The theory of calculi with explicit substitutions revisited

Delia Kesner

PPS, Université Paris 7 and CNRS (UMR 7126), France

Abstract. Calculi with explicit substitutions (ES) are widely useddifferent
areas of computer science. Complex systems with ES werdogeckthese last
15 years to capture the good computational behaviour of tiggnal systems
(with meta-level substitutions) they were implementing.

In this paper we first survey previous work in the domain bynfing out the
motivations and challenges that guided the developmentalf salculi. Then we
use very simple technology to establish a general theorypifait substitutions
for the lambda-calculus which enjoys fundamental propsrsiuch as simulation
of one-step beta-reduction, confluence on metaterms,pet&m of beta-strong
normalisation, strong normalisation of typed terms anbcunposition. The cal-
culus also admits a natural translation into Linear Logictgof-nets.

1 Introduction

This paper is abougxplicit substitution¢ES), an intermediate formalism that - by de-
composing thehigher-ordersubstitution operation into more atomic steps - allows a
better understanding of the execution models of compleyuages.

Indeed, higher-order substitution isreeta-levebperation used in higher-order lan-
guages (such as functional, logic, concurrent and objeetied programming), while
ES is anobject-levelnotion internalised and handled by symbols and reductitesru
belonging to their own worlds. However, the two formalisme still very close, this
can be easily seen for example in the case oftoalculus whose reduction rule is
given by (A\x.t) u —g t{z/u}, where the operatiot{x/v} denotes the result of sub-
stituting all thefree occurrences of in ¢ by u, a notion that can be formally defined
moduloa-conversion' as follows:

x{z/u} =u (t1 t2){z/u} = (t1{z/u}te{x/u})
ylo/u} =y (x #y) Ayvo){z/u} == Ay.v{z/u}

Then, the simplest way to specify)acalculus with ES is to incorporate substitu-
tions into the language, then to transform the equalitiethefprevious specification
into reduction rules (so that one still works moduteconversion), thus yielding the
following reduction system known as [36, 37, 44, 10].

Azt)u — tlx/u]

x[z/u] —u

yle/ul =y (x #y)
(t1 t2)[z/u] — (tr[z/u] talx/u])
(Ay-v)lz/u] = Ay.vlz/u]

! Definition of substitution module--conversion avoids to explicitly deal with the variable €ap
ture case. Thus, for examplaz.y){y/z} =a Az.y){y/z} =acs Xz.y{y/z} = Az.z.

Thex-calculus corresponds to the minimal behavibtirat can be found in most of
the calculi with ES appearing in the literature. More sofitéded treatments of substi-
tutions also consider a composition operator allowing nmacie interactions between
them. This is exactly the source of the problems that we disbelow.

Related Work In these last years there has been a growing interestcalculi with
ES. They can be defined either with unary [44,35] or n-ary 3 slibstitutions, by
using de Bruijn notation [11, 12, 32, 27], or levels [39], ontbinators [20], or director
strings [46], or ... simply by named variables as\in Also, a calculus with ES can be
seen as a term notation for a logical system where the reduaiies behave like cut
elimination transformations [22, 29, 16].

In any case, all these calculi were introduced as a bridgedsst formal higher-
order calculi and their concrete implementations. Howeweplementing an atomic
substitution operation by several elementary explicipsteomes at a price. Indeed,
while A-calculus is perfectlprthogonal(does not have critical pairs), calculi with ES
such as\x suffer at least from the following well-known diverging enple:

tly/vllz/uly /o]l " — ((Az-t) w)ly/v] =7 tz/ully/v]

Different solutions were adopted in the literature to cltse diagram. If no new
rewriting rule is added to those ak, then reduction turns out to be confluent on terms
but not onmetatermgterms with metavariables used to represent incompleigranos
and proofs). If naive rules for composition are considetieel) one recovers confluence
on metaterms but loses normalisation: there exist termstwdre strongly normalisable
in A-calculus but not in the corresponding ES version. This ph@mon, known as
Mellies’ counter-example [40], shows a flaw in the desigiE8fcalculi in that they are
supposed to implement their underlying calculus (in ouedhag A-calculus) without
losing its good properties. More precisely, let us eglcalculusan arbitrary set ofXz-
)terms together with a set of{-)reduction rules. Also, let us consider a mapptrg
from A-terms toAz-terms. The following list of properties can be identified:

(C) The \z-reduction relation is confluent ok;-terms: Ifu Nt O then there
ist’ such thatu —3 t' 5« v.

(MC) The\z-reduction relation is confluent ox;-metaterms.

(PSN) The Az-reduction relation preservesstrong normalisation: If tha-term¢ is in
SN g, thentoz(t) is in SN y,.

(SN) Strong normalisation holds foy;-typed terms: If the\;-termt is typed, thert is
in SJ\/)\Z.

(SIM) Any evaluation step in\-calculus can be implemented By: If ¢ —3 t/, then
toz(t) —3, toz(t').

(FC) Full composition can be implemented by: The A\z-termt[z/u] Az-reduces to
t{x/u} for an appropriate notion of (meta)substitution.)gaterms.

In particular, (MC) implies (C) and (PSN) usually implieN)5

2 Some presentations replace the ryle/u] — y by the more general ortér /u] — t (x ¢ 7).

The result of Mellies appeared as a challenge to find a asdwving all the prop-
erties mentioned above. There are already several praptsin the literature giving
(partial) answers to this challenge; they are summariselderfollowing table, where
we just write one representative calculus for each linendévthere are currently many
more references available in the literature (by lack of spae cannot cite all of them).

Calculus| C [MC[PSN SN|SIM|FC
A« [44] |Yes No| Yes|Yes Yes|No
Ao [2] |Yeg No| No [No|Yes|Yes

Ao [23] |YesYes| No |No| Yes|Yeg
A¢ [41] |YegYes| Yes|Yes No [No

Aws [14] |Yes Yes| Yes|Yes Yes|No

Alxr [29]|Yeq ? |Yes|Yegd Yes|Yes

In other words, there are many ways to avoid Mellies’ cousteaample in order to
recover the PSN property. More precisely, one can forbidsthstitution operators to
cross lambda-abstractions [38, 18] or avoid compositiogutistitutions [6]. One can
also impose a simple strategy on the calculus with ES to mexractly the calculus
without ES. The first solution leads teeaklambda calculi, not able to expressong
beta-equality (used for example in implementations of passistants). The second
solution is drastic when composition of substitutions ieded for implementations of
HO unification [15] or functional abstract machines [24].€Tlast one does not take
advantage of the notion of ES because they can be neitherasmdmor even delayed.

In order to cope with this problem David and Guillaume [14fided a calculus
with labelscalled ., s, which allowscontrolledcomposition of ES without losing PSN
and SN. But the\,;-calculus has a complicated syntax and its named versigng13
even less intelligible. However, the strong normalisatwoof for A,,s given in [13]
reveals a natural semantics for composition of ES via Lihegic's proof-nets [19],
suggesting that weakening (explicit erasure) and condra¢explicit duplication) can
be added to the calculus without losing strong normalisatio

Explicit weakening and contraction are the starting padfitte \1xr-calculus [29],
which is in some sense a (complex) precursor of Xhe-calculus that we present in
this paper. However, whil@-syntax could be seen as a particular casaeaf-syntax,
a special encoding is needed to incorporate weakening amttlaction operators to
A-terms in order to verify the so-called linearity consttaiof A\1xr. Moreover, the
reduction system olklxr contains6 equations and9 rewriting rules, thus requiring
an important amount of combinatorial reasoning. This isahlyt discouraging when
one needs to check properties by cases on the reductioraste@son why confluence
on metaterms foAlxr is just conjectured but not still proved.... Also, wher@asr
gives the evidence that explicit weakening and contractresufficiento verify all the
properties one expects from a calculus with ES, there is stifipd reason to think that
they are alsmecessary

We choose here to introduce thes-calculus by using concise and simple syntax
in named variable notation style (asis) in order to dissociate all the renaming de-
tails which are necessary to specify higher-order suliititon first-order terms (such
as for example terms in de Bruijn notation). Even if this deoimplies the use of

a-equivalence, we think that this presentation is more gmpmte to focus on the fun-
damental computational properties of the calculus. Mogedhis can also be justified
by the fact that it is now perfectly well-understood in thiedature how to translate
terms with named variables into equivalent terms in firsleomotation. Another im-
portant choice made in this paper is the use of minimal eqnatireasoning (just one
equation) to specify commutation of independent subgtitgt This will turn out to be
essential to obtain safenotion of (full)composition which does not need the complex
use of explicit operators for contraction and weakeningoAsimultaneous substitution
(also called n-ary substitution), can be simply expressigrmour framework.

We thus achieve the definition of a simple language being easpderstand, and
enjoying a useful set of properties: confluence on metatéams thus on terms), sim-
ulation of one-stegs-reduction, strong normalisation of typed terms, pregéeof
(-strong normalisation, simulation of one-sfgpeduction and full composition. More-
over, these properties can be proved using very simple peobhiques while this is not
the case for other calculi axiomatising commutation of &itutfons. Thus for example,
the calculus proposed in [45] specifies commutation of iedelent substitutions by a
non-terminatingewriting system (instead of an equation), thus leadingtamicated
notions and proofs of its underlying normalisation projestt

The Aes-calculus admits a natural translation into Linear Logj'eof-nets, thus
providing an alternative proof of strong normalisationsé| a more implementation
oriented calculus based ows could be specified by means of de Bruijn notation and
n-ary substitutions. These two last topics are howevertenih this paper because of
lack of space, we refer the interested reader to [28].

The rest of the paper is organised as follows. Section 2dnires syntax forles-
terms and appropriate notions of equivalence and redudtioBection 3 we develop
a proof of confluence for metaterms. Preservatio-strong normalisation is studied
and proved in Section 4. The typing system fes is presented in Section 5 as well as
the subject reduction property and the relation betweemgygerivations in\es and
A-calculus. Finally, strong normalisation based on PSNdas@d in this same section.

We refer the reader to [28] for detailed proofs and to [9, 4F]dtandard notions
from rewriting that we will use throughout the paper.

2 Syntax

A Aes-term is inductively defined by wariable =, anapplicationt «, anabstraction
Az.t or asubstituted ternt[x/u], whent andu are Aes-terms. The syntactic object
[x/u], which is not a term itself, is called axplicit substitution

The terms\z.t andt[z/u] bindz in t. The sets ofree andboundvariables of a term
t, denoted andt respectively, can be defined as usual. Thus, the standacshrdio-
conversion on higher-order terms is obtained so that oneassyme, whenecessary
that two bound variables have different names, and no Jarialiree and bound at the
same time. Indeed, when using different symhadsdy to talk about twanestedoound
variables, as for example in the terifdg,.t) [« /u] andt|z /u][y/v], we implicitly mean
x # y. The use of the same name for bound variables appearipgrailel/disjoint
positions, as for example it /u] v[z/u] or (Az.z) (Az.z) is not problematic.

Besidesxy-conversion the following equations and reduction rulescamsidered.

Equations Reduction Rules
Tefully/ol = /ol [Oade —s /4]
(y ¢ uw& x ¢ T) |The (sub)set of ruless:

x[z/u] —ar U
Hofu] —oe (x ¢9)
(twlz/v] —upp, tlz/v]ufz/v] (zet&aen)
(tu)[r/v] —upp, tulz/v] (x¢t&axen)
(tu)[r/v] —upp, tlx/v]u (xet&z¢u)
yt)[5/0] e Ap-tfe/])
tla/ully/v] —conp, tly/vllz/uly/v] (y €Uy €)
tlx/u]ly/v] —comp, t[z/uly/v]] (yeu&kydtl)

It is appropriate to point out here thatconversion is necessary in order to avoid
capture of variables. Thus for example the left-hand sidb®Lamb-rule (Ay.t)[x/v]
implicitly assumesy # z andy ¢ ©. See also Sections 4.2 and 6 for a a discussion
about the minimality of the subsetw.r.t its number of rules.

The higher-order rewriting systernontaining the rule§B} U s is calledBs. The
equivalence relatiogenerated by the conversioBs= {«, C} is denoted by=¢_. The
reduction relationgenerated by thewriting ruless (resp.Bs) modulo the equivalence
relation =g, is denoted by—.; (resp. —,es), thee means equational and tesub-
stitution. More precisely,

t —es ' iffthere areu,u’ s.t.t =g, u —g v’ =g, ¢
t —res t' iffthere areu, v’ s.t.t =g, u —ps v/ =g, t/

The notation—__ (resp.—_) is used for the reflexive and transitive (resp. tran-
sitive) closure of—).

Remark that any simultaneous (n-ary) substitution can nethbught as a sequence
of consecutivendependentinary substitutions representing the same mapping. Thus
for exampldz/u, y/v] can be expressed as/u|[y/v] (or [y/v][z/u]) wherey ¢ @ and
x ¢ v. The use of the equatiahto make a list of independent substitutions behave like
a simultaneous one is essential. We leave to the reader tifieation that composition
of simultaneous substitution can be expressed within\edfreduction relation.

The equivalence relation preserves free variables andetihection relation either
preserves or decreases them. Thus,ye.s u impliesu C &.

Also, the (sub)calculuss, which is intended to implement (meta-level) substitu-
tion, can be shown to be terminating by associating to eéaehtermt a measure which
does not change 8, but strictly decreases by ; (details can be found in [28]).

We now address the property of full composition. For thatextend the standard
notion of (meta-level)substitution okrterms given in the introduction to all thées-
terms by adding the new caflg/u]{z/v} := t{x/v}[y/u{x/v}], where we implicitly
meanz # y & y ¢ v. Remark that{xz/u} = tif = ¢ ¢, thus we can prove:

Lemma 1 (Full Composition).Lett andu be Aes-terms. Thert[z/u] =%, t{z/u}.

We now establish basic connections betwg@mdAes-reduction. As expected-
reduction can be implemented by the more atomic notiokeafreduction while this
one can be projected inf&

Lemma 2 (Simulating 3-reduction). Lett be a-term s.tt —g t'. Thent —1__t'.
Proof. By induction ong-reduction using Lemma 1.

Aes-terms are encoded intbterms as followsL(z) := x, L(Az.t) := Ax.L(%),
L(t u) := L(t) L(u) andL(t[z/u]) := L(¢t){x/L(u)}. Thus, projection is obtained:

Lemma 3 (Projecting into 3-reduction). If ¢ — yes u, thenL(t) —7 L(u).

Proof. First prove that =g, w impliesL(¢) = L(u) by the well-known substitution
lemma [4] of A-calculus. Remark that — w trivially implies L(¢) = L(u). Finally,
prove thatt —p u impliesL(t) — L(u) by induction on the reduction steép-s w.

3 Confluence on metaterms

Metatermsare terms containingietavariablesdenotingincompleteprograms/proofs
in a higher-order unification framework [25]. Metavariabhould come with a min-
imal amount of information to guarantee that some basicaijmers such as instantia-
tion (replacement of metavariables by metaterms) are swuadyping context. How-
ever, known formalisms in the literature for the specificaif higher-order metaterms,
such as Combinatory Reduction Systems (CRS) [30] or Exjpre&eduction Systems
(ERS) [26], do not allow, at least in a simpler way, to spettify precise set of free vari-
ables which is expected from a (sound)instantiation. ThueXample, a CRS metaterm
like M (x,y) specifies that andy mayoccur in the instantiation af/, but M can also
be further instantiated by any other term not containiramdy at all. Another example
is given by the (raw) ERS metaterin= \y.y X (Az.X) because the instantiation of
X by a term containing a free occurrencezofvould be unsound (see [41, 15, 17] for
details).

We thus propose to specify incomplete proofs as follows. Wesitler a countable
set ofraw metavariableX, Y, ... associated to sets of variablBEsA, . . ., thus yielding
decoratedmetavariables denoted B, Y o, etc. This decoration says nothing about
the structureof the incomplete proof itself but is sufficient to guarantieat different
occurrences of the same metavariable inside a metaterneaee imstantiated by dif-
ferent metaterms.

The grammar forles-terms is extended to generates-metaterms as follows:

tuo=o | Xa|tt] .t tfx/t]

We extend the notion dfee variableso metatermby X, = A.

Reductiomon metaterms must be understood in the same way reducticerios:t
the \es-relation is generated by tiBa-relation onEs-equivalence classes wfetaterms

In contrast to the ERS notion of metatermconversion turns out to be perfectly
well-defined on\es-metaterms by extending the renaming of bound variablebeo t
decoration sets. Thus for example.Y, =, A\z.Y..

Itis well-known that confluence on metaterms fails for chlevithoutcomposition
for ES as for example the following critical pair kx shows

s = t[z/ully/v] " ((Az.t) w)[y/v] =" tly/v][x/uly/v] = &

Indeed, while this diagram can be closedinfor termswithout metavariableflL0],
there is no way to find a common reduct betweeand s’ whenevett is (or contains)
metavariables: nax-reduction rule is able to mimic composition on raw or detedla
metavariables. This can be fortunately recovered in the chheles-calculus.

3.1 The confluence proof

This section develops a confluence proof for reductionesrmetaterms based on
Tait and Martin-Lof’s technique: define a simultaneousuctbn relation denotegb . ;
prove that=}, and—7 are the same relation; show that, is confluent; and finally
conclude. While many steps in this proof are similar to theygeearing in other proofs
of confluence for the\-calculus, some special considerations are to be used ihere i
order to accommodate correctly the substitution calcudusell as the equational part
of our notion of reduction (see in particular Lemma 6).

A first interesting property of the systess is that it can be used as a function on
Es-equivalence classes:

Lemma 4. Thees-normal forms of metaterms are unique modgloso thatt =g, u
implieses(t) =g, es(u).

The simultaneous reduction relatiett,s on es-normal forms is now defined in
terms of a simpler relatios> working onEg-equivalence classes.

Definition 1 (The relations= and = ;). Simultaneous reduction is defined on metaterms
in es-normal form as followst = t’ iff Ju, v’ s.t.t =g, u = u’ =g, t/, where

-

If t = t/, then)z.t = A\z.t/

Ift =t andu = u/, thent u = t' v/

Ift = ¢ andu = o/, then(Az.t) u = es(t'[x/u])

If u; = v} andz; ¢ w; forall 4,5 € [1,n], thenXa[z1/u1]...[zn/un] =
Xalzr/ui] . e /uy]

The simultaneous relation is stable in the following sense.

Lemmab5. If t =4 ¢’ andu =5 o/, thenes(t[z/u]) =es es(t'[x/u']).
It can be now shown that the relatief.s has thediamond property
Lemma6. If t] os &t = s 12, thendts s.t.t; = 13 s & ta.

Proof. 1. Firstprovethat & u =g v’ impliest =g, ¢’ < v’ for somet’ by induction
ont < u. Thus conclude that .s < v’ =g, v’ impliesv =g, t’ < ' for somet’.

2. Provethat; &t = t, impliest; = t3 s < to for somets by induction on=
using Lemma 5.

3. Finally prove the diamond property as follows. ktet.s &t =5, ©u = u' =g, to.
By point (1) there isu; such that; =g, u; < w and by point (2) there is; such
thatu1 Ses 13 esE u'. CO”Cluddl Ses 13 esE ta.

We thus obtain the main result of this section:
Corollary 1. The reduction relation-}, is confluent.

Proof. The relatior=}, enjoys the diamond property (Lemma 6) so that it turns out to
be confluent [9]. Sinces;, and—7},, can be shown (using Lemmas 4 and 5) to be the
same relation, then conclude that; _ is also confluent.

Although this confluence result guarantees that all thécatipairs inAes can be
closed, let us analyse a concrete example being the sountedsting diverging dia-
grams in calculi with ES (c.f. Section 1), giving by the follmg case:

*
S3 Nes S1 —B 52

7 ((Azt) w)ly/v] tz/ully/v]

The metatermss as well as the one used to close the diagram can be determjined b
the following four different cases:

yetlyeu s3 Close the diagram hy
Yes| Yes |t[y/v][x/uly/v]] 83 Comp, < S2

Yes| No | tly/v][z/v] 83 =k, S2

No | Yes t[ZC/U[y/’U]] 53 Comp, < 52

No | No (Az.t)u |s3 —p t[r/u] ge— s2

4 Preservation of3-strong normalisation

Preservation ofs-strong normalisation (PSN) in calculi with ES received adbat-
tention (see for example [2,6, 10, 32]), starting from anxpeeted result given by
Mellies [40] who has shown that there a¥estrongly normalisable terms ik-calculus
that are not strongly normalisable when evaluated by theatézh rules of an explicit
version of the\-calculus. This is for example the case for [2] and Aoy, [23].

Since then, different notions of safe composition whereoghiced, even if PSN
becomes more difficult to prove ([8, 14, 1, 29, 31]). This ismhabecause the so-called
decentterms are not stable by reduction : a tetns said to bedecentin the calcu-
lus)z if every subtermv appearing in some substituted subtewf/v] of ¢ is Az-
strongly normalising. As an example, the temjx/(y y)]ly/ \w.w w] is decent in
Aes sincey y and Aw.w w are both\es-strongly normalising, but it€omp,-reduct
z[z/(y y)|y/ A w.w w]] is not.

This section proves thates preservegi-strong normalisation. For that, we use a
simulation proof technique based on the following stepsfistdefine a calculusesw
(Section 4.1). We then give a translatiofrom Aes-terms (and thus also frohrterms)
into Aesw s.t.t € SN g impliesK(t) € SN xesw (Corollary 4) andk(t) € SN resw
impliest € SN s (Corollary 2).

4.1 The)\esw-calculus

A Aesw-term is inductively defined by, ¢t u, Az.t, t[z/u] or W,(t) (anexplicit weak-
ening. We extend the notion of free variables to explicit weakgsiby adding the case
W,.(t) = {z} Ut. The notion ofstrict term will be essential: every subterk.t and
tlxz/u] is such that: € ¢ and every subteriV, (¢) is such that: ¢ ¢.

Besides equations and rulesias, those in the following table are also considered.

Additional Equations Additional Reduction Rules
We(Wy(t) =ic Wy(Wa(t)) W (t)[x/u] — WE\E(t)
Wy () [x/u] =weas Wy(tlz/u]) (z #y &y g@)Wy(t)u —tu (y €)
Wy(Az.t) =uws Az Wy(t) (x#y) Wyt)u = Wy(tu) (y¢7u)
t Wy(u) —tu (y €t)
tWy(u) = Wyltu) (y¢1)
Wy (t)[z/u] — t[z/u] (y € @)
te/Wy(u)] — Wy(t[z/ul) (y ¢ 1)
/Wy (u)] — tlz/u] (y€l)
Given a set of variable§’ = {z1,...,2,}, the use of the abbreviation/r(t)

for Wy, (... W, (t)) in the first reduction rule is justified by the equatig@. In the
particular casé” = (), we defineWV,(¢) = t. Itis suitable again to recall that we work
moduloa-conversion. Thus for example the tering, (\z.t) andt[z/W, (u)] have to
be always understood as# y. However, this is not the case for example fat WV, (t)
or W, (t)[z/u] where the variables andy may be equal or different, that's the reason
to explicitly add the side-condition # y in some of the previous equations and rules.
The rewriting system containing all the reduction ruleshia previous table plus
those in systers is calledsw. The notatiorBsw is used for the systeqB} U sw. The
equivalence relation generated by all the equations intiéqus table plus those iy
is denoted by=¢_,. The relation generated by the reduction riegresp.Bsw) modulo
the equivalence relatiorg,_, is denoted by— s, (resp. — resw)- More precisely,

t —esy t' Iffthere areu, v’ s.t.t =g, u —gy v/ =g, ¢
t —xesy t' Iff there areu, v’ s.t.t =g, u —pey v/ =g, t'

From now on, we only work with strict terms, a choice that istified by the fact
that A\esw-reduction relation preserves strict terms.

In order to infer normalisation ofes from that of \esw, a relation between both
notions of reduction is needed. For that, a translakidom Aes-terms (and thus also
from A-terms) to (strict/lesw-terms is defined as follows:

K(z) =z . Kuv) :=K(u)K) .
K(Az.t) = AxK(t) fzet K(Az.t) = x W, (K(t)) fzxéet
K(ulz/v]) == K(u)[z/K(v)] fx €t K(ulz/v]) := Wy (K(u))[z/K(v)] fz ¢t

Remark thak(t) = ¢. Also, Aesw-reduction can be used to push out useless weak-
ening constructors as follows:

Lemma 7. If u —jes v, thenK(u) —1 .. Was(K(v)).

Proof. The proof is by induction or-,.s and it accurately puts in evidence the fact
thatWeak1 andWAbs are needed as equations and not as rewriting rules.

The previous lemma allows us to conclude with the followingservation result:

Corollary 2. If K(t) € SN resu, thent € SN yes.

4.2 TheAj-calculus

The A;-calculus is another intermediate language used as tedhioa@ to prove PSN.
The set ofA;-terms [30] is defined by the grammar:

M u=a| M M| x.M | [M, M]

We consider the extended notions of free variables and jfaeth substitution on
Ar-terms. We restrict again the syntaxgtict terms (every subtermz. M satisfies
x € M). The following two reduction rules will be used:

(Az.M) N —5 M{z/N}
[M,N]L —,[M L,N]

Strict A;-terms turn out to be stable by reduction since they do net feee vari-
ables during reduction.

A binary relation (and not a functiory) is used to relatéesw and A;-terms, this
becauselesw-terms are translated inth;-syntax by adding songarbageinformation
which is not uniquely determined. Thus, eatdsw-term can be projected into different
Az-terms, and this will be essential in the simulation propéFfheorem 1).

Definition 2. The relation Z betweerstrict Aesw-terms andstrict A;-terms is induc-
tively given by the following rules:

tZTT tIT wZIU tIT wIU
xZTx dxitZ T tuZTU tlx/u] T T{z/U}

t T T & M strict tIT &zeT
tZ [T, M] We(t) ZT

The relationZ enjoys the following properties.

Lemma8. Lett Z M. Thent C M, M € A;andx ¢ t & N € A; implies
t T M{z/NY}.

Remark however thatZ M impliest C M only onstrict terms. This can be seen as
a proof technical argument to exclude from our calculus tt@vgrrules not preserving
strict terms like

(App) (tw)[z/v] — tlz/v] ulx/v]
(Comp) tfx/ully/v] — tly/v][z/uly/v] (y €7)

Reduction inAesw can be related to reduction ut; by means of the following
simulation property (proved by induction on the reductampuivalence step).

Theorem 1. Lets € AeswandS € A;.

1. IfsZ Sands =¢_ t,thent Z S.
2. IfsZ Sands —g, t,thent Z S.
3. IfsZ Sands —3 t, then there ig" € A; s.t.t T T andS —>2;T T.

The second preservation result can be now stated as follows:
Corollary 3. If s Z S andS € SN 3., thens € SN esy-

Proof. Suppose & SN jesu- AS — s, Can easily be show to be well-founded (see [28]
for details), then an infiniteesw-reduction sequence starting sats necessarily pro-
jected by the previous Theorem into an infiniie-reduction sequence starting it
This leads to a contradiction with the hypothesis.

4.3 Solving the puzzle

All the parts of the puzzle together give a PSN argumenitgr. The starting point is
the following encoding fronh to A;-terms:

I(z) ==z IAx.t) :=XzxI(t) ax€t
I(tw):=I(t) I(u) IAx.t) := Ax.[I(t),z] x ¢ 1

Now, starting from a\-termu, which is also ales-term, one computes itsimage
- a \esw-term - so that somd ;-term will be inZ-relation with it. More precisely, a
straightforward induction on gives:

Theorem 2. For any A-termu, K(u) Z I(u).

Preservation of3-strong-normalisation, which is one of the main resultshef pa-
per, can be finally stated:

Corollary 4 (PSN).If t € SNg, thent € SN jes.

Proof. If t € SN g, thenI(t) € W Ng, [34]and thusi(t) € SNg, [42]. AsK(t) Z I(t)
by Theorem 2, theH(t) € SN yesw by Corollary 3 so that € SA s by Corollary 2.

5 The typed Aes-calculus

Simply typesre built over a countable set of atomic symbols (base tygas}the type
constructor— (functional types). Arenvironmentis a finite set of pairs of the form
x : A. Two environmentd” and A are said to beompatibleiff forall =z : A € I" and
y: B e A, x=yimpliesA = B. Theunion of compatible contexts writtenI” ¥ A.
Thus forexampléz : A,y : B)W(x: A,z:C) = (x: A,y : B,z: C). The following
properties on compatible environments will be used:

Lemma 9.

1. frcrrandAcC A',thenfTw ACIW A,
2Ty (Awl) = ('Y A)WIl.

Typing judgementhave the forml” F ¢ : A wheret is a term,A is a type and
I is an environmenDerivationsof typing judgements, writteld’ .5 ¢ : A, can be
obtained by application of then(ultiplicative rules in the following table.

) I'-t:A— B AFu: A
— (axion) (app)
r:AFxz: A I''WAlk (tu): B
I'+t:B I'u:B At A
(abs) (subs)
I'\{z:A}FXzt:A— B 'y (A\{z:B})Ftlz/u]: A

The axi omrule types a variable in a minimal environment but variallesap-
pearing free may be introduced by binder symbols by mearsoilesabs andsubs.
Thus for example starting from the derivable typing judgetme: B + z : B one can
derive judgements like \z.x : B — Borx : B+ Az.x : A — B. Remark that
whenI" W A appears in the conclusion of some rule, then by definitiband A are
compatible.

The typing rules for\es ensure that every environmehtcontainsexactlythe set
of free variables of the termh Thus,I" .5 t : A impliesI” =1.

The typed calculus enjoyscal subject reduction in the sense that no meta-theorem
statingweakeningr thinningis needed to show preservation of types.

Lemma 10 (Subject Reduction)Letl" Fyes s : A. Thens =g, s’ impliesI” Fyes s’ :
Aands —yes s impliesIl’ by s’ : Aforsomell’ C I1.

The connexion betweetyped derivations inA-calculus (writtent-,) and typed
derivations in\es-calculus is stated as follows, whefds denotes the environment
I restricted to the set of variablés

Lemmall. If "'y t: A thenl|z Faes t: AANndifl Fags t 2 A, thenl” 5 L(¢) : A.

We now prove strong-normalisation faes-typed terms by using PSN. Another
proof of strong-normalisation based on a translation oEtypes-terms into Linear
Logic’s proof-nets is also developed in [28].

Theorem 3 (Strong Normalisation).Every typabledes-term M is in S Njes.

Proof. First define a translatiog from Aes to A as follows:C(z) = z, C(t u) =
C(t) C(u), C(Az.t) := Az.C(t) andC(t[z/u]) := (Az.C(t)) C(u). Thus for example,
C((z[z/y] 2)[w/ (w1 w2)]) = (Mw.((Az.z) y) 2) (w1 w2).

We remark that for everfles-term one has(t) —3_, t. Also, whent is typable in
Aes, then alsa(t) is typable in\es (just change the use ofubs by abs followed by
app)- By Lemma 11 the term(C(¢)) = C(¢) is also typable in simply type#-calculus
and thusc(t) € SN [5]. We getC(t) € SNes by Corollary 4 so that € SNyes.

This proof technique, which is very simple in the case of Xke-calculus, needs
some additional work to be applied to other (de Bruijn) chleis, 3].

6 Conclusion

In this paper we survey some properties concerning ES ¢alndlwe describe work
done in the domain during these last 15 years. We proposdessyptax and simple
equations and rewriting rules to model a formalism enjoyogd properties, specially
confluence on metaterms, preservatioedtrong normalisation, strong normalisation
of typed terms and implementation of full composition.

We believe however that some of our proofs can be simplifiegharticular, PSN
might be proved directly without using translations. afs to other formalisms. We
leave this for future work.

Another interesting issue is the extension of Pure TypeeByst(PTS) with ES in
order to improve the understanding of logical systems usalldorem-provers. Work
done in this direction is based on sequent calculi [33] ourstdeduction [41]. The
main contribution of\es w.r.t the formalisms previously mentioned would be safe
notion of composition.

It is also legitimate to ask whetheves is minimal w.r.t. the number of rewrit-
ing rules. Indeed, it is really tempted to gather the rulesp, , App,, App,} (resp.
{Comp,, Comp, }) into the single ruleipp for application (respComp for composition)
given just after Lemma 8. While this change seems to be sourtdtive properties of
the calculus, the translation ofles-terms intoA;-terms (c.f. Section 4.2), respectively
into proof-nets (c.f. [28]), does not work anymore. We thesvie this question as an
open problem. Note however tha¢s-reduction can be translated to the correspondent
notion of reduction in this calculus : thus for examplep, can be obtained bypp
followed byGec.

As far as implementation is concerned, it would be preferfioim a practical point
of view to avoid the systematic use of the equivalence ctagseerated by the axioms
« andc. In other words, it would be more efficient to work with a puegriting system
(without equations) verifying the same properties thas. We believe that simulta-
neous substitutions will be needed to avoid axiorwhile some technology like de
Bruijn notation will be needed to avoid axiom(as in the), -calculus). We leave this
topic for future investigations, but we refer the interesteader to [28] for a concrete
proposition of such a calculus.

Acknowledgements

This work has benefited from fruitful discussions with E. Bbin R. David, R. Di
Cosmo, J-P. Jouannaud, S. Lengrand, C. Mufioz and V. vamdbaost

References

[1] A. Arbiser, E. Bonelli, and A. Rios. Perpetuality in arlada calculus with explicit substitu-
tions and compositionWAIT 2000.

% While the weaker rule for composition given byt /u)[y/v] — t[z/uly/v]] (y ¢ %), is well-
known [7] to affect strong normalisation and preservatib@-gtrong hormalisation.

[2] M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Eiqit substitutionsJFP, 4(1):375-416,
1991.

[3] A. Arbiser. Explicit Substitution Systems and Subsyste PhD thesis, Universidad Buenos
Aires, 2006.

[4] H.Barendregt. The Lambda Calculus: Its Syntax and Se¢icgrNorth-Holland, 1984.

[5] H. Barendregt. Lambda calculus with types. Hiandbook of Logic in Computer Science
volume 2, 1992.

[6] Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. ReDggli. Av, a calculus of explicit
substitutions which preserves strong normalisatit#P, 1996.

[7] R. Bloo and H. Geuvers. Explicit substitution: on the edy strong normalizationTCS
6(5):699-722, 1999.

[8] R. Bloo. Preservation of Termination for Explicit Suibsgtion. PhD thesis, Eindhoven Uni-
versity of Technology, 1997.

[9] F.Baader and T. Nipkow. Term Rewriting aAdl That Cambridge University Press, 1998.
[10] R. Bloo and K. Rose. Preservation of strong normalaratn named lambda calculi with
explicit substitution and garbage collection.@omputer Science in the Netherlarid395.
[11] N. de Bruijn. Lambda-calculus notation with namelessdies, a tool for automatic for-
mula manipulation, with application to the church-ros$eorem.Indag. Mat, 5(35):381—

392, 1972.

[12] N. de Bruijn. Lambda-calculus notation with namefreenfulas involving symbols that
represent reference transforming mappirigslag. Mat, 40:384—356, 1978.

[13] R. Di Cosmo, D. Kesner, and E. Polonovski. Proof netsexglicit substitutions. Il.NCS
1784,FOSSAC2000.

[14] R. David and B. Guillaume. A-calculus with explicit weakening and explicit substituti
MSCS 11:169-206, 2001.

[15] G. Dowek, T. Hardin, and C. Kirchner. Higher-order ucéfiion via explicit substitutions.
1&C, 157:183-235, 2000.

[16] R. Dyckhoffand C. Urban. Strong normalisation of Hdive explicit substitution calculus
with substitution propagation. WESTAPP 2001.

[17] F. L. C. de Moura and M. Ayala-Rincon and F. Kamareddiftigher-Order Unification:
A structural relation between Huet's method and the one daseexplicit substitutions.
Journal of Applied Logic, 6(1):72-108, 2008.

[18] J. Forest. A weak calculus with explicit operators fattprn matching and substitution. In
LNCS2378,RTA2002.

[19] J.-Y. Girard. Linear logicTCS 50(1):1-101, 1987.

[20] J. Goubault-Larrecq. Conjunctive types and SKInT LMCS1657, Types for Proofs and
Programs 1999.

[21] T. Hardin. Résultats de confluence pour les regletefode la logique combinatoire
catégorique et liens avec les lambda-calculs. These d®mo, Université de Paris VI,
1987.

[22] H. Herbelin. AX-calculus structure isomorphic to sequent calculus sirecinLNCS933,
CSL1994.

[23] T. Hardin and J.-J. Lévy. A confluent calculus of sulogibns. InFrance-Japan Artificial
Intelligence and Computer Science Symposil®89.

[24] T. Hardin, L. Maranget, and B. Pagano. Functional bewlls within the lambda-sigma
calculus. InICFP 1996.

[25] G. Huet. Résolution d’équations dans les langagesdde1, 2, ..., w. These de doctorat
d’état, Université Paris VII, 1976.

[26] Zurab Khasidashvili. Expression reduction systenmsProceedings of IN Vekua Institute
of Applied Mathematicssolume 36, Thilisi, 1990.

[27] D. Kesner. Confluence properties of extensional andexaansional-calculi with explicit
substitutions. ILNCS1103,RTA1996.

[28] D. Kesner. The theory of calculi with explicit substitins revisited, 2006. Available as
http://hal.archives-ouvertes.fr/hal-00111285/.

[29] D. Kesner and S. Lengrand. Extending the explicit stltgn paradigm. INLNCS3467,
RTA2005.

[30] J.-W. Klop. Combinatory Reduction Systems. PhD thedithematical Centre Tracts 127,
CWI, Amsterdam, 1980.

[31] Z.Khasidashvili, M. Ogawa, and V. van Oostrom. Unifoormalization Beyond Orthog-
onality. INLNCS2051,RTA2001.

[32] F. Kamareddine and A. Rios. A-calculus a la de Bruijn with explicit substitutions. In
LNCS982,PLILP 1995.

[33] S. Lengrand, R. Dyckhoff, and J. McKinna. A sequent chis for type theory. ILLNCS
4207,CSL2006.

[34] S.Lengrand. Normalisation and Equivalence in Proa#drly and Type Theory. PhD thesis,
University Paris 7 and University of St Andrews, 2006.

[35] P.Lescanne. From, to \,, a journey through calculi of explicit substitutions. ROPL
1994.

[36] R.Lins. A new formula for the execution of categoricahtbinators. IlLNCS230,CADE
1986.

[37] R. Lins. Partial categorical multi-combinators andu@h Rosser theorems. Technical
Report 7/92, Computing Laboratory, University of Kent an€@abury, 1992.

[38] J.-J. Lévy and L. Maranget. Explicit substitutionsdgsrogramming languages. UNCS
1738,FSTTCSL999.

[39] P.Lescanne and J. Rouyer-Degli. Explicit substitsiavith de Bruijn levels. ILNCS914,
RTA 1995.

[40] P.-A. Mellies. Typedi-calculi with explicit substitutions may not terminate. LNCS902,
TLCA1995.

[41] C. Mufoz. Un calcul de substitutions pour la repréagan de preuves partielles en théorie
de types. PhD thesis, Université Paris 7, 1997.

[42] R. Nederpelt. Strong Normalization in a Typed LambdécGlas with Lambda Structured
Types. PhD thesis, Eindhoven University of Technology,3197

[43] E. Polonovski. Substitutions explicites, logique etmalisation. Thése de doctorat, Uni-
versité Paris 7, 2004.

[44] K. Rose. Explicit cyclic substitutions. IbDNCS656,RTA1992.

[45] T. Sakurai. Strong normalizability of calculus of eiqifl substitutions with composition.
Available onht t p: / / www. mat h. s. chi ba- u. ac. j p/ ~sakur ai / papers. ht m .

[46] F.-R. Sinot, M. Fernandez, and |. Mackie. Efficientuetions with director strings. In
LNCS2706 ,RTA 2003.

[47] Terese. Term Rewriting Systems, volume 5%aimbridge Tracts in Theoretical Computer
Science Cambridge University Press, 2003.

