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THE THEORY OF ARMATURE WINDINGS.

By S. P. SMITH, D .SC, Associate Member.

(Paper first received 12 May, and in final form 30 October, 1916.)

SUMMARY.

In this paper an attempt is made to outline the theory of
armature windings in heteropolar machines (i.e. machines with
alternate north and south poles).

Section 1.—Attention is drawn to the fundamental importance
of the relation between the number of slots and the number of
poles, and, by the aid of simple vector diagrams, the condition
is established for obtainfng a winding in which the sum of all
the induced pressures is zero at any instant. If all the coils in
such a winding are joined in series to form a closed winding, no
internal current can circulate. Following this, the condition is
found for obtaining a number of similar symmetrical polyphase
systems in such a winding, this being essential when parallel
circuits are needed, as in most commutator machines. A wind-
ing fulfilling these conditions is called symmetrical, and an
extension of the argument reveals the relationship that must
exist between the number of slots and the number of poles in a
symmetrical 3-, 4-, or 6-phase winding. Table 1 shows the
number of similar circuits it is possible to have with various
numbers of poles.

Section 2.—This deals solely with single-layer windings. The
arrangement of the coils for various symmetrical and hemisym-
metrical polyphase windings is discussed. The effect of the
number of slots on the number of similar parts in each phase is
shown, and the means indicated for suppressing tooth effects.

Section 3.—The arrangement of open and closed double-layer
windings is illustrated, and the methods of loading closed wind-
ings are compared. The connecting rules for lap and wave
windings are deduced, and the restrictions examined for making
these windings symmetrical. These results are given in
Tables 2 and 3, along with the slottings possible for N-phase,
lap and wave windings. These tables enable the designer to
see at once the number of coil-sides per slot, the number of
slots, and the number of phases possible in any symmetrical
winding.

Lastly, it is shown how to find the points where a winding
must be tapped or opened to obtain phases, examples being
given to illustrate the various cases.

The sections of the paper are subdivided as follows :—

1. Armature windings.

(I) Condition for obtaining a closed winding.
(II) Condition for obtaining a symmetrical winding.

( III ) Examples of symmetrical and unsymmetrical windings.
(IV) Conditions for obtaining a symmetrical N-phase winding.

(V) Phase-spread and coil-span.

2. Single-layer windings.

(I) Arrangement of single-layer windings.
(II) Number of armature slots.

(a) Whole number of slots per pole.
(b) Fractional number of slots per pole.

(i) Use of empty slots,
(ii) Use of unequal coil groups.

3. Double-layer windings.

(I) Arrangement of double-layer windings.
(a) Phase tappings off closed windings.

(i) Polygon tappings,
(ii) Diametral tappings.

(b) Open double-layer windings.
(II) Connecting rules for closed windings.

(a) Closing rule for lap windings,
(ft) Closing rule for wave windings.

(III) Conditions for obtaining symmetrical lap and wave

windings.
(a) Symmetrical lap windings.
(b) Symmetrical wave windings.

(IV) Conditions for obtaining symmetrical N-phase, lap and

wave windings.
{a) Symmetrical N-phase lap windings.
(b) Symmetrical N-phase wave windings.

(i) Number of poles,
(ii) Number of slots.

(V) Location of tappings and openings.

(a) Tappings off symmetrical lap and wave windings.
(b) Opened wave windings.
(c) Illustrative examples.

(VI) Wave windings with a whole number of slots per pole.

DEFINITIONS.

The following definitions may be found useful in reading
the paper:—

Symmetrical polyphase system.—A polyphase system is
said to be symmetrical when all the pressures have the
same amplitude and are equally displaced from one another
in a period, i.e. when /3 = 2 »r/N, where N is the number of
phases and /3 the angle between successive phases. In
such a system, the sum of the N pressures is equal to zero
at any instant, so that the N phases can be joined in series
(mesh) without causing internal currents to flow.

Hemisymmetrical polyphase system.—A polyphase system
is called hemisymmetrical when all the pressures have the
same amplitude and are displaced from one another by
i/Nth of half a period. A hemisymmetrical, N-phase
system is one-half of a symmetrical, 2 N-phase system.

Phase-pitch.—The displacement between two successive
phases of a polyphase system is called the phase-pitch.
The phase-pitch can be measured in any suitable unit in
angular or linear measure, or expressed as a number of
segments, slots, etc. When measured in radians, the
angular phase-pitch is /3.

Phase-spread.—The angle subtended in each pole-pitch
by the group of coil-sides of a phase is called the angular
phase-spread. This will be denoted by a. According to
whether the phase-spread is i/Nth or 2/Nths of a pole-
pitch, we have the narrow or wide phase-spread.
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SYMBOLS USED.

C = total number of coils in a winding, or segments in
commutator.

I = R.M.S. value of current.
N = number of phases.
Q = number of slot-pitches per pole-pitch (or slots per

S = total number of slots in periphery.
S' = number of slots in a symmetrical polyphase

system = S/a.

-,r = - = segments per slot.

a = any integer, i, 2, 3, etc.
= number of similar parts (or circuits) in a phase of

a symmetrical winding.
e = instantaneous value of electromotive force.
e = maximum value of electromotive force,

m = number of coils in a group.
n = any integer.
P = total number of pole-pairs in a machine.

p' = number of pole-pairs in a symmetrical polyphase
system = p\a.

q = number of slots per pole and phase = Q/N.
q0 =s number of wound slots per pole and phase.
M = number of coil-sides per slot.

yc = commutator pitch measured in commutator seg-
ments (or coils).

y» and j y= back and front winding pitches measured in
coil-sides.

yt = equipotential (or potential) pitch = C/a segments
(or coils).

» A = phase-pitch = C/a N segments (or coils) = S/a N
slots.

/3 = angular phase-pitch in radians.
y = angular slot-pitch in radians.
a = angular phase-spread in radians.
\(/ = angular phase displacement between the pressures

induced in successive coils in the winding.

1. ARMATURE WINDINGS.

In a heteropolar machine, that is, a machine with
alternate north and south poles, the periphery of p pole-
pairs represents 2 irp radians, in electrical measure.
Denoting the total number of slots in the uniformly-
slotted periphery by S, the angular slot-pitch in radians is
then

2 vp
( 1 )

The phase of the pressure induced in a conductor
depends chiefly on the position in the field of the slot in
which the conductor lies, and only to a small extent on the
position of the conductor in the slot. If no flux whatever
passed through the slot, the phase of the pressure induced
in each conductor in the slot would be the same. Conse-
quently, in a slotted armature, the position of the slots in
the field, or, in other words, the relation between the
number of slots and the number of poles, is of fundamental
importance. To examine this relation, then, we need only
consider the slots filled with coils arranged to form a
uniform winding over the periphery. For this purpose

we can take an ordinary two-layer winding with two coil-
sides per slot—one in the top and the other in the bottom
layer, In this winding, the number of coils C is equal to
the number of slots S. These coils can be joined up in
many different ways, according to whether the constant
phase displacement ty between the pressures induced in
successive coils is to be greater than, equal to, or less than
the slot-pitch y, as can be readily understood from the
rules for lap and wave connections, which we shall
consider presently.

Ignoring any harmonics that may be present in the
•pressure wave, that is, assuming a sinusoidal flux-distribution,
the pressures induced in the successive coils a, b, c, etc.,
can be represented by vectors displaced from one another
by the angle ty, as shown in Fig. 1 (a), whilst the resultant
pressure obtained by joining m coils in series is shown in
Fig. 1 (b). (Small letters are used to denote instantaneous

(6)

(a)
FIG. 1.—Pressures induced in successive coils of a winding.

(a) Vector diagram. (6) Resultant of vector diagram.

values, and a bar is added to denote maximum values.)
If the m vectors in Fig. i (b) form a closed figure, as is
the case whenever m i|/ = 2 T, 4 n, . . ., or, in general,
2 it a, where a = 1, 2, 3, etc., then it is clear that £f

 e = o»
and if the m coils represented by these vectors are joined
in series to form a closed winding, no internal current will
circulate.

In the special case when m \p = 2 rr, the nt coils form, by,
definition, a symmetrical m-phase system. If a winding has
a such systems all alike, that is, a similar sets of m coils each,
it is said to be symmetrical. If like coils of the a similar
parts of a symmetrical winding are joined in series or
parallel, neither the phase nor the shape of the pressure
wave will be aftected in any way, nor can currents
circulate between the several parts.

We shall now see how these conditions can be fulfilled,
in a winding.

(I) Condition for obtaining a Closed Winding.

A closed winding may be defined as a winding in which
the sum of all pressures is zero at any instant, since no
current of fundamental frequency can circulate in such a
winding when all the coils are joined in series to form a
closed winding.

In order that the sum of the pressures induced in the
S coils in the winding may be zero, we must make the total
phase displacement Sip = 2 KU, because only in this case
do the S vectors form a closed figure.
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We must have then

S \p := 2 IT a,

so that the phase angle \p must be (see Equation i)

2 IT a 2 IT a a
• (2)

Thus by making \p = a yip, we obtain a winding in which
S ip = 2 7r a, and therefore ]£ £ = o.

It will be seen presently that the rules for lap and wave
connections are developed from the simple relation in*
Equation (2).

In the above argument, it is noticed that a is merely a
number ; that is, a = 1, 2, 3, etc.

(II) Condition for obtaining a Symmetrical Winding.

If a winding in which S ty = 2 re a has a similar parts, it
can be called symmetrical, because the coils in each part
then form a symmetrical polyphase system, in which the
sum of the pressures is zero at any instant.

Let a be the highest common factor (H.C.F.) of the
number of slots S and the number of pole-pairs p. Then
S/a=S' and p\a=p' are bot'i integers, and the above
formulae become

S' \p = 2 IT, and S' y = 2 IT/>'.

Hence the phase angle \p will now be

(3)

Thus by making «// = yip
1
, we obtain a winding in which

S' 1//= 2 IT, and therefore ^ e = o. Each set of S' vectors
forms a closed polygon, and there are a such polygons
exactly alike. Consequently such a winding has a similar
parts, and each part forms a symmetrical S'-phase system,
in which the sum of the S' pressures is zero at any instant.

In this case, then, a has a definite meaning—it is the
H.C.F. of S and />, and denotes the number of similar parts
in the winding, or the number of times the slot positions
in the field recur.

Since from each of a similar systems a similar circuit can
be taken, it follows that a represents the number of similar
circuits possible in a symmetrical winding. These a
similar circuits can be united to form one phase of a poly-
phase system—the series or parallel connection being used
according to the pressure and current required. The
several phases can then be interlinked in star or mesh,
as desired, unless they are already joined in mesh to form
a closed winding. When the circuits are connected in
series, the same current flows through all ; when they are
joined in parallel the current per circuit Ia = \p\a, where \t

is the total current per phase.
In this way the common symmetrical polyphase windings

are formed, as shown in sub-section (IV). The chief of
ihese are

Symmetrical 2-phase winding
(diametral tappings).

Symmetrical 3-phase winding :
Symmetrical 4-phase winding:
Symmetrical 6-phuse winding

2 phases at i8o#

3 phases at 1200.
4 phases at 90*.
6 phases at 6o°.

When the coils of a symmetrical winding are joined in
series to form a closed winding, there will always be a
coils at the same potential. These a equipotential coils are
S' = S/a coils apart, and must be connected to a common
terminal by means of tappings or commutator brushes, in
order to load the a similar parts of the closed winding
uniformly. For this reason we call the distance between
successive equipotential coils the equipotential (or, briefly,
the potential) pitch, i.e. the potential pitch _y,>=S/a slots
or Cja coils. Obviously, equipotential connectors (or equal-
izing rings) can be joined to any of the corresponding S'
phases in the a similar parts of the winding; when desired.

An interesting case of the mesh connection with the a
systems in parallel is the continuous-current machine,
where connection is made to a closed winding by means
of commutator brushes. In this case a brush does not
make connection with two similar circuits, but with the two
phases at 1800 of a symmetrical 2-phase system. The
total current \p in each phase is then equal to half the
continuous current lc, so that the current per circuit
Ia = l,la=.lel{2a).

The above conditions can be summarized as follows :—

(I) When the total phase displacement of the S coils
S\p = 2TT a, where a = 1, 2, 3, etc., then ~-i[ e = o,
and the S coils can be joined in series to form a
closed winding.

(II) When in addition to S »// = 2 IT a, a is the H.C.F. of
S and p, then S' ip = 2 -IT, and therefore £ s

 e = o ;
so that the S coils form a similar symmetrical
S'-phase systems.

A winding which satisfies conditions (I) and (II) is called
symmetrical, whilst a winding which satisfies condition (I)
but not condition (II) is called unsymmetrical.

These conditions show clearly how the number of
similar parts or circuits in a winding depends on the
relation between the number of poles and the number
of slots. When we come to deal with the actual
windings themselves in the latter part of the paper,
it will be found that a certain amount of confusion
exists due to a slotting being used for a number of circuits
different from the H.C.F. of S and p. In practice this
often leads to undesirable results, as will be seen when we
refer to two of the commonest examples. In an alternator
it is quite common to use a slotting which gives the number
of similar parts a equal to the number of pole-pairs /> when
only one circuit per phase is needed, with the re-ult that
tooth effects are repeated throughout the phase, whereas
when a is less than p (for example a = 1), the tooth effects
are suppressed by joining dissimilar pressures in series.
On the other hand, in a commutator machine where the a
parts are joined in parallel at the commutator or at the
slip-rings it is very important to make the winding sym-
metrical, that is, the a paths exactly similar, to prevent
sparking and the circulation of internal currents.

(Ill) Examples of Symmetrical and Unsymmetrical
Windings.

To illustrate the foregoing, let us choose at random
different numbers of slots S and of pole-pairs p, and show
what windings with 2 coil-sides per slot are possible when
we make a = 1, 2, 3, etc. The possible lap and wave
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windings are found from the closing rules derived from
Equation (2), and given on page 29. Though single-
layer windings might also be included in this table,
nothing would be gained by their addition, for the
symmetry or dissymmetry of a winding depends funda-
mentally on the relation between the number of poles and
the number of slots, and not on the type of winding used.

see under what conditions the slotting for a symmetrical
winding can be divided into N equal parts at an angle
/3 = 2TT/N radians apart to form a symmetrical N-pHase
system. In other words, we must see when it is possible
to derive a symmetrical N-phase system from S' slots and
p' pole-pairs.

First, with regard to the slots, let S' be exactly divisible

Pole-pairs
" P

2

2

3

3

3

4

j ;

4

4

4

Total Slots
S

39

36

42

4 !

4 0

48

47

46

45

H.C.F.
of S and j

I

2

3

1

1

4

1

2

1

I
i 2

1 1

i >>

1

: 3

3

1

4

2

4

S'

39

>>

18

14

4 1

40

1 2

47 ;

23

45

Assumed
a

I
2

3

1
2

3

1
2
3

1
2

3

1
2
3

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

7/2

7
3 7/2

7/2
7

3 7/2

7/3
2 7 3

7

7/3
2 7/3

7

7/3
2 7/3

7

7/4
7/2

3 7/4
7

7/4
7/2

3 7/4
7

7/4
7/2

3 7/4
7

r/4
7/2

3 7/4
7

S \^ = 2 7T a

2 7T

6 7T

47T

6TT

2 7T

4 7 T

2 7T

47T
6TT

8TT

2 7T

6 T T

8TT

4 7T

8TT

2 7T

8^

Conditions
satisfied

I and II
I
I

I and II

I and II

I and II
I
I

I and II
I
I

I and II

I and II

I
I

I and II

I

I and II

I
I

Possible Windings

Symmetrical wave
Unsymmetrical lap
Unsymmetrical wave

Impossible *
Symmetrical lap or wave
Impossible

Impossible

Symmetrical lap or wave

Symmetrical wave
Unsymmetrical wave
Unsymmetrical lap

Symmetrical wave
Unsymmetrical wave
Unsymmetrical lap

Impossible

Symmetrical lap or wave

Symmetrical wave
Impossible
Unsymmetrical wave
Unsymmetrical lap

Impossible
Symmetrical wave
Impossible
Unsymmetrical lap

Symmetrical wave
Impossible
Unsymmetrical wave
Unsymmetrical lap

* Cases are marked impossible when it is not possible to find windings, due to the impossibility of giving ^ the required values or to other
reasons. For example, with 18 slots per pole-pair, it is clearly impossible to make ^ an odd multiple of 7/2.

Though windings are also possible when a > p, these
have not been included in the above table, because, being
unsymmetrical, they are not so important, and because the
above table is merely intended to be illustrative, the com-
plete tables being given later in the paper (see page 32).

(IV) Conditions for obtaining a Symmetrical N-phase
Winding.

Though it is possible to have a similar S'-phase systems
in a symmetrical winding, usually only a smaller number
of phases N = 3, 4, or 6 is required. We must therefore

by N. We then get N equal phases displaced from one
another by an angle S' i^/N = 2 TT/N = /3 (since S' \p = 2 ir}

in a symmetrical winding), which is what is needed. We
can call the integer S'/N the phase-pitch measured in slots,
and denote it by yP h} that is, yPh = S'/N.

Coming now to the poles, it is clear that 2 irp'/N =p' ft
must give the correct phase displacement 2 TT/N = /3.
This is the case when f = n N ± 1, where n = o, 1, 2,3, etc.,
for then p' (3 = (n N ± 1)2 TT/N = ± 2 TT/N = ± /3. That is
to say, when />'=;/ N ± 1 the same positions are obtainable
for N phases in the field with p' pole-pairs as with one
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pole-pair. This is not possible, however, if p' is a multiple
of N, for when p' = n N, />' /3 = n N(2 TT/N) = o. The same
result can also be deduced from the fact that in a sym-
metrical winding S' and p' have no common factor greater
than unity, and since S'/N is to be an integer, it follows
that />'/N cannot be integral.

Since a symmetrical winding has a similar parts, it
follows that each phase in the N-phase system will have
a similar parts, and by connecting these a parts in parallel
we get a circuits per phase.

Thus to get a symmetrical N-phase winding, we must
have a symmetrical winding (as 'defined in Equation 3)
such that

and *' = t — n N -I- 1
r
 a —

. . . . (4)

where a = H.C. F. of S and p = number of similar parts
(or circuits) per phase.

The numbers of slots that will satisfy Equation (4) for
N = 3 , 4, and 6, are determined in the following sections
of the paper, and are tabulated for lap and wave windings
on page 32, whilst the following table shows the relation
between the number of phases N, the number of similar
parts (or circuits, with parallel connection) per phase a and
the number of pole-pairs p in the machine.

Table 1 shows that certain cases are not possible; for
example, it is not possible to obtain a symmetrical 3-phase
winding with only one or two similar parts per phase
in a 6- or 12-pole machine, nor is it possible to obtain a
symmetrical 4-phase pressure from an 8-pote machine
unless we have four similar parts in each phase.

Unless a commutator is used, it is not necessary, and
with some types of winding not possible, to wind all the
slots in each of the N parts ; but provided that all N phases
are made equal and properly spaced, a symmetrical
N-phase pressure is obtained.

An extension to the above rule for obtaining a similar
circuits per phase enables us to get 2 a parallel circuits
per phase when N is even. For example, a symmetrical
6-phasc system is equivalent to two symmetrical 3-phase
systems at 1800, so that by joining opposite phases I and IV,
III and VI, and V and II in parallel, we get a symmetrical
3-phase system with the same number of circuits as the
6-phase system from which it is derived. It this way it is
possible to get two circuits per phase in a 2-pole machine,
or in general to obtain as many circuits per phase as
there arc poles—a matter of great importance in practice.
In a similar way it is possible to derive a hemisymmetrical
2-phase winding from a symmetrical 4-phase winding.

Obviously, the number of phases in an N-phase system,
when N is even, can be halved by joining opposite phases
in series, and this is a very common way of obtaining
a 3-phase winding.

Before applying these conditions to single- and double-
layer windings, occasion may be taken here to point out
the importance of making polyphase windings completely
symmetrical wherever possible. The nature of the effects
of dissymmetry in alternating-current systems can be
understood by considering what happens when polyphase
synchronous machines work in parallel. When the pres-
sures of the several machines are unequal, due to incorrect

field excitation, equality is established by reactive currents,
which maintain the fluxes in the several machines at such
a value that the sum of all the pressures round any circuit
is zero at every instant. When there is a phase displace-
ment between a machine pressure and a line pressure,
a power component of current flows, and according to

TABLE r.

Possible Numbers of Similar Circuits per Phase in a Sym-

metrical N-phase Winding on a Machine with 2 p Poles.

Number of
Pole-pairs in

Machine
• P

I

2

3

4

5

6

7

8

9

1 0

11

12

Number of
Similar Circuits

per Phase
a

I

I

2

I

3

I

2

4

1

5

2

3
6

1

7

1

4
Q
O

I

3
9

1

2

5
10

X

I I

3

4
6

12

V-P
P
 ~a

I

2

I

3
I

4
2

1

5
1

3
2

1

7
1

8
4
2

1

9
3
1

1 0

5
2

1

1 1

1

4
3
2

1

Possible
Number of

Phase*
N

3.4.6

3
3.4.6

4 ̂
3.4.6

3
3

3.4.6

3.4.6
3.4,6

4
3

3.4.6

3.4.6
3.4.6

3
3
3

3.4,6

4
4

3,4.6

3
3,4.6

3
3, 4. 6

3,4.6
3.4,6

3
4
3

3-4-6

whether the phase of the machine pressure is ahead or
behind that of the line pressure, the machine acts as a
generator or motor. In the same way, when the pressures
in the phases of a winding are unequal, reactive currents
will flow to equalize them, whilst dissimilar phase angles
will give rise to power components.

Where continuous currents are concerned, experience
has shown that sparking in rotary converters and flickering
in the lights connected on each side of the middle wire
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of dynamos with static balancers have often been
caused by unsymmetrical phases on the alternating-
current side. Also, the trouble due to having the parallel
circuits unlike one another in a commutator machine are
well known. Of course, in some cases, like the rotor of a
small induction motor, a certain amount of dissymetry may
be harmless.

(V) Phase-spread and Coil-span.

In each pole-pitch the coil-sides of each phase are
spread over a definite arc—this arc we shall call the
phase-spread, and denote by <r (angular measure). Accord-
ing to the way the winding is arranged, the phase-spread
can be made equal to i/Nth or 2/Nths of the pole-pitch, or
<r = 7r/N or 2 TT/N radians. With a narrow phase-spread,
<r 5= TT/N, and with a wide phase-spread a f== 2 *r/N radians.

Pole-piDch Pole-pi bch

(6)

FIG. 2.—Equivalent constant-span coils in single-layer
winding.

(a) Actual coils (variable span). (6) Equivalent coils (constant span).

In a double-layer winding the coil-span is usually
constant and approximately equal to a pole-pitch, the
coils being arranged in two layers and distributed uni-
formly over the armature periphery (see Fig. 8). In a
single-layer winding, the coils can have a constant span, as
in the mush winding ; but winding the coils one inside the
other forms a better arrangement for high-tension work
and is preferred by some makers for all voltages. The
variable coil-span, however, is due merely to the arrange-
ment of the overhang, and by changing this we can
obtain constant-span coils without affecting the position of
the coil-sides in the slots in any way (see Fig. 2).

Both the phase-spread and the coil-span have a direct
bearing on the output of the winding. To obtain the
largest output from a given number of phases, the mean
coil-span should equal the pole-pitch to make the coil-span
factor unity, and the narrow phase-spread should be used

to obtain a high distribution factor.* The influence of the
phase-spread also explains why a larger output is obtained
from an increased number of phases when the mean span
of the coils in each phase is kept equal to the pole-pitch.

2. SINGLE-LAYER WINDINGS.

(I) Arrangement of Single-layer Windings.

The peculiarity of the single-layer winding is the use of
one coil-side per slot, so that every coil fills two slots.
Consequently if the coils of a phase are to lie in adjacent
slots, as is usual in single-layer windings, each pole-pair
must be divided into 2 N equal parts, two of which are
monopolized by each phase. The phase-spread in a
single-layer winding is then a = 2 TT/2 N = 7r/N radians.
It is also possible to obtain a phase-spread of 2 ir/N radians
in a single-layer winding by spreading the coil-sides of a
phase over the wider arc and filling the empty slots by the
coil-sides of another phase ; but owing to the reduced
output obtainable with the wide phase-spread, this
arrangement is only resorted to in special cases, as, for
example, in a 3-phase winding when it is desired to
suppress the third harmonic in the phase pressure.

In single-layer windings, then, it is standard practice to
use the narrow phase-spread, and a number of such poly-
phase windings are represented diagrammatically in Fig. 3,
where a circle denotes a pole-pair of 2 ir radians. The
circle is divided into 2 N parts, and single- and double-
dashed numerals are used to denote the two sets of
coil-sides in each phase. The phases can be interlinked
as desired—thus diagrams a-e represent hemisymmetrical
windings having 1, 2, 3, 4, and 6 phases respectively ;
whilst /, g, h, and k represent symmetrical 2, 3, 4, and
6-phase windings.

It is seen in Fig. 3 that different conditions arise
according to whether the number of phases N is even
or odd. Diagrams a-e and g show that with the mean
coil-span equal to a pole-pitch, it is possible to obtain
any hemisymmetrical N-phase winding, but only a
symmetrical N-phase winding when N is odd. When
N is even, a symmetrical N-phase winding is obtainable
by making the mean coil-span equal to (N — i)/N times
the pole-pitch, as shown in diagrams /, h, and k. The
relative outputs given on the diagrams are calculated for
uniformly distributed windings, that is, for a phase-spread
= 7T/N.

The diagrams in Fig. 3 clearly show how two phases in
which the pressures are equal and opposite can be joined
in parallel or series to form a single phase. For example,
in the symmetrical 6-phase winding in diagram k, the
pressures in phases I and IV are equal and opposite, and
by combining each such pair we get the hemisymmetrical
3-phase winding in diagram c, or the symmetrical 3-phase
winding in diagram g. In diagram k, where N = 6 is
even, the mean coil span is equal to (N — i)/N = 5/6ths of
the pole-pitch ; whilst in diagram g, where N = 3 is odd,
the mean span equals the pole-pitch. Similarly the
hemisymmetrical 2-phase winding with the mean span
equal to the full-pitch in diagram b can be obtained from
the symmetrical 4-phase winding with the mean coil-span

* S. P. SMITH and R. S. H. BOULDING : " The Shape of the Pressure
Wave in Electrical Machinery." Journal I.E.E., 1915, vol. 53, p. 205.
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equal to three-quarters of the pole-pitch in diagram h by
combining phases I and III to form phase I and phases II
and IV to form phase II. Or, again, the i-phase winding
in diagram a can be derived from the 2-phase winding in
diagram /, by joining phases I and II in series or parallel.

The advantage of obtaining an N-phase winding with
full-pitch coils from a 2 N-phase winding with short-pitch

(II) Number of Armature Slots.

In single-layer windings it is common practice for a
phase to have the same number of coils in each pole-pair.
Let q0 denote the number of coils per phase in each pole-
pair. These q0 coils require 2 qQ slots, so that for the
N phases there must be 2^0N slots per pole-pair, or in

W°. of phases
in winding

Relative output

= 1

= O-637
(a)

H° of phases
in winding =

Relative output = 0-632

FIG. 3.—Diagrammatic arrangements of single-layer windings to obtain N phases with narrow phase-spread (a = TT/N).
(a) to («)—Hemisymmetrical systems (/9 = ?r/N) with full-pitch coils. (£)^-Symmetrical system (/9 = 2 TT/N) with full-pitch coils.

(/), <7i), and (*)—Symmetrical systems (0 = 2 T/N) with short-pitch coils.

coils is threefold. First, the two parts can be joined in
parallel, thereby doubling the number of circuits in a
phase ; secondly, the overhang is often shorter, thereby
reducing the copper and heating in this part of the wind-
ing ; thirdly, the same output is obtained with half the
number of phases. Of course, when the series connection
is used it is not necessary to have the two parts which are
joined together alike, and it is quite common to have one
part with one coil more than the other. This is equivalent to
having a 2 N-phase winding with 2 N empty slots per pole-
pair, and winding the empty slots in the N-phase winding.

p' pole-pairs there must be 2q0Np' slots. The total
number of slots S' in the p' pole-pairs can be written

where x denotes the number of slots in the />' pole-pairs
not needed by the q0 coils per group, and will be left empty
when all groups are alike—see sub-section (a) below. If
the x slots are wound, some groups will have more coils
than others—see sub-section (b) below.

In order to obtain a symmetrical N-phase winding, the
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number of slots S' must satisfy Equation (4), that is, the
phase-pitch must be

> 2qP' +

where p' = n N ± i = pja.

Since yph must be a whole number and 2 qop' is integral,
it follows that the number of extra slots x in the p' pole-
pairs must be divisible by. the number of phases N, and
each phase-pitch contain .r/N extra slots.

The total number of slots S in the machine is then

S = S' a = 2 q0Np + xa . . . . (50)

In the common 3-phase single-layer winding, this
becomes

S = 6qop +xa (56)

where x = o, 3, 6, etc., and a = p/p' =pl(3ii±i) is an
integer ^ />.

As these expressions are so simple, there is no need to
tabulate the slottings for single-layer windings, and we
shall therefore only consider the general cases.

(a) Whole number of slots per pole.—In most single-layer
windings, the number of slots per pole Q is an integer.
In this case every pole-pair is alike and forms a complete
N-phase system. Thus S' = 2 q0N -\~x and Q = q0 N + xJ2,

where ,r can be zero or any multiple of N. The total
number of slots S = S'/>, since a — p when p' = i.

An interesting relation holds when N is even and the
polyphase winding is symmetrical, as pointed out in con-
nection with Fig. 3. In this case the mean coil-span equals
(N — i)/N times the pole-pitch, but by halving the number
of phases we double the number of circuits and make the
mean span equal to the pole-pitch. The important case in
practice is when a 3-phase winding has a whole number
of slots per pole. In this case the slotting is always that
of a symmetrical 6-phase winding. Thus when N = 6,
Q = 6 q0 + \x. If now x = o, then Q is a multiple of 6,
that is an even multiple of 3, so that the 6-phase winding
consists of two 3-phase windings, which can be joined in
series or parallel. If x = 6, Q = 6 qo + 3 ; that is, Q is an
odd multiple of 3, so that we have a symmetrical 6-phase
winding with 3 empty slots per pole, or a symmetrical
3-phase winding with Q/3 = 2 q0 -f 1 slots per phase and
pole. In the latter case there are not two equal circuits
per phase per pole-pair when all slots are wound, but this
is immaterial when only the series connection is required.
It is thus seen that with a whole number of slots per pole,
the slotting for a symmetrical 3-phase winding is the same
as that for a symmetrical 6-phase winding, and it is due to
this fact that it is possible to obtain a 3-phase single-layer
winding with one circuit per pole and phase.

When the number of slots per pole is integral, the same
slot positions recur under every pole, and the coil-sides of
the whole winding can only occupy Q positions in the field.
Consequently, any effect due to the spacing of the slots or
the swinging of the flux is repeated under every pole and
appears undiminished in the phase pressure in the form of
a spacing ripple or a tooth ripple. Thus for obtaining a
smooth wave for the phase pressure we have the worst
possible conditions with a whole number of slots per pole.
There are several ways of suppressing the effects of the
slots and teeth, most of which make the winding equivalent
to a uniformly distributed winding. Thus by skewing the

slots or the pole-shoes by an amount equal to the slot-
pitch this result is obtained. An equally effective method,
and one that is often simpler and cheaper than the fore-
going from the works' point of view, is to make the number
of slots per pole fractional by adding extra slots.

(b) Fractional number of slots per pole.—When Q is a
fraction, the coil-sides do not occupy the same position in
the field under the different poles, consequently the effect
of the teeth is not reproduced throughout the phase.
Expressed mathematically, we can say that 2 Q + x and
2 Q — x, where x = 1, 3, 5, etc., no longer represent har-
monics when Q is a fraction, whereas they do so when Q
is an integer, and have a high winding factor / „ when x is
small (see footnote on page 23).

We shall only consider the practical case of the sym-
metrical 3-phase winding. Inserting N = 3 in Equation (4),
we have y, h = S/3« = S73.

The coils will occupy the greatest number of positions
in the field when a = 1 and />'=/>, that is, when there can
be only one circuit per phase. We can always make a = 1
unless p is a multiple of 3. If /> is a multiple of 3, we must
make a a multiple of 3 so that />' = />/a = 3 n ± 1, is not a
multiple of 3, and so obtain a similar parts per phase—see
Table 1. For example, when /> = 3 we must take a = 3,
so that p' = 1 ; with /> = 6, we can take a = 3 to make
p' = 2, or a = 6 to make p' = i. With a = 3, the slot
positions in the field repeat themselves 3 times ; with
a = 6, 6 times.

(1) Use of empty slots.—The simplest way to make Q frac-
tional is to have a number of extra slots not needed by the
winding. From Equation (5) we get, for N = 3, the phase-
pitch yf h = 2 qop' -f .r/3. Thus .r must be a multiple of 3.

Taking .v = 3 as the smallest number of empty slots
that can be added, we have, when ^>'= 3 H ± 1 =•/>,
S' = 3 yp h = 6 qop' + 3 = S. This gives the largest number
of positions possible in p pole-pairs with a symmetrical
3-phase winding, for in this case the slot positions in the
field never recur and there can only be one circuit per
phase. Thus with # = 3 empty slots and ^ = 3 » + i , we
have:

Total slots, S = 6qop + 3,
Slots per pole, Q = S/(2 p) = 3 q0 + 3/(2 />),
Slots per phase and pole, q = Q/3 = qo + 1/(2 p),
Phase-pitch in slots, yp h = 2 qop -f 1.

When />' = 1, or in a 2-pole machine, with three extra
slots we get S' = 6 qo + 3 = 2 Q, so that Q = an integer + J.
This also has the effect of suppressing the tooth or spacing
ripples owing to the action of the coil-span (see footnote
on page 23).

In some cases it is found desirable to make x = 6, that is(

to use 6 empty slots, but it must be remembered that with
an even num ber of pole-pairs this makes two a common
factor of S and p, or />' =pJ2 and a = 2, thus giving two
similar parts and only half the maximum number of
possible positions in the field for each phase.

(ii) Use of unequal coil groups.—It is clear that when the
number of extra slots in the machine is an even multiple of
3, i.e. when .v = 6 n, these slots can be wound and an equal
number of extra coils allotted to each phase. In this way
the coil groups in the several pole-pairs are made unequal.

Taking the case of 6 extra slots in />' pole-pairs, we get
one extra coil per phase in each circuit. Thus in a 4-pole
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machine there are then S = 6qo X 2 + 6 = 12 q0 + 6 slots,,
that is an odd number of slots in each pole-pair, which is
equivalent to a 2-pole machine with 3 empty slots. In one
group there will be qo coils and in the other qo + 1, thus
making (q0 + J) slots per phase and pole. This arrange-
ment can be used whenever the number of poles is a
multiple of 4. In general, with 6 extra slots in the
periphery there are in each phase (p — 1) groups contain-
ing qQ coils and one group with {q0 + 1) coils. According
to whether ^ = 3 ^ + 1 is even or odd, the number of slot
positions in the field is increased p or 2p times.

Generally speaking, unequal coil groups are not desirable
in practice, owing to the varying magnetomotive force
from pole to pole and the constructional complications.

Example.—As an example of the use of extra slots, we can
consider an 8-pole, 3-phase machine with a normal slotting
for 2 slots per pole and phase, i.e. q0 = 2. The total number
,of slots is then 48, and according to whether we make the

—two usual and three unusual. All the latter are effective in
suppressing tooth effects—the suppression in the case of
S/ = i5 slots per pole-pair being due to the fact that the
coil-span differs from the pole-pitch by an odd number of
half slot-pitches (see footnote on page 23).

3. DOUBLE-LAYER WINDINGS.

(1) Arrangement of Double-layer Windings.

When the sides of the coils are in two layers in the slots,
one side of a coil lies in the top layer in one slot and in the
bottom layer in some other slot, usually about a pole-pitch
away. Generally all the coils are identical and arranged so
that they can be joined in mesh, by means of lap or wave
connections, to form a closed winding (see Fig. 8).

The smallest number of coil-sides per slot is 2, but any
'even number can be used, the commonest numbers being
4, 6, 8, and 10 coil-sides per slot. Since only one side of a

N? of phases
in. winding = 2

Relative outpufc=0637

FIG. 4.—Diagrammatic system of closed double-layer windings with full-pitch coils to obtain N symmetrical mesh-
connected phases with wide phase-spread (<r = 2 71-/N), by means of polygon tappings.

mean coil-span equal to the pole-pitch or to 5/6ths of the
pole-pitch, we get a 3- or 6-phase winding, so that a 3-phase
winding with four or eight circuits per phase respectively
is possible.

When extra slots are used, we get the following alterna-
tives :—

No. of
Similar
Parts

a

I

2

4

p>=$
a

4

2

1

Extra Slots
in p' Pole-

pairs
X

3

3

3

Slots in p'
Pole-pairs

S' -6qop' + x

51

27

15

Total Slots
S = S'a

51

54

6 0

Extra Pos-
sible Coils
per Phase

none

1

2

The phase-pitch in each case is jy/A = S73. We thus
have no fewer than five alternatives for the above winding

coil has a place in either layer, the 2 TT radians need only be
divided into N equal parts—one part being allotted to each
phase. In this case the phase-spread a = 2 TT/N radians.
When, however, a commutator is not used, it is usual and
better to divide the 2 ir radians into 2 N parts and so reduce
the phase-spread to 2 TT/2 N = TT/N, as in a single-layer
winding, in order to obtain the larger output.

(a) Phase tappings off closed windings.—By observing the
conditions developed in Equations (2) and (3) it is possible
to obtain a lap or wave winding having a similar, sym-
metrical polyphase windings in each of which the sum of
the phase angles between the pressures is 2 w radians and
the resultant pressure is zero. Consequently the coils can
be joined in mesh to form a closed winding, and according
to the relation between the number of coils and the pitch
between successive coils, the a systems can be made inde-
pendent of one another or can be interconnected. (To join
the coils in mesh, the finish of one coil is joined to the start
of the successive coil until the winding closes.)
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Permanent connections to a closed winding take the
form of tappings—the corresponding equipotential points
in each of the a systems being connected together to place
the latter in parallel. Each point where a closed winding
is tapped makes connection with the start of one phase and
the finish of another.

In what follows, only one of the a similar polyphase
systems need be considered, and again a circle will be used
to represent the commutator bars or joints between the
coils forming the field displacement of 2 TT radians. This
circle has then to be split up to form the N phases. Pres-
sures can be tapped off a closed winding in two ways :
(i) polygon tappings; (ii) diametral tappings.

(i) Polygon tappings.—For an N-phase system, the circle
is simply divided into N equal parts by means of N equi-
distant tappings, and the loads are placed across adjacent
tappings. Tappings taken off a closed winding in this way
can be conveniently called ""polygon" tappings. The

d is the common way of loading a rotary converter with
6 slip-rings.

It is easily shown that the method of diametral load-
ing of a closed winding yields the same output as is
obtained from an open winding with a phase-spread
Of Tr/N.

(b) Open double-layer windings.—If a commutator is not
used, the windings in Fig. 4 can be opened at the points
tapped, as shown in Fig. 6, where the top coil-sides are
indicated by full and the bottom by dotted lines. Each
phase has now its own start and finish and can be
loaded independently, or the phases can be interlinked
in star (the original closed winding with polygon
tappings is the mesh connection in Fig. 4) ; but the
phase-spread and phase-pitch remain unaltered, that
is, <T = (3 — 2TT/N.

When full-pitch coils are used, it is seen from Fig. 6 that
phases r and r + J N overlap completely when N is even,

N? of phases
in load = I

Relative output=0-657
(a)

0-900
(S)

FIG. 5.—Diagrammatic arrangement of closed double-layer windings with full-pitch coils to obtain N phases with
phase-spread <r = TT, by means of diametral tappings.

(a) to (c)—Hemisymmetrical systems (fi «« w/N). (d)—Symmetrical system (fi •= 2 ir/N).

angular phase-pitch /3 is then equal to the angular phase-
spread (7, that is, /3 = a = 2 ir/N.

In this way it is possible to obtain any symmetrical
N-phase system of pressures, as shown in Fig. 4. The
pressures and currents in such a system are thus those in
a mesh-connected system.

(ii) Diametral tappings.—Here the winding is tapped at
twice as many points as the number of phases required, and
each load phase is formed by placing two opposite wind-
ing phases in parallel by means of diametral tappings.
Thus for an N-phase load, we have 2 N tappings—two
exclusively for each phase.

The angle between successive load phases is then
2 TT/(2 N) = TT/N radians, so that the hemisymmetrical
systems in Fig. 5 (a-c) are obtained. When N is odd,
however, the system can be loaded symmetrically by con-
necting the phases as shown in Fig. 5 (d)—thus diagram

whilst two phases half overlap whenever N is odd. It is
much better, however, to halve the phase-spread in order
to obtain a larger output with the same number of phases
in the load. To do this, the 2 tr radians are divided into 2 N
parts, thereby making the phase-spread <x = 2 TT/(2 N)= TT/N,
and the two parts which completely overlap are joined in
parallel or series, as desired, to form a single phase. This
is always possible, since 2 N is always even. To join the
two equal and opposite parts in series, either both finishes
or both starts must be joined together ; whilst to join them
in parallel, the start of one must be connected to the
finish of the other, and conversely. The windings thus
obtained are represented diagrammatically in Fig. 7, and
it is seen that with full-pitch coils any hemisymmetrical
system whatever can be obtained in this way, but a
symmetrical system is only obtainable when N is odd.
Thus, by opening a double-layer winding at 2 N equi-



28 SMITH : THE THEORY OF ARMATURE WINDINGS.

distant points, an N-phase system is obtained with a
phase-spread equal to TT/N radians.

(II) Connecting Rules for Closed Windings.

Whereas single-layer windings are solely used for obtain-
ing an N-phase system of pressures, the double-layer

When no commutator is needed, an open winding with
a narrow phase-spread is used, and though it is customary
to have the same winding pitches as with a closed winding,
this is not necessary.

There are two common modes of connecting up the coils
of double-layer windings—the lap type of connection being
used when successive coils a and b lie under the same pole-
pair, and the wave when they lie under adjacent pole-pairs

w

JU
in

N? of phases
in winding - 2

Relative output=o-c>37

FIG. 6.—Diagrammatic arrangement of open double-layer windings with full-pitch coils to obtain N symmetrical phases
with wide phase-spread (a = 2 7r/N).

i

TV
N° of phases .

in load " J :

Relative output=0-637

(a)

\

JJ

O-9OO
(b)

H H

0-955
(C)

0-955
(d)

FIG. 7.—Diagrammatic arrangement of open double-layer windings with full-pitch coils to obtain N phases with
narrow phase-spread (a = TT/N).

(a) to (c)—Hemisymmetrical systems (/3 = »r/N). (d)—Symmetrical system (0 - J I / N ) .

winding finds its chief application on continuous-current
machines, though its use as a polyphase winding is also
quite general. When used as a polyphase winding in con-
junction with a commutator, a. closed winding is employed,
and the N pressures are obtained by means of tappings.

(see Fig. 8). In order to obtain a closed winding, the
total displacement in the field must be a multiple of 2 v

radians (see Equation 2). In cases where the number of
coil-sides per slot u is greater than 2, for the purpose of
connecting up the coils we can imagine there are as many
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slots as there are coils or commutator segments, i.e. we
make S = C. Equation (2) then becomes

C \p = 2 ir a\

* a (6)
and r. = f

y P '

where ̂  is now the phase displacement between successive
coils when u = 2, and 7 the angular pitch of the commutator
segments (or joints) or of the slots when u = 2.

The number of joints or segments between successive
coils in the winding is called the commutator pitch, and
will be denoted by yc; thusyt must contain an exact number
of commutator-bar pitches 7.

Though this formula enables us to deduce the rules for
closed lap and wave windings, i.e. windings in which
2e = o, so that no circulating currents of fundamental
frequency can flow, it does not follow that such windings
will have similar parts. When we apply the conditions for
obtaining a similar circuits per phase with the actual
number of slots S = 2 C/M—for either a continuous or
alternating pressure—we shall find that the number of

Hence in a closed wave winding, a — pyc— C, so that a
can be greater than, equal to, or less than p.

It is easy to see that the H.C.F. of C arid yc determines
the number of independent windings on the armature with
either lap or wave connections.

(Ill) Conditions for obtaining Symmetrical Lap and
Wave Windings.

The conditions for obtaining closed lap and wave wind-
ings are set forth in Equations (7) and (8), whilst the
conditions for obtaining a similar circuits are given in
Equation (3). We must now combine these to find the
conditions for obtaining symmetrical lap and wave wind-
ings. To get a closed winding, the resultant of the vector
diagram is merely a closed figure subtending 2 it a radians
at the centre, whereas in a symmetrical winding there are
a similar polygons in the resultant diagram, each sub-
tending an angle of 2 TT radians at the centre. It is only
when the winding is symmetrical that there are a coils
which are always at the same potential, and which there-

I + &

(5) -

FIG. 8.—Double-layer windings.

(c)

(a) Coils of double-layer windings. (ft) Lap connection. (c) Wave connection.

symmetrical windings obtainable is much smaller than
the number of closed windings.

(a) Closing rule for lap windings.—With the lap connec-
tion, the finish of one coil is joined to the start of another
under the same pole-pair, so that the angle ycy between
successive coils on the armature is equal to the phase
displacement \p between them. Applying ycy = \j/ to
Equation (6), we get

or a =ycp =p, 2p, 3/>, etc.
. . (7)

Thus a closed lap winding can be obtained by making
a a multiple of the number of pole-pairs p.

(b) Closing rule for wave windings.—With the wave con-
nection, the finish of one coil is joined to the start of
another under the next pole-pair, so that the angle yc y
between successive coils on the armature is equal to 2 n ± \js.
Applying yc y = 2 IT ± ty to Equation (6), we get

y y
V ****

2 it ±yj/

p P p
where C 7 = 2 irp, when we make S = C.

(8)

fore can be properly joined together by means of an
equalizing or slip-ring or by a commutator brush.

(a) Symmetrical lap windings.—In Equation (7) it is seen
that a can be any multiple of p in a closed lap winding,
whilst in Equation (3) it is seen that p\a must be integral
in order to get a like parts. The only value of a which
satisfies both these equations is obviously a = p. Further,
since the number of slots in e.ich of the a parts mu«<t al-.o
be integral, we must have S/a = S//> a whole number, i.e.
there must be a whole number of slots per pole-pair.

Hence it is only possible to obtain a symmetrical lap
winding with as many similar parts (or circuits) as there
are pole-pairs and with a whole number of slots per
pole-pair, or

a = p, or p' = 1

(9)
and = - or 6 =

where n = S' = any integer.
The number of coil-sides per slot in a symmetrical lap

winding is not restricted in any way, provided that we
make C = J « S, i.e. avoid idle coils.

The a=p equipotential joints or segments to be
connected together at an equalizing or slip-ring are equi-
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distant from one another on the periphery, and the
potential pitch yp = C/p.

The above particulars are summarized in Table 2, whilst
illustrative examples are given in sub-section (V).

The condition that p'—p/a and C/S must have no
common factor greater than unity at once restricts the
number of segments per slot C/S that can be used with
given numbers of poles as shown below.

Pole-pairs p'

Segments p e r
slot (C/S)

l

any

2

i, 3, 5,
7

Segments

3

I, 2,-4,

5,7,8

per Slot

4

i, 3, 5,
7

in Symmetrical

5

i to 4
6 to 8

6

i , 5 , 7

Wave Windings,

7

i to 6,
8

8

!, 3, 5,
7

9

i, 2, 4,

5,7,8

10

i , 3 , 7

n

any

12

i , 5 , 7

(b) Symmetrical wave windings.—In Equation (8), the
commutator pitch in a closed wave winding yc = (C±: a)\p,
whence we get the possible number of coils C = pyc ± «•
Since there are to be no idle coils', i.e. the segments per
slot C/S = w/2, we can write for the number of slots in a
closed wave winding

u\2"~ C/S ~~ C/S — C/S'

Dividing throughout by a, we get

a~~ a C/S —C/S'

Introducing the conditions of symmetry from Equa-
tion (3) to obtain a identical S'-phase systems, we must
have S' = S/a and p' = pja, that is, S/a and pja must both
be integers, or

Now by the ordinary rules of division we can write

Vc , x C

where n is any integer and x is an integer less than C/S.
Substituting for yc, we then get

(10)

To obtain a symmetrical wave winding, then, this
expression must be a whole number. Now clearly p' n
is an integer ; hence, for S' to be an integer, p' x + i must
be exactly divisible by C/S. This will be obviously im-
possible if either p' or x and C/S have a common factor

greater than unity, for then ?~- would have a smaller
O/o

denominator than
C/S*

The above table, then, shows the number of coil-sides
per slot, u = 2 C/S, up to 16, possible with any number
of poles up to 24 in a symmetrical wave winding.

To examine the restriction that x and C/S must have no
common factor > 1, let us write

C/S1 = A and — ( £ ' # , _ i) = B,

where xz and x2 must be values of x which have no common
factor with C/S greater than unity, and which make A and
B whole numbers. We can now determine A and B and
xx and x2 as follows :—

Since A and B are integers, A + B = ^ (xz + #a) must

be integral. Now p' and C/S have no common factor > 1,
therefore xz + x2 must be divisible by C/S. But, by
assumption, xz and x2 are each less than C/S, so that their
sum must be less than 2 C/S ; hence it is only possible
to have xt + x2 = C/S. Substituting for xz + x2, we get

Inserting A and B in Equation (10), and disregarding
any difference between n and n + i (since n can be any
integer),

B

= i>'

n + A,
n+A,
n±A
« + B

or
or

p'
p'

n

(n

Since p' n + A gives the same series of numbers as p' n— B,
and p' 11 — A the same series as p' n 4- B, we can write for
the number of slots in a symmetrical wave winding

S'=p'n±K (11)

where K = A or B, according to which value we choose
to give it. In what follows, for the sake of simplicity we
shall always make K equal to the smaller of these two
integers.

We now draw up the following table for xz and x3 for
given values of C/S.

Values of xx and x2 where xx + x2 = C/S, and xti x2 and C/S have no Common Factor greater than Unity.

C/S

xx and #2

l

o and i

2

i and i

3

i and 2 i and 3

3

i and 4
2 and 3

6

i and 5

7

i and 6
2 and 5
3 and 4

8

i and 7
3 a n d 5



SMITH : THE THEORY OF ARMATURE WINDINGS. 31

This enables us to evaluate K for given values of />' and
C/S, for we have only to work out A and B and tabulate the
lower value. The spaces denoted by a dash are the im-
possible cases of C/S with particular values of p', as given
by Equation (10) and already determined.

Value of K in Equation ( n ) .

O

"o

a>
jn
13

i

2

3
4
5
6
7
8

l

i

i

i

i

i

i

i

i

2

I

-

I

-

I

—

I

—

3

I

I

-

I

I

—

I

I

Values of p' = pja

4

I

-

I

-

I

—

I

B

I

2

2

I

-

I

2

2

e

i

-

-

-

i

—

i

—

7

I

3
2

2

•3

I

-

I

8

I

-

3
-
3
—
i

9

I

4
-
2

2

—

4
i

10

i

-

3
-
-
—
3

l i

i

5
4
3
2

2

3
4

12

-

-

-

5
—
5

Having found S' in this way, S = S' a for any value of a.

Table 3, showing the number of slots and coil-sides per
slot in symmetrical wave windings can now be drawn up
and, wherever possible, the designer should adhere strictly
to these conditions. •

The following example will illustrate how K is deter-
mined. Let p'=4 and C/S = 3. Then A + B=p' = ^,

and x1 -f x, = C/S = 3. The possible values of x\ and x,

are 1 and 2. Taking .r, = 2, then A = $ ( 4 X 2 + i ) = 3 ;
and taking J-2 = I , B = } ( 4 X 1 — 1) = 1. We thus take
K = B = 1, and get for the possible numbers of slots
S' -=p' n ± K = 4« + i, as shown in Table 3.

If a = 1, as in the common wave winding, then/)' =/> = 4,
and S' = S. Thus the total number of slots in an 8-pole
machine with a symmetrical wave winding and 6 coil-sides
per slot is S = 4 n + 1.

Similarly, if a = 2, then />=/>'0 = 4 X 2 = 8 ; and
S = a S ' = 2S' = 2 ( 4 « ± i ) = 8 » ± 2 . In this way,
Table 3 has been drawn up for machines with any number
of poles up to 24 and any number of coil-sides per slot up
to 16.

The potential pitch, yp = C/a. Each tapping forms the
start of one phase and the finish of another. With
diametral tappings, these two phases are equal and
opposite, so that the current divides equally between them.
In this way each tapping represents two parallel circuits,
so that tapping a points by means of a commutator brush
or a slip-ring makes connection with 2 a circuits. This
only holds, however, for the case when the phases are
taken over 180°, as with diametral tappings or in a
continuous-current machine, and corresponds with the
case of a single-layer winding, where a 3-phase winding
with 2 a circuits per phase is obtained by joining in
parallel the equal and opposite phases of a 6-phase
winding.

(IV) Conditions for obtaining Symmetrical N-phase Lap and

Wave Windings.

The conditions for obtaining a symmetrical N-phase
system of pressures given in Equation (4) show that we
must have a symmetrical winding where S' is exactly
divisible by N and />' = » N ± i .

(a) Symmetrical N-phasc lap windings.—In a symmetrical
lap winding, />' = i, so that />' = » N ± i is always satisfied
in a symmetrical N-phase lap winding.

Further, in a symmetrical lap winding, S' = S//> (Equa-
tion 9), hence to obtain a symmetrical N-phase winding,
S'/N = S/(p N) must be a whole number, or the number of
slots

S = N/>« (12)

This condition for 3-, 4-, and 6-phase lap windings is
entered in Table 2.

Though this condition is apparently so simple, it is easy
to leave it unsatisfied by ignoring it. For example, if
we have a rotary converter with C//> = 96 segments per
pole-pair and M — 6 coil-sides per slot, we shall have
S/p = 2 Cl(p u) = 96/3 = 32 slots per pole-pair. This is not
exactly divisible by 6, so that the 6-phase pressure will not
be symmetrical. With 2 or 4 segments per slot (u = 4 or 8),
however, a symmetrical 6-phase pressure is obtained.

(b) Symmetrical N-phase wave windings.—With wave
windings, both p' and S' are subjected to restrictions when
we require an N-phase system.

(i) Number of poles.—The only symmetrical wave wind-
ings from which a symmetrical N-phase system of pressures
can be obtained are those where p' — 11 N ± 1. These are
shown in Table 1, and the impossible cases are denoted
by a dash in Table 3. The same result can be obtained
from the condition that S'/N must be integral, for obviously

N = N ' C]S
 ± N ' C/S

can only be a whole number when />' and N have no
common factor greater than unity.

(ii) Number of slots.—To find what numbers of slots in
a symmetrical winding are exactly divisible by N, we can
re-write Equation (11) for S' thus :

S' =/>';/ ± K = />' n' ± (/>' «" ± K),

where n — n'±n". Let »' and n" be chosen so that
»' = n'" N and p' n" ± K = k N, where n'" and k are whole
numbers. We can then write Equation (11) in the form

where S'/N = p' n ± k is clearly a whole number («'", being
merely a number, can be replaced by n). In this way we
get the values of S' which are divisible by N, and for the
total number of slots we have

• • • (13)

In this equation, then, k N = p' n" ± K is merely a value
of S' divisible by N. For the sake of convenience, we
shall always take k N as the lowest value of S' divisible
by N.

To show how the values of S for N = 3, 4, and 6 are
obtained in Table 3, we can work out an example. Let
/>'=3, 0=3 , and N=4. For />'=3 we see S'=3 « ± i , and
the lowest value of this divisible by N is k N = 3 X I ± I = 4 -
Hence the numbers of slots that can be used in a sym-
metrical 4-phase wave winding with p' = 3 and a = 3 are

S = ap' N n ± a k N = 3 X 3 X 4 » ± 3 X 4 = 3 6 » ± I 2-
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Permissible Numbers of Slots and Coil-sides per Slot in Lap and Wave) Double-layer Windings to obtain
(i) u a" Similar Parts or Circuits^ (ii) N = 3, 4, or 6 Symmetrical Phases.

TABLE 2.—Lap Windings,

Pole-pairs

P

I

Slots

S'

n

Number of
Similar Parts
in Winding

a

P

Number of
Pole-pairs

in Machine
p = P'a

P

Number of
Sots

in Machine
S = S'a

pn

Number of Slots, S, in Machine when

N = 3

3P
n

N = 4

4/>»

N = 6

6pn

Coil sides
per Slot

u

any even number

Number of
Coils

in Winding

c

MS/2 •

Commutator Pitch : yc = 1 ; Potential Pitch : yp-=.Cjp ; Phase Pitch :
n = any integer.

= CI(p N) ; no idle coils permissible ;

Pole-pairs

I

2

3

4

5

6

7

8

9

1 0

1 1

1 2

Slots

S'

n

2 11 i t 1

3«±i

4W+1

5 n ± 1

5 n ± 2

6n ± 1

7 n±i
7 n± 2
in ±3

8 n H- 1

8/* ±3

9 n it 1
9 »it 2
9»±4

ion i t 1
10 « i t 3

IIW + I
ini+2
11 n ± 3
11 n it 4
n«±5

12 « ± 1
12 n it 5

Permissible
Coil-sides per Slot

u

any even
number

2, 6, 10, 14

2,4,8, 10,14, 16

2, 6, 10, 14

2, 8, 12

4, 6, 14, 16

2, 10, 14

2, 12, 16
6, 8
4, 10

2,14
6, 10

2, 16
8, 10
4i J4

2
6, 14

2
10, 12
8, 14
6, 16

4

2
10, 14

TABLE 3

Number of
Similar Parts
in Winding

a

I

P

I
2

3
4
5
6

1
2

3
4

1
2
3

1
2
1
2

1
2

1
1
1

1
1

1
1
1

i
1

1
1
1
1
1

r
1

.—Wave Windings.

Number of
Pole-pairs

in Machine
p = fa

I

P

2

8
10
12

6
9

12

J
12

5
10

5
10

6
12

7
7
7

0
0

0
0

9
9
9

10

10

11

11

11

11

11

M
 M

to
 t

o

Number of
Slots

in Machine
S = S'a

n
pn

2W+I
4« + 2
6n-4-3
8»±4

ion + 5
12 n it 6

3 « i t 1
6 ft ± 2
9n±3

12 n Hh 4

4 W + 1
8»±2

12 w i t 3

5»+i
10 n -+• 2

5W + 2
ion it 4

6K±I

12 n i t 2

7 n ± 1
7 n i t 2
7n±3

8n -h 1
8« ±3

9« + i
gn + 2
9W±4

10 w i t 1
10 « ±: 3

11 n + 1
11 n it 2
11 n + 3
11 n it 4
11 n ± 5

12 n it 1
12 n it 5

Number of Slots, S, in Machine when

N = 3

3»
3^»-

6w± 3
12 n -h 6
i8.n± 9
24 n + 12
30 n -+- 15
36 n± 18

—

i 2 « ± 3
24 n i t 6
36n i t 9

15 n± 6
30 n + 12
15 n± 3
30 n Hh 6

—

21 n Hh 6
21 n i t 9
2 I « ± 3

24 « ± 9
24 n Hh 3

30 n i t 9
30 w ± 3

33 » + 12

33 n
± 9

33^ ± 3
33 »±i5
33 w± 6

—

N = 4

4«
4^>n

1 
1

1 
1
 
1
 
1

12 n i t 4
24 w Ji 8
36 n i t 12
48 n ± 16

20 n + 4
40 n i t 8
20 n ± 8 "
40 n i t 16

—

28 n -4- 8
28 » ± 12
28 n i t 4

—

36wHh 8
36 n ± 16
36 n± 4

—

44 n + 12
44 n i t 20
44 n + 8
44 n ± 4
44 w + 16

—

N = 6

6pn

—

—

30;/ + 6
60 ;/ + 12
30 ;/ i t 12
60 11 ± 24

—

42 11 zh 6
42 n -+- 12
42 ;/ ± 18

—

—

66 w ± 12
66 « i t 24
66 n -1- 30
66 « ± 18
66 n± 6

—

Number of Coils in Winding : C = u S/2 ; Commutator Pitch : yc = (C ± «)/̂ > ; Potential Pitch : yP = C/a
Phase Pitch : y^ h = C/(a N) ; no idle coils permissible ; n = any integer.

N.B.—a= 1 denotes the common wave winding : i.e. yc
:
= (C ± i)//>.
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Attention may be drawn to the fact that, despite the
restrictions on the number of poles, it is possible to obtain
a symmetrical N-phase winding in most cases, though a
modification in the design may be necessary. Thus, when
a static balancer is to be used it is more important to
have the N phases symmetrical than to insist on making
N = 3 or N = 4. Consequently with a 4-pole wave wind-
ing we ought to make N = 3 ; whilst with a 6-pole
winding we should make N = 4. When it is important
to obtain a symmetrical N-phase winding on a machine
with a large number of poles, it is often essential to alter
the number of poles ; for example, with p = 6, we can do
nothing, but by making /> = 5 or 7, we can get symmetrical
3-, 4-, or 6-phase pressures.

Similarly, it is necessary to select the number of coil-
•sides per slot suitably to make the N phases symmetrical.

In practice, p, a, and N, are known, whilst an approxi-
tnate idea of the number of coils or segments is obtained
from the preliminary design of the machine. Table 3
then shows the numbers of coil-sides per slot that are
permissible, whence the value of S giving C = \ u S
nearest to the approximate figure can be determined.

If a wave winding is closed, as it is when used with
a commutator, the phases are obtained by means of
tappings connected to slip-rings. When "polygon"
4oading is used, the phase-spread, a = (i = 2 TT/N ; but by
•doubling the number of tappings and loading them
diametrally, the output is increased to the same extent
as when the phase-spread of an open winding is halved.
Diametral loading, however, calls for no special treatment,
for the tappings are merely taken to correspond. Thus,
for a 3-phase diametral load we need to take the same
tappings as for a 6-phase polygon load.

When a wave winding is not used with a commutator,
as in the case of alternators and induction motors, the
phases should be given the narrow phase-spread. This is
•done by opening the winding for 2 N phases and re-
•connecting the phases to form an N-phase winding, as
-explained earlier in this section and illustrated in the
following examples :—

(V) Location of Tappings and Openings.

(a) Tappings off symmetrical lap or wave windings.—When
'S/a N is an integer in any symmetrical lap or wave winding,
& symmetrical N-phase system of pressures can be derived
from it, and the points to be tapped for the phases can be
written down at once after determining the potential-
pitch, yt = Cla segments, and the phase-pitch, yfh = C/a N
segments. This is simply due to the fact that this is the
only way of dividing the C segments into a_N equal parts.
Then we have,

Phase I taps segments or joints
1 ; 1 + y, ; 1 + 2

Phase II taps segments or joints
... 1 + (a —

Phase III taps segments or joints

Phase N taps segments or joints

VOL. 55.
—o»*.

(14)

In windings with one turn per coil, the tappings can be
taken equally well off the back of the winding, and this is
usually done in practice for convenience.

Examples of the use of these equations will be found
below.

(6) Opened wave windings.—In many alternators and
induction motors it is necessary or desirable to have a
fractional 1 number of slots per pole and phase, when the
number of conductors per slot is small or when it is desired
to suppress ripples. This is a simple matter with the
double-layer winding, and for this purpose the common
wave winding (a = 1) is eminently suitable. It is always
best, wherever possible, to design the winding for 2 N
phases, open it, and join each pair of opposite phases in
series or parallel in order to reduce the phase-spread and
so obtain the increase in output, due to the higher winding
factor. The important case is the 3-phase winding, although
a 2-phase winding is occasionally obtained in this way.
The number of coil-sides per slot with an opened wave
winding seldom exceeds 8, and is usually 4 or 6.

When a = 1 (as Table 3 shows), it is only possible to get
a symmetrical 6-phase system of pressures with machines
having 2, 10, 14, and 22 poles, which are of little practical
importance, although u is little restricted in these cases.
It is possible, however, to get a symmetrical 3-phase system
for all numbers of poles not a multiple of 3, and we shall
show how the narrow phase-spread can be obtained by
evolving the symmetrical 3-phase winding from an unsym-
metrical 6-phase winding, a result which enables us to use
the common series connection. With a = 1, and N = 3,
however, it is seldom possible to make « = 4. The parallel
connection is also possible by making a wave winding
with a = 2, which gives two like parts.

These various points can best be illustrated by means of
the following examples.

(c) Illustrative examples.—To illustrate the points dis-
cussed in this section we shall now work out a few
typical examples to show how to locate the points where
a winding is to be opened or tapped for phases.

Example 1.—A 12-pole lap winding has 432 coils and
6 coil-sides per slot. Find the tappings for 3-phase
diametral loading : p = a = 6 ; C = 432 ; u = 6 ; and
therefore S = 2 C/u = 144.

In order to get 3-phase diametral loading, we must
find tappings for 6-phase polygon loading. The potential-
pitch, y^ = C/a = Clp = 432/6 = 72 coils, and the phase-
pitch, » A = C a N = Clp N = 72/6 = 12 coils. We can
now write down the segments to be tapped, in accordance
with Equation (14).

Slip-ring.

I taps segments or joints: 1 73 145 217 289 361

13 **5 157 229 301 373II
III
IV
V

VI

25 97 169 241 313 385
37 109 181 253 325 397
49 121 193 265 337 409
61 133 205 277 349 421

For the diametral load, the phases A, B, C are taken
between the rings thus:—

Phase A between slip-rings I and IV.
„ B „ „ III „ VI.
„ C „ V „ II.

3
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Since SI (a N) = S/(p N) = 144/(6 x 6) = 4 is an iiteger,
the system of pressures is quite symmetrical.

Example 2.—A common wave winding (a = 1) has
10 poles, 144 coils, and 4 coil-sides per slot. Find

(a) Tappings for 6-phase polygon load ;
(/3) Tappings for 3-phase diametral load ;
(7) Openings for 3-phase winding with a = /3/2.

We have /> = 5 ; a = i ; C = 144 ; u = 4 ; and S = 72.
The commutator-pitch, yc=(C ± i)//>=(i44±i)/5=29 coils ;
take y6 = ys=yc = 29.

(a) Tappings off closed windings for 6-phase polygon load.—
For a 6-phase pressure, S = 30 n + 12 = 30 x 2 + 12 = 72
(see Table 3).

The phase-pitch yt k = C/a N = 144/6 = 24 coils, or
S/(a N ) = 72/6= 12 slots. Therefore we have a sym-
metrical 6-phase winding, each phase containing 24 coils,
the successive phases being 12 slot-pitches apart. The
joints or segments to be tapped can be written down at
once from Equation (14) by putting a = 1. Thus we have

Phase I
Segment tapped 1

i

V VI

1 2 1

II III IV

25 49 73 97

If the vector polygon for the C coils is drawn, it will be
seen at once that these are the numbers that divide the
polygon into 6 equal parts (see part (7) of this example).

the 6 points where it is tapped for a 6-phase system,
and phases x and ,v + J N joined in series or parallel as
desired. We can represent the vector polygon of the
winding by the simple circle (a) and the winding itself
by (6) and (c) as in Fig. 7. The joints to be opened cor-
responding with the vectors marked on the polygon are?
shown in the table, along with the positions of the coil-
sides in the slots (see (d), Fig. 9).

Vector No.
.V

I

25

49

73

97

1 2 1

Joint No.
b=i + (.v-i)>v

I

1 2 1

97

73

49

25

Top Coil-side
2 6 - 1

I

241

193

H5

97

49

a in slot 1

>, „ 61

„ >, 49

„ „ 37

„ „ 25

„ „ 13

Bottom Coil-side
(2b-\)-y/

260

2 1 2

164

I l 6

68

2 0

d in slot 65

„ „ 53

„ „ 41

„ „ 29.

„ » J7

>> >> 5

In the above table it is noticed that the numbers of the
vectors are the same as the numbers of the joints they
represent. Obviously this must always be the case when

(a) (c)

FIG. 9.—Symmetrical 6-phase wave winding with a = 1, opened to give a symmetrical 3-phase
winding with narrow (6o°) phase-spread. (Suitable for series or parallel connection.)

(a) Vector polygon (b) Series connection. (r) Parallel connection. (d) Numbering of coil-sides in a slot.

To show that the phases are 60° apart, we know
that one slot-pitch in electrical degrees is equal to
p X 36o°/S = 5 X 36o°/72 = 250 ; hence 12 slot-pitches
= 3000 forward, which, in the field, is the same as
6o° backward, that is, /3 = 2 TT/N = 6o°.

(/3) Tappings off closed winding for 2,-phase diametral load.
—In this case the same tappings are taken as in (a), but
are renumbered as follows :—

Phase
Slip-ring
Segment

... ...

... ...
tapped ...

A
I
1

C
II

25

B
III

49

A'
IV

73

C
V

97

B'
VI
1 2 1

(7) Openings for symmetrical yphase winding with

phase-spread of 6o° (Fig. 9).—The winding is opened at

C is exactly divisible by N, though the cyclic order, of
course, may be different.

Since the slot-pitch is 250, it will be seen from the posi-
tion of the coil-side in the slots that, from As to Bs is
48 x 25°=i,2oo°= 1200, and As to Cs is 24 x 25° = 6oo°-
= 2400, thus showing that the phases are 1200 apart. The
winding has 72/(10 x 3) = 2*4 slots per pole and phase, a
useful value between 2 and 3.

Example 3.— A common wave winding (a = 1) has.
4 poles, 135 coils, and 6 coil-sides per slot. Find

(a) Tappings off a closed winding for 3-phase polygon
load.

(/3) Openings for symmetrical 3-phase winding with
phase-spread of 6o°.
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We have /> = 2 ; a = 1 ; C = 135 ; u = 6 ; and S = 45.
Therefore the commutator-pitch j>c=(C± 1 )//>=£ (135 ± 1)
= 68 or 67. Take _yc =jy$ = yf = 67.

(a) Tappings off closed winding for 3-phase polygon
load.— Since S = 6«±:3 = 6 x 7 ± 3 = 4 5 (Table 3),
the phase-pitches C/(a N) = 135/3 = 45 coils, and
SI (a N) = 45/3 = 15 slots, are whole numbers, so that
it is possible to get a symmetrical 3-phase system of
pressures from the winding. The segments to be tapped
are then :

Phase ... A B C
Segment

tapped 1; 1 + ^ = 1 + 4 5 = 4 6 ; 1+2^=46+45=91

In the vector diagram in Fig. 10 it is seen that the three
vectors with these numbers are 1200 apart.

It is clearly not possible to obtain a symmetrical 3-phase
system from this winding by diametrical loading, since
C/a is not divisible by 6.

(/3) Openings for symmetrical 3-phase winding with phase-
spread of 6o° (Fig. 10).—In Example 2 we obtained a
symmetrical 3-phase winding with <r = \p = 6o°, from a
symmetrical 6-phase winding. Table 3 shows it is seldom
possible to obtain a symmetrical 6-phase system ; but, unless
p' is a multiple of 3, an unsymmetrical 6-phase system can
be obtained which will give a symmetrical 3-phase system
when the unequal phases x and x + \ N are joined in
series. The parallel connection is inadmissible, since
opposite phases are dissimilar. The present winding is a
case in point. We have C/(aN) = 135/6 = 22\ ; and hence
we take the 6 phases containing 23 and 22 coils alter-
nately, as shown in Fig. 10, and draw up the following
table :—

Vector No.
X

I

2 4

46

69

91

114

Joint No.
b=i + (x-i)yc

I

57

46

1 0 2

9 1

1 2

1

" 3

9 i

203

181

23

Top Coil-side
2 6 - 1

a in slot
1

\ e „

!* „

a „

e

1

J9

16

34

3 1

4

Bottom Coil-side
(2b-i)-yy

204

46

24

136

I I 4

226

/ in slot 34

d

f

d

f

d

.» 8

4

» 23

„ 19

„ 38

The slot-pitch is p X 36o°/S = 2 X 360*745 — 16 electrical
degrees,. Hence the phase displacement between A, and
Bj is 15 slot-pitches = 2400, and between Â  and Ĉ  30 slot-
pitches = 4800 = 1200. Thus As, Bs, and Cs are at 1200, and
we shall find that Ay, By, and C/-are at 1200 also. Thus by
placing phases I and IV, III and VI, and V and II, in
series, we shall get the symmetrical 3-phase system A, B, C.
In this example # = 45/(4 X3)=3*75 slots per pole and
phase.

Example 4.—A wave winding with a = 2 has 8 poles, 342
coils, and 6 coil-sides per slot. Find

(a) Tappings off closed winding for 3-phase polygon load.
(/3) Openings for symmmetrical 3-phase winding with

phase-spread of 6o°.

In this case p = 4, a =2, C = 342, w = 6,'and S = U 4 .

Hence ithe commutator-pitch, yc=—=- = ^ ~~ = 86-

or 85. Take yc = yb =>>/•— 85.
(a) Tappings off closed winding for 3-phase polygon

load.—Since S = i 2 w ± 6 = i2 x 10 — 6 = 114 (Table 3),
the phase-pitch is C/(a N) = 342/(2 x 3) = 57 coils or
SI (a N) = 114/(2 x 3),= 19 slots. Both these are_ integers,
showing that it is possible to obtain a 3-phase sym-
metrical system by polygon loading. The potential-pitch,
yP = C/a = 342/2 =171. The segments to be tapped are
then written down from Equation (14) thus:—

Phase I taps segments or joints : 1 and 172
II » „ „ 58 „ 229

HI » „" „ 115 » 286

(/3) Openings for symmetrical 3-phase winding with phase-
spread of 6o° (Fig. 11).—We can now open the winding

(a)
(O

FIG. 10.—Unsymmetrical 6-phase wave winding with a = iy
opened to give a symmetrical 3-phase winding with narrow
(6o°) phase-spread. (Suitable for series connection only.Vv

(a) Vector polygon. (b) Series connection,
(c) Numbering of coil-sides in a slot.

and get a 3-phase system by a method similar to that used
in the last example. This case is often very useful, as the
two parts of the windings are alike and can be put in
parallel—a connection which cannot be employed with
common wave windings when the phases x and x + J N are
unequal. Thus by making a = 2 we can overcome the
restriction met with in Example 3. The diagrams and
table are drawn up below, each set of 57 coils being
divided into 29 and 28 alternately.

Vector No. I Joint No.
x ! 6= 1 +(x-i)yc

3O

58
87

144

172

201

22Q

258

286

315

I

72

58
129

115
186

172

243

229

3OO

286

15

Top Coil-side
zb — 1

Bottom Coil-side

I

H3

257
229

343
485
457
599
57i
29

in 1

e „ 24

20

43

I
9

62

a in 50

e „ 81

a „ 11

e „ 100

a ,, 96

e „ 5

6OO

58

3O
172
I44

286

258

4OO

372

514
486
628

/ i n
d „
f „
d „
f >,
d „

/ i n

d „
/ „
d „
f „
d „

1 0 0

1 0

5
2 9
2 4

48

43
67
6 2

86
81

105
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It will be seen that the starts or the finishes of successive
phases are 19 slot-pitches = 4 x 3600 x 19/114 = 2400 apart
in each polyphase system. From each polyphase system,
a similar symmetrical 3-phase system is obtained, and they
can be joined in series or parallel as desired. In this way,
2 similar circuits per phase are obtained.

In this example, ? = 114/(3 x 8) = 475 s^°^s Per P°^e

and phase.
The above examples will be sufficient to show the great

variety of ways by which a symmetrical N-phase system
can be obtained from double-layer windings with a frac-

sides per slot, this type of winding has many advantages
over the equivalent single-layer winding, but the pro-
nounced spacing and tooth ripples, which are always
possible with a whole number of slots per pole, are not
affected thereby. In other words, the use of wave con-
nectors with a whole number of slots per pole does not
make the winding in any way equivalent to a winding
with a fractional number of slots per pole.

By joining all the coils in the winding in series in this way,
we get a winding distributed uniformly over the circum-
ference and in which the sum of the induced pressures

(c)

(d)

FIG. 11.—Unsymmetrical 6-phase wave winding with a = 2, opened to give a symmetrical 3-phase
winding with narrow (6o°) phase-spread. (Suitable for series or parallel connection.)

(a) Vector polygon. (b) and (c) Coils in the two similar polyphase systems. (rf) Numbering of coil-sides in a 9lot.

tional number of slots per pole. These are of immense
importance in alternating-current machines.

(VI) Wave Windings with a Whole Number of Slots per Pole.

A double-layer winding which finds frequent use in
practice is the wave winding with a whole number of
slots per pole, or per pole and phase, as the case may
be. In this winding, the pitch between successive coils
is not uniform, as in the ordinary wave winding, connected
up in accordance with Equation (8). The coil-span is usually
made equal to a pole-pitch, likewise the pitch between suc-
cessive coils, and after every /> coils, i.e. after each tour of
the periphery, the pitch is shortened or lengthened to miss
the place already occupied.

Though the slotting is suitable for obtaining a number
of similar parallel circuits, this form of wave connection
is mostly used where only one circuit per phase is needed.
For alternators and induction motors with 2, 4, 6, or 8 coil-

is zero. Consequently the start and finish can be joined
together to form a closed winding, from which a mesh-
connected polyphase system can be obtained. In this
way the slotting for a lap winding can be used for a wave
winding, but here again it must be remembered that we
may get pronounced ripples in the pressure curve.
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gineering) College, South Kensington, and the author has
to acknowledge his indebtedness to many friends for
valuable help and criticism. Mr. B. Hague, B.Sc, a
post-graduate student in electrical engineering, made the
diagrams and gave much assistance in compiling and
checking the results. The work on Table 3 was partly
begun in 1912-13, when Mr. S. L. Symns collaborated
with the author in an investigation on symmetrical wave
windings. The author's thanks are due to Professor Miles
Walker, Mr. C. C. Hawkins, Mr; R. G. Jakeman, Mr. J. W.
Sims, and Mr. J. T. Irwin for reading the manuscript and
making many useful suggestions.




