
The theory of calculi with explicit substitutions revisited

Delia Kesner

PPS, Université Paris 7 and CNRS (UMR 7126), France

Abstract. Calculi with explicit substitutions (ES) are widely used indifferent
areas of computer science. Complex systems with ES were developed these last
15 years to capture the good computational behaviour of the original systems
(with meta-level substitutions) they were implementing.
In this paper we first survey previous work in the domain by pointing out the
motivations and challenges that guided the development of such calculi. Then we
use very simple technology to establish a general theory of explicit substitutions
for the lambda-calculus which enjoys fundamental properties such as simulation
of one-step beta-reduction, confluence on metaterms, preservation of beta-strong
normalisation, strong normalisation of typed terms and full composition. The cal-
culus also admits a natural translation into Linear Logic’sproof-nets.

1 Introduction

This paper is aboutexplicit substitutions(ES), an intermediate formalism that - by de-
composing thehigher-ordersubstitution operation into more atomic steps - allows a
better understanding of the execution models of complex languages.

Indeed, higher-order substitution is ameta-leveloperation used in higher-order lan-
guages (such as functional, logic, concurrent and object-oriented programming), while
ES is anobject-levelnotion internalised and handled by symbols and reduction rules
belonging to their own worlds. However, the two formalisms are still very close, this
can be easily seen for example in the case of theλ-calculus whose reduction rule is
given by(λx.t) u →β t{x/u}, where the operationt{x/v} denotes the result of sub-
stituting all thefree occurrences ofx in t by u, a notion that can be formally defined
moduloα-conversion1 as follows:

x{x/u} := u (t1 t2){x/u} := (t1{x/u}t2{x/u})
y{x/u} := y (x 6= y) (λy.v){x/u} := λy.v{x/u}

Then, the simplest way to specify aλ-calculus with ES is to incorporate substitu-
tions into the language, then to transform the equalities ofthe previous specification
into reduction rules (so that one still works moduloα-conversion), thus yielding the
following reduction system known asλx [36, 37, 44, 10].

(λx.t) u → t[x/u]
x[x/u] → u
y[x/u] → y (x 6= y)
(t1 t2)[x/u] → (t1[x/u] t2[x/u])
(λy.v)[x/u]→ λy.v[x/u]

1 Definition of substitution moduloα-conversion avoids to explicitly deal with the variable cap-
ture case. Thus, for example(λx.y){y/x} =α (λz.y){y/x} =def λz.y{y/x} = λz.x.

Theλx-calculus corresponds to the minimal behaviour2 that can be found in most of
the calculi with ES appearing in the literature. More sophisticated treatments of substi-
tutions also consider a composition operator allowing muchmore interactions between
them. This is exactly the source of the problems that we discuss below.

Related Work In these last years there has been a growing interest inλ-calculi with
ES. They can be defined either with unary [44, 35] or n-ary [2, 23] substitutions, by
using de Bruijn notation [11, 12, 32, 27], or levels [39], or combinators [20], or director
strings [46], or ... simply by named variables as inλx. Also, a calculus with ES can be
seen as a term notation for a logical system where the reduction rules behave like cut
elimination transformations [22, 29, 16].

In any case, all these calculi were introduced as a bridge between formal higher-
order calculi and their concrete implementations. However, implementing an atomic
substitution operation by several elementary explicit steps comes at a price. Indeed,
while λ-calculus is perfectlyorthogonal(does not have critical pairs), calculi with ES
such asλx suffer at least from the following well-known diverging example:

t[y/v][x/u[y/v]] ∗← ((λx.t) u)[y/v]→∗ t[x/u][y/v]

Different solutions were adopted in the literature to closethis diagram. If no new
rewriting rule is added to those ofλx, then reduction turns out to be confluent on terms
but not onmetaterms(terms with metavariables used to represent incomplete programs
and proofs). If naive rules for composition are considered,then one recovers confluence
on metaterms but loses normalisation: there exist terms which are strongly normalisable
in λ-calculus but not in the corresponding ES version. This phenomenon, known as
Melliès’ counter-example [40], shows a flaw in the design ofES calculi in that they are
supposed to implement their underlying calculus (in our case theλ-calculus) without
losing its good properties. More precisely, let us callλZ-calculusan arbitrary set of (λZ-
)terms together with a set of (λZ-)reduction rules. Also, let us consider a mappingtoZ

from λ-terms toλZ-terms. The following list of properties can be identified:

(C) TheλZ-reduction relation is confluent onλZ-terms: Ifu ∗
λZ
← t →∗

λZ
v, then there

is t′ such thatu→∗
λZ

t′ ∗
λZ
← v.

(MC) TheλZ-reduction relation is confluent onλZ-metaterms.
(PSN) TheλZ-reduction relation preservesβ-strong normalisation: If theλ-termt is in
SN β , thentoZ(t) is in SN λZ

.
(SN) Strong normalisation holds forλZ-typed terms: If theλZ-termt is typed, thent is

in SN λZ
.

(SIM) Any evaluation step inλ-calculus can be implemented byλZ: If t →β t′, then
toZ(t)→∗

λZ
toZ(t

′).
(FC) Full composition can be implemented byλZ: TheλZ-term t[x/u] λZ-reduces to

t{x/u} for an appropriate notion of (meta)substitution onλZ-terms.

In particular, (MC) implies (C) and (PSN) usually implies (SN).

2 Some presentations replace the ruley[x/u] → y by the more general onet[x/u] → t (x /∈ t).

The result of Melliès appeared as a challenge to find a calculus having all the prop-
erties mentioned above. There are already several propositions in the literature giving
(partial) answers to this challenge; they are summarised inthe following table, where
we just write one representative calculus for each line, even if there are currently many
more references available in the literature (by lack of space we cannot cite all of them).

Calculus C MC PSN SN SIM FC
λx [44] Yes No Yes Yes Yes No
λσ [2] Yes No No No Yes Yes

λσ⇑ [23] Yes Yes No No Yes Yes
λζ [41] Yes Yes Yes Yes No No
λws [14] Yes Yes Yes Yes Yes No
λlxr [29] Yes ? Yes Yes Yes Yes

In other words, there are many ways to avoid Melliès’ counter-example in order to
recover the PSN property. More precisely, one can forbid thesubstitution operators to
cross lambda-abstractions [38, 18] or avoid composition ofsubstitutions [6]. One can
also impose a simple strategy on the calculus with ES to mimicexactly the calculus
without ES. The first solution leads toweaklambda calculi, not able to expressstrong
beta-equality (used for example in implementations of proof-assistants). The second
solution is drastic when composition of substitutions is needed for implementations of
HO unification [15] or functional abstract machines [24]. The last one does not take
advantage of the notion of ES because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [14] defined a calculus
with labelscalledλws, which allowscontrolledcomposition of ES without losing PSN
and SN. But theλws-calculus has a complicated syntax and its named version [13] is
even less intelligible. However, the strong normalisationproof for λws given in [13]
reveals a natural semantics for composition of ES via LinearLogic’s proof-nets [19],
suggesting that weakening (explicit erasure) and contraction (explicit duplication) can
be added to the calculus without losing strong normalisation.

Explicit weakening and contraction are the starting pointsof theλlxr-calculus [29],
which is in some sense a (complex) precursor of theλes-calculus that we present in
this paper. However, whileλ-syntax could be seen as a particular case ofλes-syntax,
a special encoding is needed to incorporate weakening and contraction operators to
λ-terms in order to verify the so-called linearity constraints of λlxr. Moreover, the
reduction system ofλlxr contains6 equations and19 rewriting rules, thus requiring
an important amount of combinatorial reasoning. This is notably discouraging when
one needs to check properties by cases on the reduction step;a reason why confluence
on metaterms forλlxr is just conjectured but not still proved.... Also, whereasλlxr
gives the evidence that explicit weakening and contractionaresufficientto verify all the
properties one expects from a calculus with ES, there is no justified reason to think that
they are alsonecessary.

We choose here to introduce theλes-calculus by using concise and simple syntax
in named variable notation style (as inλx) in order to dissociate all the renaming de-
tails which are necessary to specify higher-order substitution on first-order terms (such
as for example terms in de Bruijn notation). Even if this choice implies the use of

α-equivalence, we think that this presentation is more appropriate to focus on the fun-
damental computational properties of the calculus. Moreover, this can also be justified
by the fact that it is now perfectly well-understood in the literature how to translate
terms with named variables into equivalent terms in first-order notation. Another im-
portant choice made in this paper is the use of minimal equational reasoning (just one
equation) to specify commutation of independent substitutions. This will turn out to be
essential to obtain asafenotion of (full)composition which does not need the complex
use of explicit operators for contraction and weakening. Also, simultaneous substitution
(also called n-ary substitution), can be simply expressed within our framework.

We thus achieve the definition of a simple language being easyto understand, and
enjoying a useful set of properties: confluence on metaterms(and thus on terms), sim-
ulation of one-stepβ-reduction, strong normalisation of typed terms, preservation of
β-strong normalisation, simulation of one-stepβ-reduction and full composition. More-
over, these properties can be proved using very simple prooftechniques while this is not
the case for other calculi axiomatising commutation of substitutions. Thus for example,
the calculus proposed in [45] specifies commutation of independent substitutions by a
non-terminatingrewriting system (instead of an equation), thus leading to complicated
notions and proofs of its underlying normalisation properties.

Theλes-calculus admits a natural translation into Linear Logic’sproof-nets, thus
providing an alternative proof of strong normalisation. Also, a more implementation
oriented calculus based onλes could be specified by means of de Bruijn notation and
n-ary substitutions. These two last topics are however omitted in this paper because of
lack of space, we refer the interested reader to [28].

The rest of the paper is organised as follows. Section 2 introduces syntax forΛes-
terms and appropriate notions of equivalence and reduction. In Section 3 we develop
a proof of confluence for metaterms. Preservation ofβ-strong normalisation is studied
and proved in Section 4. The typing system forλes is presented in Section 5 as well as
the subject reduction property and the relation between typing derivations inλes and
λ-calculus. Finally, strong normalisation based on PSN is proved in this same section.

We refer the reader to [28] for detailed proofs and to [9, 47] for standard notions
from rewriting that we will use throughout the paper.

2 Syntax

A Λes-term is inductively defined by avariablex, anapplicationt u, anabstraction
λx.t or a substituted termt[x/u], whent andu areΛes-terms. The syntactic object
[x/u], which is not a term itself, is called anexplicit substitution.

The termsλx.t andt[x/u] bindx in t. The sets offree andboundvariables of a term
t, denotedt andt respectively, can be defined as usual. Thus, the standard notion of α-
conversion on higher-order terms is obtained so that one mayassume, whennecessary,
that two bound variables have different names, and no variable is free and bound at the
same time. Indeed, when using different symbolsx andy to talk about twonestedbound
variables, as for example in the terms(λy.t)[x/u] andt[x/u][y/v], we implicitly mean
x 6= y. The use of the same name for bound variables appearing inparallel/disjoint
positions, as for example int[x/u] v[x/u] or (λx.x) (λx.x) is not problematic.

Besidesα-conversion the following equations and reduction rules are considered.

Equations Reduction Rules
t[x/u][y/v] =C t[y/v][x/u] (λx.t) u →B t[x/u]

(y /∈ u & x /∈ v) The (sub)set of ruless:
x[x/u] →Var u
t[x/u] →Gc t (x /∈ t)
(t u)[x/v] →App

1
t[x/v] u[x/v] (x ∈ t & x ∈ u)

(t u)[x/v] →App
2

t u[x/v] (x /∈ t & x ∈ u)
(t u)[x/v] →App

3
t[x/v] u (x ∈ t & x /∈ u)

(λy.t)[x/v]→Lamb λy.t[x/v]
t[x/u][y/v]→Comp

1
t[y/v][x/u[y/v]] (y ∈ u & y ∈ t)

t[x/u][y/v]→Comp
2

t[x/u[y/v]] (y ∈ u & y /∈ t)

It is appropriate to point out here thatα-conversion is necessary in order to avoid
capture of variables. Thus for example the left-hand side oftheLamb-rule (λy.t)[x/v]
implicitly assumesy 6= x andy /∈ v. See also Sections 4.2 and 6 for a a discussion
about the minimality of the subsets w.r.t its number of rules.

The higher-order rewriting systemcontaining the rules{B} ∪ s is calledBs. The
equivalence relationgenerated by the conversionsEs = {α, C} is denoted by=Es . The
reduction relationgenerated by therewriting ruless (resp.Bs) modulo the equivalence
relation =Es is denoted by→es (resp.→λes), thee means equational and thes sub-
stitution. More precisely,

t→es t′ iff there areu, u′ s.t. t =Es u→s u′ =Es t′

t→λes t′ iff there areu, u′ s.t. t =Es u→Bs u′ =Es t′

The notation→∗
λes (resp.→+

λes) is used for the reflexive and transitive (resp. tran-
sitive) closure of→λes.

Remark that any simultaneous (n-ary) substitution can now be thought as a sequence
of consecutiveindependentunary substitutions representing the same mapping. Thus
for example[x/u, y/v] can be expressed as[x/u][y/v] (or [y/v][x/u]) wherey /∈ u and
x /∈ v. The use of the equationC to make a list of independent substitutions behave like
a simultaneous one is essential. We leave to the reader the verification that composition
of simultaneous substitution can be expressed within ourλes-reduction relation.

The equivalence relation preserves free variables and the reduction relation either
preserves or decreases them. Thus,t→λes u impliesu ⊆ t.

Also, the (sub)calculuses, which is intended to implement (meta-level) substitu-
tion, can be shown to be terminating by associating to eachΛes-termt a measure which
does not change byEs but strictly decreases by→s (details can be found in [28]).

We now address the property of full composition. For that, weextend the standard
notion of (meta-level)substitution onλ-terms given in the introduction to all theΛes-
terms by adding the new caset[y/u]{x/v} := t{x/v}[y/u{x/v}], where we implicitly
meanx 6= y & y 6∈ v. Remark thatt{x/u} = t if x /∈ t, thus we can prove:

Lemma 1 (Full Composition).Let t andu beΛes-terms. Thent[x/u]→∗
λes t{x/u}.

We now establish basic connections betweenλ andλes-reduction. As expected,β-
reduction can be implemented by the more atomic notion ofλes-reduction while this
one can be projected intoβ.

Lemma 2 (Simulatingβ-reduction). Let t be aλ-term s.t.t→β t′. Thent→+

λes t′.

Proof. By induction onβ-reduction using Lemma 1.

Λes-terms are encoded intoλ-terms as follows:L(x) := x, L(λx.t) := λx.L(t),
L(t u) := L(t) L(u) andL(t[x/u]) := L(t){x/L(u)}. Thus, projection is obtained:

Lemma 3 (Projecting into β-reduction). If t→λes u, thenL(t)→∗
β L(u).

Proof. First prove thatt =Es u impliesL(t) = L(u) by the well-known substitution
lemma [4] ofλ-calculus. Remark thatt →s u trivially implies L(t) = L(u). Finally,
prove thatt→B u impliesL(t)→∗

β L(u) by induction on the reduction stept→B u.

3 Confluence on metaterms

Metatermsare terms containingmetavariablesdenotingincompleteprograms/proofs
in a higher-order unification framework [25]. Metavariables should come with a min-
imal amount of information to guarantee that some basic operations such as instantia-
tion (replacement of metavariables by metaterms) are soundin a typing context. How-
ever, known formalisms in the literature for the specification of higher-order metaterms,
such as Combinatory Reduction Systems (CRS) [30] or Expression Reduction Systems
(ERS) [26], do not allow, at least in a simpler way, to specifythe precise set of free vari-
ables which is expected from a (sound)instantiation. Thus for example, a CRS metaterm
like M(x, y) specifies thatx andy mayoccur in the instantiation ofM , butM can also
be further instantiated by any other term not containingx andy at all. Another example
is given by the (raw) ERS metatermt = λy.y X (λz.X) because the instantiation of
X by a term containing a free occurrence ofz would be unsound (see [41, 15, 17] for
details).

We thus propose to specify incomplete proofs as follows. We consider a countable
set ofraw metavariablesX, Y, . . . associated to sets of variablesΓ, ∆, . . ., thus yielding
decoratedmetavariables denoted byXΓ , Y∆, etc. This decoration says nothing about
thestructureof the incomplete proof itself but is sufficient to guaranteethat different
occurrences of the same metavariable inside a metaterm are never instantiated by dif-
ferent metaterms.

The grammar forΛes-terms is extended to generateΛes-metaterms as follows:

t ::= x | X∆ | t t | λx.t | t[x/t]

We extend the notion offree variablesto metatermsby X∆ = ∆.
Reductionon metaterms must be understood in the same way reduction on terms:

theλes-relation is generated by theBs-relation onEs-equivalence classes ofmetaterms.
In contrast to the ERS notion of metaterm,α-conversion turns out to be perfectly

well-defined onλes-metaterms by extending the renaming of bound variables to the
decoration sets. Thus for exampleλx.Yx =α λz.Yz .

It is well-known that confluence on metaterms fails for calculi withoutcomposition
for ES as for example the following critical pair inλx shows

s = t[x/u][y/v] ∗← ((λx.t) u)[y/v]→∗ t[y/v][x/u[y/v]] = s′

Indeed, while this diagram can be closed inλx for termswithout metavariables[10],
there is no way to find a common reduct betweens ands′ whenevert is (or contains)
metavariables: noλx-reduction rule is able to mimic composition on raw or decorated
metavariables. This can be fortunately recovered in the case of theλes-calculus.

3.1 The confluence proof

This section develops a confluence proof for reduction onλes-metaterms based on
Tait and Martin-Löf’s technique: define a simultaneous reduction relation denoted⇛es;
prove that⇛∗

es and→∗
es are the same relation; show that⇛

∗
es is confluent; and finally

conclude. While many steps in this proof are similar to thoseappearing in other proofs
of confluence for theλ-calculus, some special considerations are to be used here in
order to accommodate correctly the substitution calculus as well as the equational part
of our notion of reduction (see in particular Lemma 6).

A first interesting property of the systemes is that it can be used as a function on
Es-equivalence classes:

Lemma 4. Thees-normal forms of metaterms are unique moduloEs so thatt =Es u
implieses(t) =Es es(u).

The simultaneous reduction relation⇛es on es-normal forms is now defined in
terms of a simpler relation⇛ working onEs-equivalence classes.

Definition 1 (The relations⇛ and⇛es). Simultaneous reduction is defined on metaterms
in es-normal form as follows:t ⇛es t′ iff ∃ u, u′ s.t.t =Es u ⇛ u′ =Es t′, where

– x ⇛ x
– If t ⇛ t′, thenλx.t ⇛ λx.t′

– If t ⇛ t′ andu ⇛ u′, thent u ⇛ t′ u′

– If t ⇛ t′ andu ⇛ u′, then(λx.t) u ⇛ es(t′[x/u′])
– If ui ⇛ u′

i and xi /∈ uj for all i, j ∈ [1, n], thenX∆[x1/u1] . . . [xn/un] ⇛

X∆[x1/u′
1] . . . [xn/u′

n]

The simultaneous relation is stable in the following sense.

Lemma 5. If t ⇛es t′ andu ⇛es u′, thenes(t[x/u]) ⇛es es(t
′[x/u′]).

It can be now shown that the relation⇛es has thediamond property.

Lemma 6. If t1 es⇚ t ⇛es t2, then∃t3 s.t.t1 ⇛es t3 es⇚ t2.

Proof. 1. First prove thatt ⇚ u =Es u′ impliest =Es t′ ⇚ u′ for somet′ by induction
on t ⇚ u. Thus conclude thatv es⇚ v′ =Es u′ impliesv =Es t′ ⇚ u′ for somet′.

2. Prove thatt1 ⇚ t ⇛ t2 impliest1 ⇛es t3 es⇚ t2 for somet3 by induction on⇛
using Lemma 5.

3. Finally prove the diamond property as follows. Lett1 es⇚ t =Es u ⇛ u′ =Es t2.
By point (1) there isu1 such thatt1 =Es u1 ⇚ u and by point (2) there ist3 such
thatu1 ⇛es t3 es⇚ u′. Concludet1 ⇛es t3 es⇚ t2.

We thus obtain the main result of this section:

Corollary 1. The reduction relation→∗
es is confluent.

Proof. The relation⇛∗
es enjoys the diamond property (Lemma 6) so that it turns out to

be confluent [9]. Since⇛∗
es and→∗

λes can be shown (using Lemmas 4 and 5) to be the
same relation, then conclude that→∗

λes is also confluent.

Although this confluence result guarantees that all the critical pairs inλes can be
closed, let us analyse a concrete example being the source ofinteresting diverging dia-
grams in calculi with ES (c.f. Section 1), giving by the following case:

s3
∗
λes← s1 →B s2

? ((λx.t) u)[y/v] t[x/u][y/v]

The metaterms3 as well as the one used to close the diagram can be determined by
the following four different cases:

y ∈ t y ∈ u s3 Close the diagram by
Yes Yes t[y/v][x/u[y/v]] s3 Comp

1
← s2

Yes No t[y/v][x/u] s3 =Es s2

No Yes t[x/u[y/v]] s3 Comp
2
← s2

No No (λx.t) u s3 →B t[x/u] Gc← s2

4 Preservation ofβ-strong normalisation

Preservation ofβ-strong normalisation (PSN) in calculi with ES received a lot of at-
tention (see for example [2, 6, 10, 32]), starting from an unexpected result given by
Melliès [40] who has shown that there areβ-strongly normalisable terms inλ-calculus
that are not strongly normalisable when evaluated by the reduction rules of an explicit
version of theλ-calculus. This is for example the case forλσ [2] andλσ⇑ [23].

Since then, different notions of safe composition where introduced, even if PSN
becomes more difficult to prove ([8, 14, 1, 29, 31]). This is mainly because the so-called
decentterms are not stable by reduction : a termt is said to bedecentin the calcu-
lus λZ if every subtermv appearing in some substituted subtermu[x/v] of t is λZ-
strongly normalising. As an example, the termx[x/(y y)][y/λw.w w] is decent in
λes sincey y andλw.w w are bothλes-strongly normalising, but itsComp2-reduct
x[x/(y y)[y/λw.w w]] is not.

This section proves thatλes preservesβ-strong normalisation. For that, we use a
simulation proof technique based on the following steps. Wefirst define a calculusλesw
(Section 4.1). We then give a translationK fromΛes-terms (and thus also fromλ-terms)
into λesw s.t. t ∈ SN β implies K(t) ∈ SN λesw (Corollary 4) andK(t) ∈ SN λesw

impliest ∈ SN λes (Corollary 2).

4.1 Theλesw-calculus

A Λesw-term is inductively defined byx, t u, λx.t, t[x/u] orWx(t) (anexplicit weak-
ening). We extend the notion of free variables to explicit weakenings by adding the case
Wx(t) = {x} ∪ t. The notion ofstrict term will be essential: every subtermλx.t and
t[x/u] is such thatx ∈ t and every subtermWx(t) is such thatx /∈ t.

Besides equations and rules inλes, those in the following table are also considered.

Additional Equations Additional Reduction Rules
Wx(Wy(t)) =WC Wy(Wx(t)) Wx(t)[x/u]→ Wu\t(t)

Wy(t)[x/u] =Weak1 Wy(t[x/u]) (x 6= y & y /∈ u)Wy(t) u → t u (y ∈ u)
Wy(λx.t) =WAbs λx.Wy(t) (x 6= y) Wy(t) u → Wy(t u) (y /∈ u)

tWy(u) → t u (y ∈ t)
tWy(u) → Wy(t u) (y /∈ t)
Wy(t)[x/u] → t[x/u] (y ∈ u)
t[x/Wy(u)]→ Wy(t[x/u]) (y /∈ t)
t[x/Wy(u)]→ t[x/u] (y ∈ t)

Given a set of variablesΓ = {x1, . . . , xn}, the use of the abbreviationWΓ (t)
for Wx1

(. . .Wxn
(t)) in the first reduction rule is justified by the equationWC. In the

particular caseΓ = ∅, we defineW∅(t) = t. It is suitable again to recall that we work
moduloα-conversion. Thus for example the termsWy(λx.t) andt[x/Wy(u)] have to
be always understood asx 6= y. However, this is not the case for example forλx.Wy(t)
orWy(t)[x/u] where the variablesx andy may be equal or different, that’s the reason
to explicitly add the side-conditionx 6= y in some of the previous equations and rules.

The rewriting system containing all the reduction rules in the previous table plus
those in systems is calledsw. The notationBsw is used for the system{B} ∪ sw. The
equivalence relation generated by all the equations in the previous table plus those inEs
is denoted by=Esw . The relation generated by the reduction rulessw (resp.Bsw) modulo
the equivalence relation=Esw is denoted by→esw (resp.→λesw). More precisely,

t→esw t′ iff there areu, u′ s.t. t =Esw u→sw u′ =Esw t′

t→λesw t′ iff there areu, u′ s.t. t =Esw u→Bsw u′ =Esw t′

From now on, we only work with strict terms, a choice that is justified by the fact
thatλesw-reduction relation preserves strict terms.

In order to infer normalisation ofλes from that ofλesw, a relation between both
notions of reduction is needed. For that, a translationK from Λes-terms (and thus also
from λ-terms) to (strict)Λesw-terms is defined as follows:

K(x) := x K(u v) := K(u) K(v)
K(λx.t) := λx.K(t) If x ∈ t K(λx.t) := λx.Wx(K(t)) If x /∈ t
K(u[x/v]) := K(u)[x/K(v)] If x ∈ t K(u[x/v]) :=Wx(K(u))[x/K(v)] If x /∈ t

Remark thatK(t) = t. Also,λesw-reduction can be used to push out useless weak-
ening constructors as follows:

Lemma 7. If u→λes v, thenK(u)→+

λesw Wu\v(K(v)).

Proof. The proof is by induction on→λes and it accurately puts in evidence the fact
thatWeak1 andWAbs are needed as equations and not as rewriting rules.

The previous lemma allows us to conclude with the following preservation result:

Corollary 2. If K(t) ∈ SN λesw, thent ∈ SN λes.

4.2 TheΛI -calculus

TheΛI -calculus is another intermediate language used as technical tool to prove PSN.
The set ofΛI -terms [30] is defined by the grammar:

M ::= x |M M | λx.M | [M, M]

We consider the extended notions of free variables and (meta)level substitution on
ΛI -terms. We restrict again the syntax tostrict terms (every subtermλx.M satisfies
x ∈M). The following two reduction rules will be used:

(λx.M) N →β M{x/N}
[M, N] L →π [M L, N]

Strict ΛI-terms turn out to be stable by reduction since they do not lose free vari-
ables during reduction.

A binary relation (and not a function)I is used to relateλesw andΛI -terms, this
becauseΛesw-terms are translated intoΛI-syntax by adding somegarbageinformation
which is not uniquely determined. Thus, eachΛesw-term can be projected into different
ΛI -terms, and this will be essential in the simulation property (Theorem 1).

Definition 2. The relation I betweenstrict Λesw-terms andstrict ΛI-terms is induc-
tively given by the following rules:

x I x

t I T

λx.t I λx.T

t I T u I U

t u I T U

t I T u I U

t[x/u] I T {x/U}

t I T & M strict
t I [T, M]

t I T & x ∈ T

Wx(t) I T

The relationI enjoys the following properties.

Lemma 8. Let t I M . Thent ⊆ M , M ∈ ΛI and x /∈ t & N ∈ ΛI implies
t I M{x/N}.

Remark however thatt I M impliest ⊆M only onstrict terms. This can be seen as
a proof technical argument to exclude from our calculus rewriting rules not preserving
strict terms like

(App) (t u)[x/v] → t[x/v] u[x/v]
(Comp) t[x/u][y/v]→ t[y/v][x/u[y/v]] (y ∈ u)

Reduction inλesw can be related to reduction inΛI by means of the following
simulation property (proved by induction on the reduction/equivalence step).

Theorem 1. Lets ∈ Λesw andS ∈ ΛI .

1. If s I S ands =Esw t, thent I S.
2. If s I S ands→sw t, thent I S.
3. If s I S ands→B t, then there isT ∈ ΛI s.t.t I T andS →+

βπ T .

The second preservation result can be now stated as follows:

Corollary 3. If s I S andS ∈ SN βπ, thens ∈ SN λesw.

Proof. Supposes /∈ SN λesw. As→esw can easily be show to be well-founded (see [28]
for details), then an infiniteλesw-reduction sequence starting ats is necessarily pro-
jected by the previous Theorem into an infiniteβπ-reduction sequence starting atS.
This leads to a contradiction with the hypothesis.

4.3 Solving the puzzle

All the parts of the puzzle together give a PSN argument forλes. The starting point is
the following encoding fromλ to ΛI-terms:

I(x) := x I(λx.t) := λx.I(t) x ∈ t
I(t u) := I(t) I(u) I(λx.t) := λx.[I(t), x] x /∈ t

Now, starting from aλ-termu, which is also aΛes-term, one computes itsK-image
- a λesw-term - so that someΛI -term will be inI-relation with it. More precisely, a
straightforward induction onu gives:

Theorem 2. For anyλ-termu, K(u) I I(u).

Preservation ofβ-strong-normalisation, which is one of the main results of the pa-
per, can be finally stated:

Corollary 4 (PSN). If t ∈ SN β, thent ∈ SN λes.

Proof. If t ∈ SN β , thenI(t) ∈WNβπ [34] and thusI(t) ∈ SNβπ [42]. AsK(t) I I(t)
by Theorem 2, thenK(t) ∈ SN λesw by Corollary 3 so thatt ∈ SN λes by Corollary 2.

5 The typedλes-calculus

Simply typesare built over a countable set of atomic symbols (base types)and the type
constructor→ (functional types). Anenvironmentis a finite set of pairs of the form
x : A. Two environmentsΓ and∆ are said to becompatibleiff for all x : A ∈ Γ and
y : B ∈ ∆, x = y impliesA = B. Theunion of compatible contextsis writtenΓ ⊎∆.
Thus for example(x : A, y : B)⊎(x : A, z : C) = (x : A, y : B, z : C). The following
properties on compatible environments will be used:

Lemma 9.

1. If Γ ⊆ Γ ′ and∆ ⊆ ∆′, thenΓ ⊎∆ ⊆ Γ ′ ⊎∆′.
2. Γ ⊎ (∆ ⊎Π) = (Γ ⊎∆) ⊎Π .

Typing judgementshave the formΓ ⊢ t : A wheret is a term,A is a type and
Γ is an environment.Derivationsof typing judgements, writtenΓ ⊢λes t : A, can be
obtained by application of the (multiplicative) rules in the following table.

x : A ⊢ x : A
(axiom)

Γ ⊢ t : A→ B ∆ ⊢ u : A

Γ ⊎∆ ⊢ (t u) : B
(app)

Γ ⊢ t : B

Γ \ {x : A} ⊢ λx.t : A→ B
(abs)

Γ ⊢ u : B ∆ ⊢ t : A

Γ ⊎ (∆ \ {x : B}) ⊢ t[x/u] : A
(subs)

The axiom rule types a variable in a minimal environment but variablesnot ap-
pearing free may be introduced by binder symbols by means of the rulesabs andsubs.
Thus for example starting from the derivable typing judgement x : B ⊢ x : B one can
derive judgements like⊢ λx.x : B → B or x : B ⊢ λz.x : A → B. Remark that
whenΓ ⊎ ∆ appears in the conclusion of some rule, then by definition,Γ and∆ are
compatible.

The typing rules forλes ensure that every environmentΓ containsexactlythe set
of free variables of the termt. Thus,Γ ⊢λes t : A impliesΓ = t.

The typed calculus enjoyslocal subject reduction in the sense that no meta-theorem
statingweakeningor thinningis needed to show preservation of types.

Lemma 10 (Subject Reduction).LetΓ ⊢λes s : A. Thens =Es s′ impliesΓ ⊢λes s′ :
A ands→λes s′ impliesΠ ′ ⊢λes s′ : A for someΠ ′ ⊆ Π .

The connexion betweentyped derivations inλ-calculus (written⊢λ) and typed
derivations inλes-calculus is stated as follows, whereΓ |S denotes the environment
Γ restricted to the set of variablesS.

Lemma 11. If Γ ⊢λ t : A, thenΓ |t ⊢λes t : A and ifΓ ⊢λes t : A, thenΓ ⊢λ L(t) : A.

We now prove strong-normalisation forλes-typed terms by using PSN. Another
proof of strong-normalisation based on a translation of typed λes-terms into Linear
Logic’s proof-nets is also developed in [28].

Theorem 3 (Strong Normalisation).Every typableΛes-termM is in SNλes.

Proof. First define a translationC from λes to λ as follows:C(x) := x, C(t u) :=
C(t) C(u), C(λx.t) := λx.C(t) andC(t[x/u]) := (λx.C(t)) C(u). Thus for example,
C((x[x/y] z)[w/(w1 w2)]) = (λw.((λx.x) y) z)(w1 w2).

We remark that for everyΛes-term one hasC(t)→∗
λes t. Also, whent is typable in

λes, then alsoC(t) is typable inλes (just change the use ofsubs by abs followed by
app). By Lemma 11 the termL(C(t)) = C(t) is also typable in simply typedλ-calculus
and thusC(t) ∈ SNβ [5]. We getC(t) ∈ SNλes by Corollary 4 so thatt ∈ SNλes.

This proof technique, which is very simple in the case of theλes-calculus, needs
some additional work to be applied to other (de Bruijn) calculi [43, 3].

6 Conclusion

In this paper we survey some properties concerning ES calculi and we describe work
done in the domain during these last 15 years. We propose simple syntax and simple
equations and rewriting rules to model a formalism enjoyinggood properties, specially
confluence on metaterms, preservation ofβ-strong normalisation, strong normalisation
of typed terms and implementation of full composition.

We believe however that some of our proofs can be simplified. In particular, PSN
might be proved directly without using translations ofλes to other formalisms. We
leave this for future work.

Another interesting issue is the extension of Pure Type Systems (PTS) with ES in
order to improve the understanding of logical systems used in theorem-provers. Work
done in this direction is based on sequent calculi [33] or natural deduction [41]. The
main contribution ofλes w.r.t the formalisms previously mentioned would be oursafe
notion of composition.

It is also legitimate to ask whetherλes is minimal w.r.t. the number of rewrit-
ing rules. Indeed, it is really tempted to gather the rules{App

1
, App

2
, App

3
} (resp.

{Comp1, Comp2}) into the single ruleApp for application (resp.Comp for composition)
given just after Lemma 8. While this change seems to be sound w.r.t. the properties of
the calculus3, the translation ofΛes-terms intoΛI -terms (c.f. Section 4.2), respectively
into proof-nets (c.f. [28]), does not work anymore. We thus leave this question as an
open problem. Note however thatλes-reduction can be translated to the correspondent
notion of reduction in this calculus : thus for exampleApp1 can be obtained byApp
followed byGc.

As far as implementation is concerned, it would be preferable from a practical point
of view to avoid the systematic use of the equivalence classes generated by the axioms
α andC. In other words, it would be more efficient to work with a pure rewriting system
(without equations) verifying the same properties thanλes. We believe that simulta-
neous substitutions will be needed to avoid axiomC while some technology like de
Bruijn notation will be needed to avoid axiomα (as in theλσ⇑ -calculus). We leave this
topic for future investigations, but we refer the interested reader to [28] for a concrete
proposition of such a calculus.

Acknowledgements

This work has benefited from fruitful discussions with E. Bonelli, R. David, R. Di
Cosmo, J-P. Jouannaud, S. Lengrand, C. Muñoz and V. van Oostrom.

References

[1] A. Arbiser, E. Bonelli, and A. Rı́os. Perpetuality in a lambda calculus with explicit substitu-
tions and composition.WAIT2000.

3 While the weaker rule for composition given byt[x/u][y/v] → t[x/u[y/v]] (y /∈ t), is well-
known [7] to affect strong normalisation and preservation of β-strong normalisation.

[2] M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Explicit substitutions.JFP, 4(1):375–416,
1991.

[3] A. Arbiser. Explicit Substitution Systems and Subsystems. PhD thesis, Universidad Buenos
Aires, 2006.

[4] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 1984.
[5] H. Barendregt. Lambda calculus with types. InHandbook of Logic in Computer Science,

volume 2, 1992.
[6] Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit

substitutions which preserves strong normalisation.JFP, 1996.
[7] R. Bloo and H. Geuvers. Explicit substitution: on the edge of strong normalization.TCS,

6(5):699–722, 1999.
[8] R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven Uni-

versity of Technology, 1997.
[9] F. Baader and T. Nipkow. Term Rewriting andAll That. Cambridge University Press, 1998.
[10] R. Bloo and K. Rose. Preservation of strong normalization in named lambda calculi with

explicit substitution and garbage collection. InComputer Science in the Netherlands1995.
[11] N. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for automatic for-

mula manipulation, with application to the church-rosser theorem.Indag. Mat., 5(35):381–
392, 1972.

[12] N. de Bruijn. Lambda-calculus notation with namefree formulas involving symbols that
represent reference transforming mappings.Indag. Mat., 40:384–356, 1978.

[13] R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets andexplicit substitutions. InLNCS
1784,FOSSACS2000.

[14] R. David and B. Guillaume. Aλ-calculus with explicit weakening and explicit substitution.
MSCS, 11:169–206, 2001.

[15] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions.
I&C , 157:183–235, 2000.

[16] R. Dyckhoff and C. Urban. Strong normalisation of Herbelin’s explicit substitution calculus
with substitution propagation. WESTAPP 2001.

[17] F. L. C. de Moura and M. Ayala-Rincón and F. Kamareddine. Higher-Order Unification:
A structural relation between Huet’s method and the one based on explicit substitutions.
Journal of Applied Logic, 6(1):72-108, 2008.

[18] J. Forest. A weak calculus with explicit operators for pattern matching and substitution. In
LNCS2378,RTA2002.

[19] J.-Y. Girard. Linear logic.TCS, 50(1):1–101, 1987.
[20] J. Goubault-Larrecq. Conjunctive types and SKInT. InLNCS1657,Types for Proofs and

Programs, 1999.
[21] T. Hardin. Résultats de confluence pour les règles fortes de la logique combinatoire

catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris VII,
1987.

[22] H. Herbelin. Aλ-calculus structure isomorphic to sequent calculus structure. InLNCS933,
CSL1994.

[23] T. Hardin and J.-J. Lévy. A confluent calculus of substitutions. InFrance-Japan Artificial
Intelligence and Computer Science Symposium, 1989.

[24] T. Hardin, L. Maranget, and B. Pagano. Functional back-ends within the lambda-sigma
calculus. InICFP 1996.

[25] G. Huet. Résolution d’équations dans les langages d’ordre1, 2, . . . , ω. Thèse de doctorat
d’état, Université Paris VII, 1976.

[26] Zurab Khasidashvili. Expression reduction systems. In Proceedings of IN Vekua Institute
of Applied Mathematics, volume 36, Tbilisi, 1990.

[27] D. Kesner. Confluence properties of extensional and non-extensionalλ-calculi with explicit
substitutions. InLNCS1103,RTA1996.

[28] D. Kesner. The theory of calculi with explicit substitutions revisited, 2006. Available as
http://hal.archives-ouvertes.fr/hal-00111285/.

[29] D. Kesner and S. Lengrand. Extending the explicit substitution paradigm. InLNCS3467,
RTA2005.

[30] J.-W. Klop. Combinatory Reduction Systems. PhD thesis, Mathematical Centre Tracts 127,
CWI, Amsterdam, 1980.

[31] Z. Khasidashvili, M. Ogawa, and V. van Oostrom. UniformNormalization Beyond Orthog-
onality. InLNCS2051,RTA2001.

[32] F. Kamareddine and A. Rı́os. Aλ-calculus à la de Bruijn with explicit substitutions. In
LNCS982,PLILP 1995.

[33] S. Lengrand, R. Dyckhoff, and J. McKinna. A sequent calculus for type theory. InLNCS
4207,CSL2006.

[34] S. Lengrand. Normalisation and Equivalence in Proof Theory and Type Theory. PhD thesis,
University Paris 7 and University of St Andrews, 2006.

[35] P. Lescanne. Fromλσ to λυ, a journey through calculi of explicit substitutions. InPOPL
1994.

[36] R. Lins. A new formula for the execution of categorical combinators. InLNCS230,CADE
1986.

[37] R. Lins. Partial categorical multi-combinators and Church Rosser theorems. Technical
Report 7/92, Computing Laboratory, University of Kent at Canterbury, 1992.

[38] J.-J. Lévy and L. Maranget. Explicit substitutions and programming languages. InLNCS
1738,FSTTCS1999.

[39] P. Lescanne and J. Rouyer-Degli. Explicit substitutions with de Bruijn levels. InLNCS914,
RTA 1995.

[40] P.-A. Melliès. Typedλ-calculi with explicit substitutions may not terminate. InLNCS902,
TLCA1995.

[41] C. Muñoz. Un calcul de substitutions pour la représentation de preuves partielles en théorie
de types. PhD thesis, Université Paris 7, 1997.

[42] R. Nederpelt. Strong Normalization in a Typed Lambda Calculus with Lambda Structured
Types. PhD thesis, Eindhoven University of Technology, 1973.

[43] E. Polonovski. Substitutions explicites, logique et normalisation. Thèse de doctorat, Uni-
versité Paris 7, 2004.

[44] K. Rose. Explicit cyclic substitutions. InLNCS656,RTA1992.
[45] T. Sakurai. Strong normalizability of calculus of explicit substitutions with composition.

Available onhttp://www.math.s.chiba-u.ac.jp/∼sakurai/papers.html.
[46] F.-R. Sinot, M. Fernández, and I. Mackie. Efficient reductions with director strings. In

LNCS2706 ,RTA 2003.
[47] Terese. Term Rewriting Systems, volume 55 ofCambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.

