighting

constant
0 200 400 600

-0.5

0

0.5

1

1.5

crime

0 200 400 600
-1

-0.5

0

0.5

1

rooms2
0 200 400 600

-1

-0.5

0

0.5

distance

0 200 400 600
-2

0

2

4

6

blackpop
0 200 400 600

-2

-1

0

1

lowclass

Figure 6.10: Boston GWR estimates - Gaussian weighting

the tri-cube estimates exhibiting the most variability. Intuitively, we would
expect this result since this weighting method relies on smaller sub-samples than
the exponential or Gaussian weights. Observations 357 through 488 represent
census tracts in the city of Boston. The dramatic changes in the estimates in the
observation range for Boston may indicate that the city represents a different
regime from the other census tracts.

The GWR estimates are sensitive to the sample used as well. To demon-
strate this, we produce another set of estimates based on the city of Boston
observations 357 to 488. These estimates for the 132 observation city sample
are graphed along with those based on the full sample in Figure 6.12 for the
Gaussian weighting method and Figure 6.13 for tri-cube weighting. Estimates
based on exponential weighting are not presented since they were relatively
similar to the results from Gaussian weights.

The times required to produce estimates for the 132 observation sample were:
33 seconds for the exponential weighting, 28 seconds for Gaussian weighting, and
20 seconds for tri-cube weighting. Because the number of explanatory variables
in the model based on the full 506 observations and the city sub-sample of 132
observations are the same, we can draw an inference on how the gwr function
scales up. The time required to produce estimates for the 506 observation
sample was 9.3 times as long in the case of the exponential weighting method,
11.4 times as long for the gaussian weighting, and 14.7 times as long for the

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 221

0 200 400 600
-4

-2

0

2

4
tricube weighting

constant
0 200 400 600

-0.5

0

0.5

1

1.5

crime

0 200 400 600
-10

-5

0

5

10

rooms2
0 200 400 600

-10

-5

0

5

distance

0 200 400 600
-4

-2

0

2

4

blackpop
0 200 400 600

-2

-1

0

1

lowclass

Figure 6.11: Boston GWR estimates - tri-cube weighting

tri-cube weighting. This averages a 12-fold increase in time required when the
observations increased by 3.82 times. This implies that the execution time
required is almost increasing quadratically with the number of observations. (A
quadratic increase in time would lead to 14.67 times as long.)

As a test of this, consider that the 3107 observations used in example 6.5
represent a six-fold increase in observations over 506, so the time required should
increase by a quadratic factor of 36 implying 190 minutes required to produce
Gaussian weighted estimates in example 6.5. The actual time required was 123
minutes. There may be a timing advantage for the tri-cube weighting method in
larger problems as this method took only 69 minutes, whereas the conjectured
36-fold increase would predict an execution time of 176 minutes.

The parameter comparisons indicate that estimates produced using the city
sub-sample differed dramatically from those based on the full sample for the
Gaussian and exponential weighting methods. They are most similar for the tri-
cube weights, but still quite different. One disturbing aspect of the comparisons
shown in the figures is that the majority of the six estimates exhibited ranges
where the two sets of estimates were of opposite signs.

A partial explanation for these differences would be that the city sub-sample
produces “edge effects” because census tracts on the edge of the city of Boston
are not able to draw on sample information from neighboring observations. How-
ever, if the city of Boston represents another regime, eliminating neighboring

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 222

0 50 100 150
-0.6

-0.4

-0.2

0

0.2
gaussian weighting

crime
0 50 100 150

-0.5

0

0.5

rooms2

0 50 100 150
-1

-0.5

0

0.5

houseage
0 50 100 150

-1.5

-1

-0.5

0

0.5

distance

0 50 100 150
-0.4

-0.2

0

0.2

0.4

blackpop
0 50 100 150

-1.5

-1

-0.5

0

lowclass

city sample
full sample

Figure 6.12: Boston city GWR estimates - Gaussian weighting

census tracts that are dissimilar might mitigate some of the influence of aberrant
observations arising from these neighbors.

These two applied examples point to some problems that plague the use
of locally linear regression methods in spatial analysis. One problem with the
non-parametric approach is that valid inferences cannot be drawn for the GWR
regression parameters. To see this, consider that the locally linear estimates
use the same sample data observations (with different weights) to produce a
sequence of estimates for all points in space. Given a lack of independence
between estimates for each location, conventional measures of dispersion for the
estimates will likely be incorrect. These (invalid) conventional measures are
what we report in the results structure from gwr, as this is the approach taken
by Brunsdon, Fotheringham and Charlton (1996).

Another problem illustrated in the applied examples is that non-constant
variance over space, aberrant observations due to spatial enclave effects, or
shifts in regime can exert undue influence on the locally linear estimates. Con-
sider that all nearby observations in a sub-sequence of the series of locally linear
estimates may be “contaminated” by an outlier at a single point in space. In
Chapter 7 we introduce a Bayesian approach that solves this problem by robus-
tifying against aberrant observations. Aberrant observations are automatically
detected and downweighted to lessen their influence on the estimates. The non-
parametric implementation of the GWR model assumes no outliers.

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 223

0 50 100 150
-2

-1

0

1
tricube weighting

crime
0 50 100 150

-1

-0.5

0

0.5

1

rooms2

0 50 100 150
-10

-5

0

5

10

houseage
0 50 100 150

-10

-5

0

5

distance

0 50 100 150
-2

0

2

4

6

blackpop
0 50 100 150

-2

-1

0

1

lowclass

city sample
full sample

Figure 6.13: Boston city GWR estimates - tri-cube weighting

A third problem is that the non-parametric estimates may suffer from “weak
data” problems because they are based on a distance weighted sub-sample of
observations. The effective number of observations used to produce estimates
for some points in space may be very small. We saw an example of this problem
in attempting to implement the GWR with exponential weights for the Pace
and Barry data set. Matrix inversion problems arose that precluded obtaining
estimates. This problem can be solved with a Bayesian approach that incor-
porate subjective prior information during estimation. Use of subjective prior
information is a Bayesian approach for overcoming “weak data” problems and
we will illustrate this in the next chapter.

6.5 Limited dependent variable GWR models

McMillen and McDonald (1998) propose the idea of using locally linear probit
models. They point out that one need only apply standard logit or probit
methods to the distance weighted sub-samples of the data in place of least-
squares. They motivate this by considering the log-likelihoods from locally
linear least-squares and probit shown in (6.26) and (6.27).

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 224

L =

n
∑

j=1

wij [log((yj −Xjβi)/σi) − logσi] (6.26)

L =

n
∑

j=1

wij [Ij logΦ(Xjβi) + (1 − Ij)logΦ(−Xjβi)] (6.27)

Where Ij is the dependent variable taking on values of 0 or 1 and Φ denotes the
standard normal cumulative density function.

The standard GWR estimates βi, σi can be derived by maximizing the log-
likelihood in (6.26) for each observation. This suggests that any maximum
likelihood method could be given a locally linear interpretation by adapting it
to a distance discounted likelihood like those shown in (6.26) and (6.27). In
practice, this means that we need simply alter the scoref and gwr functions
already written to compute logit or probit estimates in place of the least-squares
estimates.

There are already functions logit and probit to implement these estimation
methods in the Econometrics Toolbox, so altering the scoref and gwr functions
to call these routines in place of the least-squares estimates is relatively simple.

Functions gwr logit and gwr probit were implemented by taking this ap-
proach. Some caveats arise in extending the GWR model to the case of logit
and probit. One is that we cannot operate on sub-samples using our computa-
tional trick that ignores observations with negligible weight, because we could
produce a sub-sample with values of all zeros or ones. We need to employ the en-
tire sample which makes this method more computationally intense. These two
functions rely on a Gaussian weighting function, since this is the only weighting
method that ensures we assign weights to the full sample. Another issue is that
solving for logit and probit estimates is a computationally intense operation
involving non-linear optimization, so we should not expect great performance
from these functions in large samples.

The documentation for gwr logit is shown below, and gwr probit is nearly
identical. The only optional input is a bandwidth parameter, since the weighting
method is fixed as Gaussian.

function result = gwr_logit(y,x,east,north,info);

% PURPOSE: compute geographically weighted logit regression

%--

% USAGE: results = gwr_logit(y,x,east,north,info)

% where: y = dependent variable vector with 0,1 values

% x = explanatory variable matrix

% east = x-coordinates in space

% north = y-coordinates in space

% info = a structure variable with fields:

% info.bwidth = scalar bandwidth to use

% (default = cross-validation estimate)

% ---

% NOTES: res = gwr_logit(y,x,east,north) does CV estimation of bandwidth

% Uses Gaussian weighting, and scoref_log for CV

% ---

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 225

% RETURNS: a results structure

% results.meth = ’gwr_logit’ for logit model

% results.beta = bhat matrix (nobs x nvar)

% results.tstat = t-stats matrix (nobs x nvar)

% results.yhat = yhat

% results.resid = residuals

% results.sige = e’e/(n-dof) (nobs x 1)

% results.rsqr = Estrella R^2

% results.lik = -Log likelihood

% results.nobs = nobs

% results.nvar = nvars

% results.bwidth= bandwidth if gaussian or exponential

% results.north = north (y-coordinates)

% results.east = east (x-coordinates)

% results.y = y data vector

% results.one = # of 1’s

% results.nzip = # of 0’s

%---

These functions return some information specific to logit and probit regres-
sion that is presented in the printed output. For example an R2 measured
proposed by Estrella (1998) is provided as well as a count of the number of 0
and 1 values in the dependent variable vector.

The actual code to produce the GWR logit estimates is shown below. We
simply call the logit function in a loop over the observations using a distance-
weighted data matrix ‘xs’. Logit estimates are transferred from the results
structure returned by the logit function to a matrix that will contain estimates
for all observations at the end of the loop.

wt = zeros(n,1);

for iter=1:n;

dx = east - east(iter,1);

dy = north - north(iter,1);

d = (dx.*dx + dy.*dy);

% Gausian weights

sd = std(sqrt(d));

wt = stdn_pdf(sqrt(d)/(sd*bdwt));

wt = sqrt(wt);

xs = matmul(wt,x);

res = logit(y,xs);

bsave(iter,:) = res.beta’;

yhat(iter,1) = 1/(1+exp(-x(iter,:)*res.beta));

resid(iter,1) = y(iter,1) - yhat(iter,1);

sigv(iter,1) = res.sige;

tstat(iter,:) = res.tstat’;

like(iter,1) = res.lik;

end;

We also need to create a score function that can be used to produce a cross-
validation bandwidth estimate based on logit (or probit) regressions. Consider
that we are calling this score function named score log with the simplex op-
timization function fmin. This means that we are solving an optimization
problem where each evaluation of the score function to be optimized requires

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 226

the solution of n optimization problems to produce logit estimates for each
observation. It is somewhat amazing that it works!

function score = scoref_log(bdwt,y,x,east,north)

% PURPOSE: evaluates cross-validation score to determine optimal

% bandwidth for gwr_logit with gauusian weighting

% --

% USAGE: score = scoref_log(bdwt,y,x,east,north);

% where:

% bdwt = a bandwidth to use in computing the score

% y = dependent variable

% x = matrix of explanatory variables

% east = longitude (x-direction) coordinates

% north = lattitude (y-direction) coordinates

% --

% RETURNS: score = a cross-validation criterion

% --

[n k] = size(x); res = zeros(n,1); wt = zeros(n,1);

for iter = 1:n;

dx = east - east(iter,1);

dy = north - north(iter,1);

d = (dx.*dx + dy.*dy);

sd = std(sqrt(d));

wt = stdn_pdf(sqrt(d)/(sd*bdwt)); % Gausian weights

wt(iter,1) = 0.0;

wt = sqrt(wt); xs = matmul(x,wt);

tmp = logit(y,xs); bi = tmp.beta;

% compute predicted values

yhat = 1/(1+exp(-x(iter,:)*bi));

% compute residuals

res(iter,1) = y(iter,1) - yhat;

end; % end of for iter loop

tmp = res’*res;

score = sqrt(tmp/n);

Example 6.7 illustrates using these functions to produce logit and probit
GWR estimates based on a binary transformed version of the Columbus crime
data set. We graph the logit and probit estimates for comparison, but keep
in mind logit estimates are generally around 1.7 times the magnitude of probit
estimates (see Green, 1997).

% ----- Example 6.8 GWR logit and probit estimates

% load the Anselin data set

load anselin.dat; y = anselin(:,1); nobs = length(y);

x = [ones(nobs,1) anselin(:,2:3)]; [nobs nvar] = size(x);

north = anselin(:,4); east = anselin(:,5);

% convert data to 0,1 values

yc = ones(nobs,1);

for i=1:nobs

if y(i,1) < 20.0

yc(i,1) = 0.0;

end;

end;

vnames = strvcat(’crime’,’constant’,’income’,’hvalue’);

tic; result1 = gwr_logit(yc,x,east,north); toc;

tic; result2 = gwr_probit(yc,x,east,north); toc;

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 227

prt(result1,vnames);

% plot results for comparison (see also plt)

tt=1:nobs;

subplot(2,2,1),

plot(tt,result1.beta(:,1),tt,result2.beta(:,1),’--’);

xlabel(’Constant term’);

subplot(2,2,2),

plot(tt,result1.beta(:,2),tt,result2.beta(:,2),’--’);

xlabel(’Household income’);

subplot(2,2,3),

plot(tt,result1.beta(:,3),tt,result2.beta(:,3),’--’);

xlabel(’House value’); legend(’logit’,’probit’);

subplot(2,2,4);

plot(tt,yc,’ok’,tt,result1.yhat,’+k’,tt,result2.yhat,’*k’);

legend(’actual’,’logit’,’probit’);

xlabel(’actual vs. predicted’);

The time required to produce the logit estimates was 62 seconds and 169
seconds for the probit estimates. This is truly amazing given the computational
intensity of finding the cross-validation bandwidth estimates. Figure 6.14 shows
the graph produced by the program in example 6.7, where we see that both
sets of estimates are quite similar, when we take into account the scale factor
difference of 1.7 between these two types of estimates.

0 10 20 30 40 50
10

15

20

25

30

35

40

Constant term
0 10 20 30 40 50

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

Household income

0 10 20 30 40 50
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

House value
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

actual vs. predicted

logit
probit

actual
logit
probit

Figure 6.14: GWR logit and probit estimates for the Columbus data

CHAPTER 6. LOCALLY LINEAR SPATIAL MODELS 228

6.6 Chapter Summary

We have seen that locally linear regression models can be estimated using dis-
tance weighted sub-samples of observations to produce different estimates for
every point in space. This approach can deal with spatial heterogeneity and
provide some feel for parameter variation in the relationships over space.

Some problems arise in using spatial expansion models because they tend to
produce heteroscedastic disturbances by construction. This problem is overcome
to some extent with the DARP model approach.

The non-parametric locally linear regression models produce problems with
respect to inferences about the parameters as they vary over space. Because
the distance weighted sub-samples used to construct the estimates are not in-
dependent, traditional methods for constructing measures of dispersion used in
regression modeling cannot be used. It would be possible to produce bootstrap
estimates of dispersion for the purposes of inference, but this would add to the
computational intensity of the method.

Another problem is that the estimates and associated inferences for these
models are conditional on the distance decay parameter used and the weighting
method. In addition, we found that changing the sample can produce dramatic
changes in the parameters for these models, including changes in the sign of the
parameters.

The computational intensity of these methods may be greater than generally
recognized. Intuitively, since the method requires only least-squares estimation,
it would seem to have computational advantages over spatial autoregressive
models where one must deal with eigenvalue and determinant calculations for
large sparse weight matrices. We saw however that for the same 3,107 ob-
servation problem estimated using spatial autoregressive models in 100 to 300
seconds, it took 50 to 70 minutes to produce GWR estimates. The computa-
tional intensity arises from the need to solve for a cross-validation estimate of
the important distance decay parameter in these models (or to find a cross-
validation estimate of the optimal number of nearest neighbors in the case of
tri-cube weighting). Given a decay parameter or the number of nearest neigh-
bors, estimates can be produced in around 300 seconds, not unlike the case of
spatial autoregressive models. Unfortunately, it is unlikely that one would have
knowledge of these parameters.

Chapter 7

Bayesian Locally linear
spatial models

A Bayesian treatment of the spatial expansion model and locally linear geo-
graphically weighted regressions is set forth in this chapter. We saw in Chap-
ter 6 that Casetti’s spatial expansion model suffers from heteroscedasticity by
construction. A Bayesian variant of this model can rely on the Gibbs sam-
pling methods we introduced for the Bayesian heteroscedastic linear model in
Section 4.4.1 to remedy this situation. The Bayesian version of the spatial
expansion model is the subject of Section 7.1.

While the use of locally linear regression represents a true contribution to
spatial econometrics, we saw in Chapter 6 that problems arise when outliers exist
in the sample data. We demonstrate that a Bayesian treatment can resolve these
problems and has a great many advantages over the GWR method discussed in
Chapter 6.

One problem with the non-parametric approach was that valid inferences
cannot be drawn for the GWR regression parameters because the locally linear
estimates re-use sample data observations (with different weights) to produce
a sequence of estimates for all points in space. Given a lack of independence
between estimates for each location, conventional regression measures of dis-
persion for the estimates will likely be incorrect. A Bayesian implementation
using the Gibbs sampler to estimate the parameters will produce valid mea-
sures of dispersion for the estimates. Recall, the Gibbs sampler does not require
independent sample observations to produce valid estimates of dispersion. A
lack of independence only means we may need to carry out more draws during
sampling.

Another problem is that non-constant variance over space, aberrant observa-
tions due to spatial enclave effects, or shifts in regime can exert undue influence
on locally linear estimates. All nearby observations in a sub-sequence of the se-
ries of locally linear estimates may be “contaminated” by an outlier at a single
point in space. This is a serious issue because the goal of GWR estimation is

229

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 230

detection of changes in the relationship over space. Using GWR estimates, we
are likely to infer changes in the relationship when in fact the changes are due
to the presence of outliers.

The Bayesian approach solves this problem by producing estimates that are
robust against aberrant observations taking a similar approach to that used in
Chapter 4 for Bayesian spatial autoregressive models. Aberrant observations
are automatically detected and downweighted to mitigate their influence on the
estimates. This ensures that inferences of spatial changes in the relationship
represent true changes rather than aberrant observations.

Section 7.2 illustrates a Bayesian variant of the GWR model (that we label
BGWRV) which accomodates outliers and non-constant variance using the same
methods as in Section 7.1.

A third problem is that non-parametric estimates based on a distance weighted
sub-sample of observations may suffer from “weak data” problems. The effec-
tive number of observations used to produce estimates for some points in space
may be very small. As we saw in Chapter 6, this can result in situations where
the matrix X ′X is non-invertible. This problem can be solved by incorporating
subjective prior information during estimation. Use of subjective prior infor-
mation is a common Bayesian approach to overcoming “weak data” problems.
Section 7.3 extends the heteroscedastic Bayesian GWR model from Section 7.2
to include prior information based on an explicit specification of the relation-
ship used to smooth the parameters over space. This allows us to subsume
the non-parametric GWR method as part of a much broader class of spatial
econometric models. For example, this Bayesian variant of the GWR (which
we label BGWR) can be implemented with parameter smoothing relationships
that result in: 1) a locally linear variant of the spatial expansion methods intro-
duced by Casetti (1972,1992), 2) a parameter smoothing relation appropriate
for monocentric city models where parameters vary systematically with distance
from the center of the city, 3) a parameter smoothing scheme based on conti-
guity relationships, and 4) a parameter smoothing scheme based on GWR-type
distance decay.

Finally, section 7.4 provides an applied exercise that compares the GWR and
BGWR methods using a data set on employment, payroll and establishments
from Cuyahoga county. We demonstrate that outliers in this data set adversely
affect the GWR estimates, but not the BGWR results.

7.1 Bayesian spatial expansion

As illustrated in Chapter 6, the spatial expansion model contains a heteroscedas-
tic disturbance structure by construction. This was motivated by working with
a distance expansion model shown in (7.1), where we add a stochastic term u
to reflect some error in the expansion relationship.

y = Xβ + e

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 231

β = DJβ0 + u (7.1)

Substituting the second equation from (7.1) into the first, produces:

y = XDJβ0 +Xu+ e (7.2)

It should be clear that the new composite disturbance term Xu+ e will reflect
heteroscedasticity unless the expansion relationship is exact and u = 0.

We can accomodate this situation using an extended model that does not
assume e ∼ N(0, σ2In), relying instead on the heteroscedastic disturbance as-
sumption from Chapter 4, e ∼ N(0, σ2V), where V = diag(v1, v2, . . . , vn). This
has the virtue that the heteroscedastic form is not modeled directly, but rather
estimated. Formally, our Bayesian spatial expansion model can be stated as:

y = Xβ + ε (7.3)

β = DJβ0 + u (7.4)

β = ZJβ0 + u (7.5)

u ∼ N(0, σ2)

ε ∼ N(0, σ2V)

V = diag(v1, v2, . . . , vn)

r/vi ∼ ID χ2(r)/r

r ∼ Γ(m, k)

σ ∼ Γ(ν0, d0)

Where we use expression (7.4) for the distance expansion model and (7.5) for
x-y expansion.

A point to note is that we don’t model the disturbance in (7.3) which has a
variance-covariance structure:

E(Xu+ ε)(Xu+ ε)′ = σ2(In +Xuu′X ′) (7.6)

We model σ2(In +Xuu′X ′) using the flexible form, σ2V involving the variance
scalar parameters vi. A virtue of proceeding in this way is that implementa-
tion of the Bayesian model with a large hyperparameter r leads to V = In and
estimates from ordinary spatial expansion. Another advantage is that the esti-
mates vi provide a diagnostic measure of where the spatial expansion restriction
is inconsistent with the sample data. Given that a heteroscedastic prior is im-
plemented using a value for the hyperparameter r = 4, large and systematic
deviations from unity in the vi estimates would be indicative of a problem with
the spatial expansion relationship. In cases where the spatial expansion relation
is consistent with the sample data, we would expect to see vi estimates near
unity.

A disadvantage of this approach is that we ignore the implied theoretical
structure of the disturbances that includes the matrix X. This type of model

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 232

could also be implemented in our Bayesian setting, as illustrated by Cooper
(1972).

Because the spatial expansion model relies on least-squares estimates, our
Bayesian variant of this model is simple to implement and executes quickly. The
Gibbs sampler for this model relies on the conditional distributions for β0, σ and
V shown below.

p(β0|σ, V) ∼ N [β̂0, σ
2(X̃ ′X̃)−1] (7.7)

β̂0 = (X̃ ′X̃)−1X̃ ′ỹ

X̃ = V 1/2X, ỹ = V 1/2y

(7.8)

p(σ|β0, V) = [

n
∑

i=1

(e2i /vi)/σ
2]|(β0, V) ∼ χ2(n) (7.9)

p(V |β0, σ) = [(σ−2e2i + r)/vi]|(β0, σ) ∼ χ2(r + 1) (7.10)

After cycling through the conditional distributions to obtain an updated
draw for β0, σ and V , we update the spatial expansion estimates using expression
(7.11) for x-y expansion or (7.12) for distance expansion.

β = ZJβ0 (7.11)

β = DJβ0 (7.12)

The expansion estimates for β are calculated using each draw of the base
estimates β0 with the means serving as posterior estimates. Valid measures of
dispersion for both β0 and β can be computed using draws from the sampler.

7.1.1 Implementing Bayesian spatial expansion

We devised a function bcasetti shown below to implement this variant of the
spatial expansion model. Only the code that implements Gibbs sampling for the
case of a distance expansion model is shown below, as the case of x-y expansion
is quite similar.

function results=bcasetti(y,x,xc,yc,ndraw,nomit,option)

% PURPOSE: computes a heteroscedastic Bayesian variant of

% Casetti’s spatial expansion regression

% y = X*g + e, e = N(0,sige*V)

% g = Zx*b0x + Zy*b0y, for x-y expansion

% g = D b0, for distance expansion

% V = diag(v1,v2,...vn), r/vi = ID chi(r)/r,

%---

% USAGE: results = bcasetti(y,x,xc,yc,ndraw,nomit,option)

% where: y = dependent variable vector

% x = independent variables matrix

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 233

% xc = latittude (or longitude) coordinate

% yc = longitude (or latittude) coordinate

% ndraw = # of draws

% nomit = # of draws to omit for burn-in

% option = a structure variable containing options

% option.exp = 0 for x-y expansion (default)

% = 1 for distance from ctr expansion

% option.ctr = central point observation # for distance expansion

% option.norm = 1 for isotropic x-y normalization (default=0)

% option.rval = rval for prior (r above, default = 4)

%---

% RETURNS:

% results.meth = ’bcasetti’

% results.b0draw = (underlying b0x, b0y draws) ndraw-nomit x nvar

% results.beta = mean of spatially expanded estimates (nobs x nvar)

% results.vmean = mean of vi draws (nobs x 1)

% results.yhat = mean of posterior predicted values

% results.resid = mean of residuals based on predicted values

% results.sdraw = sige draws (ndraw-nomit x 1)

% results.rsqr = rsquared

% results.rbar = rbar-squared

% results.rval = rval (from input)

% results.nobs = nobs

% results.nvar = # of variables in x

% results.y = y data vector

% results.xc = xc

% results.yc = yc

% results.ctr = ctr (if input)

% results.dist = distance vector (if ctr used)

% results.exp = exp input option

% results.norm = norm input option

% results.time = time taken for sampling

% --

% NOTE: assumes x(:,1) contains a constant term

% --

nflag = 0;

if nargin == 7, fields = fieldnames(option); nf = length(fields);

exp = 0; ctr = 0; nflag = 0; rval = 4;

for i=1:nf

if strcmp(fields{i},’exp’), exp = option.exp;

elseif strcmp(fields{i},’ctr’), ctr = option.ctr;

elseif strcmp(fields{i},’norm’), nflag = option.norm;

elseif strcmp(fields{i},’rval’), rval = option.rval;

end;

end; % end of for i

elseif nargin == 6, exp = 0; rval = 4; option.exp = 0;

else, error(’Wrong # of arguments to bcasetti’);

end;

[nobs nvar] = size(x); if nflag == 1, [xc yc] = normxy(xc,yc); end;

results.meth = ’bcasetti’; results.y = y; results.nobs = nobs;

results.nvar = nvar; results.xc = xc; results.yc = yc; results.rval = rval;

results.option = option; results.exp = exp; results.norm = nflag;

switch exp

case{1} % distance expansion

xi = xc(ctr); yi = yc(ctr);

d = sqrt((xc-xi).*(xc-xi) + (yc-yi).*(yc-yi));

dvec = d; results.dist= dvec;

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 234

% transform x-variables using distance vector

xt = x(:,2:nvar); xx = matmul(xt,dvec); xmat = [x xx];

[junk tvar] = size(xmat); V = ones(nobs,1); in = ones(nobs,1);

sige = 1; yhmean = zeros(nobs,1); vmean = zeros(nobs,1);

bhmean = zeros(nobs,nvar-1); t0 = clock;

for iter=1:ndraw; % begin sampling

xmatv = matmul(xmat,sqrt(V)); yv = y.*sqrt(V);

% update b0

xpxi = inv(xmatv’*xmatv); xpy = xmatv’*yv;

b0 = xpxi*xpy; a = chol(xpxi);

b0 = sqrt(sige)*a’*randn(length(b0),1) + b0;

% update sige

e = yv - xmatv*b0; chi = chis_rnd(1,nobs);

sige = (e’*e)/chi;

% update vi

e = y - xmat*b0; chiv = chis_rnd(nobs,rval+1);

vi = ((e.*e./sige) + rval)./chiv; V = in./vi;

beta = zeros(nobs,(nvar-1)); yhat = zeros(nobs,1);

xx = matmul(ones(nobs,nvar-1),dvec);

xxxy = [x xx]; tvar = length(b0);

yhat(:,1) = xmat(:,1:nvar)*b0(1:nvar,1);

for j=nvar+1:tvar

beta(:,j-nvar) = xxxy(:,j)*b0(j,1);

yhat(:,1) = yhat(:,1) + xmat(:,j)*b0(j,1);

end;

if iter > nomit, % save draws

vmean = vmean + vi; bsave(iter-nomit,:) = b0’;

ssave(iter-nomit,1) = sige; yhmean = yhmean + yhat;

bhmean = bhmean + beta;

end;

end; gtime = etime(t0,clock); % end of sampling loop

vmean = vmean/(ndraw-nomit); yhat = yhmean/(ndraw-nomit);

beta = bhmean/(ndraw-nomit); results.vmean = vmean

results.beta = beta; results.yhat = yhat;

results.b0draw = bsave; results.nvar = nvar;

results.ctr = ctr; results.sdraw = ssave;

results.yhat = yhat; results.rval = rval;

results.time = gtime;

otherwise, error(’casetti: check option input argument’);

end;

This function is relatively similar to the casetti function, with two differ-
ences. One is the addition of the vector V to produce robust estimates. The
second is that a multivariate normal draw is carried out to obtain β0. This draw
of the base estimates is used to compute expansion estimates for every draw.
Residuals deflated by V based on these expansion estimates are used to update
the estimate of σ and undeflated residuals are used to update V . To conserve
on storage, we save only the mean of the draws for the expansion estimates, as
inferences usually center on the base estimates.

7.1.2 Applied examples

Example 7.1 illustrates using the function with Anselin’s Columbus neighbor-
hood crime data set where estimates from the homoscedastic casetti function

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 235

are plotted against those from bcasetti. We demonstrate that using a large
value of 40 for the hyperparameter r produces estimates similar to ordinary spa-
tial expansion, and compare these estimates to the heteroscedastic case based
on a hyperparameter value of r = 4.

% ----- Example 7.1 Using the bcasetti() function

load anselin.dat; % load Anselin (1988) Columbus neighborhood crime data

y = anselin(:,1); n = length(y);

x = [ones(n,1) anselin(:,2:3)];

% Anselin (1988) x-y coordinates

xc = anselin(:,4); yc = anselin(:,5);

vnames = strvcat(’crime’,’const’,’income’,’hse value’);

% do Casetti regression using x-y expansion (the default)

res1 = casetti(y,x,xc,yc);

ndraw = 1250; nomit = 250;

option.rval = 40; % homoscedastic estimates

res2 = bcasetti(y,x,xc,yc,ndraw,nomit,option);

option.rval = 4; % heteroscedastic estimates

res3 = bcasetti(y,x,xc,yc,ndraw,nomit,option);

tt=1:n;

subplot(2,2,1),,

plot(tt,res1.beta(:,1),tt,res2.beta(:,1),’ok’,tt,res3.beta(:,1),’--k’);

xlabel(’x-income’);

subplot(2,2,2),,

plot(tt,res1.beta(:,2),tt,res2.beta(:,2),’ok’,tt,res3.beta(:,2),’--k’);

xlabel(’y-income’); legend(’casetti’,’Bayes r=40’,’Bayes r=4’);

subplot(2,2,3),

plot(tt,res1.beta(:,3),tt,res2.beta(:,3),’ok’,tt,res3.beta(:,3),’--k’);

xlabel(’x-house’);

subplot(2,2,4),

plot(tt,res1.beta(:,4),tt,res2.beta(:,4),’ok’,tt,res3.beta(:,4),’--k’);

xlabel(’y-house’);

The graphical comparison of the estimates is shown in Figure 7.1, where we
see that a homoscedastic prior based on r = 40, reproduced the estimates from
casetti. In contrast, we see a large difference in the estimates based on the
heteroscedastic prior with r = 4.

An insight as to why these large differences arise is provided by the vi esti-
mates returned by the bcasetti function. These are shown in Figure 7.2, where
we see evidence of outliers at observations 2, 4 and 34.

The impact of these outliers is twofold. First, the robust base estimates
will be different, since they take the outliers into account. This is consistent
with our knowledge of the impact outliers have on least-squares estimates. Any
differences in the base estimates will be propagated when we implement the ex-
pansion relationship using different base estimates. This can produce situations
where we will see very different expansion estimates. This is the case here, as
can be seen in Table 7.1 where the base estimates along with the first six ex-
pansion estimates are shown for the ordinary spatial expansion model and the
Bayesian model estimated with a heteroscedastic prior based on r = 4.

Another difference between the two sets of estimates is that the homoscedas-
tic model overstates the precision of the estimates producing higher t−statistics
for the base x- and y-estimates. Anselin (1988) comes to a similar conclusion

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 236

0 10 20 30 40 50
-2.5

-2

-1.5

-1

-0.5

x-income
0 10 20 30 40 50

0.4

0.6

0.8

1

1.2

1.4

y-income

0 10 20 30 40 50
2.5

3

3.5

4

4.5

5

5.5

x-house
0 10 20 30 40 50

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

y-house

casetti
Bayes r=40
Bayes r=4

Figure 7.1: Spatial expansion versus robust estimates

using maximum likelihood methods to correct for heteroscedasticity — the sig-
nificance of the base estimates decreases when corrected for heteroscedasticity
inherent in the spatial expansion estimates.

The printed output also showed a slightly lower R2 = 0.6179 for the Bayesian
model versus R2 = 0.6330 for the Casetti model, consistent with robust esti-
mates. Finally, the time required by the bcasetti to produce 1,250 draws was
only 19 seconds which compares favorably to 1 second to produce estimates
using the casetti function.

As another illustration, we implement these two models on the Boston data
set involving 506 observations. This was done in example 7.2, where we imple-
ment a distance expansion model based on census tract 411 at the center of the
central business district.

% ----- Example 7.2 Boston data spatial expansion

load boston.raw; % Harrison-Rubinfeld data

load latittude.data; load longitude.data;

[n k] = size(boston);y = boston(:,k); % median house values

x = boston(:,1:k-1); % other variables

vnames = strvcat(’hprice’,’const’,’crime’,’zoning’,’industry’, ...

’charlesr’,’noxsq’,’rooms2’,’houseage’,’distance’,’access’, ...

’taxrate’,’pupil/teacher’,’blackpop’,’lowclass’);

ys = studentize(y); xs = [ones(n,1) studentize(x)];

clear x; clear y; clear boston;

info.exp = 1; % distance expansion

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 237

0 5 10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

V
i e

s
ti
m

a
te

s

Observations

Figure 7.2: Mean of the vi draws for r = 4

info.ctr = 411; % Boston CBD

res1 = casetti(ys,xs,latittude,longitude,info);

info.rval = 4; % heteroscedastic prior

ndraw = 1250; nomit=250;

res2 = bcasetti(ys,xs,latittude,longitude,ndraw,nomit,info);

tt=1:n;

subplot(2,2,1), plot(tt,res1.beta(:,1),tt,res2.beta(:,1),’--k’);

xlabel(’x-crime’); legend(’casetti’,’Bayesian’);

subplot(2,2,2), plot(tt,res1.beta(:,2),tt,res2.beta(:,2),’--k’);

xlabel(’y-crime’);

subplot(2,2,3), plot(tt,res1.beta(:,10),tt,res2.beta(:,10),’--k’);

xlabel(’x-noxsq’);

subplot(2,2,4), plot(tt,res1.beta(:,11),tt,res2.beta(:,11),’--k’);

xlabel(’y-noxsq’);

pause;

plot(tt,res2.vmean);

ylabel(’mean of v_i draws’);

Recall, this data set exhibits a large number of outliers as well as sample
truncation for 16 observations. We would expect to see dramatic differences
between robust Bayesian estimates and those from ordinary spatial expansion.

An experiment using x-y expansion in place of distance expansion took 230
seconds to produce 1,250 draws, which scales up nicely from the 49 observation
neighborhood crime data set, which took 20.55 seconds. This data sample con-
tains 10 times the observations and took slightly more than 10 times as long to

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 238

Table 7.1: Bayesian and ordinary spatial expansion estimates
Base estimates

Variable Casetti t−stat Bayesian t−stat

const 69.4961 15.1051 70.7090 15.3599
income -4.0859 -1.9519 -4.9189 -2.0902
hse value 0.4039 0.5179 0.7339 0.7972
x-income -0.0460 -1.3496 -0.0249 -0.5763
x-hse value 0.0267 2.0275 0.0181 1.0151
y-income 0.1214 2.2131 0.1108 1.6134
y-hse value -0.0486 -2.3418 -0.0455 -1.6419

R2 0.6330 0.6179

Casetti expansion estimates
Obs# x-income x-hse value y-income y-hse value

1 -1.6407 0.9522 5.1466 -2.0599
2 -1.6813 0.9757 4.9208 -1.9695
3 -1.6909 0.9813 4.7009 -1.8815
4 -1.5366 0.8918 4.6645 -1.8670
5 -1.7872 1.0372 5.3519 -2.1421
6 -1.8342 1.0645 5.0009 -2.0016

Bayesian expansion estimates
Obs# x-income x-hse value y-income y-hse value

1 -1.0208 0.6992 4.7341 -1.9231
2 -1.0460 0.7164 4.5264 -1.8387
3 -1.0521 0.7206 4.3242 -1.7566
4 -0.9561 0.6548 4.2907 -1.7430
5 -1.1120 0.7616 4.9229 -1.9998
6 -1.1412 0.7816 4.6001 -1.8687

produce the same 1,250 draws for the case of x-y expansion. For the distance
expansion in example 7.2, it took 134 seconds to generate 1,250 draws.

Four of the 13 expansion coefficients are shown in Figure 7.3. These are
fairly representative of the differences in other coefficients that appeared in the
comparison. Two patterns emerge, one where the robust nature of the Bayesian
estimates is clear. This is illustrated by the expansion estimates for ‘crime’,
‘zoning’ and the ‘Charles river’ variables. Note that in the case of the Charles
river dummy variable the estimates are similar, but we still see evidence that
the Bayesian estimates are more robust.

The other pattern that emerged in comparing estimates was a sign reversal
between the Bayesian and non-Bayesian estimates. This is illustrated in the plot
for the ‘industry’ variable in Figure 7.3 as well as the ‘rooms2’ and ‘distance’
variables in Figure 7.4.

Figure 7.4 provides a plot of the estimates for the ‘noxsq’ and ‘houseage’
variables, where we see almost identical estimates from ordinary and Bayesian
expansion. Consider that these two variables are most likely to be consistent
with a distance from the central city expansion. Our Bayesian model in the case

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 239

of these two variables produced estimates similar to ordinary expansion because
the heteroscedasticity is not present when the expansion relationship provides
a good fit to the sample data.

0 200 400 600
-0.15

-0.1

-0.05

0

0.05

d-crime

casetti
Bayesian

0 200 400 600
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

d-zoning

0 200 400 600
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

d-industry

casetti
Bayesian

0 200 400 600
0

0.2

0.4

0.6

0.8

1

d-charles

Figure 7.3: Expansion vs. Bayesian expansion for Boston

The introduction of the variance scaling parameters vi are the source of the
observed differences in estimates from casetti and bcasetti. As noted earlier,
these terms affect both the base estimates β0 as well as the expansion process.
Figure 7.5 shows the mean of the vi estimates produced by the Gibbs sampler,
where we see ample evidence of non-constant variance. Observations 357 to 488
represent census tracts in the city of Boston, which appear to exhibit a larger
variance that census tracts not in the city. The same is true of other census
tracts from observations 170 to 270.

Table 7.2 shows the base estimates along with t−statistics from the two
models. An asterisk ‘*’ symbol was appended to variable names for cases where
the two sets of estimates were significantly different at the 0.90 level based on a
t−test. These results indicate that 8 of 27 estimates were significantly different.

A difference also exists between the estimate for σ2 from spatial expansion
which was 0.2014 and the Bayesian model where this parameter was 0.0824.
We would expect the robust Bayesian estimate to be smaller than that from the
ordinary spatial expansion model. This partially accounts for upward bias in

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 240

0 200 400 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

d-noxsq
0 200 400 600

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

d-rooms2

0 200 400 600
0

0.2

0.4

0.6

0.8

1

d-houseage
0 200 400 600

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

d-distance

casetti
Bayesian

Figure 7.4: Expansion vs. Bayesian expansion for Boston (continued)

the t−statistics that are based on σ2(X ′X)−1.

7.2 Producing robust GWR estimates

GWR estimates can be produced using the Bayesian heteroscedastic linear
model that we applied to spatial expansion in the previous section. This model,
which we label BGWRV is shown in (7.13).

W
1/2
i y = W

1/2
i Xβi + εi (7.13)

εi = N(0, σ2
i Vi), Vi = diag(v1i . . . , vni)

Estimates are based on the Gibbs sampler, where we simply call on a function
to carry out draws for each distance weighted sub-sample of observations. These
robust estimates replace the least-squares estimates from the GWR. This is
similar to the method we used to implement the logit and probit variants of the
GWR model in Section 6.5.

The role of the vi terms in the BGWRV model is to downweight aberrant
observations by adjusting the distance-based weight matrix Wi. This will be

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 241

Table 7.2: Casetti versus Bayesian expansion estimates
Variable Casetti t−stat Bayesian t−stat

constant -0.2074 -3.34 -0.1101 -2.27
crime* -0.0649 -1.18 -0.0643 -1.45
zoning* 0.1211 1.18 0.0596 0.74
industry 0.1524 1.74 0.0254 0.37
charlesr 0.0998 2.30 -0.0790 -1.98
noxsq -0.4777 -6.72 -0.2705 -4.78
rooms2* 0.0659 1.67 0.0853 1.69
houseage -0.1326 -1.52 -0.2235 -3.06
distance -0.8867 -8.17 -0.5032 -5.68
access 0.3961 4.08 0.2083 2.85
taxrate* -0.1381 -1.22 -0.1941 -2.47
pupil/teacher -0.4195 -7.69 -0.3232 -7.48
blackpop* 0.1115 2.59 0.0661 1.76
lowclass -0.5804 -11.46 -0.3847 -6.73
d-crime -0.3170 -1.63 -0.1963 -1.27
d-zoning* -0.0301 -0.62 0.0079 0.21
d-industry -0.1487 -1.71 -0.0376 -0.55
d-charlesr -0.0434 -1.02 0.1031 2.77
d-noxsq 0.2228 2.63 0.1353 2.09
d-rooms2* 0.3432 9.57 0.3152 8.11
d-houseage -0.0388 -0.70 0.0271 0.59
d-distance 0.2108 4.04 0.1412 3.42
d-access -0.1019 -1.11 0.0348 0.50
d-taxrate -0.0842 -1.09 0.0031 0.05
d-pupil/teacher* 0.1630 4.57 0.1230 4.74
d-blackpop 0.0038 0.04 0.0846 1.22
d-lowclass 0.3421 6.49 0.2208 4.65

R2 0.8090 0.7625

made clear when we examine the conditional distributions for the parameters
βi, σi and Vi in this model.

The conditional posterior distribution of βi given σi, Vi is a multivariate
normal shown in (7.14).

p(βi| . . .) ∝ N(β̂i, σ
2R) (7.14)

β̂i = R(X̃ ′
iV

−1
i ỹi)

R = (X̃ ′
iV

−1
i X̃i)

−1

X̃i = V
1/2
i WiX

To see the role of the variance scalars in the diagonal matrix Vi, we apply
the definition of X̃i and expand R from (7.14) to produce:

R = (X ′W
1/2
i V −1

i W
1/2
i X)−1 (7.15)

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 242

The distance-based weights in the diagonal matrix Wi will be divided by the
variance scalars in the diagonal matrix Vi. Large values in Vi associated with
outliers will produce smaller distance weights for these observations, effectively
downweighting their influence in determining the estimate βi. We will elaborate
further on this point when we examine the conditional posterior distribution for
the Vi terms below.

The conditional distribution for σi assuming βi and Vi are known takes the
form of a χ2(n⋆) distribution, where n⋆ denotes observations associated with
non-zero weights in Wi.

P{[

n⋆

∑

j=1

(u2
j/vij)/σ2

i] | βi, Vi} ∼ χ2(n⋆)

uj = W
1/2
i yj −W

1/2
i Xjβi (7.16)

This result follows that for the homoscedastic GWR model, with two dif-
ferences. First, the errors uj are adjusted for non-constant variance using the
known vij . Second, the degrees of freedom in the posterior conditional distribu-
tion is n⋆ since some of the weights in Wi may be zero, effectively eliminating
these observations.

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

m
e

a
n

 o
f

v
i d

ra
w

s

Figure 7.5: vi estimates for Boston

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 243

Finally, the conditional posterior distribution for Vi is shown in (7.17), where
uj is defined as in (7.16).

P{[(u2
j/σ

2
i) + r]/vij | βi, σi} ∼ χ2(r + 1) (7.17)

To see the role of the parameter vij , consider two cases. First, suppose
(u2

j/σ
2
i) is small (say zero), because the GWR distance-based weights work well

to relate y and X for observation j. In this case, observation j is not an outlier.
Assume that we use a small value of the hyperparameter r, say r = 5, which
means our prior belief is that heterogeneity exits. The conditional posterior will
have a mean and mode of:

mean(vij) = (σ−2
i u2

j + r)/(r + 1) = r/(r + 1) = (5/6)

mode(vij) = (σ−2
i u2

j + r)/(r − 1) = r/(r − 1) = (5/4) (7.18)

Where the results in (7.18) follow from the fact that the mean of the prior
distribution for Vij is r/(r − 2) and the mode of the prior equals r/(r + 2).

In the case shown in (7.18), the impact of vij ≈ 1 in the model is neglible,
and the typical distance-based weighting scheme would dominate. For the case
of exponential weights, a weight, wij = exp(−di/θ)/vij would be accorded to
observation j. Note that a prior belief in homogeneity that assigns a large
value of r = 20, would produce a similar weighting outcome. The conditional
posterior mean of r/(r + 1) = 20/21, is approximately unity, as is the mode of
(r + 1)/r = 20/19.

Second, consider the case where (u2
j/σ

2
i) is large (say 20), because the GWR

distance-based weights do not work well to relate y and X for observation j.
Here, we have the case of an outlier for observation j. Using the same small
value of the hyperparameter r = 5, the conditional posterior will have a mean
and mode of:

mean(vij) = (20 + r)/(r + 1) = (25/6)

mode(vij) = (20 + r)/(r − 1) = (25/4) (7.19)

For this aberrant observation case, the role of vij ≈ 5 will be to downweight
the distance associated with this observation. The distance-based weight, wij =
exp(−di)/θvij would be deflated by a factor of approximately 5 for this abber-
ant observation. It is important to note that, a prior belief of homogeneity
(expressed by a large value of r = 20) in this case would produce a conditional
posterior mean of (20 + r)/(r + 1) = (40/21). Downweighting of the distance-
based weights would be only by a factor of 2, rather than 5 found for the smaller
value of r.

It should be clear that as r becomes very large, say 50 or 100, the posterior
mean and mode will be close to unity irrespective of the fit measured by u2

j/σ
2
i

This replicates the distance-based weighting scheme used in the non-Bayesian
GWR model.

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 244

A graphical illustration of how this works in practice can be seen in Fig-
ure 7.6. The figure depicts the adjusted distance-based weights, WiV

−1
i along-

side the GWR weightsWi for observations 31 to 36 in the Anselin (1988) Colum-
bus neighborhood crime data set. We saw in section 7.1 that the vi estimate for
observation #34 produced by the Bayesian spatial expansion model was large,
indicating an outlier (see Figure 7.2).

Beginning with observation #31, the aberrant observation #34 is down-
weighted when estimates are produced for observations 31 to 36 (excluding
observation #34 itself). A symbol ‘o’ has been placed on the BGWR weight
in the figure to help distinguish observation 34. This downweighting of the
distance-based weight for observation #34 occurs during estimation of βi for
observations 31 to 36, all of which are near #34 in terms of the GWR distance
measure. It will be seen that this alternative weighting produces a divergence
in the BGWR and GWR estimates for observations neighboring on #34.

0 10 20 30 40 50
0

0.5

1

Solid = BGWRV, dashed = GWR

O
b
s
 3

1

0 10 20 30 40 50
0

0.5

1

Solid = BGWRV, dashed = GWR

O
b
s
 3

2

0 10 20 30 40 50
0

0.5

1

Solid = BGWRV, dashed = GWR

O
b
s
 3

3

0 10 20 30 40 50
0

0.5

1

Solid = BGWRV, dashed = GWR

O
b
s
 3

4

0 10 20 30 40 50
0

0.5

1

Solid = BGWRV, dashed = GWR

O
b
s
 3

5

0 10 20 30 40 50
0

0.5

1

Solid = BGWRV, dashed = GWR

O
b
s
 3

6

o

o

o

o

o

Figure 7.6: Distance-based weights adjusted by Vi

7.2.1 Gibbs sampling BGWRV estimates

A function bgwrv was designed to implement the Gibbs sampling estimation
of the BGWRV model. The documentation is shown below along with the code

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 245

that implements the Gibbs sampler.

% PURPOSE: compute Bayesian robust geographically weighted regression

% Wi*y = Wi*X*bi + ei, ei is N(0,sige*Vi)

% Vi = diag(v1i,v2i,...vni),

% r/vi = ID chi(r)/r, r = Gamma(m,k)

%--

% USAGE: results = bgwrv(y,x,east,north,ndraw,nomit,info)

% where: y = dependent variable vector

% x = explanatory variable matrix

% east = x-coordinates in space

% north = y-coordinates in space

% ndraw = # of draws

% nomit = # of initial draws omitted for burn-in

% info = a structure variable with fields:

% info.rval, r prior hyperparameter, default=4

% info.bwidth = scalar bandwidth to use or zero

% for cross-validation estimation (default)

% info.dtype = ’gaussian’ for Gaussian weighting (default)

% = ’exponential’ for exponential weighting

% = ’tricube’ for tri-cube weighting

% info.q = q-nearest neighbors to use for tri-cube weights

% (default: CV estimated)

% info.qmin = minimum # of neighbors to use in CV search

% info.qmax = maximum # of neighbors to use in CV search

% defaults: qmin = nvar+2, qmax = 4*nvar

% ---

% NOTE: res = bgwrv(y,x,east,north) does CV estimation of bandwidth

% ---

% RETURNS: a results structure

% results.meth = ’bgwrv’

% results.bdraw = beta draws (ndraw-nomit x nobs x nvar)

% results.smean = mean of sige draws (nobs x 1)

% results.vmean = mean of vi draws (nobs x 1)

% results.nobs = nobs

% results.nvar = nvars

% results.ndraw = ndraw

% results.nomit = nomit

% results.rval = rval (from input)

% results.bwidth= bandwidth if gaussian or exponential

% results.q = q nearest neighbors if tri-cube

% results.dtype = input string for Gaussian, exponential weights

% results.iter = # of simplex iterations for cv

% results.ycoord = north (y-coordinates)

% results.xcoord = east (x-coordinates)

% results.y = y data vector

% results.x = x data matrix

%---

dmat = zeros(nobs,nobs); % generate big distance matrix

for j=1:nobs;

easti = east(j,1); northi = north(j,1);

dx = east - easti; dy = north - northi;

d = dx.*dx + dy.*dy;

dmat(:,j) = d;

end;

wt = zeros(nobs,nobs); % generate distance decay matrix

if dtype == 1, % exponential weights

wt = exp(-dmat/bdwt);

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 246

elseif dtype == 0, % gaussian weights

sd = std(sqrt(dmat)); tmp = matdiv(sqrt(dmat),sd*bdwt);

wt = stdn_pdf(tmp);

elseif dtype == 2

% case of tricube weights handled a bit differently

% sort distance to find q nearest neighbors

ds = sort(dmat); dmax = ds(q+1,:);

for j=1:nobs;

nzip = find(dmat(:,j) <= dmax(1,j));

wt(nzip,j) = (1-(dmat(nzip,j)/dmax(1,j)).^3).^3;

end; % end of j-loop

end; % end of if-else

wt = sqrt(wt);

% storage for estimates

bsave = zeros(ndraw-nomit,nobs,nvar); smean = zeros(nobs,1);

vmean = ones(nobs,nobs); prior.rval = rval;

t0 = clock;

for i=1:nobs

nzip = find(wt(:,i) > 0.01);

ys = y(nzip,1).*wt(nzip,i); xs = matmul(x(nzip,:),wt(nzip,i));

res = gwr_g(ys,xs,ndraw,nomit,prior);

bsave(:,i,:) = res.bdraw;

vmean(i,nzip) = vmean(i,nzip) + res.vmean’;

smean(i,1) = mean(res.sdraw);

end; % end loop over nobs

gtime = etime(clock,t0);

vout = mean(vmean);

We rely on a bandwidth or distance decay parameter determined by op-
timizing the cross-validation score as in the case of the GWR model, so this
code is not shown. This may not be a good strategy since the existence of
outliers will impact the bandwidth estimate for the parameter θ. An area for
future research would be devising a way to use Metroplis sampling to estimate
a bandwidth parameter.

The sampling work is done by a function gwr g, which implements a sampler
for the heteroscedastic linear regression model that we introduced in example
4.1 of Chapter 4.

The code relies on the computational trick introduced in Chapter 6 where
we employ only observations with non-negligible weights to scale down the size
of the matrices used during sampling. This works very well for the case of
tri-cube and exponential weighting to reduce the size of the problem we need
to sample. Consider that even in a sample of thousands of observations, the
sampling problem would involve a reasonably small number of observations,
probably less than 30 for the case of tri-cube weights.

A three-dimensional MATLAB matrix structure is used to return the draws
for the parameters that form an n by k matrix for each draw. We will show how
to compute posterior means using this three-dimensional matrix in example 7.3.

In Chapter 6 we saw that for models involving a large number of observations
such as the Pace and Barry data set, it took around 200 seconds for the gwr
function to cycle through the observations with a given bandwidth and compute
GWR estimates. (Recall that it took an hour to find the optimal cross-validation

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 247

bandwidth for that model.) The prospects for Gibbs sampling estimation may
seem bleak, but a few experiments indicate otherwise.

Experiments indicated that only 550 observations are needed to achieve con-
vergence with the first 50 omitted for burn-in. The time needed to produce 550
draws is a function of the number of observations containing non-negligible
weights and the variables in the model. Figure 7.7 shows a plot of the time
needed to produce 550 draws against the number of effective observations from
the Boston data set that contains 506 observations and six variables. An expo-
nential weighting method was used so the number of non-negligible observations
varies over the sample. The times ranged from 3.2 seconds for a 40 observation
sample to 18.4 seconds for a sample of 389 observations. The graph makes it
quite clear that execution times are a linear function of the number of obser-
vations. Another experiment with the 49 observations and three variables in
the Columbus neighborhood crime data set produced with exponential weights
resulted in samples ranging from 6 observations that took 1.5 seconds for 550
draws up to a sample with 39 observations that required 3.2 seconds.

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

ti
m

e
 f

o
r

5
5

0
 G

ib
b

s
 d

ra
w

s

Number of observations

Figure 7.7: Observations versus time for 550 Gibbs draws

One way to increase the speed of the sampling process is to rely on the tri-
cube weighting method. For the 506 observation Boston data set, the optimal
number of nearest neighbors was 24, so we need only work with a sample size

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 248

of 24 when carrying out the Gibbs draws. With this size sample, it took 2.5
seconds to generate 550 draws. A desirable aspect of the tri-cube in this setting
is that the sample size is fixed by the optimal number of nearest neighbors
throughout the Gibbs sampling process. Of course with 3,000 observations this
is still 7,500 seconds or a 125 minutes. Another caveat is that tri-cube weighting
tends to reduce the sample size which makes it difficult to identify outliers. Some
experience with the Boston sample indicates that either this weighting method
adjusts very rapidly or the sample size is too small, because all vi estimates are
near unity. Further, we know that vi estimates near unity are unreasonable for
the Boston data set. Given vi estimates equal to unity, the BGWRV estimates
collapse to GWR estimates.

The worst weighting method in terms of execution time is the Gaussian,
where more observations receive non-negligible weight, so the time required for
550 draws per observation can be prohibitive in large samples.

7.2.2 Applied examples

We apply the function bgwrv to the Anselin (1988) neighborhood crime data
set in example 7.3, where estimates from a GWR model are compared to those
from two BGWRV models, one with a homoscedastic prior based on r = 40 and
another based on the heteroscedastic prior with r = 4.

We would expect the estimates from GWR and BGWRV to be almost identi-
cal for the homoscedastic prior based on r = 40, whereas outliers or non-constant
variance might lead to differences for the heteroscedastic prior based on r = 4.

% ----- Example 7.3 Using the bgwrv() function

load anselin.dat; % load Anselin (1988) Columbus neighborhood crime data

y = anselin(:,1); n = length(y);

x = [ones(n,1) anselin(:,2:3)];

% Anselin (1988) x-y coordinates

xc = anselin(:,4); yc = anselin(:,5);

vnames = strvcat(’crime’,’const’,’income’,’hse value’);

% do GWR regression using exponential weights

info.dtype = ’exponential’;

res1 = gwr(y,x,xc,yc,info);

ndraw = 1250; nomit = 250;

option.dtype = ’exponential’;

option.bwidth = res1.bwidth;

option.rval = 40; % homoscedastic estimates

res2 = bgwrv(y,x,xc,yc,ndraw,nomit,option);

option.rval = 4; % heteroscedastic estimates

res3 = bgwrv(y,x,xc,yc,ndraw,nomit,option);

% compare gwr estimates with posterior means

b1 = res2.bdraw(:,:,1); c1 = res3.bdraw(:,:,1);

b2 = res2.bdraw(:,:,2); c2 = res3.bdraw(:,:,2);

b3 = res2.bdraw(:,:,3); c3 = res3.bdraw(:,:,3);

b1mean = squeeze(mean(b1)); c1mean = squeeze(mean(c1));

b2mean = squeeze(mean(b2)); c2mean = squeeze(mean(c2));

b3mean = squeeze(mean(b3)); c3mean = squeeze(mean(c3));

tt=1:n;

subplot(2,2,1),

plot(tt,res1.beta(:,1),tt,b1mean,’ok’,tt,c1mean,’--k’);

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 249

xlabel(’constant’); title(’exponential weights’);

subplot(2,2,2),,

plot(tt,res1.beta(:,2),tt,b2mean,’ok’,tt,c2mean,’--k’);

xlabel(’income’); legend(’GWR’,’Bayes r=40’,’Bayes r=4’);

subplot(2,2,3),

plot(tt,res1.beta(:,3),tt,b3mean,’ok’,tt,c3mean,’--k’);

xlabel(’house’);

subplot(2,2,4),

plot(tt,res3.vmean);

ylabel(’mean of the v_i draws’);

xlabel(‘observations’);

In example 7.3, we compute the means of the draws for the parameter esti-
mates returned by the bgwrv function for comparison with the GWR estimates.
These are returned in a structure field that represents a three-dimensional ma-
trix, which requires some special handling. Notice how each vector of n pa-
rameter estimates is extracted from the 3-dimensional results structure field
‘.bdraw’. The first dimension contains draws, the second observations and the
third parameters. We reference all elements in the first two dimensions and a
single element in the third dimension, which yields all draws for all observations
of a single parameter.

If we wished to obtain a matrix containing all draws for observation 1, for all
parameters we would use the code shown below to reference all elements in the
first and third dimensions, but only the initial element in the second dimension,
which contains observations.

bmat = res2.bdraw(:,1,:);

Similarly, we could obtain the first draw in the results structure for all n
observations of the first parameter by extracting elements from the first element
of the first and third dimensions as shown below.

bmat = res2.bdraw(1,:,1);

In the example we use the MATLAB squeeze function to eliminate a ‘sin-
gleton’ dimension in the variables ‘b1,b2,b3’ and ‘c1,c2,c3’ that will remain
after executing the MATLAB mean function. The results from applying the
mean function will be a 3-dimensional matrix, but one of the dimensions will
be collapsed to a single element by the averaging operation.

Figure 7.8 shows the comparison of GWR and BGWRV estimates from the
heteroscedastic version of the model. First, we note that since the homoscedastic
prior value of r = 40 produced estimates nearly identical to the GWR model,
we eliminated these from the graph. For the heteroscedastic prior based on
r = 4, we see definite evidence of a departure between the BWR and BGWRV
estimates. The vi estimates are also presented in the graph and they point to
observations 2,4, 20 and 34 as outliers.

In the case of all three parameters we see a pattern where the GWR and
BGWRV estimates follow very different trajectories around observation 34. Re-
call this was attributed to the aberrant observation 34, which happens to be a

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 250

central city observation. The large vi estimate for this observation clearly points
to it is as an outlier.

An examination of crime incidents, household income and house values for
observation 34 shows that this neighborhood has the highest crime rate, an
income of 13,906 dollars near the median of 13,380 and a house value of 22,500
dollars below the median of 33,500. Because the dependent variable for this
observation represents the highest value in the sample, while the independent
variables do not take on extreme values, this observation is a good candidate as
an aberrant observation.

Another place where the GWR and BGWRV income coefficient estimates
differ substantially is around observations 2 and 4, where we see small spikes in
the vi estimates. Neighborhood 4 has the lowest crime rate in the sample, the
fifth highest house value but the sixth lowest household income. Again, we have
an extreme value for the dependent variable associated with contrary values for
the independent variables.

In general, a dramatically different trajectory for the the two sets of esti-
mates begins around observation #20 and continues to observation #44. The
vi estimates shown in the fourth panel of Figure 7.8 provide an explanation for

0 10 20 30 40 50
20

30

40

50

60

70

80

90

constant

exponential weights

0 10 20 30 40 50
-5

-4

-3

-2

-1

0

1

2

income

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

house
0 10 20 30 40 50

0

2

4

6

8

10

12

m
e
a
n
 o

f
th

e
 v

i d
ra

w
s

observations

GWR
Bayes r=4

Figure 7.8: GWR versus BGWRV estimates for Columbus data set

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 251

these differences.
An interesting question is — are these differences significant in a statistical

sense? We can answer this question using the 1,000 draws produced by the
program in example 7.3 to compute a two standard deviation band around the
BGWRV estimates. If the GWR estimates fall within this confidence interval,
we would conclude the estimates are not significantly different. Figure 7.9 shows
the GWR estimates and the confidence bands for the BGWRV estimates. The
actual BGWRV estimates were omitted from the graph for clarity. We see that
the GWR estimates are near or outside of the two standard deviation confidence
interval for observations 20 through 44 where the two sets of estimates take
different trajectories. This implies we would draw different inferences from the
GWR and BGWRV estimates for these observations which represent a large
part of the sample.

0 5 10 15 20 25 30 35 40 45 50
-50

0

50

100

150

constant

0 5 10 15 20 25 30 35 40 45 50
-10

-5

0

5

income

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2

hvalue

upper
lower
GWR

Figure 7.9: GWR versus BGWRV confidence intervals

As a test for convergence, we produced another set of estimates based on
only 550 draws with the first 50 omitted for burn-in. It seemed possible that
the BGWRV model might converge quickly since it relies on the cross-validation
estimate for the bandwidth. Since Gibbs sampling these models is computation-
ally intensive, rapid convergence would be a fortunate circumstance. A graph
of the two sets of estimates based on 500 draws and 1000 draws is shown in

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 252

Figure 7.10. We see evidence near the beginning and end of the sample that
convergence was not obtained with the smaller sample of 550 draws.

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

1250 draws
550 draws

0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

2

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2

Figure 7.10: GWR versus BGWRV estimates

A generated data set was used to demonstrate the problems created by
outliers for the GWR model, and to show that Bayesian robust estimates do not
suffer from these problems. The program in example 7.4 generates a variable y
using coefficients that vary over a regular grid according to the quadrant in which
the observation falls. Coefficients of 1 and -1 were used for two explanatory
variables.

After producing GWR estimates based on this data set, we introduce a single
outlier at observation #60 created by multiplying the explanatory variables by
10. Another set of GWR estimates along with BGWRV model estimates are
produced using this outlier contaminated data set. If the BGWRV model is
producing robust estimates, we would expect to see estimates that are similar
to those from the GWR model based on the data set with no outliers.

% ----- Example 7.4 GWR and BGWRV comparison with generated data

randn(’seed’,10); n = 101; k = 2; evec = randn(n,1);

xc = -50:50; xc = xc’; yc = -50:50; yc = yc’;

x = randn(n,2); y = zeros(n,1);

for i=1:n

if (xc(i,1) < 0 & yc(i,1) < 0)

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 253

y(i,1) = x(i,1) + x(i,2) + evec(i,1)*0.2;

elseif (xc(i,1) < 0 & yc(i,1) >= 0)

y(i,1) = x(i,1) -x(i,2) + evec(i,1)*0.2;

elseif (xc(i,1) > 0 & yc(i,1) < 0)

y(i,1) = -x(i,1) + x(i,2) + evec(i,1)*0.2;

elseif (xc(i,1) >= 0 * yc(i,1) >= 0)

y(i,1) = -x(i,1) - x(i,2) + evec(i,1)*0.2;

end;

end;

info.dtype = ’exponential’;

res1 = gwr(y,x,xc,yc); % GWR estimates for clean data

x(60,:) = 10*x(60,:); % introduce an outlier

res2 = gwr(y,x,xc,yc); % GWR estimates for dirty data

ndraw = 1100; nomit = 100;

info.rval = 4; info.bdwidth = res2.bwidth;

res3 = bgwrv(y,x,xc,yc,ndraw,nomit,info); % BGWRV estimates

tmp = mean(res3.bdraw); bout = squeeze(tmp);

[n k] = size(bout); beta1 = zeros(n,k);

for i=1:k; beta1(:,i) = bout(:,i); end;

tt=1:n;

subplot(2,1,1), plot(tt,res1.beta(:,1),’ok’,tt,res2.beta(:,1),’-k’, ...

tt,beta1(:,1),’--k’);

xlabel(’coefficient 1’);

subplot(2,1,2), plot(tt,res1.beta(:,2),’ok’,tt,res2.beta(:,2),’-k’, ...

tt,beta1(:,2),’--k’);

xlabel(’coefficient 2’);

legend(’GWR no outlier’,’GWR outlier’,’BGWRV outlier’);

pause;

subplot(2,1,1),

plot(tt,res3.vmean,’-k’);

ylabel(’vi estimates’);

xlabel(’observations’);

subplot(2,1,2),

plot(tt,res1.sige,’ok’,tt,res2.sige,’-k’,tt,res3.smean,’--k’);

ylabel(’sige estimates’);

xlabel(’observations’);

legend(’GWR no outlier’,’GWR outlier’,’BGWRV outlier’);

% compare t-statistics

tmp = std(res3.bdraw); tout = squeeze(tmp);

[n k] = size(tout); tbeta1 = zeros(n,k);

for i=1:k; tbeta1(:,i) = beta1(:,i)./tout(:,i); end;

subplot(2,1,1), plot(tt,res1.tstat(:,1),’ok’,tt,res2.tstat(:,1),’-k’, ...

tt,tbeta1(:,1),’--k’);

xlabel(’t-statistic coefficient 1’);

subplot(2,1,2), plot(tt,res1.tstat(:,2),’ok’,tt,res2.tstat(:,2),’-k’, ...

tt,tbeta1(:,2),’--k’);

xlabel(’t-statistic coefficient 2’);

legend(’GWR no outlier’,’GWR outlier’,’BGWRV outlier’);

pause;

Another issue we would like to explore with this experiment is the quality
of the inferences from the GWR and BGWRV models when outliers exist. A
graph of the estimates for σ2 from the three models is produced for comparison.
If the BGWRV model is producing robust σ2 estimates, these parameter values
should be similar to those from the GWR based on the non-contaminated data
set. A similar comparison was made of the t−statistics from both GWR models

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 254

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

coefficient 1

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

coefficient 2

GWR no outlier
GWR outlier
BGWRV outlier

Figure 7.11: βi estimates for GWR and BGWRV with an outlier

and the BGWRV model. Of course, BGWRV t−statistics were constructed from
the posterior means and standard deviations of the MCMC draws.

Figure 7.17 shows the three sets of βi estimates produced by the three mod-
els. The impact of the single outlier at observation #60 on the GWR estimates
is quite evident. By comparison, the BGWRV model produced estimates al-
most identical to those from the GWR model based on the data set without the
outlier. Note that the goal of GWR estimation would be to detect changes in
the parameters of the relationship as we move over space. In this example, the
impact of a single outlier virtually destroys our ability to detect the transition
in the parameters from 1 to -1 at observation #50. In the absence of the outlier,
the GWR model does a good job of detecting the parameter transition point,
and the BGWRV model does an equally good job in the presence of the outlier.

In addition to differences in the parameters βi, we are also be interested in
estimates of σi and the t−statistics used to draw inferences about βi. The esti-
mates for σ2

i from all the three models are shown in Figure 7.18 along with the vi
estimates from the BGWRV model. We see that the single outlier contaminates
the variance estimate for the noise in the model dramatically. As in the case of
the estimates for βi, the BGWRV model reproduces the GWR estimates based
on the clean data set. Note that the vi estimates clearly point to observation
#60 as an outlier, confirming the diagnostic value of these parameter estimates.

Finally, a comparison of the t−statistics from the three models is shown in

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 255

0 20 40 60 80 100 120
1

1.5

2

2.5

3

3.5

4

v
i
e
s
ti
m

a
te

s

observations

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

s
ig

e
 e

s
ti
m

a
te

s

observations

GWR no outlier
GWR outlier
BGWRV outlier

Figure 7.12: σi and vi estimates for GWR and BGWRV with an outlier

Figure 7.13. These results indicate that not only are the βi estimates adversely
impacted by the single outlier, but the t−statistics which we would use to draw
inferences about the βi are seriously impacted as well. For coefficients near
the transition point at observation #50, the GWR t−statistics from the con-
taminated data set indicate a slow transition from positive to negative values
resulting in very imprecise estimates during the transition of the coefficients
from 1 to -1. In contrast, the GWR estimates based on the data set with no
outlier and the BGWRV estimates both move rapidly from positive negative,
exhibiting a great deal more precision during the transition period.

If the goal of locally linear estimation is to make inferences regarding spa-
tial variation in the relationship, contamination from outliers will lead to an
erroneous conclusion that the relationship is changing. In fact the relationship
may be stable but subject to the influence of a single outlying observation. In
contrast, the BGWRV estimates indicate changes in the parameters of the rela-
tionship as we move over space that abstract from aberrant observations. From
the standpoint of inference, we can be relatively certain that changing BG-
WRV estimates truly reflect a change in the underlying relationship as we move
through space. In contrast, the GWR estimates are more difficult to interpret,
since changes in the estimates may reflect spatial changes in the relationship,
or the presence of an aberrant observation. Keep in mind that the amount
of robustness achieved with the BGWRV method can be controlled using the
hyperparameter r

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 256

0 20 40 60 80 100 120
-50

0

50

t-statistic coefficient 1

0 20 40 60 80 100 120
-100

-50

0

50

100

t-statistic coefficient 2

GWR no outlier
GWR outlier
BGWRV outlier

Figure 7.13: t−statistics for the GWR and BGWRV with an outlier

One drawback to the BGWRV method is that it may produce estimates that
are too robust and exhibit very little variation over space. The only control
one has over this is use of alternative hyperparameter settings. The rule-of-
thumb value of r = 4 does not have the universal applicability it did in the
case of Bayesian spatial autoregressive models. This may be due to the use
of a bandwidth determined by GWR cross-validation methods. In the face of
outliers, the bandwidth estimate produced by cross-validation may not be very
good. In Section 7.3 we extend the BGWRV model to allow more control over
these aspects of the model.

7.2.3 A Bayesian probit GWR model

As in the case of the GWR model, we can implement robust Bayesian logit/probit
models. A function probit g in the Econometrics Toolbox implements a het-
eroscedastic version of the logit/probit model for standard regression models.
Replacing the function gwr g that carries out Gibbs sampling estimation of the
heteroscedastic linear regression model results in a logit/probit variant of the
BGWRV model.

Because this development parallels the development in Chapter 6, we leave
it to the reader to examine the function bgwrv p that implements this method.
One point is that the Bayesian heteroscedastic probit model subsumes the logit
model as a special case where the prior hyperparameter r is around 7. Larger

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 257

values of r = 30 produce estimates similar to the probit model, and other values
of r generate a family of models that can be interpreted as alternative link func-
tions based on t−distributions with varying degrees of freedom. For this reason,
there is no corresponding logit function. Given the computational intensity of
the GWR logit and probit models, Gibbs sampling is quite competitive in terms
of computational time needed.

Another point is that using the Gibbs sampling function probit g during
cross-validation would require excessive computation, so ordinary logit or probit
regressions are used. Logit regression is used for hyperparameter values of r less
than 20 and probit for values greater than 20.

7.3 Extending the BGWR model

We can extend the BGWRV model from the previous section to include prior in-
formation regarding the parameter smoothing relationship over space. Bayesian
methods are ideally suited to this task because they allow us to introduce a
stochastic parameter smoothing relationship as prior information in the model.
If we have knowledge that the problem we are modeling represents the case of
a “concentric city”, or a problem where contiguity should be dominant, this
approach can be used to augment the sample data information.

The approach which we label BGWR is best described using matrix ex-
presssions shown in (7.20) and (7.21). First, note that (7.20) is the same as
the non-parametric GWR relationship, but the addition of (7.21) provides an
explicit statement of the parameter smoothing that takes place across space.
The parameter smoothing relation shown in (7.21) involves a locally linear com-
bination of neighboring areas, where neighbors are defined in terms of the GWR
distance weighting function that decays over space. We will refer this this as a
distance smoothing relationship to distinguish it from other smoothing relations
we introduce later.

Wiy = WiXβi +Wiεi (7.20)

βi =
(

wi1 ⊗ Ik . . . win ⊗ Ik
)

β1

...
βn

+ ui (7.21)

The terms wij represent a distance-based weight that is normalized so the
row-vector (wi1, . . . , win) sums to unity, and we set wii = 0. Specifically,
wij = exp(−dij/θ)/

∑n
j=1 exp(−dij/θ), for the case of exponential weighting.

Analogous definitions can be derived for Gaussian and tri-cube weighting meth-
ods. By normalizing so the weights sum to unity, the prior indicates that we
believe the parameters for location i should reflect a linear combination of pa-
rameters from nearby observations. We omit observation i from the weights by
setting it to zero, so it is not part of the linear combination.

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 258

A point to note is that the parameter smoothing relationship in (7.21) is
stochastic by virtue of the term ui that represents prior uncertainty about the
smoothing relationship.

To complete our model specification, we add distributions for the terms εi
and ui:

εi ∼ N [0, σ2Vi], Vi = diag(v1, v2, . . . , vn) (7.22)

ui ∼ N [0, σ2δ2(X ′WiX)−1)] (7.23)

The Vi = diag(v1, v2, . . . , vn), represent our variance scaling parameters in-
troduced in Section 7.2. The distribution for the stochastic parameter ui in the
parameter smoothing relationship is normally distributed with mean zero and
a variance based on Zellner’s (1971) g−prior. This prior variance is propor-
tional to the GWR parameter variance-covariance matrix, σ2(X ′WiX)−1) with
δ2 acting as the scale factor. The use of this prior specification allows individual
parameters βi to vary by different amounts depending on their magnitude.

The parameter δ2 acts as a scale factor to impose tight or loose adherence to
the parameter smoothing specification. Consider a case where δ is very small,
then the smoothing restriction would force βi to look like a distance-weighted
linear combination of other βi from neighboring observations. On the other
hand, as δ → ∞ (and Vi = In) we produce the non-parametric GWR estimates.
To see this, we rewrite the BGWR model in a compact matrix form shown in
(7.24).

ỹi = X̃iβi + εi (7.24)

βi = Jiγ + ui

(7.25)

Where the definitions of the matrix expressions are:

ỹi = W
1/2
i y

X̃i = W
1/2
i X

Ji =
(

wi1 ⊗ Ik . . . win ⊗ Ik
)

γ =

β1

...
βn

As indicated earlier, the notation is somewhat confusing in that ỹi denotes
an n−vector, not a scalar magnitude. Similarly, εi is an n−vector and X̃i is an n
by k matrix. Note that (7.24) can be written in the form of a Theil-Goldberger
(1961) estimation problem as shown in (7.26).

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 259

(

ỹi
Jiγ

)

=

(

X̃i

−Ik

)

βi +

(

εi
ui

)

(7.26)

Assuming Vi = In, the estimates βi take the form:

β̂i = R(X̃ ′
i ỹi + X̃ ′

iX̃iJiγ/δ
2)

R = (X̃ ′
iX̃i + X̃ ′

iX̃i/δ
2)−1

As δ approaches ∞, the terms associated with the Theil-Goldberger “stochastic
restriction”, X̃ ′

iX̃iJiγ/δ
2 and X̃ ′

iX̃i/δ
2 become zero, and we have the GWR

estimates shown below.

β̂i = (X̃ ′
iX̃i)

−1(X̃ ′
i ỹi) (7.27)

In practice, an alternative to specifying the parameter δ using subjective
prior information is to use a diffuse prior for δ and estimate this parameter.
Unless the parameter smoothing relationship is fairly consistent with the sample
data, the estimated value may be large, leading to BGWR estimates that are
similar to those from the BGWRV model that doesn’t include a parameter
smoothing relationship. There are cases where we know the data is weak or
seems counter to other knowledge we have about the relationship being modeled.
In these cases, we might choose to rely on an informative prior for δ that imposes
the parameter smoothing relationship fairly tightly in the model.

Details concerning estimation of the parameters in the BGWR model are
taken up in the next section. Before turning to these issues, we consider some
alternative spatial parameter smoothing relationships that might be used in
place of (7.21) in the BGWR model.

One alternative smoothing specification would be a relationship that we label
“monocentric city smoothing”, set forth in (7.28). This relation assumes data
observations are ordered by distance from the center of the spatial sample.

βi = βi−1 + ui (7.28)

ui ∼ N [0, σ2δ2(X ′W 2
i X)−1]

Given that the observations are ordered by distance from the center, the
smoothing relation indicates that βi should be similar to the coefficient βi−1 from
a neighboring concentric ring. We rely on the same GWR distance weighted sub-

samples of the data created by the transformation: W
1/2
i y,W

1/2
i X. This means

that the estimates still have a “locally linear” interpretation as in the GWR,
but depending on how tightly we impose the prior smoothing relationship, esti-
mates should be similar to those from neighboring concentric rings. The same
distibutional assumption is used for the term ui in this parameter smoothing
relationship, which allows us to estimate the parameters making only minor
changes to the approach used for the BGWR model in (7.20) and (7.21).

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 260

Another alternative is a “spatial expansion smoothing” based on the ideas in-
troduced in Chapter 6. This is shown in (7.29), where Zxi, Zyi denote lattitude-
longitude coordinates associated with observation i.

βi =
(

Zxi ⊗ Ik Zyi ⊗ Ik
)

(

βx

βy

)

+ ui (7.29)

ui ∼ N [0, σ2δ2(X ′W 2
i X)−1)]

This parameter smoothing relation relates the parameters at a particular
latitude-longitude coordinate to a locally linear combination of parameters from
nearby latitude-longitude coordinates. As in the case of the monocentric city
specification, we retain the same assumptions regarding the stochastic term ui.

Finally, we could adopt a “contiguity smoothing” relationship based on a
first-order spatial contiguity matrix as shown in (7.30). The terms cij represent
the ith row of a row-standardized first-order contiguity matrix. This creates
a parameter smoothing relationship that averages over the parameters from
observations that neighbor observation i.

βi =
(

ci1 ⊗ Ik . . . cin ⊗ Ik
)

β1

...
βn

+ ui (7.30)

ui ∼ N [0, σ2δ2(X ′W 2
i X)−1)]

The contiguity smoothing relationship may be fairly similar to the distance
smoothing relationship in (7.21), depending on the type of weighting method
used and the particular data sample.

These alternative approaches to specifying a geographically weighted regres-
sion model suggest that researchers need to think about which type of spatial
parameter smoothing relationship is most appropriate for their application. Ad-
ditionally, where the nature of the problem does not clearly favor one approach
over another, tests of alternative models based on different smoothing relations
might be carried out. Posterior odds ratios can be constructed to shed light on
which smoothing relationship is most consistent with the sample data.

7.3.1 Estimation of the BGWR model

We rely on Gibbs sampling to produce estimates for the BGWR model. To
implement the Gibbs sampler we need to derive the conditional posterior dis-
tributions for each group of parameters, βi, σ, δ, and Vi in the model. Let
P (βi|σ, δ, Vi, γ) denote the conditional density of βi, where γ represents the val-
ues of other βj for observations j �= i. Using similar notation for the the other
conditional densities, the Gibbs sampling process can be viewed as follows:

1. start with arbitrary values for the parameters β0
i , σ

0, δ0, V 0
i , γ

0

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 261

2. for each observation i = 1, . . . , n,

(a) sample a value, β1
i from P (βi|σ

0, δ0, V 0
i , γ

0)

(b) sample a value, σ1 from P (σ|δ0, V 1
i , γ

1)

(c) sample a value, V 1
i from P (Vi|β

1
i , σ

0, δ0, γ0)

3. use the sampled values β1
i , i = 1, . . . , n from each of the n draws above to

update γ0 to γ1.

4. sample a value, δ1 from P (δ|σ1, V 1
i , γ

1)

5. go to step 1 using β1
i , σ

1, δ1, V 1
i , γ

1 in place of the arbitrary starting values.

The sequence of draws outlined above represents a single pass through the
sampler, and we make a large number of passes to collect a large sample of
parameter values from which we construct our posterior distributions.

Note that this sampler is quite computationally intensive as it requires a
loop over all observations for each draw. This is in contrast to the case of the
BGWRV model from Section 7.2 where we sampled all draws for each observa-
tion, requiring a single pass through the sample. The difference arises from the
need to update the parameters in γ from other observations that are used in
the distance and contiguity smoothing relationships.

For the case of the concentric city prior we could rely on the GWR estimate
for the first observation and then proceed to carry out draws for the remaining
observations as we did for the BGWRV model. The draw for observation 2
would rely on the posterior mean computed from the draws for observation 1 to
define the parameter smoothing prior. Assuming the observations are ordered by
distance from a central observation, this would achieve our goal of stochastically
restricting observations from nearby concentric rings to be similar. Observation
2 would be similar to 1, 3 would be similar to 2, and so on.

Another way to implement these models would be to use the GWR estimates
as elements in γ. This would allow us to proceed by making multiple draws for
each observation, requiring only one pass over the observations as in the case
of the BGWRV model. A difference would be that the parameter smoothing
relationship doesn’t evolve, but is restricted to the estimated GWR values.

We rely on the compact statement of the BGWR model in (7.24) to facilitate
presentation of the conditional distributions that we rely on during sampling.

The conditional posterior distribution of βi given σ, δ, γ and Vi is a multi-
variate normal shown in (7.31).

p(βi| . . .) ∝ N(β̂i, σ
2R) (7.31)

Where:

β̂i = R(X̃ ′
iV

−1
i ỹi + X̃ ′

iX̃iJiγ/δ
2)

R = (X̃ ′
iV

−1
i X̃i + X̃ ′

iX̃i/δ
2)−1

(7.32)

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 262

This result follows from the assumed variance-covariance structures for εi, ui

and the Theil-Goldberger (1961) representation shown in (7.26).
The conditional posterior distribution for σ is a χ2(m) distribution shown

in (7.33), where m denotes the number of observations with non-zero weights.

p(σ| . . .) ∝ σ−(m+1)exp{−
1

2σ2
(ε′iV

−1
i εi)} (7.33)

εi = ỹi − X̃iβi

The conditional posterior distribution for Vi is shown in (7.34), which indi-
cates that we draw an m-vector based on a χ2(r+1) distribution. As in the case
of the BGWRV model from Section 7.2, the individual elements of the matrix
Vi act on the spatial weighting scheme because the estimates involve terms like:

X̃ ′
iV

−1
i X̃i = X ′W

1/2
i V −1

i W
1/2
i X. For the exponential weighting method, the

terms Wi = exp(−di/θ) will be adjusted by the Vi estimates, which are large
for aberrant observations or outliers. In the event of an outlier, observation i
will receive less weight when the spatial distance-based weight is divided by a
large Vi value as shown below.

p{[(e2i /σ
2) + r]/Vi | . . .} ∝ χ2(r + 1) (7.34)

Finally, the conditional distribution for δ is a χ2(nk) distribution based on
(7.35).

p(δ| . . .) ∝ δ−nkexp{−

n
∑

i=1

(βi − Jiγ)′(X̃ ′
iX̃i)

−1(βi − Jiγ)/2σ2δ2} (7.35)

Now consider the modifications needed to the conditional distributions to im-
plement the alternative spatial smoothing relationships set forth in Section 7.3.1.
Since we used the same assumptions for the disturbance terms εi and ui, we
need only alter the conditional distributions for βi and δ.

First, consider the case of the monocentric city smoothing relationship. The
conditional distribution for βi is multivariate normal with mean β̂i and variance-
covariance σ2R as shown in (7.36).

β̂i = R(X̃ ′
iV

−1
i ỹi + X̃ ′

iX̃iβi−1/δ
2) (7.36)

R = (X̃ ′
iV

−1
i X̃i + X̃ ′

iX̃i/δ
2)−1

The conditional distribution for δ is a χ2(nk) based on the expression in
(7.37).

p(δ| . . .) ∝ δ−nkexp{−

n
∑

i=1

(βi − βi−1)′(X̃ ′
iX̃i)

−1(βi − βi−1)/σ2δ2} (7.37)

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 263

For the spatial expansion and contiguity smoothing relationships, we have
the same conditional expressions for βi and δ as in the basic model from (7.20)
and (7.21). We need only modify the definition of J , to match the differ-
ent smoothing relations. One additional change is needed for the case of the
spatial expansion smoothing relationship, where a conditional distribution for
the parameters βx, βy must be added to the model. This distribution is a

multivariate normal with mean β̂ = (β̂xβ̂y)′ and variance-covariance matrix

σ2(J ′
iX̃

′
iQ

−1X̃iJi)
−1 as defined in (7.38).

β̂ = (J ′
iX̃

′
iQ

−1X̃iJi)
−1(J ′

iX̃
′
iQ

−1ỹi) (7.38)

Q = (Vi + X̃i(X̃
′
iX̃i)

−1X̃ ′
i/δ

2)

7.3.2 Informative priors

Implementing the extended BGWR model with diffuse priors on δ may lead
to large values that essentially eliminate the parameter smoothing relationship
from the model. This would produce estimates similar to those from the BG-
WRV model introduced in Section 7.2. In cases where the sample data is weak
or objective prior information suggests spatial parameter smoothing should fol-
low a particular specification, we can use an informative prior for the parameter
δ. A Gamma(a, b) prior distribution with a mean of a/b and variance of a/b2

seems appropriate. Given this prior, we can eliminate the conditional density
for δ and replace it with a random draw from the Gamma(a, b) distribution. We
will have more to say about choice of the hyperparameter δ when we illustrate
use of the BGWR model.

A similar approach can be taken for the hyperparameter r. Using a Gamma
prior distribution with a = 8, b = 2 that indicates small values of r around 4,
should provide a fair amount of protection against spatial heterogeneity. In the
absence of heterogeneity, the resulting Vi estimates will be near unity so the
BGWR distance weights will be similar to those from GWR, despite the use of
a small value for r.

Additionally, a χ2(c, d) natural conjugate prior for the parameter σ can be
used in place of the diffuse prior set forth here. This would affect the conditional
distribution used during Gibbs sampling in only a minor way.

Some other alternatives offer additional flexibility when implementing the
BGWR model. For example, one can restrict specific parameters to exhibit no
variation over the spatial sample observations. This might be useful if we wish
to restrict the constant term over space. An alternative would be a situation
where only the constant term is allowed to vary over space. These alternatives
can be implemented by adjusting the prior variances in the parameter smoothing
relationship:

var − cov(βi) = σ2δ2(X̃ ′
iX̃i)

−1 (7.39)

For example, assuming the constant term is in the first column of the matrix

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 264

X̃i, setting the first row and column elements of (X̃ ′
iX̃i)

−1 to zero would restrict
the intercept term to remain constant over all observations.

7.3.3 Implementation details

We devised a function bgwr to carry out Gibbs sampling estimation of the
extended Bayesian GWR model. The documentation for the function is shown
below, where a great many input options are available. The function bgwr has
associated prt and plt methods to produced printed and graphical presentation
of the results.

Options are input to the function using a structure variable named ‘prior’
to indicate alternative parameter smoothing relationships, a choice of weighting
method and settings for the Bayesian prior. Note that only three of the four
parameter smoothing relationships discussed in Section 7.3 are implemented.
The parameter smoothing relationship based on spatial expansion is not imple-
mented. Another point to note is that you can implement a contiguity smooth-
ing relationship by either specifying a spatial weight matrix or relying on the
function xy2cont to calculate this matrix using the x-y coordinates.

PURPOSE: compute Bayesian geographically weighted regression

model: y = Xb(i) + e, e = N(0,sige*V),

b(i) = f[b(j)] + u, u = delta*sige*inv(x’x)

V = diag(v1,v2,...vn), r/vi = ID chi(r)/r, r = Gamma(m,k)

delta = gamma(s,t),

f[b(j)] = b(i-1) for concentric city prior

f[b(j)] = W(i) b for contiguity prior

f[b(j)] = [exp(-d/b)/sum(exp(-d/b)] b for distance prior

--

USAGE: results = bgwr(y,x,xcoord,ycoord,ndraw,nomit,prior)

where: y = dependent variable vector

x = explanatory variable matrix

xcoord = x-coordinates in space

ycoord = y-coordinates in space

prior = a structure variable with fields:

prior.rval, improper r value, default=4

prior.m, informative Gamma(m,k) prior on r

prior.k, informative Gamma(m,k) prior on r

prior.dval, improper delta value (default=diffuse)

prior.dscale, scalar for delta with diffuse prior (default = 1);

prior.s, informative Gamma(s,t) prior on delta

prior.t, informative Gamma(s,t) prior on delta

prior.ptype, ’concentric’ for concentric city smoothing

’distance’ for distance based smoothing (default)

’contiguity’ for contiguity smoothing

’casetti’ for casetti smoothing (not implemented)

prior.ctr, observation # of central point (for concentric prior)

prior.W, (optional) prior weight matrix (for contiguity prior)

prior.bwidth = scalar bandwidth to use or zero

for cross-validation estimation (default)

prior.dtype = ’gaussian’ for Gaussian weighting (default)

= ’exponential’ for exponential weighting

= ’tricube’ for tri-cube weighting

prior.q = q-nearest neighbors to use for tri-cube weights

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 265

(default: CV estimated)

prior.qmin = minimum # of neighbors to use in CV search

prior.qmax = maximum # of neighbors to use in CV search

defaults: qmin = nvar+2, qmax = 5*nvar

ndraw = # of draws

nomit = # of initial draws omitted for burn-in

RETURNS: a results structure

results.meth = ’bgwr’

results.bdraw = beta draws (ndraw-nomit x nobs x nvar) (a 3-d matrix)

results.smean = mean of sige draws (nobs x 1)

results.vmean = mean of vi draws (nobs x 1)

results.lpost = mean of log posterior (nobs x 1)

results.rdraw = r-value draws (ndraw-nomit x 1)

results.ddraw = delta draws (if diffuse prior used)

results.r = value of hyperparameter r (if input)

results.d = value of hyperparameter delta (if input)

results.m = m prior parameter (if input)

results.k = k prior parameter (if input)

results.s = s prior parameter (if input)

results.t = t prior parameter (if input)

results.nobs = nobs

results.nvar = nvars

results.ptype = input string for parameter smoothing relation

results.bwidth = bandwidth if gaussian or exponential

results.q = q nearest neighbors if tri-cube

results.dtype = input string for Gaussian,exponential,tricube weights

results.iter = # of simplex iterations for cv

results.y = y data vector

results.x = x data matrix

results.xcoord = x-coordinates

results.ycoord = y-coordinates

results.ctr = central point observation # (if concentric prior)

results.dist = distance vector (if ptype = 0)

results.time = time taken for sampling

NOTES: use either improper prior.rval

or informative Gamma prior.m, prior.k, not both of them

The user also has control over options for assigning a prior to the hyper-
parameter r to produce robust estimates. Either an improper prior value can
be set using our rule-of-thumb value of r = 4, or a proper prior based on a
Gamma(m,k) distribution. Here, one would try to rely on a prior centered in
the range of 4 to 10, because larger values produce estimates that are not robust
to heteroscedasticity or outliers. As an example, m = 8, k = 2 would implement
a prior with the mean of r = 4 and the variance of r = 2, since the mean of the
Gamma distribution is m/k, and the variance is (m/k2).

The hyperparameter δ can be handled in four ways: 1) we can simply assign
an improper prior value using say, ‘prior.dval=20’ as an input option, 2) we can
input nothing about this parameter, producing a default implementation based
on a diffuse prior where δ will be estimated, 3) we can assign a Gamma(s,t)
prior using the approach set forth above for the hyperparameter r, and 4) we
can use a diffuse prior with a scalar on δ input using the ‘prior.dscale’ option.

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 266

Implementation with a large value for the hyperparameter r and diffuse prior
for δ will reproduce the non-parametric GWR estimates, if the estimated value
for δ is large. This indicates that the prior restriction is inconsistent with the
sample data. One would typically use the bgwr function in situations where
you wish to impose a parameter smoothing relationship on the model, so an
informative prior would be in order. The prior setting for δ in this case controls
how tightly the parameter smoothing relationship is imposed. Setting δ may
be problematical because the scale is unknown and depends on the inherent
variability in the GWR estimates. Consider that δ = 1 will assign a prior
variance for the parameters in the smoothing relationship based on the variance-
covariance matrix of the GWR estimates. This may represent a tight or loose
imposition of the parameter smoothing relationship, depending on the amount
of variability in the GWR estimates. If the estimates vary widely over space,
this choice of δ may not produce estimates that conform very tightly to the
parameter smoothing relationship. In general we can say that smaller values of
δ reflect a tighter imposition of the spatial parameter smoothing relationship
and larger values reflect a looser imposition, but this is unhelpful in particular
modeling situations.

A practical approach to setting values for δ would be to generate estimates
based on a diffuse prior for δ and examine the posterior mean for this param-
eter. Setting values of δ smaller than the posterior mean based on a diffuse
implementation should produce a prior that imposes the parameter smoothing
relationship more tightly on the model estimates. One might use magnitudes
for δ based scaling down the diffuse δ estimate by 0.5, 0.25 and 0.1 to examine
the impact of the parameter smoothing relationship on the BGWR estimates.
To make this approach easy to implement with a single Gibbs sampling run,
we provide an input option ‘prior.dscale’ that allows a scalar to be applied to
the mean of the first ‘nomit’ Gibbs draws for δ. Using this option suggests one
might set the number of omitted draws to a larger value, so a more accurate
estimate of δ is used to produce the scaled value of δ. Values for ‘dscale’ less
than unity will impose the parameter smoothing relationship more tightly on
the model, and values greater than unity impose the relationship in a looser
fashion. One might use magnitudes for ‘dscale’ based scaling down the diffuse
δ estimate by 0.5, 0.25 and 0.1 to examine the impact of tighter parameter
smoothing relationship on the BGWR estimates.

Using values greater than unity will tend to eliminate the parameter smooth-
ing relationship from the model, and in conjunction with a small value for r
result in estimates similar to those from the bgwrv function in Section 7.2. If
you merely want robust GWR estimates you should use the bgwrv function, as
it executes more rapidly than bgwr. Using a large value for the hyperparameter
r and scaling up the δ value will result in GWR estimates, obtained in a very
computationally intense fashion.

In some cases where the prior smoothing relationship is extremely consistent
with the data, a diffuse prior for δ will result in estimates different from bgwrv.
In these rare cases, a relatively smaller value will be estimated for the hyperpa-
rameter δ, imposing the parameter smoothing relationship in a relatively tight

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 267

fashion.
Given the flexibility to implement a host of alternative prior settings, the

question arises — which settings are most consistent with the sample data? The
bgwr function returns a vector ‘results.lpost’, containing the mean of the log
posterior for the model based on Gibbs sampled estimates of this quantity. This
can be used to compute the posterior probabilities associated with models based
on different prior settings, as we will demonstrate in the next section.

7.3.4 Applied Examples

The program in example 3.5 shows how to use the bgwr function to produce
estimates for the Anselin neigbhorhood crime data set. Estimates based on all
three parameter smoothing relationships are produced with r = 4, indicating a
prior belief in heteroscedasticity or outliers. An informative improper prior for
the parameter δ based on δ = 1 is used to illustrate the impact of the parameter
smoothing relationships on the GWR estimates. An implementation based on
the scaling option for δ set to 0.5 produced estimates of δ equal to 12 for the
concentric city prior, 8.4 for the distance prior and 5.2 for the contiguity prior.
This suggests our prior setting of δ = 1 represents a very tight imposition of the
parameter smoothing relationships. We do this to clearly illustrate the impact
of the parameter smoothing relationship in the model.

We specify 550 draws with the first 50 to be discarded for “burn-in”. GWR
estimates are graphed for comparison with the three sets of Bayesian esti-
mates. Note that we save computing time using the bandwidth parameter
calcuated by the GWR model as an input to the bgwr function, with the
option ‘prior.bwidth’ that specifies this value. The program took around 275
seconds to generate 550 draws, or around 2 draws per second for this relatively
small data set. Use of the tri-cube weighting method produced 550 draws in
around 225 seconds. Note that the speed advantage of the tri-cube method is
not as great in this small sample as it would be for larger samples. This is be-
cause the number of nearest neighbors determined by cross-validation was 11,
and exponential weighting produced samples as small as 6 observations, and a
maximum of 39. By comparison, the 506 observation Boston data set indicated
24 nearest neighbors versus a minium sample of 40 observations for exponential
weighting and a maximum of 389. There is a trade-off between computational
gains from reducing the effective sample size of our problem and the ability to
detect outliers. This was already noted in connection with the BGWRV model,
but in this model the use of parameter smoothing relationships that incorporate
information from all observations in the sample may change the nature of this
trade-off.

% ----- Example 7.5 Using the bgwr() function

% load the Anselin data set

load anselin.dat; y = anselin(:,1); nobs = length(y);

x = [ones(nobs,1) anselin(:,2:3)]; [junk nvar] = size(x);

east = anselin(:,4); north = anselin(:,5);

vnames = strvcat(’crime’,’constant’,’income’,’hvalue’);

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 268

load wmat.dat; W = wmat; % first-order contiguity matrix

ndraw = 550; nomit = 50;

info.dtype = ’exponential’;

res1 = gwr(y,x,east,north,info);

prior.ctr = 21;

% these apply to all of the runs below

prior.dtype = info.dtype;

prior.delta = 1;

prior.rval = 4;

prior.bwidth = res1.bwidth;

prior.ptype = ’concentric’;

bres1 = bgwr(y,x,east,north,ndraw,nomit,prior);

% NOTE: we rely on a diffuse prior for delta, the default

prior.ptype = ’distance’;

bres2 = bgwr(y,x,east,north,ndraw,nomit,prior);

prior.ptype = ’contiguity’;

prior.W = W;

bres3 = bgwr(y,x,east,north,ndraw,nomit,prior);

% compute posterior probabilities for 3 models

psum = bres1.lpost+bres2.lpost+bres3.lpost;

prob1 = bres1.lpost./psum;

prob2 = bres2.lpost./psum;

prob3 = bres3.lpost./psum;

tt=1:nobs; % graph posterior probabilities

plot(tt,prob1,’-k’,tt,prob2,’--k’,tt,prob3,’-.k’);

%title(’log posterior for 3 models’);

legend(’concentric’,’distance’,’contiguity’);

xlabel(’observations’);

ylabel(’probabilities’);

pause;

% compute posterior means for the parametes

tmp = mean(bres1.bdraw); bout = squeeze(tmp);

[n k] = size(bout); beta1 = zeros(n,k);

for i=1:k; beta1(:,i) = bout(:,i); end;

tmp = mean(bres2.bdraw); bout = squeeze(tmp);

[n k] = size(bout); beta2 = zeros(n,k);

for i=1:k; beta2(:,i) = bout(:,i); end;

tmp = mean(bres3.bdraw); bout = squeeze(tmp);

[n k] = size(bout); beta3 = zeros(n,k);

for i=1:k; beta3(:,i) = bout(:,i); end;

% plot estimates for comparison

subplot(3,1,1), plot(tt,res1.beta(:,1),’-k’,tt,beta1(:,1),’--k’, ...

tt,beta2(:,1),’-.k’,tt,beta3(:,1),’ok’);

title(’exponential weighting’); xlabel(’constant’);

subplot(3,1,2), plot(tt,res1.beta(:,2),’-k’,tt,beta1(:,2),’--k’, ...

tt,beta2(:,2),’-.k’,tt,beta3(:,2),’ok’); xlabel(’income’);

subplot(3,1,3), plot(tt,res1.beta(:,3),’-’,tt,beta1(:,3),’--k’, ...

tt,beta2(:,3),’-.k’,tt,beta3(:,3),’ok’); xlabel(’house value’);

legend(’gwr’,’concentric’,’distance’,’contiguity’);

pause;

subplot(1,1,1),

plot(tt,bres1.vmean,’-k’,tt,bres2.vmean,’--k’,tt,bres3.vmean,’-.k’);

ylabel(’vi estimates’);

xlabel(’observations’);

legend(’concentric,’,’distance’,’contiguity’);

pause;

subplot(1,1,1),

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 269

plot(tt,res1.sige,’ok’,tt,bres1.smean,tt,bres2.smean,’--k’,tt,bres3.smean,’-.k’);

ylabel(’sige estimates’);

xlabel(’observations’);

legend(’gwr’,’concentric’,’distance’,’contiguity’);

The posterior probabilities for the three models can be calculated as the log
posterior for every observation divided by the sum of the log posterior for all
three models at each observation. Expression (7.40) shows the log posterior for
a single observation of our BGWR model. Posterior probabilities based on these
quantities provide an indication of which parameter smoothing relationship fits
the sample data best as we range over observations.

LogPi =

n
∑

j=1

Wij{logφ([yj −Xiβi]/σivij) − logσivij} (7.40)

A Bayesian solution to the model specification is to average over alternative
model specifications using these posterior probabilities as weights (see Leamer,
1984). Model estimates for this Bayesian average model would be created by
averaging the Gibbs draws for all parameters, βi, σi, vi using the posterior prob-
abilities as weights. Estimates of dispersion for the βi parameters would be
based on the standard deviation for the posterior probability weighted Gibbs
draws for these parameters.

The posterior probabilities are shown in Figure 7.14, where we see evidence
that all three models find some support in the sample data over various ranges
of observations. We might expect the concentric city prior to exhibits relatively
higher posterior probability for observations near outliers, because it relies on a
less restrictive parameter smoothing specification. This allows the estimates to
adjust more rapidly in the presence of outliers. This prior relies on the single
previous observation for smoothing whereas the distance and contiguity priors
tie the estimates for every observation to those from all other observations.

Keep in mind that the posterior probabilities and the log posterior reflect a
measure of fit to the sample data, as is clear from (7.40). In applications where
robust estimates are desired, it is not clear that choice of models should be made
using these probabilities. Robust estimates require a trade-off between fit and
insensitivity to aberrant observations.

Parameter estimates for the three Bayesian models and the GWR are shown
in Figure 7.15. The impact of the very tight imposition for the parameter
smoothing relationships is evident as these estimates are much smoother than
the GWR estimates. All three sets of Bayesian estimates depart from the GWR
estimates for observations near the outliers. The reasons for this were provided
in our discussion of the role of the vi parameters in the BGWRV model. In
addition to the robustness produced by the vi parameters, these models also
draw on information provided by estimates from other observations to create
even more smoothing of the estimates. As we would expect, estimates associated
with the distance and contiguity prior are smoother than those based on the
concentric city prior which relies on only a single other parameter for smoothing.

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 270

The distance and contiguity priors also produce similar estimates as we might
expect.

If we were carrying out a formal analysis, we would wish to explore the
sensitivity of these estimates to our improper prior based on δ = 1. This might
be done by comparing estimates based on a diffuse prior and the scaling for δ =
0.5 which produced estimates that were more similar across the three Bayesian
models. They were still different from the GWR estimates near the outlier
observations. As we loosen the prior on parameter smoothing the estimates
will of course become more similar, but scaling δ by 0.5 represents a fairly tight
prior. This suggests that all three parameter smoothing relationships applied as
informative priors would lead to similar inferences. Note also, these inferences
would be different from those produced by the GWR model.

Another comparison that might be explored is the sensitivity of the estimates
to the distance weighting method used. An advantage of the BGWR model over
the GWR is that introduction of the parameter smoothing relationship should
reduce sensitivity of the estimates to changes in weighting methods. Intuitively,
since we rely on other parameter estimates as well as the sample data, changes
in the weighting method should not have as great an impact on the estimates.
This allows us to rely on the tri-cube weighting method which is faster than

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

observations

p
ro

b
a

b
ili

ti
e

s

concentric
distance
contiguity

Figure 7.14: Posterior probabilities for δ = 1, three models

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 271

Gaussian or exponential weighting since it works with smaller matrices.
The goal of exploring alternative estimates based on different weighting

methods and parameter smoothing priors applied with varying tightness is to
map out a range of settings for which the estimates are insensitive to these
specification settings. Ideally, we would like to conclude that inferences from
our analysis are robust with respect to a particular parameter smoothing spec-
ification or perhaps all three parameter smoothing relationships, as well as the
weighting method used. A less than ideal outcome would be the case where we
need to qualify our inferences by restricting them to a range prior settings. In
the case of the ideal outcome, we would solve the problems that confronted us
in Chapter 6, where we found that GWR estimates varied a great deal as we
changed the weighting method or data sample. We will pursue a more system-
atic comparison of this type in the next section, where we apply the BGWR
model to the a sample of data from Cuyahoga county, Ohio.

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80

100
exponential weighting

constant

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

income

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

house value

gwr
concentric
distance
contiguity

Figure 7.15: GWR and βi estimates for the Bayesian models

Figure 7.16 shows the vi estimates from the three Bayesian models as well as
the σi estimates. An interesting point is that use of the parameter smoothing
relationships represent an alternative approach to overcoming the impact of
outliers on the estimates. Because we stochastically restrict the estimates, the

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 272

impact of outliers will be diminished, so we might expect to see smaller vi
estimates. On the other hand, in cases where we tightly impose a parameter
smoothing prior that is inconsistent with the sample data, we might generate
new outliers. This would occur if the parameter restriction inhibits the model
from producing a locally linear fit that adjusts to rapid changes in the sample
data observations. For this data sample we see smaller vi magnitudes than in
the BGWRV model, where no parameter smoothing relationship was involved.

The vij estimates are averaged over all Gibbs draws for each observation,
and then averaged again to produce an n by 1 vector that can be used as a
diagnostic measure to detect aberrant observations. By virtue of the averaging,
we interpret large vi values as reflecting observations that consistently produced
large residuals during estimation of each βi parameter. From the figure, we see
evidence that observations #2, #4 and #34 represent outliers as in the case of
the BGWRV model.

0 5 10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

v
i
e

s
ti
m

a
te

s

observations

concentric,
distance
contiguity

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

s
ig

e
 e

s
ti
m

a
te

s

observations

gwr
concentric
distance
contiguity

Figure 7.16: vi estimates for the three models

Ultimately, the role of the parameters Vi in the model and the prior assigned
to these parameters reflects our prior knowledge that distance alone may not
be reliable as the basis for spatial relationships between variables. If distance-
based weights are used in the presence of aberrant observations, inferences will
be contaminated for whole neighborhoods and regions in our analysis. Incor-

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 273

porating this prior knowledge turns out to be relatively simple in the Bayesian
framework, and it appears to effectively robustify estimates against the presence
of spatial outliers.

The Bayesian estimates of σi are uniformly smaller than those from the
GWR model, which we would expect in the presence of the additional vi pa-
rameters. For strict comparability one would want to calculate disturbance
variance estimates based on σ2

i vi, since these are the comparable magnitudes

7.4 An applied exercise

To illustrate alternative parameter smoothing relationships we use a data set
consisting of employment, payroll earnings and the number of establishments in
all fifty zip (postal) codes from Cuyahoga county in Ohio during the first quarter
of 1989. The data set was created by aggregating establishment level data
used by the State of Ohio for unemployment insurance purposes. It represents
employment for workers covered by the state unemployment insurance program.
The regression model used was:

ln(Ei/Fi) = β0i + β1iln(Pi/Ei) + β2iln(Fi) + εi (7.41)

Where Ei is employment in zip code i, Pi represents payroll earnings and Fi

denotes the number of establishments. The relationship indicates that employ-
ment per firm is a function of earnings per worker and the number of firms in
the zip code area. For presentation purposes we sorted the sample of 50 observa-
tions by the dependent variable from low to high, so observation #1 represents
the zip code district with the smallest level of employment per firm.

Three alternative parameter smoothing relationships were used, the mono-
centric city prior centered on the central business district where employment
was highest, the distance decay prior and the contiguity prior. We would ex-
pect the monocentric city prior to work well in this application. An initial set of
estimates based on a diffuse prior for δ are discussed below and would typically
be generated to calibrate the tightness of alternative settings for the prior on
the parameter smoothing relations.

A Gaussian distance weighting method was used, but estimates based on
the exponential weighting method were quite similar. All three BGWR models
were based on a hyperparameter r = 4 reflecting a heteroscedastic prior.

A graph of the three sets of estimates is shown in Figure 7.17, where it should
be kept in mind that the observations are sorted by employment per firm from
low to high. This helps when interpreting variation in the estimates over the
observations.

The first thing to note is the relatively unstable GWR estimates for the
constant term and earnings per worker when compared to the BGWR estimates.
Evidence of parameter smoothing is clearly present. Bayesian methods attempt
to introduce a small amount of bias in an effort to produce a substantial increase
in precision. This seems a reasonable trade-off if it allows clearer inferences. The
diffuse prior for the smoothing relationships produced estimates for δ2 equal to

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 274

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

coefficient 1

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

coefficient 2

GWR no outlier
GWR outlier
BGWRV outlier

Figure 7.17: Ohio GWR versus BGWR estimates

138 for the monocentric city prior, 142 and 113 for the distance and contiguity
priors. These large values indicate that the sample data are inconsistent with
these parameter smoothing relationships, so their use would likely introduce
some bias in the estimates. From the plot of the coefficients it is clear that no
systematic bias is introduced, rather we see evidence of smoothing that impacts
only volatile GWR estimates that take rapid jumps from one observation to the
next.

Note that the GWR and BGWR estimates for the coefficients on the number
of firms are remarkably similar. There are two factors at work to create a
divergence between the GWR and BGWR estimates. One is the introduction of
vi parameters to capture non-constant variance over space and the other is the
parameter smoothing relationship. The GWR coefficient on the firm variable is
apparently insensitive to any non-constant variance in this data set. In addition,
the BGWR estimates are not affected by the parameter smoothing relationships
we introduced. An explanation for this is that a least-squares estimate for this
coefficient produced a t−statistic of 1.5, significant at only the 15% level. Since
our parameter smoothing prior relies on the variance-covariance matrix from
least-squares (adjusted by the distance weights), it is likely that the parameter
smoothing relationships are imposed very loosely for this coefficient. Of course,

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 275

this will result in estimates equivalent to the GWR estimates.
A final point is that all three parameter smoothing relations produced rel-

atively similar estimates. The monocentric city prior was most divergent with
the distance and contiguity priors very similar. We would expect this since the
latter priors rely on the entire sample of estimates whereas the contiguity prior
relies only on the estimate from a neighboring observation.

The times required for 550 draws with these models were: 320 seconds for
the monocentric city prior, 324 seconds for the distance-based prior, and 331
seconds for the contiguity prior.

Turning attention to the question of which parameter smoothing relation is
most consistent with the sample data, a graph of the posterior probabilities for
each of the three models is shown in the top panel of Figure 7.18. It seems quite
clear that the monocentric smoothing relation is most consistent with the data as
it receives slightly higher posterior probability values for all observations. There
is however no dominating evidence in favor of a single model, since the other
two models receive substantial posterior probability weight over all observations,
summing to over 60 percent.

For purposes of inference, a single set of parameters can be generated using
these posterior probabilities to weight the three sets of parameters. This rep-
resents a Bayesian solution to the model specification issue (see Leamer, 1984).
In this application, the parameters averaged using the posterior probabilities
would look very similar to those in Figure 7.17, since the weights are roughly
equal and the coefficients are very similar.

Figure ?? also shows a graph of the estimated vi parameters from all three
versions of the BGWR model. These are nearly identical and point to observa-
tions at the beginning and end of the sample as regions of non-constant variance
as well as observations around 17, 20, 35, 38 and 44 as perhaps outliers. Be-
cause the observations are sorted from small to large, the large vi estimates at
the beginning and end of the sample indicate our model is not working well
for these extremes in firm size. It is interesting to note that outlying GWR
estimates by comparison with the smoothed BGWR estimates correlate highly
with observations where the vi estimates are large.

A final question is — how sensitive are these inferences regarding the three
models to the diffuse prior used for the parameter δ? If we really want to
test alternative smoothing priors in an attempt to find a single best model, the
appropriate approach is to impose the priors in a relatively tight fashion. The
posterior probabilities will tend to concentrate on the model that is most consis-
tent with the data in the face of a very strict implementation of the smoothing
relationship. To illustrate this, we constructed another set of estimates and
posterior probabilities based on scaling δ to 0.1 times the estimate of δ from the
diffuse prior. This should reflect a fairly tight imposition of the prior for the
parameter smoothing relationships.

The posterior probabilities from these three models are shown in Figure 7.13
and the estimates are shown in Figure ??. We see that both the estimates and
posterior probabilities are relatively unchanged from the diffuse prior imple-
mentation. This suggests that even with this tighter imposition of the prior,

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 276

0 20 40 60 80 100 120
1

1.5

2

2.5

3

3.5

4

v
i
e
s
ti
m

a
te

s

observations

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

s
ig

e
 e

s
ti
m

a
te

s

observations

GWR no outlier
GWR outlier
BGWRV outlier

Figure 7.18: Posterior probabilities and vi estimates

all three parameter smoothing relationships are relatively compatible with the
sample data. No smoothing relationship obtains a distinctive advantage over
the others.

We need to keep the trade-off between bias and efficiency in mind when
implementing tight versions of the parameter smoothing relationships. For this
application, the fact that both diffuse and tight implementation of the parame-
ter smoothing relationships produced similar estimates indicates our inferences
would be robust with respect to relatively large changes in the smoothing pri-
ors. The BGWR models based on these smoothing relationships also shown the
potential value of imposing subjective prior information and using robust esti-
mation methods in achieving better inferences that abstract from the influence
of aberrant observations.

7.5 Chapter Summary

This chapter introduced Bayesian approaches to implementing Casetti’s spatial
expansion model and the locally linear regression models based on distance-
weighted sub-samples of the observations. These Bayesian variants of the models
introduced in Chapter 6 have some advantages.

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 277

0 20 40 60 80 100 120
-50

0

50

t-statistic coefficient 1

0 20 40 60 80 100 120
-100

-50

0

50

100

t-statistic coefficient 2

GWR no outlier
GWR outlier
BGWRV outlier

Figure 7.19: Posterior probabilities for a tight prior

For the case of spatial expansion where heteroscedastic disturbances are
present by construction, we showed how the Bayesian heteroscedastic linear
model introduced in Section 4.1.1 could be used to estimate this model.

The Bayesian estimates provide a direct inference regarding the appropri-
ateness of the spatial expansion restrictions at each point in space as does the
DARP method. An advantage over the DARP model is that no restrictive
specification for the non-constant variance is needed. Recall that the DARP
method relies on a variance specification based on either distance from a cen-
tral observation or the latitude-longitude coordinates of each observation in the
sample. This may or may not represent an appropriate specification for the non-
constant variance. It is used simply because few other alternatives are available
in a maximum likelihood setting. As we have seen in numerous examples, the
presence of outliers creates variances that take on a spike character for the aber-
rant observations. This would represent a situation where the smooth variance
specification implied by the DARP model is inappropriate.

Since DARP estimation requires solving a non-linear optimization problem
for the estimates at each point in the sample data, the Gibbs sampling ap-
proach used to produce Bayesian estimates is relatively competitive in terms of
computational speed.

CHAPTER 7. BAYESIAN LOCALLY LINEAR SPATIAL MODELS 278

The non-parametric locally linear models known as geographically weighted
regressions introduced in Chapter 6 also exhibited problems. One problem is
that inferences about the parameters as they vary over space cannot be drawn
using traditional methods from least-squares. This is because re-use of the
sample observations creates a lack of independence between the estimates.

In contrast, Bayesian estimates based on Gibbs sampling do not require sam-
ple independence, and by virtue of the thereom from Gelfand and Smith (1990),
they provide valid inferences. Another problem that arose with the GWR es-
timates was a sensitivity to aberrant observations which tend to contaminate
whole subsequences of the estimates covering entire regions in space. The BG-
WRV model provides robust estimates in these cases by automatically detecting
and downweighting these observations. This mitigates the influence of outliers
on the estimates, so inferences regarding changes in the model relationship over
space can be clearly attributed to spatial variation. A further advantage of the
BGWRV approach is that a diagnostic plot can be used to identity observa-
tions associated with regions of non-constant variance or spatial outliers. An
applied illustration based on a generated data set confirmed the advantages of
the BGWRV method.

A final BGWR model was introduced that subsumes the spatial expansion,
DARP and GWR models as special cases. In addition, the BGWR model pro-
vides an ability to incorporate an explicit relationship to describe parameter
variation over space. Informative prior parameter smoothing relationships that
relied on: distance decay relationships, contiguity relationships, monocentric
distance from a central point, or the lattitude-longitude locations proposed by
Casetti (1972) were set forth. An applied exercise demonstrated the value of
the smoothing relations introduced in the BGWR method using a sample of 50
employment observations for Cuyahoga county in Ohio.

References

Albert, James H. and Siddhartha Chib. 1993. “Bayesian Analysis of Bi-
nary and Polychotomous Response Data”, Journal of the American Sta-

tistical Association, Vol. 88, pp. 669-679.

Amemiya, T. 1985. Advanced Econometrics, (Cambridge, MA: Harvard
University Press).

Anselin, L. 1980. Estimation Methods for Spatial Autoregressive Struc-

tures, (Ithaca, New York: Regional Science Dissertation and Monograph
Series #8).

Anselin, L. 1988. Spatial Econometrics: Methods and Models, (Dord-
drecht: Kluwer Academic Publishers).

Anselin, L. and R.J.G. Florax. 1994. “Small Sample Properties of Tests
for Spatial Dependence in Regression Models: Some Further Results”, Re-
search paper 9414, Regional Research Institute, West Virginia University,
Morgantown, West Virginia.

Anselin, L. and D.A. Griffith. 1988. “Do spatial effects really matter in
regression analysis? Papers of the Regional Science Association, Vol. 65,
pp. 11-34.

Anselin, L. and S. Rey. 1991. “Properties of tests for spatial dependence
in linear regression models”, Geographical Analysis, Vol. 23, pages 112-31.

Anselin, L. and A. Smirnov. 1994. “Efficient Algorithms for Construct-
ing Proper Higher Order spatial lag operators”, West Virginia University

Research Paper 9432.

Becker, R.A., J.M. Chambers, and A.R. Wilks. 1988. The new S Lan-

guage: a programming environment for data analysis and graphics. (Pa-
cific Grove, CA: Wadsworth and Brooks/Cole Advanced Books and Soft-
ware).

Belsley, David A. Edwin Kuh, and Roy E. Welsch. 1980. Regression

Diagnostics (New York: John Wiley & Sons Inc.).

279

REFERENCES 280

Best, N.G., M.K. Cowles, and S.K. Vines. 1995. CODA: Manual version

0.30. Biostatistics Unit, Cambridge U.K. http://www.mrc-bsu.cam.ac.uk

Blommestein, Hans J. 1985. “Elimination of Circular Routes in Spatial
Dynamic Regression Equations,” Regional Science and Urban Economics,

Vol 15, pp. 121-130.

Bolduc, D., M.G. Dagenais and M.J. Gaudry. 1989. “Spatially autocor-
related errors in origin-destination models: A new specification applied to
urban travel demand in Winnipeg”, Transportation Research B, Vol. 23,
pp. 361-372.

Bolduc, D., R. Laferriere and Gino Santarossa. 1995. “Spatial autoregres-
sive error components in travel flow models: An application to aggregate
model choice”, in New directions in spatial econometrics, L. Anselin and
R.J.G.M Florax (eds.) (Berlin: Springer-Verlag).

Brundson, C. A. S. Fotheringham, and M. Charlton. 1996. “Geographi-
cally weighted regression: a method for exploring spatial nonstationarity,”
Geographical Analysis, Vol. 28, pp. 281-298.

Casella, G. and E.I. George. 1992. “Explaining the Gibbs Sampler”,
American Statistician, Vol. 46, pp. 167-174.

Casetti, Emilio. 1972. “Generating Models by the Expansion Method:
Applications to Geographic Research”, Geographical Analysis, Vol. 4, pp.
81-91.

Casetti, Emilio. 1982. “Drift Analysis of Regression Parameters: An Ap-
plication to the Investigation of Fertility Development Relations”, Model-

ing and Simulation 13, Part 3:, pp. 961-66.

Casetti, E. 1992. “Bayesian Regression and the Expansion Method”, Ge-

ographical Analysis, Vol. 24, pp. 58-74.

Casetti, E. and A. Can. 1998. “The Econometric estimation and testing
of DARP models.” Paper presented at the RSAI meetings, Sante Fe, New
Mexico.

Chib, Siddhartha. 1992. “Bayes Inference in the Tobit Censored Regres-
sion Model”, Journal of Econometrics, Vol. 51, pp. 79-99.

Chow, G. 1983. Econometrics, (New York: McGraw-Hill).

Cliff, A. and J. Ord. 1972. “Testing for spatial autocorrelation among
regression residuals”, Geographical Analysis, Vol. 4, pp. 267-84.

Cliff, A. and J. Ord. 1973. Spatial Autocorrelation, (London: Pion).

Cliff, A. and J. Ord. 1981. Spatial Processes, Models and Applications,
(London: Pion).

REFERENCES 281

Cooper, J. Phillip. 1973. “Time Varying Regression Coefficients: A Mixed
Estimation Approach and Operational Limitations of the General Markov
Structure,” Annals of Economic and Social Measurement, Vol. 2, no. 4,
pp. 525-530.

Cressie, Noel. 1991. Statistics for Spatial Data, (New York: Wiley).

Dempster, A.P. N.M. Laird and D.B. Rubin. 1977. “Maximum likeli-
hood from incomplete data via the EM algorithm,” Journal of the Royal

Statistical Society, Series B, Vol. 39, pp. 1-38.

Dhrymes, P. 1981. Distributed Lags: Problems of Estimation and Formu-

lation, (Amsterdam: North-Holland).

Dubin, Robin. 1995. “Estimating logit models with spatial dependence”,
in New directions in spatial econometrics, L. Anselin and R.J.G.M Florax
(eds.) (Berlin: Springer-Verlag).

Estrella, Artuto. 1998. “A new measure of fit for equations with dichoto-
mous dependent variable”, Journal of Business & Economic Statistics, Vol.
16, no. 2, pp. 198-205.

Fomby, T., R. Hill, and S. Johnson. 1984. Advanced Econometric Meth-

ods, (New York: Springer).

Fernandez, Carmen, Eduardo Ley and Mark F.J. Steel. 1998. “Bench-
mark priors for Bayesian model averaging”, Working paper #98-06, Fedea,
Madrid, Spain.

Gelfand, Alan E., and A.F.M Smith. 1990. “Sampling-Based Approaches
to Calculating Marginal Densities”, Journal of the American Statistical

Association, Vol. 85, pp. 398-409.

Gelfand, Alan E., Susan E. Hills, Amy Racine-Poon and Adrian F.M.
Smith. 1990. “Illustration of Bayesian Inference in Normal Data Models
Using Gibbs Sampling”, Journal of the American Statistical Association,
Vol. 85, pp. 972-985.

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
1995. Bayesian Data Analysis, (London: Chapman & Hall).

Geman, S., and D. Geman. 1984. “Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 6, pp. 721-741.

George, Alan and Joseph Liu. 1981. Computer Solution of Large Sparse

Positive Definite Systems, (Englewood Cliffs: Prentice-Hall).

Geweke, John. 1991. “Evaluating the Accuracy of Sampling-Based Ap-
proaches to the Calculation of Posterior Moments”, Federal Reserve Bank

of Minneapolis, Research Department Staff Report 148.

REFERENCES 282

Geweke, John. 1993. “Bayesian Treatment of the Independent Student t
Linear Model”, Journal of Applied Econometrics, Vol. 8, pp. 19-40.

Gilks, W.R., S. Richardson and D.J. Spiegelhalter. 1996. Markov Chain

Monte Carlo in Practice, (London: Chapman & Hall).

Gilley, O.W., and R. Kelley Pace. 1996. “On the Harrison and Rubinfeld
Data,” Journal of Environmental Economics and Management, Vol. 31
pp. 403-405.

Green, W. H. 1997. Econometric Analysis, third edition, (Upper Saddle
River, N.J: Prentice Hall).

Hanselmann, D. and B. Littlefield. 1997. The Student Edition of MAT-

LAB, Version 5 User’s Guide. (New Jersey: Prentice Hall).

Harrison, D. and D.L. Rubinfeld, D.L. 1978. ’Hedonic prices and the de-
mand for clean air’, Journal of Environmental Economics & Management,
Vol.5, pp. 81-102.

Hastings, W. K. 1970. “Monte Carlo sampling methods using Markov
chains and their applications,” Biometrika, Vol. 57, pp. 97-109.

Intrilligator, M. 1978. Econometric Models, Techniques, and Applications,
(Englewood Cliffs: Prentice-Hall).

Kelejian, H. and W. Oates. 1989. Introduction to Econometrics: Princi-

ples and Applications, (New York: Harper and Row).

Kelejian, H. H. and D. P. Robinson. 1995. “Spatial Correlation: A sug-
gested alternative to the autoregressive model”, in New Directions in

Spatial Econometrics, L. Anselin and R.J.G.M. Florax (eds.). (Berlin:
Springer).

Kmenta, J. 1971. Elements of Econometrics, (New York: Macmillan).

Lange, K.L., R.J.A. Little, and J.M.G. Taylor. 1989. “Robust Statistical
Modeling Using the t Distribution,” Journal of the American Statistical

Association, Vol. 84, pp. 881-896.

Leamer, Edward E. 1978. Specification Searches, (New York: Wiley).

Leamer, Edward E. 1983. “Model Choice and Specification Analysis”,
in Handbook of Econometrics, Volume 1, Zvi Griliches and Michael D.
Intriligator, eds. (North-Holland: Amsterdam).

LeSage, J.P. 1997. “Bayesian estimation of spatial autoregressive models”,
International Regional Science Review, Vol. 20, pp. 113-129.

Lindley, David V. 1971. “The estimation of many parameters,” in Founda-

tions of Statistical Science, V.P. Godambe and D.A. Sprout (eds.) (Toronto:
Holt, Rinehart, and Winston).

REFERENCES 283

Maddala, G.S. 1977. Econometrics, (New York: McGraw-Hill).

McMillen, Daniel P. 1992. “Probit with spatial autocorrelation”, Journal

of Regional Science, Vol. 32, pp. 335-348.

McMillen, Daniel P. 1996. “One Hundred Fifty Years of Land Values in
Chicago: A Nonparametric Approach,” Journal of Urban Economics, Vol.
40, pp. 100-124.

McMillen, Daniel P. and John F. McDonald. 1997. “A Nonparametric
Analysis of Employment Density in a Polycentric City,” Journal of Re-

gional Science, Vol. 37, pp. 591-612.

McFadden, Daniel. 1984. “Econometric Analysis of Qualitative Response
Models”, in Zvi Griliches and Michael D. Intriligator, eds. Handbook of

Econometrics, Volume 2, (North-Holland: Amsterdam).

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E.
Teller. 1953. “Equation of state calculations by fast computing machines,”
Journal of Chemical Physics, Vol. 21, pp. 1087-1092.

Pace, R. Kelley. 1993. “Nonparametric Methods with Applications to
Hedonic Models,” Journal of Real Estate Finance and Economics Vol. 7,
pp. 185-204.

Pace, R. Kelley and Ronald Barry. 1997. “Quick Computation of Spatial
Autoregressive Estimators”, forthcoming in Geographical Analysis.

Pace, R. Kelley, and R. Barry. 1998. “Simulating mixed regressive spa-
tially autoregressive estimators,” Computational Statistics, Vol. 13 pp.
397-418.

Pace, R. Kelley, and O.W. Gilley. 1997. “Using the Spatial Configuration
of the Data to Improve Estimation,” Journal of the Real Estate Finance

and Economics Vol. 14 pp. 333-340.

Pindyck, R. and D. Rubinfeld. 1981. Econometric Models and Economic

Forecasts, (New York: McGraw-Hill).

Raftery, Adrian E., David Madigan and Jennifer A. Hoeting. 1997. “Bayesian
model averaging for linear regression models,”, Journal of the American

Statistical Association, Vol. 92, pp. 179-191.

Schmidt, P. 1976. Econometrics, (New York: Marcel Dekker).

Smith, A.F.M and G.O. Roberts. 1992. “Bayesian Statistics without
Tears: A Sampling-Resampling Perspective”, The American Statistician,
Vol. 46, pp. 84-88.

REFERENCES 284

Theil, Henri and Arthur S. Goldberger. 1961. “On Pure and Mixed Sta-
tistical Estimation in Economics,” International Economic Review, Vol.
2, pp. 65-78.

Vinod, H. and A. Ullah. 1981. Recent Advances in Regression Methods,
(New York: Marcel Dekker).

Zellner, Arnold. (1971) An Introduction to Bayesian Inference in Econo-

metrics. (New York: John Wiley & Sons.)

Econometrics Toolbox
functions

The Econometrics Toolbox is organized in a set of directories, each containing
a different library of functions. When your Internet browser unpacks the com-
pressed file containing the Econometrics Toolbox the files will be placed in the
appropriate directories.

To install the toolbox:

1. create a single subdirectory in the MATLAB toolbox directory:

C:\matlab\toolbox\econ

Where we have used the name econ for the directory.

2. Copy the system of directories to this subdirectory.

3. Use the graphical path tool in MATLAB to add these directories to your
path. (On a unix or linux system, you may need to edit your environment
variables that set the MATLAB path.) the graphical path tool in MAT-
LAB to add these directories to your path. (On a unix or linux system,
you may need to edit your environment variables that set the MATLAB
path.)

A listing of the contents file from each subdirectory is presented on the
following pages.

285

ECONOMETRICS TOOLBOX FUNCTIONS 286

A library of spatial econometrics functions are in the subdirectory spatial.

------- spatial econometrics functions -----------

bcasetti - Bayesian spatial expansion model

bgwr - Bayesian geographically weighted regression

bgwrv - robust geographically weighted regression

casetti - Casetti’s spatial expansion model

darp - Casetti’s darp model

far - 1st order spatial AR model - y = pWy + e

far_g - Gibbs sampling Bayesian far model

gwr - geographically weighted regression

gwr_logit - logit version of GWR model

gwr_probit - probit version of GWR model

lmerror - LM error statistic for regression model

lmsar - LM error statistic for sar model

lratios - Likelihood ratio statistic for regression models

moran - Moran’s I-statistic

normw - normalizes a spatial contiguity matrix

normxy - isotropic normalization of x-y coordinates

sac - spatial model - y = p*W1*y + X*b + u, u = c*W2*u + e

sac_g - Gibbs sampling Bayesian sac model

sacp_g - Gibbs sampling Bayesian sac probit model

sact_g - Gibbs sampling Bayesian sac tobit model

sar - spatial autoregressive model - y = p*W*y + X*b + e

sar_g - Gibbs sampling Bayesian sar model

sarp_g - Gibbs sampling Bayesian sar probit model

sart_g - Gibbs sampling Bayesian sar tobit model

sdm - spatial Durbin model y = a + X*b1 + W*X*b2 + e

sdm_g - Gibbs sampling Bayesian sdm model

sdmp_g - Gibbs sampling Bayesian sdm probit model

sdmt_g - Gibbs sampling Bayesian sdm tobit model

sem - spatial error model - y = X*b +u, u=c*W + e

sem_g - Gibbs sampling Bayesian spatial error model

semo - spatial error model (optimization solution)

semp_g - Gibbs sampling Bayesian spatial error probit model

semt_g - Gibbs sampling Bayesian spatial error tobit model

slag - creates spatial lags

walds - Wald test for regression models

xy2cont - constructs a contiguity matrix from x-y coordinates

------- demonstration programs -----------

bcasetti_d - Bayesian spatial expansion demo

bgwr_d - demo of Bayesian GWR

bgwr_d2 - BGWR demo with Harrison-Rubinfeld Boston data

bgwrv_d - BGWRV demo

casetti_d - Casetti model demo

darp_d - Casetti darp demo

darp_d2 - darp for all data observations

far_d - demonstrates far using a small data set

far_d2 - demonstrates far using a large data set

far_gd - far Gibbs sampling with small data set

far_gd2 - far Gibbs sampling with large data set

gwr_d - geographically weighted regression demo

gwr_d2 - GWR demo with Harrison-Rubinfeld Boston data

gwr_logitd - GWR logit demo

gwr_probitd- GWR probit demo

ECONOMETRICS TOOLBOX FUNCTIONS 287

lmerror_d - lmerror demonstration

lmsar_d - lmsar demonstration

lratios_d - likelihood ratio demonstration

moran_d - moran demonstration

sac_d - sac model demo

sac_d2 - sac model demonstration large data set

sac_gd - sac Gibbs sampling demo

sac_gd2 - sac Gibbs demo with large data set

sacp_gd - sac Gibbs probit demo

sact_gd - sac Gibbs tobit demo

sact_gd2 - sac tobit right-censoring demo

sar_d - sar model demonstration

sar_d2 - sar model demonstration large data set

sar_gd - sar Gibbs sampling demo

sar_gd2 - sar Gibbs demo with large data set

sarp_gd - sar probit Gibbs sampling demo

sart_gd - sar tobit model Gibbs sampling demo

sart_gd2 - sar tobit right-censoring demo

sdm_d - sdm model demonstration

sdm_d2 - sdm model demonstration large data set

sdm_gd - sdm Gibbs sampling demo

sdm_gd2 - sdm Gibbs demo with large data set

sdmp_g - sdm Gibbs probit demo

sdmt_g - sdm Gibbs tobit demo

sem_d - sem model demonstration

sem_d2 - sem model demonstration large data set

sem_gd - sem Gibbs sampling demo

sem_gd2 - sem Gibbs demo with large data set

semo_d - semo function demonstration

semo_d2 - semo demo with large data set

semp_gd - sem Gibbs probit demo

semt_gd - sem Gibbs tobit demo

semt_gd2 - sem tobit right-censoring demo

slag_d - demo of slag function

walds_d - Wald test demonstration

xy2cont_d - xy2cont demo

------- support functions -----------

anselin.dat- Anselin (1988) Columbus crime data

boston.dat - Harrison-Rubinfeld Boston data set

c_far - used by far_g

c_sac - used by sac_g

c_sar - used by sar_g

c_sdm - used by sdm_g

c_sem - used by sem_g

darp_lik1 - used by darp

darp_lik2 - used by darp

elect.dat - Pace and Barry 3,107 obs data set

f2_far - far model likelihood

f2_sac - sac model likelihood

f2_sar - sar model likelihood

f2_sdm - sdm model likelihood

f2_sem - sem model likelihood

f3_sem - semo model likelihood

f_far - far model likelihood (concentrated)

f_sac - sac model likelihood (concentrated)

ECONOMETRICS TOOLBOX FUNCTIONS 288

f_sar - sar model likelihood (concentrated)

f_sdm - sdm model likelihood (concentrated)

f_sem - sem model likelihood (concentrated)

ford.dat - Pace and Barry 1st order contiguity matrix

gwr_g - used by BGWRV

latit.dat - latittude for HR data

longi.dat - longitude for HR data

plt_spat - plots results from spatial models

prt_gwr - prints gwr_reg results structure

prt_spat - prints results from spatial models

scoref - used by gwr

scoref_log - used by gwr_logit

scoref_prob- used by gwr_probit

scoreq - used by gwr

wmat.dat - Anselin (1988) 1st order contiguity matrix

The regression function library is in a subdirectory regress.

regression function library

------- regression program functions -----------

ar_g - Gibbs sampling Bayesian autoregressive model

bma_g - Gibbs sampling Bayesian model averaging

boxcox - Box-Cox regression with 1 parameter

boxcox2 - Box-Cox regression with 2 parameters

hmarkov_em - Hamilton’s Markov switching regression

hwhite - Halbert White’s heteroscedastic consistent estimates

lad - least-absolute deviations regression

lm_test - LM-test for two regression models

logit - logit regression

mlogit - multinomial logit regression

nwest - Newey-West hetero/serial consistent estimates

ols - ordinary least-squares

ols_g - Gibbs sampling Bayesian linear model

olsar1 - Maximum Likelihood for AR(1) errors ols model

olsc - Cochrane-Orcutt AR(1) errors ols model

olst - regression with t-distributed errors

probit - probit regression

probit_g - Gibbs sampling Bayesian probit model

ridge - ridge regression

rtrace - ridge estimates vs parameters (plot)

robust - iteratively reweighted least-squares

sur - seemingly unrelated regressions

switch_em - switching regime regression using EM-algorithm

theil - Theil-Goldberger mixed estimation

thsls - three-stage least-squares

tobit - tobit regression

tobit_g - Gibbs sampling Bayesian tobit model

tsls - two-stage least-squares

waldf - Wald F-test

-------- demonstration programs -----------------

ar_gd - demonstration of Gibbs sampling ar_g

bma_gd - demonstrates Bayesian model averaging

box_cox_d - demonstrates Box-Cox 1-parameter model

boxcox2_d - demonstrates Box-Cox 2-parmaeter model

ECONOMETRICS TOOLBOX FUNCTIONS 289

demo_all - demos most regression functions

hmarkov_emd - demos Hamilton’s Markov switching regression

hwhite_d - H. White’s hetero consistent estimates demo

lad_d - demos lad regression

lm_test_d - demos lm_test

logit_d - demonstrates logit regression

mlogit_d - demonstrates multinomial logit

nwest_d - demonstrates Newey-West estimates

ols_d - demonstrates ols regression

ols_d2 - Monte Carlo demo using ols regression

ols_gd - demo of Gibbs sampling ols_g

olsar1_d - Max Like AR(1) errors model demo

olsc_d - Cochrane-Orcutt demo

olst_d - olst demo

probit_d - probit regression demo

probit_gd - demo of Gibbs sampling Bayesian probit model

ridge_d - ridge regression demo

robust_d - demonstrates robust regression

sur_d - demonstrates sur using Grunfeld’s data

switch_emd - demonstrates switching regression

theil_d - demonstrates theil-goldberger estimation

thsls_d - three-stage least-squares demo

tobit_d - tobit regression demo

tobit_gd - demo of Gibbs sampling Bayesian tobit model

tsls_d - two-stage least-squares demo

waldf_d - demo of using wald F-test function

-------- Support functions ------------------------

ar1_like - used by olsar1 (likelihood)

bmapost - used by bma_g

box_lik - used by box_cox (likelihood)

box_lik2 - used by box_cox2 (likelihood)

boxc_trans - used by box_cox, box_cox2

chis_prb - computes chi-squared probabilities

dmult - used by mlogit

fdis_prb - computes F-statistic probabilities

find_new - used by bma_g

grun.dat - Grunfeld’s data used by sur_d

grun.doc - documents Grunfeld’s data set

lo_like - used by logit (likelihood)

maxlik - used by tobit

mcov - used by hwhite

mderivs - used by mlogit

mlogit_lik - used by mlogit

nmlt_rnd - used by probit_g

nmrt_rnd - used by probit_g, tobit_g

norm_cdf - used by probit, pr_like

norm_pdf - used by prt_reg, probit

olse - ols returning only residuals (used by sur)

plt - plots everything

plt_eqs - plots equation systems

plt_reg - plots regressions

pr_like - used by probit (likelihood)

prt - prints everything

prt_eqs - prints equation systems

prt_gibbs - prints Gibbs sampling models

ECONOMETRICS TOOLBOX FUNCTIONS 290

prt_reg - prints regressions

prt_swm - prints switching regression results

sample - used by bma_g

stdn_cdf - used by norm_cdf

stdn_pdf - used by norm_pdf

stepsize - used by logit,probit to determine stepsize

tdis_prb - computes t-statistic probabilities

to_like - used by tobit (likelihood)

The utility functions are in a subdirectory util.

utility function library

-------- utility functions -----------------------------

accumulate - accumulates column elements of a matrix

cal - associates obs # with time-series calendar

ccorr1 - correlation scaling to normal column length

ccorr2 - correlation scaling to unit column length

fturns - finds turning-points in a time-series

growthr - converts time-series matrix to growth rates

ical - associates time-series dates with obs #

indicator - converts a matrix to indicator variables

invccorr - inverse for ccorr1, ccorr2

lag - generates a lagged variable vector or matrix

levels - generates factor levels variable

lprint - prints a matrix in LaTeX table-formatted form

matdiv - divide matrices that aren’t totally conformable

mlag - generates a var-type matrix of lags

mode - calculates the mode of a distribution

mprint - prints a matrix

mth2qtr - converts monthly to quarterly data

nclag - generates a matrix of non-contiguous lags

plt - wrapper function, plots all result structures

prt - wrapper function, prints all result strucutres

sacf - sample autocorrelation function estimates

sdiff - seasonal differencing

sdummy - generates seasonal dummy variables

shist - plots spline smoothed histogram

spacf - sample partial autocorrelation estimates

tally - computes frequencies of distinct levels

tdiff - time-series differencing

tsdate - time-series dates function

tsprint - print time-series matrix

unsort - unsorts a sorted vector or matrix

vec - turns a matrix into a stacked vector

-------- demonstration programs ------------------------

cal_d.m - demonstrates cal function

fturns_d - demonstrates fturns and plt

ical_d.m - demonstrates ical function

lprint_d.m - demonstrates lprint function

mprint_d.m - demonstrates mprint function

sacf_d - demonstrates sacf

spacf_d - demonstrates spacf

tsdate_d.m - demonstrates tsdate function

tsprint_d.m - demonstrates tsprint function

ECONOMETRICS TOOLBOX FUNCTIONS 291

util_d.m - demonstrated some of the utility functions

-------- functions to mimic Gauss functions -------------

cols - returns the # of columns in a matrix or vector

cumprodc - returns cumulative product of each column of a matrix

cumsumc - returns cumulative sum of each column of a matrix

delif - select matrix values for which a condition is false

indexcat - extract indices equal to a scalar or an interval

invpd - makes a matrix positive-definite, then inverts

matadd - adds non-conforming matrices, row or col compatible.

matdiv - divides non-conforming matrices, row or col compatible.

matmul - multiplies non-conforming matrices, row or col compatible.

matsub - divides non-conforming matrices, row or col compatible.

prodc - returns product of each column of a matrix

rows - returns the # of rows in a matrix or vector

selif - select matrix values for which a condition is true

seqa - a sequence of numbers with a beginning and increment

stdc - std deviations of columns returned as a column vector

sumc - returns sum of each column

trimc - trims columns of a matrix (or vector) like Gauss

trimr - trims rows of a matrix (or vector) like Gauss

A set of graphing functions are in a subdirectory graphs.

graphing function library

-------- graphing programs ---------------------------

pairs - scatter plot (uses histo)

pltdens - density plots

tsplot - time-series graphs

-------- demonstration programs -----------------------

pairs_d - demonstrates pairwise scatter

pltdens_d - demonstrates pltdens

tsplot_d - demonstrates tsplot

------- support functions -----------------------------

histo - used by pairs

plt_turns - plots turning points from fturns function

A library of routines in the subdirectory diagn contain the regression diag-
nostics functions.

regression diagnostics library

-------- diagnostic programs ---------------

bkw - BKW collinearity diagnostics

bpagan - Breusch-Pagan heteroscedasticity test

cusums - Brown,Durbin,Evans cusum squares test

dfbeta - BKW influential observation diagnostics

diagnose - compute diagnostic statistics

ECONOMETRICS TOOLBOX FUNCTIONS 292

rdiag - graphical residuals diagnostics

recresid - compute recursive residuals

studentize - standarization transformation

------- demonstration programs -------------

bkw_d - demonstrates bkw

bpagan_d - demonstrates bpagan

cusums_d - demonstrates cusums

dfbeta_d - demonstrates dfbeta, plt_dfb, plt_dff

diagnose_d - demonstrates diagnose

rdiag_d - demonstrates rdiag

recresid_d - demonstrates recresid

------- support functions ------------------

ols.m - least-squares regression

plt - plots everything

plt_cus - plots cusums test results

plt_dfb - plots dfbetas

plt_dff - plots dffits

The vector autoregressive library is in a subdirectory var bvar.

vector autoregressive function library

------- VAR/BVAR program functions -----------

becm_g - Gibbs sampling BECM estimates

becmf - Bayesian ECM model forecasts

becmf_g - Gibbs sampling BECM forecasts

bvar - BVAR model

bvar_g - Gibbs sampling BVAR estimates

bvarf - BVAR model forecasts

bvarf_g - Gibbs sampling BVAR forecasts

ecm - ECM (error correction) model estimates

ecmf - ECM model forecasts

lrratio - likelihood ratio lag length tests

pftest - prints Granger F-tests

pgranger - prints Granger causality probabilities

recm - ecm version of rvar

recm_g - Gibbs sampling random-walk averaging estimates

recmf - random-walk averaging ECM forecasts

recmf_g - Gibbs sampling random-walk averaging forecasts

rvar - Bayesian random-walk averaging prior model

rvar_g - Gibbs sampling RVAR estimates

rvarf - Bayesian RVAR model forecasts

rvarf_g - Gibbs sampling RVAR forecasts

var - VAR model

varf - VAR model forecasts

------ demonstration programs --------------

becm_d - BECM model demonstration

becm_gd - Gibbs sampling BECM estimates demo

becmf_d - becmf demonstration

becmf_gd - Gibbs sampling BECM forecast demo

bvar_d - BVAR model demonstration

ECONOMETRICS TOOLBOX FUNCTIONS 293

bvar_gd - Gibbs sampling BVAR demonstration

bvarf_d - bvarf demonstration

bvarf_gd - Gibbs sampling BVAR forecasts demo

ecm_d - ECM model demonstration

ecmf_d - ecmf demonstration

lrratio_d - demonstrates lrratio

pftest_d - demo of pftest function

recm_d - RECM model demonstration

recm_gd - Gibbs sampling RECM model demo

recmf_d - recmf demonstration

recmf_gd - Gibbs sampling RECM forecast demo

rvar_d - RVAR model demonstration

rvar_g - Gibbs sampling rvar model demo

rvarf_d - rvarf demonstration

rvarf_gd - Gibbs sampling rvar forecast demo

var_d - VAR model demonstration

varf_d - varf demonstration

------- support functions -----------------

johansen - used by ecm,ecmf,becm,becmf,recm,recmf

lag - does ordinary lags

mlag - does var-type lags

nclag - does contiguous lags (used by rvar,rvarf,recm,recmf)

ols - used for VAR estimation

prt - prints results from all functions

prt_coint - used by prt_var for ecm,becm,recm

prt_var - prints results of all var/bvar models

prt_varg - prints results of all Gibbs var/bvar models

rvarb - used for RVARF forecasts

scstd - does univariate AR for BVAR

theil_g - used for Gibbs sampling estimates and forecasts

theilbf - used for BVAR forecasts

theilbv - used for BVAR estimation

trimr - used by VARF,BVARF, johansen

vare - used by lrratio

The co-integration library functions are in a subdirectory coint.

co-integration library

------ co-integration testing routines --------

adf - carries out Augmented Dickey-Fuller unit root tests

cadf - carries out ADF tests for co-integration

johansen - carries out Johansen’s co-integration tests

------ demonstration programs -----------------

adf_d - demonstrates adf

cadf_d - demonstrates cadf

johansen_d - demonstrates johansen

------ support functions ----------------------

c_sja - returns critical values for SJ maximal eigenvalue test

c_sjt - returns critical values for SJ trace test

cols - (like Gauss cols)

ECONOMETRICS TOOLBOX FUNCTIONS 294

detrend - used by johansen to detrend data series

prt_coint - prints results from adf,cadf,johansen

ptrend - used by adf to create time polynomials

rows - (like Gauss rows)

rztcrit - returns critical values for cadf test

tdiff - time-series differences

trimr - (like Gauss trimr)

ztcrit - returns critical values for adf test

The Gibbs convergence diagnostic functions are in a subdirectory gibbs.

Gibbs sampling convergence diagnostics functions

--------- convergence testing functions ---------

apm - Geweke’s chi-squared test

coda - convergence diagnostics

momentg - Geweke’s NSE, RNE

raftery - Raftery and Lewis program Gibbsit for convergence

--------- demonstration programs ----------------

apm_d - demonstrates apm

coda_d - demonstrates coda

momentg_d - demonstrates momentg

raftery_d - demonstrates raftery

--------- support functions ---------------------

prt_coda - prints coda, raftery, momentg, apm output (use prt)

empquant - These were converted from:

indtest - Rafferty and Lewis FORTRAN program.

mcest - These function names follow the FORTRAN subroutines

mctest -

ppnd -

thin -

Distribution functions are in the subdirectory distrib.

Distribution functions library

------- pdf, cdf, inverse functions -----------

beta_cdf - beta(a,b) cdf

beta_inv - beta inverse (quantile)

beta_pdf - beta(a,b) pdf

bino_cdf - binomial(n,p) cdf

bino_inv - binomial inverse (quantile)

bino_pdf - binomial pdf

chis_cdf - chisquared(a,b) cdf

chis_inv - chi-inverse (quantile)

chis_pdf - chisquared(a,b) pdf

chis_prb - probability for chi-squared statistics

fdis_cdf - F(a,b) cdf

fdis_inv - F inverse (quantile)

fdis_pdf - F(a,b) pdf

fdis_prb - probabililty for F-statistics

ECONOMETRICS TOOLBOX FUNCTIONS 295

gamm_cdf - gamma(a,b) cdf

gamm_inv - gamma inverse (quantile)

gamm_pdf - gamma(a,b) pdf

hypg_cdf - hypergeometric cdf

hypg_inv - hypergeometric inverse

hypg_pdf - hypergeometric pdf

logn_cdf - lognormal(m,v) cdf

logn_inv - lognormal inverse (quantile)

logn_pdf - lognormal(m,v) pdf

logt_cdf - logistic cdf

logt_inv - logistic inverse (quantile)

logt_pdf - logistic pdf

norm_cdf - normal(mean,var) cdf

norm_inv - normal inverse (quantile)

norm_pdf - normal(mean,var) pdf

pois_cdf - poisson cdf

pois_inv - poisson inverse

pois_pdf - poisson pdf

stdn_cdf - std normal cdf

stdn_inv - std normal inverse

stdn_pdf - std normal pdf

tdis_cdf - student t-distribution cdf

tdis_inv - student t inverse (quantile)

tdis_pdf - student t-distribution pdf

tdis_prb - probabililty for t-statistics

------- random samples -----------------------

beta_rnd - random beta(a,b) draws

bino_rnd - random binomial draws

chis_rnd - random chi-squared(n) draws

fdis_rnd - random F(a,b) draws

gamm_rnd - random gamma(a,b) draws

hypg_rnd - random hypergeometric draws

logn_rnd - random log-normal draws

logt_rnd - random logistic draws

nmlt_rnd - left-truncated normal draw

nmrt_rnd - right-truncated normal draw

norm_crnd - contaminated normal random draws

norm_rnd - multivariate normal draws

pois_rnd - poisson random draws

tdis_rnd - random student t-distribution draws

unif_rnd - random uniform draws (lr,rt) interval

wish_rnd - random Wishart draws

-------- demonstration and test programs ------

beta_d - demo of beta distribution functions

bino_d - demo of binomial distribution functions

chis_d - demo of chi-squared distribution functions

fdis_d - demo of F-distribution functions

gamm_d - demo of gamma distribution functions

hypg_d - demo of hypergeometric distribution functions

logn_d - demo of lognormal distribution functions

logt_d - demo of logistic distribution functions

pois_d - demo of poisson distribution functions

stdn_d - demo of std normal distribution functions

ECONOMETRICS TOOLBOX FUNCTIONS 296

tdis_d - demo of student-t distribution functions

trunc_d - demo of truncated normal distribution function

unif_d - demo of uniform random distribution function

-------- support functions ---------------------

betacfj - used by fdis_prb

betai - used by fdis_prb

bincoef - binomial coefficients

com_size - test and converts to common size

gammalnj - used by fdis_prb

is_scalar - test for scalar argument

Optimization functions are in the subdirectory optimize.

Optimization functions library

--------------- optimization functions -----------------

dfp_min - Davidson-Fletcher-Powell

frpr_min - Fletcher-Reeves-Polak-Ribiere

maxlik - general all-purpose optimization routine

pow_min - Powell conjugate gradient

optsolv - yet another general purpose optimization routine

--------------- demonstration programs -----------------

optim1_d - dfp, frpr, pow, maxlik demo

optim2_d - optsolv demo

optim3_d - fmins demo

--------------- support functions -----------------------

apprgrdn - computes gradient for optsolv

box_like1 - used by optim3_d

gradt - computes gradient

hessian - evaluates hessian

linmin - line minimization routine (used by dfp, frpr, pow)

stepsize - stepsize determination

tol_like1 - used by optim1_d, optim2_d

updateh - updates hessian

