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Abstract—Coda waves are sensitive to changes in the subsurface because the strong scattering that

generates these waves causes them to repeatedly sample a limited region of space. Coda wave

interferometry is a technique that exploits this sensitivity to estimate slight changes in the medium from

a comparison of the coda waves before and after the perturbation. For spatially localized changes in the

velocity, or for changes in the source location, the travel-time perturbation may be different for different

scattering paths. The coda waves that arrive within a certain time window are therefore subject to a

distribution of travel-time perturbations. Here I present the general theory of coda wave interferometry,

and show how the time-shifted correlation coefficient can be used to estimate the mean and variance of the

distribution of travel-time perturbations. I show how this general theory can be used to estimate changes in

the wave velocity, in the location of scatterer positions, and in the source location.
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1. Introduction

The seismic coda constitutes the tail of strongly scattered waves in a seismogram.

AKI (1985) was one of the pioneers in using the seismic coda. He used the temporal

decay of the seismic coda as a measure of the scattering in the Earth, and proposed to

use changes of coda Q to monitor changes in the stress in the subsurface (AKI and

CHOUET, 1975; JIN and AKI, 1986). This approach considers the amplitude of the

coda waves, but does not use the phase information in the coda.

Here I present the theory of coda wave interferometry, a technique to monitor

time-lapse changes based on the phase and amplitude information of coda waves. In

a strongly-scattering medium, the waves repeatedly sample the same region in space.

Such a medium therefore works as a natural interferometer. Just as in a man-made

interferometer (LAUTERBORN et al., 1995) the multiply-scattered waves are extremely

sensitive to minute changes in the medium. In coda wave interferometry we exploit

this sensitivity to measure small changes in the medium.
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This idea is not new, the sensitivity of coda waves has been used to estimate

velocity changes in fault zones (POUPINET et al., 1984), in volcanoes (RATDOMOPURBO

and POUPINET, 1995; MATSUMOTO et al., 2001), and in ultrasound experiments

(ROBERTS et al., 1992; SNIEDER et al., 2002; GRÊT et al., 2006). Temporal changes in

the coda waves within a couple of days have been observed in a volcano (GRÊT et al.,

2005). In the physics community a related technique called diffusing wave

spectroscopy (WEITZ and PINE, 1993; COWAN et al., 2002) has been used to monitor

fluidized suspensions (COWAN et al., 2000; PAGE et al., 2000).

In this work I present a general theory of coda wave interferometry. Because of

the generality of the derivation, it can be applied to a number of different

applications of coda wave interferometry. The theory is based on path summation

(section 2). This is a formulation of scattering that states that the total wave field is

the superposition of the waves that propagate along all possible scattering paths. In

section 3 I show how the changes in the coda waves can be characterized with the

time-shifted correlation coefficient. This quantity is related to the distribution of the

travel time perturbation when averaged over all scattering paths (section 4). In

principle, the distribution of the travel-time perturbation can be obtained from the

time-shifted correlation coefficient, but I show in section 5 how in practical

application the mean and variance of the travel-time perturbation can be obtained

from the time-shifted correlation coefficients. In section 6 I apply the theory to three

examples; a change in the velocity, uncorrelated perturbations of the scatterer

locations, and a change in the source position.

2. The Path Summation and the Change in the Waves

The theory of coda wave interferometry is based on the path summation where

the wavefield at a given location is written as a sum of the waves that propagate

along all possible paths (SNIEDER, 1999):

uðtÞ ¼
X

P

SP ðtÞ: ð1Þ

This expression does not specify how the waves are being scattered, it only states that

the wavefield is the superposition of the waves propagate along all possible scattering

paths. These paths include the direct wave, the singly-scattered waves, and the

multiply-scattered waves. The direct wave arrives first, and, depending on scatterer

strength, the wavefield is dominated by multiply-scattered waves at later times. By

choosing a time window at a sufficiently late time one can ensure that the wavefield is

dominated by multiply-scattered waves. The scattering series (1) follows by iterating

the Lippman-Schwinger equation to give the Neumann series (MERZBACHER, 1970).

For point scatterers, or for scattering caused at boundaries, one can count the

number of scattering paths, and the Neumann series reduces to the discrete sum (1)
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over all scattering paths. This means that the theory presented here presumes that the

scattering is caused by point scatterers or by reflection at boundaries. In the Earth,

this assumption may not be valid. Note, however, that in the theory presented here,

we do not need to know the scattering paths, or the waveforms SP ðtÞ associated with

each path P .
I use a scalar notation, but expression (1) is also valid for elastic waves; in that

case equation (1) can be used for each of the components of the wave motion. For

elastic waves, conversions between P and S waves occur at the scatterers; in that case

the path summation includes a sum P and S waves for each segment of the scattering

path, so that
P

P includes all the possible wave conversions along each path as well.

A perturbation of the medium leads to a perturbation of the waves. I assume that

the scattering properties of the scatterers in the medium do not change, but that

either the propagation velocity, the position of the scatterers, or the source position is

slightly perturbed. These perturbations cause a change in the phase of the wave, the

geometrical spreading, and the scattering angle for every scattering event. Let us

consider a wave that propagates over a distance l between scatterers. The wave

propagation between the scatterers is in the frequency domain described by the

Green’s function associated with the medium between the scatterers. For example,

for scalar waves in three dimensions this Green’s function is given by

Gðx; lÞ ¼ � expðixl=vÞ=4pl, with v the wave velocity. The average distance l
between the scatterers, as seen by the waves, is given by the scattering mean free path

(LAGENDIJK and VAN TIGGELEN, 1996; VAN ROSSUM and NIEUWENHUIZEN, 1999).

In the frequency domain the propagation over this distance corresponds to a

phase shift expðiklÞ. As an example, let us first consider a change dl in the path

length, associated with a change in the location of scatterers. This change in the

location of scatterers leads to a perturbation in the phase, the geometrical spreading,

and the scattering amplitude. This change corresponds to a phase change

expðikdlÞ � 1þ ikdl, so that a change in the path length gives the following change

in the wavefield:

jduphasej � jkdluj: ð2Þ

In three dimensions the geometrical spreading for each segment of propagation

varies as 1=l, hence the change in the wavefield due to the geometrical spreading

associated with a change in path length is given by

duj jspreading� dl
l

u

����

����: ð3Þ

A change dl in the scatterer position leads to a change in the scattering angle that is

of the order dh � dl=l. When the scattering amplitude, or source radiation pattern,

varies as cosmh or sinmh, the change in the wavefield due to this change in scattering

angle is of the order
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duj jangle� mdhj ju ¼ mdl
l

u

����

����: ð4Þ

The change in the phase of the wavefield dominates when the right-hand side

expression (2) is larger than equations (3) and (4). Since in general mj j > 1 this

conditions implies that the change in the phase is dominant when

l
k
>

mj j
2p

; ð5Þ

where the wavelength is given by k ¼ 2p=k. This means that the change in the phase

dominates the change of the wavefield when the scattering mean free path is

considerably larger than a wavelength. If this condition is not satisfied the waves are

localized (VAN TIGGELEN, 1999) and the theory of this paper does not hold.

For a change in the velocity, the wavenumber k is perturbed, this affects only the

phase of the wave. This means that when the distance between the scatterers is

changed or when the velocity changes, the change in the phase is the most important

change. If the perturbation is nondispersive in the employed frequency band, this

causes a change in the arrival time of the wave. I denote the change in the travel time

of the wave that propagates along path P by sP . This means that the perturbed

wavefield is given by

~uðtÞ ¼
X

P

SP ðt � sP Þ: ð6Þ

This expression should be compared with equation (1) for the unperturbed wave.

Expression (6) may be an oversimplification because it implies that the wave SP ðtÞ
that propagates along path P does not change shape. This is not true when the

perturbation causes a dispersive change in these waves. This would be the case, for

example, when the attenuation changes. In that situation, equation (6) may still be a

good approximation for the perturbed wave provided that it has been band-pass

filtered over a frequency band that is sufficiently small for the dispersion to be

ignored.

Equation (6) is only valid when the excitation of the unperturbed and perturbed

waves is identical (although I do consider the special case of identical sources that are

displaced in space). Controlled sources that do not damage the source region, such as

vibrators or airguns (e.g., WEGLER et al., 1999), transducers in ultrasound

experiments (e.g., ROBERTS et al., 1992; SNIEDER et al., 2002; GRÊT et al., 2005),

are, in general, repeatable. Natural earthquakes can also be highly repeatable (e.g.,

POUPINET et al., 1984; RATDOMOPURBO and POUPINET, 1995; BAISCH and BOKELMAN,

2001; SCHAFF and BEROZA, 2004). GRÊT et al. (2005) show that the bubble burst at a

lava lake can act as a repeatable seismic source, while SNIEDER and HAGERTY (2004)

show that repeatable waveforms can be retrieved by deconvolving the pressure and

displacement recorded during volcanic tremors.
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The travel-time perturbation sP depends, in general, on the scattering path P .
Consider the example of a hydrocarbon reservoir whose properties during produc-

tion change in a certain part of the reservoir. For the paths P that traverse the region

of change the travel time changes, whereas for paths P that do not cross this region

the travel time is unchanged. As another example consider a change in the source

location. Waves that leave the source in the same direction as the source

displacement arrive earlier, while waves that leave the source in the opposite

direction arrive later. The coda waves recorded in a given time window consist of the

interference of all the waves SP ðtÞ that arrive in that time window. Since the travel

time sP depends, in general, on the scattering path P , the travel-time perturbation for

the waves arriving in a given time window has a certain distribution. It is the goal of

this paper to extract meaningful properties of this distribution based on the coda

waves recorded before and after the perturbation. Specifically, I derive expressions

for the mean and variance of this distribution.

3. Measuring the Change in the Wavefield

The unperturbed and perturbed waves can be compared using the time-shifted

correlation coefficient defined as

RðtsÞ ¼
R tþT

t�T uðt0Þ~uðt0 þ tsÞdt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR tþT

t�T u2ðt0Þ dt0
R tþT

t�T ~u2ðt0Þdt0
q : ð7Þ

In this expression ts is the time shift of the unperturbed and perturbed waves in the

correlation. The correlation is computed using a finite time-window with center-time

t and window length 2T . Let us first analyze the numerator of this expression that is

given by

NðtsÞ ¼
Z tþT

t�T
uðt0Þ~uðt0 þ tsÞdt0: ð8Þ

Inserting expressions (1) and (6) in this equation gives a double sum
P

PP 0over paths.

Such a double sum can be divided into diagonal terms, for which P ¼ P 0, and cross-

terms P 6¼ P 0:

X

PP 0
ð� � �Þ ¼

X

P¼P 0
ð� � �Þ þ

X

P 6¼P 0
ð� � �Þ; ð9Þ

with equations (1) and (6) this gives:
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NðtsÞ ¼
X

P

Z tþT

t�T
SP ðt0ÞSP ðt0 þ ts � sP Þ dt0

þ
X

P 6¼P 0

Z tþT

t�T
SP ðt0ÞSP 0 ðt0 þ ts � sP 0 Þ dt0:

ð10Þ

If the cross terms are uncorrelated, their contribution integrates to zero. Ignoring

the cross terms amounts to making the ladder approximation (VAN ROSSUM and

NIEUWENHUIZEN, 1999) that only retains pairs of scattering paths that are identical

(P ¼ P 0). DE ROSNY et al. (2004) show that this approximation underlies time reversal

focusing. SNIEDER (2004) investigated the validity of the ladder approximation by

comparing the magnitude of the cross terms
P

P 6¼P 0 to the diagonal terms
P

P¼P 0 , and

showed that when the DC-component of the signal vanishes that

cross termsj j
diagonal termsj j �

ffiffiffiffiffiffiffiffiffi
Tcorr

2T

r
; ð11Þ

where Tcorr is the width of the autocorrelation of the signal in the time domain. This

width is proportional to 1=Df , with Df the bandwidth of the signal. This means that

the ratio in expression (11) can also be written as

cross termsj j
diagonal termsj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Df 2T

s

: ð12Þ

The bandwidth times the window length is the number of degrees of freedom in the

signal (LANDAU, 1967; BUCCI and FRANCESCHETTI, 1989), hence the ratio of the cross

terms to the diagonal terms is for a single realization equal to 1=
ffiffiffi
n
p

, with n the

number of degrees of freedom in the data. The important point of expression (12) is

that the cross terms decrease when the window length is increased. Note that this

argument does not hold for monochromatic data, because in that case Df ¼ 0 and

the right-hand side of expression (12) cannot be reduced by increasing the window

length. This means that in order to ignore the cross terms both the window length

and the bandwidth must be sufficiently large.

In the following I assume that the cross terms can be ignored. In this

approximation

NðtsÞ ¼
X

P

Z tþT

t�T
SP ðt0ÞSP ðt0 þ ts � sP Þ dt0: ð13Þ

This integral can be written as a sum of the cross correlations of the waves that have

propagated along the individual paths that is defined as

CP ðts � sP Þ �
Z tþT

t�T
SP ðt0ÞSP ðt0 þ ts � sP Þ dt0; ð14Þ

so that
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NðtsÞ ¼
X

P

CP ðts � sP Þ: ð15Þ

A similar treatment can be applied to the terms in the denominator of equation

(7). This gives

Z tþT

t�T
u2ðt0Þ dt0 ¼

Z tþT

t�T
~u2ðt0Þ dt0 ¼

X

P

CP ð0Þ: ð16Þ

In deriving this result the same approximations are used as in the derivation of

expression (15), specifically the cross terms
P

P 6¼P 0 are ignored. Inserting the

expressions (15) and (16) into the definition (7) of the correlation coefficient gives

RðtsÞ ¼
P

P CP ðts � sP ÞP
P CP ð0Þ

: ð17Þ

Before we analyze this correlation coefficient I introduce another approximation.

In the frequency domain the definition (14) for the correlation of SP corresponds to

CP ðxÞ ¼ SP ðxÞj j2: ð18Þ

The waves that propagate along the different paths are excited by the same source,

they experience the same attenuation, and propagate through the same scattering

medium. Because of focusing, the overall amplitude of these waves may differ. For

this reason I assume that the waves that propagate along the different trajectories

have a power spectrum with the same shape, but that the overall amplitude of each of

these waves may be different. Note that this does not imply that the waves SP ðtÞ are
the same, because the phase spectrum may be different. In fact, the phase spectrum

will be different because these waves have different arrival times and may have

different wave shapes. Since the autocorrelation is the Fourier transform of the

power spectrum, the assumption that the shape of the the power spectrum of the

waves is the same implies that up to a constant the autocorrelation also is the same,

so that

CP ðtÞ ¼ IP CðtÞ with Cð0Þ ¼ 1: ð19Þ

In this expression CðtÞ is the autocorrelation of the SP ðtÞ normalized at its maximum

at t ¼ 0, while IP measures the intensity of the wave that has propagated along path

P . Using these results the time-shifted correlation coefficient is given by

RðtsÞ ¼
P

P IP Cðts � sP ÞP
P IP

: ð20Þ

The power spectrum of the scattered waves is, in general, different from the power

spectrum of the source-time function because scattering and diffraction are usually

frequency-dependent. The assumption that the shape of the power spectrum jSP ðxÞj2
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of the waves that arrive a time window is identical, can only be true if the scattered

waves that arrive in that window have experienced the same number of scattering

events. For this reason the time window should not be too long. The factor IP in

expression (19) accounts for the fact that the different arrivals may have a different

amplitude.

4. The Probability Density Function of the Travel-time Perturbation

The time-shifted cross-correlation coefficient can be determined from the

recorded waves using expression (7). The goal is to infer properties of the

distribution of the travel-time perturbation, as described in equation (6), from this

measurement. One way to achieve this is to define the normalized energy of the

arrivals in the employed time window with a travel-time shift between s and sþ ds as
P ðsÞds. This definition implies that

P ðsÞds ¼
P

P such that s<sP <sþ dsIPP
all P IP

: ð21Þ

The sum in the numerator is over the paths that have a travel-time change between s
and sþ ds. Since the denominator contains a sum over all paths, and hence all

relevant values of s, the function P ðsÞ is normalized:

Z 1

�1
P ðsÞ ds ¼ 1: ð22Þ

The definition (21) consists of a ratio of positive numbers, therefore P ðsÞ is positive
and normalized. For this reason it has the same properties as a probability density

function. Using statistical jargon, I use the following definition of an expectation

value:

f ðsÞh i �
Z 1

�1
f ðsÞP ðsÞ ds: ð23Þ

Using expressions (21) this can also be written as

f ðsÞh i �
P

P f ðsP ÞIPP
P IP

: ð24Þ

This expectation value corresponds to an average weighted by the intensity of the

coda waves.

With the definitions (21) and (24), equation (20) can be written as

RðtsÞ ¼ Cðts � sÞh i ¼
Z

Cðts � sÞP ðsÞ ds: ð25Þ
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The first identity shows that coda wave interferometry leads to a weighted average of

a function of the travel-time perturbation. The coda waves travel along all possible

paths, and the contribution of the travel-time perturbation is averaged over all

possible paths with a weight function given by the intensity of the waves for each

path.

The second identity of expression (25) states that the time-shifted correlation

coefficient is given by the convolution of P ðsÞ with CðsÞ. The time-shifted correlation

coefficient RðtsÞ follows from the recorded waves. The function CðtÞ follows from the

power spectrum of the recorded waves, and is known as well. In principle P ðsÞ can
then be obtained from expression (25) by deconvolution. This provides direct

information on the distribution of the travel-time perturbations over the paths that

have arrivals within the employed time window. Note that in this approach we do not

need to assume that the travel-time perturbation is small. Because of the instabilities

of the deconvolution process, I take a different approach and extract the first and

second moments of the travel-time perturbation from expression (25).

5. Extracting the Moments of the Travel-time Perturbation from the Correlation

In this section I assume that the travel-time perturbation does not change

considerably among all the different paths with arrivals within the employed time

window. Specifically, I assume that we can use a second-order Taylor expansion of

CðtÞ. The autocorrelation is an even function, with Cð0Þ ¼ 1, hence the second-order

Taylor expansion is given by

CðtÞ ¼ 1þ 1

2
€Cðt ¼ 0Þt2; ð26Þ

where the dots denote the second time derivative. In the following I consider first the

case sP ¼ 0, and expression (20) gives

CðtsÞ ¼ RðtsÞ; ð27Þ

where RðtÞ is the correlation coefficient defined in expression (7) with the unperturbed

state equal to the perturbed state: u ¼ ~u. Using this in expression (27) and replacing ts

by t gives

CðtÞ ¼
R

uðt0Þuðt0 þ tÞ dt0R
u2ðt0Þ dt0

; ð28Þ

where the integration is over the time window under consideration. Note that it

follows from this expression that Cð0Þ ¼ 1, as required in equation (19).

Differentiating expression (28) twice with respect to time gives
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€CðtÞ ¼

R
uðt0Þ d

2uðt0 þ tÞ
dt2

dt0
R

u2ðt0Þ dt0
¼

R
uðt0Þ d

2uðt0 þ tÞ
dt02

dt0
R

u2ðt0Þ dt0
; ð29Þ

where the second derivative in the last term is with respect to t0. Setting t ¼ 0, and

using an integration by parts gives under the assumption that u vanishes at the end of

the integration interval:

€Cð0Þ ¼ �
R

_u2ðt0Þ dt0R
u2ðt0Þ dt0

: ð30Þ

In practice, one tapers the integrand in the correlation coefficient (7) in order to

suppress truncation artifacts. This taper ensures that the integrand of expression (7)

indeed vanishes at the endpoints of the interval. The right-hand side of expression

(30) has the physical dimension frequency2; for this reason I introduce the following

definition of the mean-squared angular frequency:

x2 �
R

_u2ðt0Þ dt0R
u2ðt0Þ dt0

: ð31Þ

Note that this quantity can directly be computed from the recorded data. Using this

result in the expressions (26) and (30) gives the following second-order Taylor

expansion:

CðtÞ ¼ 1� 1

2
x2t2: ð32Þ

Inserting this result in expression (20) gives

RðtsÞ ¼ 1� 1

2
x2

P
P ðts � sP Þ2IPP

P IP
: ð33Þ

It follows by differentiation that the correlation coefficient attains its maximum when

0 ¼ dRðtsÞ
dts

¼ � x2

P
P ðts � sP ÞIPP

P IP
: ð34Þ

This maximum is reached for

ts ¼ tmax ¼
P

P sP IPP
P IP

: ð35Þ

This equation states that the correlation coefficient attains its maximum for a time

shift that is equal to the intensity-weighted travel-time perturbation. According to

the notation of expression (24) this result can also be written as

tmax ¼ sh i: ð36Þ
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The value Rmax of the correlation coefficient at its maximum follows by replacing

ts in expression (33) by the average sh i, thus

Rmax ¼ 1� 1

2
x2

P
P ðsP � sh iÞ2IPP

P IP
: ð37Þ

Using expression (24) the ratio in the last term satisfies

P
P ðsP � sh iÞ2IPP

P IP
¼ s� sh ið Þ2
D E

¼ r2
s ; ð38Þ

where r2
s is the variance of the travel-time perturbation. Combining this result with

expression (37) gives

Rmax ¼ 1� 1

2
x2r2

s : ð39Þ

The time-shifted correlation coefficient can for every employed time window be

computed from expression (7) given the data before and after the perturbation.

According to expression (36) the time-shifted correlation coefficient attains its

maximum for a shift time that is equal to the mean travel-time perturbation.

Following equation (39) the value of the time-shifted correlation coefficient gives the

variance of the travel-time perturbation. This means that if the unperturbed and

perturbed waveforms are known, the mean and variance of the travel-time

perturbation can be computed. Computing the two lowest moments of the

distribution of the travel-time perturbation is a less ambitious goal than determining

the distribution P ðsÞ of the travel-time perturbations from equation (25), but as we

will see in the examples of the next section, the mean and variance of the travel-time

perturbation are useful in a number of practical applications.

The data may be contaminated with noise. The noise has two effects on the time-

shifted cross-correlation coefficient. First, the noise introduces fluctuations in the

estimated coefficient. Without knowing the noise there is no way to eliminate these

fluctuations other than using nonoverlapping time windows of the coda to obtain

independent estimates of the cross correlation. Second, noise leads to a bias because

noise lowers the value of the cross correlation. This bias can be estimated given the

energy in the noise (hn2i) and the energy of the noise-contaminated data (hu2i).
DOUMA and SNIEDER (2006) show that the bias in the correlation coefficient can be

accounted for by using the corrected correlation coefficient that is related to the

uncorrected coefficient by the following relation

Rcorr ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� hn
2i
hu2i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h~n
2i
h~u2i

s

: ð40Þ

The noise levels hn2i and h~n2i before and after the perturbation can be estimated from

the data recorded before the first-arriving waves.
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6. Examples

In this section I consider three different perturbations that are of relevance for

practical applications; a velocity perturbation, random displacement of scatterers,

and a perturbation in the source position.

6.1 A Velocity Perturbation

Suppose that in a medium the velocity vðrÞ is perturbed with a perturbation dvðrÞ,
and that the relative velocity perturbation dv=v is the same at every location in space.

The unperturbed travel time is given by

tP ¼
Z

P

1

v
ds; ð41Þ

where the integration is along path P . The perturbed travel time is to first order in the

velocity perturbation given by

tP þ sP ¼
Z

P

1

vþ dv
ds ¼

Z

P

1

v
� dv

v2

� �
ds: ð42Þ

With expression (41) this gives

sP ¼ �
Z

P

1

v
dv
v

ds ¼ � dv
v

� �Z

P

1

v
ds; ð43Þ

since I used in the last identity that the relative velocity perturbation is

assumed to be constant. With expression (41) the travel-time perturbation can be

written as

sP ¼ �
dv
v

� �
t: ð44Þ

In this expression I have replaced tP by the center time t, of the employed time

window, because this is the average arrival time of the waves that arrive in that time

window. Note that the velocity v is not necessarily constant. According to expression

(44), the travel-time perturbation depends on the arrival time of the wave only, but is

independent of the particular path. This means that in a small time window the mean

travel-time perturbation is also given by

tmax ¼ sh i ¼ � dv
v

� �
t: ð45Þ

Since the travel-time perturbation is the same for all trajectories with arrivals in a

short time window, the variance of the travel-time perturbation vanishes

r2
s ¼ 0: ð46Þ
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As shown in expression (36), the mean travel-time perturbation is equal to the shift

time that gives the maximum of the time-shifted correlation coefficient, this quantity

can easily be retrieved from the data. According to expression (45) the relative

velocity change then follows from

dv
v

� �
¼ � tmax

t
: ð47Þ

This has been used by SNIEDER et al. (2002) to measure the velocity change in a

granite sample with temperature. In their laboratory experiment coda wave

interferometry is sufficiently sensitive to detect a velocity change of about 0.1%.

This change in the velocity can be inferred from different nonoverlapping time

windows in the coda. This redundancy serves as a consistency check on the method,

and can be used for error estimation. In these measurements the estimated error in

the velocity change was about 0.02%. GRÊT et al. (2006) applied this technique also

to measure the velocity change in rocks due to changes in the stress state in

laboratory conditions. Changes in the velocity before and after the Loma Prieta

earthquake have been observed by BAISCH and BOKELMANN (2001), and by SCHAFF

and BEROZA (2004). POUPINET et al. (1984) and NISHIMURA et al. (2000) also provide

examples of temporal changes in the seismic velocity that are detected with coda

waves.

For elastic waves there are two wave velocities. It follows from the intensity-

averaged travel-time perturbation (35) that for elastic waves the inferred velocity

change is a weighted average of the change in the P -wave and S-wave velocities

(SNIEDER, 2002):

dv
v
¼ b3

2a3 þ b3

da
a
þ 2a3

2a3 þ b3

db
b
: ð48Þ

where a and b are the velocities of P waves and S waves, respectively. Since b < a the

perturbation in the shear velocity dominates the perturbation in the P -wave velocity.
For example, for a a Poisson medium (a ¼

ffiffiffi
3
p

b):

dv
v
¼ 0:09

da
a
þ 0:91

db
b
: ð49Þ

This confirms that coda waves are primarily sensitive to the shear velocity (AKI and

CHOUET, 1975).

The theory of this section is valid when the relative velocity change is independent

of location. In realistic situations this is not necessarily the case. The theory can be

extended to situations where the relative velocity change depends on position. In that

case the mean travel-time change is linearly related to the velocity change:

hsi ¼
Z

Kðr; tÞdvðrÞ dV ; ð50Þ
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where the kernel Kðr; tÞ depends on the intensity-weighted average over all scattering

paths. This expression can be used as the basis of a standard linear inversion for the

velocity change dvðrÞ given the mean travel-time change observed for different

source-receiver pairs and different time windows. The kernel Kðr; tÞ has been derived

both for single-scattered waves (PACHECO and SNIEDER, 2006), as well as for strongly

scattered waves (PACHECO and SNIEDER, 2005).

6.2 Random Displacement of Scatterers

As a second example I consider a perturbation that consists of uncorrelated

movement of the scatterers. This is of relevance for studying the motion of particles

in colloidal suspensions (HECKMEIER and Maret, 1997) and of bubbles in a turbulent

fluid (COWAN et al., 2000; PAGE et al., 2000). The theory presented here is equivalent

to diffusing wave spectroscopy (WEITZ and PINE, 1993; COWAN et al., 2002), although

the derivation is different.

Let us consider scatterers that move independently in three dimensions and that

have a root-mean-squares displacement d between the two measurements of the

waves that are used to study the motion of the scatterers. On average the path length

for each scattered wave does not change, hence the mean perturbation of the travel

time vanishes:

hsi ¼ 0: ð51Þ

Some scattering paths are longer, while other scattering paths are shorter, therefore

the variance of the travel-time perturbation is nonzero.

I compute the variance of the travel time by using that for a wave that has

scattered n times, the variance in the path length is given by SNIEDER and SCALES

(1998):

r2
L ¼ 2n 1� cos h

� �
d2: ð52Þ

In this expression cos h is the average of the cosine of the scattering angle over all

paths in the employed time window. The number of scatterers encountered is related

to the travel time by n ¼ vt=l, where v is the wave velocity and l the scattering mean

free path. Using this in expression (52) gives

r2
L ¼

2vtd2

l�
; ð53Þ

where l� is the transport mean free path that is defined as l� ¼ l=ð1� cos hÞ. This
is the distance of propagation over which the scattered wave has lost all

information about its direction of propagation (LAGENDIJK and VAN TIGGELEN,

1996; VAN ROSSUM and NIEUWENHUIZEN, 1999). For a constant velocity the

variance in the travel time is related to the variance in the path length by

rs ¼ rL=v, so that
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r2
s ¼

2td2

vl�
: ð54Þ

With expression (39) this means that the measured maximum of the cross correlation

is related to the mean displacement of the scatterers by

Rmax ¼ 1� x2d2t
vl�

: ð55Þ

Given a measured value of the maximum of the cross correlation, one can infer

the mean scatterer displacement d from this expression if the wave velocity and the

transport mean free path are known. SNIEDER et al. (2002) show in a numerical

example that the mean scatterer displacement can correctly be retrieved from the

coda waves. The scatterer displacement can be computed from several nonoverlap-

ping time windows of the coda, and they show how this redundancy can be used to

compute error bounds on the scatterer displacement inferred from the coda waves.

6.3 A Displaced Source Position

The relative distance between earthquakes can be found from the absolute

location of the events, but in this approach errors in the employed velocity model

may lead to large errors in the distance between the events (PAVLIS, 1992). An

alternative approach is the double-difference method where the relative event

location is computed from the differential travel time of the direct arrivals (SHEARER,

1997; ASTIZ and SHEARER, 2000; WALDHAUSER and ELLSWORTH, 2002). Coda wave

interferometry can also be used to determine the relative distance between

earthquakes, provided the source mechanisms of the events are identical. This

provides additional information on the relative position between events that can be

used in addition to the constraints obtained from the double-difference method.

Let us consider two nearby seismic sources with the same source mechanism.

When the source position is perturbed over the distance r, the distance from the

source to the first scatterer along every scatterer path is perturbed. The distance

between the scatterers is unperturbed, so we only need to account for the change in

the distance to the first scatterer along every scattering path. For this reason it does

not matter if the wave travels from the first scatterer along every path directly to the

receiver, or whether the wave visits many other scatterers first. The theory of this

section therefore is applicable both for single scattering as well as for multiple

scattering.

For a scattering path P with take-off direction t̂P at the source, the perturbation

in the travel time is given by

sP ¼ �
t̂P � r
� �

v
: ð56Þ
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For a scattering path where the wave leaves the source as a P wave, v is the P -wave
velocity at the source location, whereas for a path where the wave leaves the source

as an S wave, v denotes the shear velocity. When the scatterers are distributed

homogeneously, some paths are longer when the source location is perturbed, while

others are shorter. The resulting mean travel-time perturbation vanishes (SNIEDER

and VRIJLANDT, 2005). This can be shown by integrating the travel-time perturbation

(56) over all take-off directions.

The variance of the travel-time perturbation, however, is nonzero, because some

paths are longer when the source location is perturbed while others are shorter. The

variance of the travel-time perturbation depends on the type of source (explosion,

point force, double couple), as well as on the orientation of the perturbation of the

source location relative to the source mechanism (SNIEDER and VRIJLANDT, 2005).

An important application is the location of aftershocks. SNIEDER and VRIJLANDT

(2005) show that when aftershocks with identical source mechanisms are confined to

a plane, and their slip vector is aligned with this plane, that the variance of the travel

time is given by

r2
s ¼

6
a8 þ

7
b8

� �

7 2
a6 þ

3
b6

� � r2: ð57Þ

In this expression a is the P -wave velocity, and b denotes the shear-wave velocity.

This expression depends on both velocities, because the path summation includes

waves that leave the source as a P -wave, as well as waves that leave the source as

an S-wave. The P - and S-wave velocities in expression (57) are raised to high

powers. Since b < a, the terms with the shear velocity dominate. Note that

expression (57) depends on the distance r between the events, but not on their

relative orientation in the fault plane. The reason for this is that the averaging

(38) in this application involves an integration over all take-off directions. In this

directional averaging information on the direction of the event separation is lost.

Expression (57) can be used to estimate the source separation in the following

way. For several time windows in the coda the time-shifted correlation coefficient

can be computed from expression (7). Using expression (39), the maximum of this

function can be equated to the variance of the travel-time perturbation given by

equation (57). The resulting expression can then be solved for the event separation

r. In the presence of significant noise, the correction factor of equation (40) can

be used to eliminate the bias in the cross correlation due to noise.

SNIEDER and VRIJLANDT (2005) applied this technique to events on the

Hayward fault, California, and showed that the event separation obtained from

the coda waves agrees with the event separation of the same events determined by

WALDHAUSER and ELLSWORTH (2002) with the double-difference method.
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Note that the estimation of the event separation can be carried out with a single

station. An error estimate of the event separation can be obtained by comparing the

event separation inferred from different nonoverlapping time windows in the coda.

7. Discussion

The main result of the theory of this paper is that the time-shifted correlation

coefficient between perturbed and unperturbed waves can be related to the mean and

variance of the travel-time perturbation. According to expression (36), the mean

travel-time perturbation follows from the shift time that gives the maximum of the

time-shifted correlation coefficient, and equation (39) relates the maximum of the

cross correlation coefficient to the variance of the travel-time perturbation. This

means that the mean and variance of the travel-time perturbation can be obtained

from a comparison of the coda waves before and after the perturbation. Additive

random noise leads to a bias in the maximum of the correlation coefficient, this bias

can be removed using the correction factor of expression (40).

The present theory can be applied to a constant change in the velocity, to

uncorrelated perturbations in the locations of the scatterers, and to changes in the

source position. For a change in the velocity (section 6.1), the mean travel-time

perturbation is nonzero (equation (45)), but the variance of the travel-time

perturbation is zero (expression (46)). For random perturbations in the scatterer

location the mean travel-time perturbation vanishes (expression (51)), but

according to equation (52) the variance of the travel time is nonzero and

depends linearly on time. This contrasts the case of a perturbation in the source

position where the mean travel-time perturbation also vanishes and where

according to expression (57) the variance is nonzero and independent of time. In

general, it may not be obvious how a medium is perturbed. As shown above, the

three different perturbation leave a different imprint on the mean and the variance

of the travel-time perturbation. Since these quantities can be estimated for several

independent windows of the coda waves using the time-shifted correlation

coefficient, it is possible to discriminate between these different perturbations using

the recorded coda waves.
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