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1 Introduction

This paper provides an introduction to the theory of contests in a unified framework.
In particular we present the basic model and study its main properties from which we
derive various applications. The literature on this topic is vast and we make no attempt
to cover all issues. Therefore many good papers and interesting topics are not covered.
The interested reader can consult the surveys of Nitzan (1994) and Konrad (2006) for
additional issues and references.

A part of economics (e.g., general equilibrium) studies situations where property
rights are well defined and agents voluntarily trade rights over goods or produce rights
for new goods. This approach has produced very important insights into the role of
markets in resource allocation such as the existence and efficiency of competitive
equilibrium, the optimal specialization under international trade, the role of prices in
providing information to the agents, etc.

There are other situations, though, where agents do not trade but rather fight over
property rights. In these situations agents can influence the outcome of the process by
means of certain actions such as investment in weapons, bribing judges/politicians,
hiring lawyers, etc. These situations are called Contests. The literature has developed

This paper is an outgrowth of lecture notes of Ph.D. courses given in Carlos III University, Universitat
Autònoma de Barcelona and Universidad de Málaga. I would especially like to thank to Carmen Beviá for
her comments and suggestions and Matthias Dahm for allowing me free access to a joint paper and for
correcting many mistakes and very helpful suggestions. I also thank Clara Eugenia García, Cristian Litan,
Carlos Pimienta, Santiago Sánchez-Pages, Ramon Torregrosa, Galina Zudenkova and the students of this
course for their helpful comments and CAICYT for research grant SEJ2005-06167/ECON.

L. C. Corchón (B)
Department of Economics, Universidad Carlos III, c/ Madrid 126, Getafe, Madrid 28903, Spain
e-mail: lcorchon@eco.uc3m.es

1



from the seminal contributions by Tullock (1967, 1980) and Krueger (1974) who
studied a specific contest, rent-seeking, and Becker (1983) who studied lobbying.1

Lately, the framework was generalized to other situations. The example below refers
to voting. Other examples are considered later on.

Example 1.1 Political competition: Two political parties value office in V1 and V2. To
influence voters they use advertisement in quantities G1 and G2. The probability that
party i = 1, 2 reaches office, denoted by pi is

pi = Gi

G1 + G2
if G1 + G2 > 0,

(1.1)
pi = 1/2 if G1 + G2 = 0.

Expected monetary payments for party i = 1, 2 are,

Gi

G1 + G2
Vi − Gi .

A Contest is defined by the following elements:2

– A (finite) set of agents, also called contenders, denoted by N = {1, 2, . . . , n}.
– A set of possible actions (effort, investments) taken by agents before the prize is

allocated. These actions determine the probability of obtaining the prize. They can
be interpreted as the positions taken by agents before the conflict starts.

– A prize whose quantity may depend on the actions taken by agents.3

– A function, relating the actions taken by agents to the probabilities that they obtain
the prize. This function is called Contest Success Function.

– A function that for each possible action yields the cost of this action. This function
is called the cost function.4

Formally, let pi = pi (G1, . . . , Gn) be the probability that agent i obtains the prize
when actions are (G1, . . . , Gn) ∈ �n+. Another interpretation is that pi is the fraction
of the prize obtained by i . Vi (G1, . . . , Gn) is the value of the prize as a function of
the efforts made by agents and Ci (Gi ) is the cost attributed by i to her action Gi . If
the valuations of the prize are independent of efforts they will be denoted by Vi and
when they are identical for all agents, by V . Assuming that agents are risk-neutral with
payoffs linear on the expected prize and costs, the payoff function of agent i, denoted
by �i ( ), is

�i (G1, . . . , Gi , . . . , Gn) ≡ pi (G1, . . . , Gi , . . . , Gn)

×Vi (G1, . . . , Gi , . . . , Gn) − Ci (Gi ).

1 See Tullock (2003) for his account of the development of the concept.
2 For a discussion of the concept of contest see Neary (1997) and Hausken (2005).
3 This may be due to the fact that agents value the effort made in the contest or because the investment
increases the value of the prize, see Chung (1996) and Amegashie (1999a,b).
4 We assume implicitly that should expenses be publicly disclosed, contenders suffer no consequences. See
Corchón (2000) for the case in which contenders can be legally prosecuted for accepting these expenses.
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Thus, the definition of a contest has lead us to a game in normal form where payoffs are
expected utilities and strategies are efforts/investments. For these games the less con-
troversial concept of equilibrium is the one proposed by John Nash in 1950, generaliz-
ing an idea advanced by Cournot (1838): an equilibrium is a situation from which there
are no unilateral incentives to deviate. Formally, we say that (G∗

1, . . . , G∗
i . . . , G∗

n) is
a Nash equilibrium (NE) if

�i ((G
∗
1, . . . , G∗

i , . . . , G∗
n) ≥ �i (G

∗
1, . . . , Gi , . . . , G∗

n), for all Gi ∈ �+,

for each agent i.

Now consider some more examples:

Example 1.2 Litigation/fight. In this case Vi ’s represent the value attached to some
item, say, a piece of land, a state or a title of nobility. If the fight is conducted in the
legal system G’s are legal expenses. If the fight is a war, G’s are costs of raising an
army. G’s could also be sabotage activities devoted to decreasing the efficiency of
the opponent (Konrad 2000). The contest success function yields the probability of
obtaining the item as a function of legal/military expenses or sabotage activities.

Example 1.3 Lobbying. In this case Vi ’s represent the value of a public policy like a
law granting certain rights to some citizens, subsidies to agriculture or restrictions to
enter a market, etc. The set of feasible policies is the interval [0, 1]. There are two
agents that have opposite preferences over this issue (right and left, farmers and tax-
payers, incumbent and entrant). pi is the position taken on this issue and pi Vi is the
payoff derived by i from this allocation.

Example 1.4 Awarding a prize. In this case Vi ’s represent the value of a grant, a prize
or a patent. G’s are the expenses made in order to participate and/or to influence
the jury for a prize. The contest success function yields the probability of obtaining
the prize as a function of efforts/expenses made in order to obtain merits/influence
in the jury’s eyes.

Example 1.5 Contracts. In this case, Vi ’s are the value of a contract for the public
or the private sector or the value of hosting a public event, i.e., the Olympic Games.
Expenses are made in order to present the case of each contender and/or to influence
the jury. The contest success function yields the probability of obtaining the contract
or the right to organize the event as a function of expenses.

Example 1.6 Cooperative production. The agents have preferences over pairs
consumption/labor. Here V ( ) is the production function, Gi is the labor i and
pi (G1, . . . , Gn) is the share of i in the output. Thus pi V is is consumption.

In the following sections we will review several aspects of contests paying attention
to both analytical results and applications.

Section 2 is concerned with the foundations of the success contest function.
The basic properties of equilibrium, existence, uniqueness and comparative statics,

are amenable to a common analysis that encompasses Examples 1.1–1.5 above. Such
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an analysis is performed in Sect. 3, where we study the symmetric case and Sect. 4
where we are concerned with asymmetric contests.

Section 5 examines socially optimal policies under rent-seeking in well known
problems; welfare losses due to monopoly and transaction costs as well as the impact
of regulation. These problems correspond to Examples 1.2–1.3 above where the con-
test does not produce anything valuable for society.

In Sect. 6 we study the optimal design of a contest that produces something socially
useful. This corresponds to Examples 1.4–1.5 above. A planner concerned with social
welfare will simply stop many contests belonging to the class considered in Sect. 5,
e.g., the fight for monopoly rights. On the contrary, the same planner, may subsidize
many belonging to the second, e.g., R&D, etc.

2 Contest success functions

In this section we study the properties of contest success functions (CSF).
In order to be specific about the properties of an NE, it would be nice to have an

idea of the form of CSF. Consider the following functional form:

pi = φ(Gi )
∑n

j=1 φ(G j )
if

n∑

j=1

φ(G j ) > 0, (2.1)

pi = 1

n
otherwise. (2.2)

An intuitive interpretation of (2.1) is that φ(Gi ) measures the impact of Gi in the
contest, i.e., it summarizes the merits of i. Thus, in Example 1.1, φ(Gi ) = Gi is
the impact of advertisement on voters. The ratio φ(Gi )/

∑n
j=1 φ(G j ) measures the

relative impact (merit) of i. Hence, (2.1) says that the probability of an agent winning
the prize equals the relative impact (merit) of that agent. Many papers dealing with
contest models in the literature assume a CSF which is a special case of (2.1). For
instance φ(Gi ) = Gε

i which was introduced by Tullock (1980). If ε = 1 we have the
form considered in (1.1). If ε = 0, the probability of success is independent of the
effort made by the players. Another example is the logit form proposed by Hirshleifer
(1989) where, given a positive scalar k, φ(Gi ) = ekGi .

Whenever the form (2.1) is postulated, the following properties are assumed.

i) φ( ) is twice continuously differentiable in �++.
ii) φ( ) is concave.

iii) φ′( ) > 0.
iv) φ(0) = 0, limGi →∞ φ(Gi ) = ∞.

v) Giφ
′(Gi )/φ(Gi ) is bounded for all Gi ∈ �+.5

Property ii) is helpful in the proof of the existence of a Nash equilibrium. iii) says
that more effort by i increases the merit of i . The last two properties are technical. If
φ(Gi ) = Gε

i with 0 < ε ≤ 1 all the above properties are fulfilled.

5 When no confusion can arise, derivatives will be denoted by primes.
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Let us present CSFs which are not special cases of the form (2.1). The first two
consider the case of two contestants and build on the idea that only differences in
effort matter. Baik (1998) proposed the following: Given a positive scalar σ ,

p1 = p1(σ G1 − G2) and p2 = 1 − p1. (2.3)

Che and Gale (2000) postulate a special form of p1( ):

p1 = max

{

min

{
1

2
+ σ(G1 − G2), 1

}

, 0

}

and p2 = 1 − p1. (2.4)

These CSF are problematic because the winning probabilities depend on the units in
which expenditures are measured (e.g., dollars or cents), see our discussion of prop-
erty (H) later in this section. Alcalde and Dahm (2007) proposed the following CSF
that circumvents this difficulty; Given a positive scalar α, suppose for simplicity that
G j ≥ G j+1. Then,

pi =
n∑

j=i

Gα
j − Gα

j+1

j · Gα
1

, for i = 1, . . . , n with Gn+1 = 0. (2.5)

2.1 Axiomatics

Suppose that pi ( ) is defined for all subsets of N . Consider the following properties:

(P1) Imperfect discrimination: For all i , if Gi > 0, then pi > 0.6

(P2) Monotonicity: For all i , pi is increasing in Gi and decreasing in G j , j 
= i .
(P3) Anonymity: For any permutation function π on the set of bidders we have

p(π G) = πp(G) for all G ≡ (G1, . . . , Gi , . . . , Gn).

While these properties are standard, the next two properties are more specific
and relate winning probabilities in contests to different sets of active contestants.
Let pM

i (G) be contestant i’s probability of winning a contest played by a subset
M ⊂ N of contestants with G ≡ (G1, . . . , Gi , . . . , Gn).

(P4) Independence: For all i ∈ M , pM
i (G) is independent of G j for all j /∈ M .

(P5) Consistency: For all i ∈ M , and for all M ⊂ N with at least two elements,

pM
i (G) = pi (G)

∑
j∈M p j (G)

, for all G ≡ (G1, . . . , Gi , . . . , Gn).

6 The name of this axiom refers to the fact that a contest can be interpreted as an auction where the prize is
auctioned among the agents and efforts are bids. In standard auctions the higher bid obtains the prize with
probability one. Here, any positive bid entitles the bidder with a positive probability to obtain the object,
so it is as if the bidding mechanism did not discriminate perfectly among bids.
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Together (P4) and (P5) imply that the CSF satisfies Luce’s Choice Axiom (Clarke
and Riis 1998) defined as follows: the probability that contestant i wins if player
k does not participate is equal to the probability that i wins when k participates
given that k does not win. This axiom holds for any subset of non-participating
players. This is a kind of independence of irrelevant alternatives property.

Skaperdas (1996) proved the following result whose proof is omitted:

Proposition 2.1 (P1)–(P5) are equivalent to assuming a CSF like (2.1).

Properties (P1)–(P4) are reasonable. However, (P5) is debatable, as shown by the
next example:

Example 2.1 There are three teams that play a soccer/basketball league. Teams have
to play against each other twice. They obtain three, one or zero points if they win,
draw or lose, respectively. Suppose efforts made by teams are given. There are two
states of the world where each occurs with probability 0.5. In the first state results are:

Team 1 against Team 2: 1 obtains 4 points and 2 obtains 1 point.
Team 1 against Team 3: 1 obtains 0 points and 3 obtains 6 points.
Team 2 against Team 3: 2 obtains 6 points and 3 obtains 0 points.
In this state of the world Team 2 wins the league because it gets 7 points. Teams 3

and 1 get 6 and 4 points, respectively.
In the second state of the world results are identical except for the following:
Team 1 against Team 3: 1 obtains 6 points and 3 obtains 0 points.
In this state of the world Team 1 wins the league because it gets 10 points. Teams

2 and 3 obtain 7 and 0 points, respectively.
Hence, the probability that Team 1 wins the league is 0.5. However, if Team 3 does

not play and the results of each match are independent Team 1 wins the league with
probability 1. Thus we see that the ratio of probabilities of success between Teams 1
and 2 are altered when Team 3 does not play the league.

We now consider the following homogeneity property:

(H) ∀i ∈ N , pi ( ) is homogeneous of degree zero, i.e., pi (G) = pi (λG), ∀λ > 0.

(H) says that the probability of obtaining the prize is independent of units of mea-
surement—i.e., whether effort is measured in hours or minutes, or investments in
dollars or euros. If effort means attention or work quality, the interpretation is less
clear. The forms (2.1) with φi = Gε

i and (2.5) fulfill (H). The form (2.1) with the logit
specification, (2.3) and (2.4) do not fulfill (H).

Skaperdas (1996) proved that (P1)–(P5) and (H) imply the form (2.1) with φ(G) =
Gε , ε ≥0. An unpleasant implication of (H) is that if pi ( ) is continuous in (0, 0, . . . , 0),
pi ( ) is constant (Corchón 2000) which contradicts (P2). Thus under (H), pi ( ) is dis-
continuous. Skaperdas (1996) also studied the logit form. He showed that this form
is equivalent to (P1)–(P5) plus an additional property that says that the probability of
success of a player only depends on the difference in the effort of players. Clarke and
Riis (1998) extended Skaperdas’ results dropping the anonymity assumption.
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2.2 Other foundations

Hillman and Riley (1989) offer a model of the political process where the impact of
effort is uncertain. They derive a CSF of the form φ(Gi ) = Gε

i only for the case
of two contestants. Fullerton and McAfee (1999) and Baye and Hoppe (2003) offer
micro-foundations for a subset of CSFs of the form φ(Gi ) = Gε

i for innovation tour-
naments and patent races. Finally, Corchón and Dahm (2007) derive arbitrary CSF for
the case of two contentands who have incomplete information about the type of the
contest administrator. They argue that with three or more players, the form (2.1) is not
likely to occur. Here uncertainty comes from the fact that the decision-maker can be
of multiple types, and in the other models it comes from the actions of the contestants.
Corchón and Dahm also interpret CSF as sharing rules and establish a connection
to bargaining and claims problems. They prove that a generalization of the class of
CSF given in (2.1) can be understood as the weighted Nash bargaining solution where
efforts are the weights of the agents.

3 Symmetric contests

From now on, unless stated otherwise, we keep the functional form (2.1) plus the
properties i)–v) stated there. We assume that the cost function Ci : �+ → �+ is
twice continuously differentiable, convex, strictly increasing with Ci (0) = 0 and C ′

i
bounded. Notice that these assumptions are similar to those made about p( ).

Now we present the following assumption:

Assumption 1 a) All agents have the same cost function C( ).
b) V = V0 + a

∑n
j=1 φ(G j ), V0 > 0, a ≥ 0.

c) There exist (ȳ, δ) such that, for all y > ȳ, aφ′(y) − C ′(y) < δ < 0.

The interpretation of part b) of Assumption 1 (A1 in the sequel) is that i values the
prize for two reasons. An intrinsic component V0 and another component reflecting
aggregate merit. The parameter a is the marginal rate of substitution between aggre-
gate merit and intrinsic value of the prize. The case where merits do not add value to
the prize corresponds to a = 0. Part c) of A1 implies that when effort is very large,
the ratio C ′/φ′ is larger than a. The reason for this assumption is that if a or the
marginal impact of the action (φ′) is large or the marginal cost of the action is small,
there are incentives to increase the effort without limit. This assumption eliminates
that possibility.

3.1 Existence, uniqueness and comparative statics

We are now ready to prove our first result:

Proposition 3.1 Under A1, there is a unique Nash equilibrium. This equilibrium is
symmetric.
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Proof Assuming interiority, first order conditions of payoff maximization are,

∂�i

∂Gi
= aφ′(Gi )

φ(Gi )
∑n

j=1 φ(G j )
+

⎛

⎝V0 + a
n∑

j=1

φ(G j )

⎞

⎠

×φ′(Gi )
∑

r 
=i φ(Gr )

(
∑n

j=1 φ(G j ))2
− C ′(Gi ) = 0,

or, V0
φ′(Gi )

∑
r 
=i φ(Gr )

(
∑n

j=1 φ(G j ))2
= C ′(Gi ) − aφ′(Gi ), i = 1, 2, . . . , n.

(3.1)

The second order condition is fulfilled because (3.1) can be written as

∂�i

∂Gi
= V0

φ′(Gi )
∑

r 
=i φ(Gr )

(
∑n

j=1 φ(G j ))2
− C ′(Gi ) + aφ′(Gi ),

and all terms in the right hand side of the equation are decreasing in Gi , hence ∂2�i
∂G2

i
≤0.

This implies that (3.1) corresponds to a maximum. Therefore the existence of a Nash
equilibrium is equivalent to showing that the system (3.1) has a solution. We first
prove that such a system can only have symmetric solutions. Let Gi = minr∈N Gr

and G j = maxr∈N Gr . If the solution is not symmetric, Gi < G j . Since the right
hand side of (3.1) is increasing in Gi , we have that,

V0
φ′(Gi )

∑
r 
=i φ(Gr )

(
∑n

j=1 φ(G j ))2
= C ′(Gi ) − aφ′(Gi ) ≤ C ′(G j ) − aφ′(G j )

= V0
φ′(G j )

∑
r 
= j φ(Gr )

(
∑n

j=1 φ(G j ))2
.

Also, since φ( ) is concave, φ′(G j ) ≤ φ′(Gi ). Hence the previous equation implies∑
r 
=i φ(Gr ) ≤ ∑

r 
= j φ(Gr ), which in turn implies Gi ≥ G j , a contradiction.
Let y ≡ Gi , i = 1, 2, . . . , n. Now (3.1) can be written as

φ′(y)

(

a + V0
n − 1

φ(y)n2

)

− C ′(y) = 0. (3.2)

Let the left hand side of (3.2) be denoted by 
(y). If y → 0 , 
(y) > 0, and if
y → ∞, A1c) and property iv) of φ(·) imply 
(y) < 0. Therefore the mean value
theorem implies that (3.1) has a solution that—by the previous reasonings—is a Nash
equilibrium. Since 
( ) is strictly decreasing equilibrium is unique.

Lastly let us consider the case in which the first order condition does not hold with
equality, i.e., G∗

k = 0 and G∗
i > 0 for some k and i. In this case, from (3.1), the
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concavity of φ( ) and the convexity of C( ) we have that

0 ≥ φ′(0)

(

V0

∑
r 
=k φ(Gr )

(
∑n

j=1 φ(G j ))
2 + a

)

− C ′(0) ≥ φ′(Gi )

(

V0

∑
r 
=k φ(Gr )

(
∑n

j=1 φ(G j ))
2 + a

)

− C ′(Gi )

> φ′(Gi )

(

V0

∑
r 
=i φ(Gr )

(
∑n

j=1 φ(G j ))
2 + a

)

− C ′(Gi ) = 0

⎛

⎝since
∑

r 
=k

φ(Gr ) >
∑

r 
=i

φ(Gr )

⎞

⎠ .

To end the proof notice that G∗
i = 0, ∀i is impossible because if an agent increases

effort by a small quantity, she wins the prize at a cost as close to zero as we wish
(because C(0)=0 and C( ) is continuous). Thus, this situation cannot be an equilibrium.

�

The previous result was obtained by Nti (1997) assuming a = 0 and Ci (Gi ) = Gi .

Szidarovsky and Okuguchi (1997) generalized this result considering a CSF like

pi = φi (Gi )
∑n

j=1 φ j (G j )
when

n∑

j=1

φ j (G j ) > 0 and pi = 1

n
otherwise , (3.3)

where each φi ( ) fulfils the properties attributed to φ( ) in Sect. 2. Notice that the
form (2.1) is a special case of (3.3). The next section is devoted to study asymmetric
contests.

Example 3.1 Pérez-Castrillo and Verdier (1992) studied the case in which φi = Gε
i

allowing for ε > 1, i.e., φ( ) is not necessarily concave. If ε ≤ 1, a = 0 and
C(Gi ) = cGi , from (3.2) we can derive an explicit formula for the equilibrium value
of the effort and payoffs, namely

G∗
i = ε(n − 1)V

n2c
and �∗

i = V (n − ε(n − 1))

n2 .

The aggregate cost of effort is cny = ε(n − 1)V/n. Notice that the aggregate cost of
effort increases with n and if n is not small it is, approximately, εV . In the case studied
by Tullock (1980), i.e., ε = 1, this amounts to V , i.e., rents are dissipated because
the value of the prize equals the aggregate value of efforts.7 We will see that this fact
has important consequences for social welfare.

Let us now concentrate on comparative statics. First, we notice that our game can
be transformed into an aggregative game (Corchón 1994) in which payoffs of each
player depend on the strategy of this player and the sum of all strategies. Indeed, since

7 Rent dissipation also assumes that efforts are completely wasted and that they have a positive opportunity
cost. When the action of rent-seekers increases the utility of someone else—e.g., bribes—rents are said to
be transferred.
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payoffs for i are

φ(Gi )
∑n

j=1 φ(G j )

⎛

⎝V0 + a
n∑

j=1

φ(G j )

⎞

⎠ − Ci (Gi )

setting xi ≡ φ(Gi ) the previous expression can be written as

xi
∑n

j=1 x j

⎛

⎝V0 + a
n∑

j=1

x j

⎞

⎠ − Ci

(
φ−1(xi )

)
≡ �i

⎛

⎝xi ,

n∑

j=1

x j

⎞

⎠ .8

Unfortunately, results obtained in this class of games are non applicable here. The
reason is that they require monotonic best reply functions: either decreasing—i.e., stra-
tegic substitution, Corchón (1994)—or increasing—i.e., strategic complementarity,
Vives (1990), Milgrom and Roberts (1990), Amir (1996).9 But in Example 1.1 we see
that if Ci = Gi , V1 = V2 = 1, the best reply of i is Gi = √

G j − G j , which is neither
increasing, nor decreasing. Thus, there is no hope that in the general case such prop-
erties hold. Fortunately, our symmetry assumption allows us to obtain comparative
statics results.

Proposition 3.2 Under A1, the value of effort/investment in the Nash equilibrium is
strictly increasing in a and V0 and strictly decreasing in n.

Proof Write (3.2) as

0 = φ′(y)

(

a + V0
n − 1

φ(y)n2

)

− C ′(y) ≡ 
(y, a, n, V0). (3.4)

where as we noticed before, ∂

∂y < 0. Differentiating implicitly (3.4),

dy

da
=

∂

∂a

− ∂

∂y

= φ′

− ∂

∂y

> 0.

A similar argument proves that dy
dV0

> 0. Finally, writing (3.2) as follows

V0
n − 1

n2 =
(

C ′(y)

φ′(y)
− a

)

φ(y),

we see that the left hand side is strictly decreasing in n and the right hand side is
strictly increasing in y. Therefore, y and n vary in opposite directions and, thus, y is
strictly decreasing in n. �

8 Notice that this payoff function is identical to a profit function in which inverse demand reads V0∑n
j=1 x j

+a

and the cost function is Ci (φ
−1(xi )) (Szidarovsky and Okuguchi 1997).

9 The concepts of strategic substitution and complementarity are due to Bulow et al. (1985).

10



The previous result generalizes Nti (1997) to the case of a > 0 and non linear cost
functions.

3.2 The choice between productive and contest activities

So far we have assumed that the number of contenders is given. A possible mechanism
for determining n is to assume that agents have the choice of either entering into a
contest or performing a productive activity (Krueger 1974). Assume for simplicity
that the productive activity yields a net return of ρ, with ρ ≤ V , that each contender
regards as given. Under the assumptions made in Example 3.1 above, the payoff of a
potential contender is V (n − ε(n − 1))/n2. Free entry in both activities equalizes net
returns and yields the equilibrium number of contenders, namely

n∗ = V (1 − ε) + √
(1 − ε)2V 2 + 4ερV

2ρ
.

The condition V ≥ ρ guarantees that n∗ ≥ 1. As intuition suggests, the number of con-
tenders depends positively on the value of the prize and negatively on the productivity
of the productive sector which is a measure of the opportunity cost of participating in
the contest.

An application of the above mechanism is that if a positive shock increases the
supply of productive activities such that ρ falls, rent-seeking is fostered. For instance
if the supply of a natural resource increases, this is, in principle, good news because
the economy now has more resources. However, the effect of this positive shock on
social welfare is ambiguous because the increase in the supply of productive activities
is matched by an increase in wasteful expenditure of the rent-seeking sector since
these expenditures are increasing in n. Under some conditions, the second effect pre-
vails (Baland and Francoise 2000; Torvik 2002) giving rise to the so-called “Dutch
disease”.10

4 Asymmetric contests

In this section we study the case in which agents are different and, in general, Nash
equilibrium is not symmetric. The reason for studying this case, other than increasing
generality, is that there are situations that can only occur in asymmetric contests. For
instance:

10 The term originated as follows: In the 1960s the discovery of large reserves of gas in the North Sea
raised the value of the Dutch currency. This increased imports and decreased exports negatively affecting
the domestic industry. The use of the term was generalized later on to describe negative effects on real
variables—GDP, etc.—of an increase in natural resources. It has also been translated to political science
where the term “Political Dutch Disease” refers to the correlation between the size of oil reserves and the
degree of authoritarianism.
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1) Some agents might make zero effort in equilibrium, i.e., be inactive. Agents whose
effort is positive in equilibrium will be called active.11

2) Agents with higher valuations/lower costs may obtain the prize with higher proba-
bility than the rest. This implies that in some cases—like the procurement example
in Sect. 1—there is a positive relationship between rent-seeking and efficiency, a
point to recall when discussing the social desirability of contests.

3) Some agents may be better off as a consequence of the contest. In a symmetric
contest all contenders are better off if the contest is banished since they incur a
positive cost simply to maintain the probability of obtaining the prize.

4.1 Basic properties of the model

In order to concentrate on the issues raised by asymmetries we will assume in this
section that the value of the prize does not depend on efforts, that is α = 0. Let us
start by assuming that the CSF is of the form (3.3). Then,

�i = φi (Gi )
∑n

j=1 φ j (G j )
Vi − ci (Gi ).

Set yi ≡ φi (Gi ). Since φi ( ) is strictly increasing, it can be inverted. Set ci (φ
−1(yi )) ≡

Qi (yi ). Then,

�i = yi
∑n

j=1 y j
Vi − ci (φ

−1(yi )) = yi
∑n

j=1 y j
Vi − Qi (yi )

By a well-known result, NE are independent of linear transformations in payoffs.
Dividing the previous expression by Vi and setting Qi (yi )

Vi
≡ Ki (yi ), payoffs are now

yi
∑n

j=1 y j
− Qi (yi )

Vi
= yi

∑n
j=1 y j

− Ki (yi )

Thus, under (3.3) lack of symmetry in the contest success function can be translated
to lack of symmetry in the cost function.

In the next result we will assume that the functions Ki ( )’s are linear, see Cornes
and Hartley (2005) for the non linear case.

Assumption 2 Ki (yi ) = di yi , di > 0, ∀i ∈ N .

Notice that because α = 0, A2 implies A1c). Without loss of generality set d1 ≤
d2 ≤ · · · ≤ dn . There are two interpretations of A2. In the first one the CSF is
φ(Gi ) = Gi and agents have different costs/valuations reflected in different d’s. In
this case, yi = Gi and di = ci/Vi (see Hillman and Riley 1989). In the second

11 If φ( ) is not concave, Nash equilibrium may entail non active agents even under symmetry assumptions,
see Pérez-Castrillo and Verdier (1992).
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interpretation, the contest success function is a special case of the one proposed by
Gradstein (1995), namely

pi = qiφ(Gi )
∑n

j=1 q jφ(G j )
if

n∑

j=1

q jφ(G j ) > 0

(4.1)

pi = qi if
n∑

j=1

φ(G j ) = 0.

where qi can be interpreted as the prior probability that agent i wins the prize. Assume
that φ(Gi ) = Gi and agents are identical in costs and valuations. Denoting the mar-
ginal cost of effort by c we have that di = c

V qi
and Gi = yi

qi
.

Proposition 4.1 Under A2 and (3.3) there is a unique Nash equilibrium. There is an
m ≤ n such that all agents i = 1, . . . , m with

∑m
j=1 d j > di (m − 1) are active and

all agents i = m + 1, . . . , n with
∑m

j=1 d j ≤ di (m − 1) are not active.

Proof First notice that the set of agents for which
∑m

j=1 d j > di (m − 1) has no
“holes”, i.e., if agent k belongs to this set, agent k − 1 also belongs since

∑m
j=1 d j >

dk(m − 1) > dk−1(m − 1), given that dk−1 < dk .

Consider the following algorithm that begins with agent n and continues in decreas-
ing order. If

∑k
j=1 d j ≤ dk(k − 1), we go to agent k − 1. If

∑k
j=1 d j > dk(k − 1),

the algorithm stops and yields m = k. The algorithm stops before k = 1 because for
k = 2, d1 + d2 > d2. As we will see, this algorithm identifies active agents.

First order conditions of payoff maximization for i = 1, . . . , m are

∂�i

∂yi
=

∑
j 
=i y j

(
∑m

j=1 y j )2
− di = 0, or

∑
j 
=i y j

(
∑m

j=1 y j )2
= di . (4.2)

It is easy to see that ∂�i
∂yi

is decreasing in yi . Thus second order conditions hold.

Adding up (4.2) over 1 to m, we have that (m−1)
∑m

j=1 y j = (
∑m

j=1 y j )
2 ∑m

j=1 d j .

From there and (4.2) again we get that

y∗
i = m − 1

∑m
j=1 d j

(

1 − di (m − 1)
∑m

j=1 d j

)

, i = 1, . . . , m. (4.3)

which yields the effort of active agents. Notice that y∗
i > 0 because i belongs to the

set for which
∑k

j=1 d j > dk(k − 1). For any other agent, say r the marginal payoff
evaluated in yr = 0 is

∂�r

∂yr
=

∑m
j=1 y j

(
∑m

j=1 y j )2
− dr =

∑m
j=1 d j

m − 1
− dr ≤ 0. (4.4)

Thus, yr = 0 is the optimal action of this agent.
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We will now prove that the previous equilibrium is unique. Let us consider an
arbitrary equilibrium. The first order condition is,

∂�i

∂yi
=

∑
j 
=i y∗

j

(
∑n

j=1 y∗
j )

2
− di ≤ 0 and if strict inequality holds, y∗

i = 0.

Let M ⊆ N be the set of active agents. For i ∈ M , we have that

∑
j 
=i y∗

j

(
∑n

j=1 y∗
j )

2 = di =
∑n

j=1 y∗
j − y∗

i

(
∑n

j=1 y∗
j )

2 .

Again, we see that the set of active agents cannot have “holes” because if i is active
and h is such that dh < di and y∗

h = 0, we had

∑n
j=1 y∗

j − y∗
i

(
∑n

j=1 y∗
j )

2
= di > dh ≥

∑n
j=1 y∗

j

(
∑n

j=1 y∗
j )

2

which is impossible. Suppose now that there are two equilibria. In the first, agents 1 to
k are active and in the second, agents 1 to h are active, with h > k. Thus agent h is not
active in the first equilibrium but is active in the second. By the previous reasonings
this implies

∑k
j=1 d j

k − 1
− dh ≤ 0 and

∑h
j=1 d j

h − 1
− dh > 0 ⇒

∑h
j=k+1 d j

h − k
> dh,

which is impossible because if agents are ordered in such a way that di ≤ di+1, dh is
larger than the average of d’s from dk+1 to dh . Thus k = m. �

Under the first interpretation, recall that yi = Gi and di = ci/Vi . Thus, from (4.3)
and the form of the contest success function used here,

G∗
i = m − 1

∑m
j=1 c j/Vj

(

1 − ci (m − 1)

Vi
∑m

j=1 c j/Vj

)

,

(4.5)

p∗
i = G∗

i∑n
j=1 G∗

j
= 1 − ci (m − 1)

Vi
∑m

j=1 c j/Vj

Thus, agents who are more efficient (i.e., with lower c’s, or larger V ’s) make more
effort and have a greater probability of getting the prize than inefficient agents.12

Suppose n = 2 and c1 = c2 = 1. Expected payoffs for contender 1 in equilibrium

are
V 3

1

(
∑2

j=1 Vj )
2 . Since expected payoffs under no contest are V1/2 the former are larger

12 The equilibrium values of Gi ’s and pi ’s depend on the ratio ci /Vi and the harmonic mean of the ratios
of cost/valuations defined as m∑m

j=1 ci /Vj
.
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than the latter iff V1 > V2(1 + √
2). In this case the player who values the prize the

most is better off as a consequence of the contest.
Under the second interpretation, recall that di = c/(V qi ) and Gi = yi/qi Thus,

from (4.3) and the form of the contest success function used here,

G∗
i = V (m − 1)

cqi
∑m

j=1 1/q j

(

1 − 1/qi (m − 1)
∑m

j=1 1/q j

)

,

(4.6)

p∗
i = qi G∗

i∑n
j=1 q j G∗

j
= 1 − 1/qi (m − 1)

∑m
j=1 1/q j

.

Thus, more optimistic agents, (i.e., agents with large qi ’s) make less effort and have a
greater probability of getting the prize than pessimistic agents (i.e., those with small
qi ’s).13

If n = 2, G∗
i = q1q2V

c , i = 1, 2, i.e., Nash equilibrium is symmetric despite the

fact that the contest success function is not. Moreover, p∗
i = 1/q j

∑2
j=1 1/q j

= qi , i.e., prior

and posterior probabilities coincide. We now study whether this result is generalizable
to more general contest success function. Write pi = pi (G1, G2, q1, q2). Assume a
property that we discussed in Sect. 2, namely that pi (·, ·, q1, q2) is homogeneous of
degree zero in (G1, G2) and let d’s be as in the first interpretation:

Proposition 4.2 Under H, n = 2 and A.2, G∗
1 = G∗

2 iff d1 = d2.

Proof Consider first order conditions of payoff maximization for i = 1, 2:

∂pi

∂Gi
Vi − ci = 0 ⇔ ∂p1

∂G1
− d1 = 0 = ∂p2

∂G2
− d2

From H, and p1 = 1 − p2 we get that

∂p1

∂G1
G∗

1 + ∂p1

∂G2
G∗

2 = ∂p1

∂G1
G∗

1 − ∂p2

∂G2
G∗

2 = 0

From these two equations we obtain G∗
1d1 = G∗

2d2 and hence the result. �
Thus, if cost functions and valuations are identical for the two contenders, they

make the same effort in the contest regardless of their priors or any other factor affect-
ing the contest success function. Under the additional assumption that pi > qi iff
G1 > G2 (an assumption fulfilled by (2.1)) the previous argument shows that p∗

1 = q1
iff d1 = d2, see Corchón (2000).14 Unfortunately, this result is not generalizable to
games with more than two players. Recall that

p∗
i = 1 − 1/qi (m − 1)

∑m
j=1 1/q j

.

13 Here, equilibrium values of Gi ’s and pi ’s depend on the harmonic mean of qi ’s.
14 In this paper it is shown that the conditions of Proposition 4.2 plus some mild requirements guarantee
the existence of a Nash equilibrium for n = 2.
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For instance, assuming n = 3 and q = (0.375, 0.375, 0.25), p∗ = (0.43, 0.43, 0.14),
i.e., prior and posterior probabilities do not coincide. However, from the formula above,
we see that the ranking of prior and posterior probabilities is the same. In Corchón
(2000) it is shown that this property holds in more general models. See Gradstein
(1995), Baik (1998), Nti (1999) and Fang (2002) for further study of comparative
statics when contest success functions are not symmetric.

4.2 Contests between groups

So far we have assumed that individual agents are the actors in the contests. But
many times actors are associations of individuals who share a common objective, e.g.,
a law protecting the environment, a certain public decision, etc. In such a case the
well-known free rider problem raises its ugly head: each member of the group will
attempt to shift painful duties—effort, contributions—to other members in the same
group. In some cases the group might be able to maintain discipline and enforce the
optimal policy by means of punishments, ostracism, etc. But, in general, the optimal
policy of the group will be difficult to maintain, because this maintenance will be
a source of problems. Thus, let us adopt the point of view that inside each group,
effort/money is supplied on a voluntary basis.

Let us present a model of a contest between two groups. The extension to more
groups is straightforward from the formal point of view and not very relevant given
that most conflicts in real life involve only two groups.

Let us add the following items to the previous notation. There are two groups
denoted by G1 and G2 with n1 and n2 members, respectively. Total effort exercised
by members of the first group will be denoted by X ≡ ∑

i∈G1
Gi . Similarly, let the

total effort made by the members of the second group be denoted by Y ≡ ∑
j∈G2

G j .

The probability that group 1 wins the contest is denoted by p(X, Y ) where p( ) is
increasing on X . Payoffs for an agent of group 1, say i , and an agent of group 2, say
j , are �i = p(X, Y )Vi − Ci (Gi ) and � j = (1 − p(X, Y ))Vj − C j (G j ). As before,
a Nash equilibrium is a list of efforts such that each agent chooses effort to maximize
her payoffs given the efforts decided by other agents, inside and outside her group. Let
X∗ and Y ∗ be the Nash equilibrium values of X and Y . We will not be concerned with
existence or uniqueness of equilibrium (similar assumptions to those used before will
do the job). Instead we will be concerned with the properties of equilibrium. These will
be derived from first order conditions of payoff maximization that for active agents
read:

∂p(X∗, Y ∗)
∂ X

Vi = C ′
i (G

∗
i ), i ∈ G1 and − ∂p(X∗, Y ∗)

∂Y
Vj = C ′

j (G
∗
j ), j ∈ G2.

(4.7)

In a classic contribution, Olson (1965) asserted that the free rider problem inside large
groups is so acute that, in equilibrium, large groups exert less aggregate effort than
small groups, which explains the success of the latter. We will examine his conjecture
in the framework of our model.
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We easily see in (4.7) that if costs are linear, X∗ and Y ∗ do not depend on the
number of agents inside each group. So, let us assume that C ′′

r > 0, for all r ∈ N .

We have seen that efforts in equilibrium depend on valuations and costs. So, in order
to isolate the effect of the number of individuals in each group let us assume that
valuations and cost functions are identical, denoted by V and C( ). From (4.7) it is
clear that equilibrium is symmetric inside each group, so G∗

i = X∗/n1 ∀i ∈ G1 and
G∗

j = Y ∗/n2∀ j ∈ G2. Hence (4.7) can be written as

∂p(X∗, Y ∗)
∂ X

V = C ′
(

X∗

n1

)

and − ∂p(X∗, Y ∗)
∂Y

V = C ′
(

Y ∗

n2

)

(4.8)

Now we have the following:

Proposition 4.3 Assume (H), identical valuations and costs and C ′′ > 0. Then n1 >

n2 implies X∗ > Y ∗ and G∗
i < G∗

j ∀i ∈ G1 and ∀ j ∈ G2.

Proof Suppose that X∗ ≤ Y ∗ and n1 > n2. Then, X∗/n1 < Y ∗/n2 and given that
C ′() is increasing C ′(X∗/n1) < C ′(Y ∗/n2). From (4.8) we get that

∂p(X∗, Y ∗)
∂ X

< −∂p(X∗, Y ∗)
∂Y

From (H), p( ) increasing in X and X∗ ≤ Y ∗ we get that

∂p(X∗, Y ∗)
∂ X

X∗ = −∂p(X∗, Y ∗)
∂Y

Y ∗ ⇒ ∂p(X∗, Y ∗)
∂ X

≥ −∂p(X∗, Y ∗)
∂Y

which contradicts the equation above. Thus X∗ > Y ∗.
Let us now prove the result regarding individual efforts. From (H) and X∗ > Y ∗

using (4.8) we obtain that

C ′
(

X∗

n1

)

= ∂p(X∗, Y ∗)
∂ X

V < −∂p(X∗, Y ∗)
∂Y

V = C ′
(

Y ∗

n2

)

which given that C ′( ) is increasing, implies the desired result. �
Proposition 4.3 is due to Katz et al. (1990), see also Nti (1998). The conclusion is

that, contrary to Olson’s conjecture, the success of small groups cannot be traced to
the larger effort made by their members. Our theory predicts that success in a contest
is explained by large valuations, small costs or contest success functions that favor
certain agents, see the discussion after Proposition 4.1. Esteban and Ray (2001) offer
an interesting twist to the previous argument—and a partial vindication of Olson’s
conjecture—by assuming that Vi = V/nα

i , where 0 ≤ α ≤ 1. When α = 0 the object
is a pure public good—which is the case considered before—and when α = 1 the
object is a pure private good. Thus α is a measure of congestion ranging from no
congestion—when the value of the prize is independent of the number of people in the
winning group—to total congestion, where the private value of the prize is measured
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on a per capita basis. An example of the first is a law, and an example of the second is
a monetary prize. Notice that, except when α = 0, the smaller the group the larger the
prize and—as the theory developed so far suggests—the larger the effort. Thus, this
private good aspect of the prize generates a counterbalancing force to the one studied
in the previous proposition. Esteban and Ray provided the conditions for this private
good aspect to be strong enough to overcome the previous result.

Proposition 4.4 Assume (H) and Ci = cGβ
i with β ≥ 1. Then, the smaller group

makes more effort than the larger group if and only if α + 1 > β.

Proof First order condition of profit maximization read

∂p(X∗, Y ∗)
∂ X

V1 = cβ

(
X∗

n1

)β−1

and − ∂p(X∗, Y ∗)
∂Y

V2 = cβ

(
Y ∗

n2

)β−1

.

From the equations above and (H) we get that

V1Y ∗

V2 X∗ =
(

X∗
n1

)β−1

(
Y ∗
n2

)β−1 .

Taking into account that Vi = V/nα
i the equation above reads

nα
2 Y ∗

nα
1 X∗ =

(
X∗
n1

)β−1

(
Y ∗
n2

)β−1 ⇐⇒ Y ∗

X∗ =
(

n1

n2

) α−β+1
β

.

W.l.o.g. assume that n1 > n2. Then, from the previous equation, X∗ < Y ∗ ⇐⇒
( n1

n2
)

α−β+1
β > 1 ⇐⇒ α + 1 > β which proves the first claim. �

Proposition 4.3 corresponds to the case of α = 0 (though under more general
assumptions). In this case the necessary and sufficient condition above does not hold
and hence the result. The most favorable case for the Olson conjecture is when α = 1
(i.e., when the prize is a pure private good) but even in this case costs cannot have an
exponent larger than two (i.e., quadratic). However if the actual contest is fought by
external agents—lawyers, politicians—whose price per unit of effort is given, the cost
function is linear—i.e., β = 1—and Olson conjecture holds for all values of α except
for the extreme case of α = 0.

Notice the key role of the elasticity of costs with respect to effort, β. Intuitively, it
is clear that Olson’s conjecture cannot hold if costs rise very quickly with effort: for
instance if costs are zero up to a point, say Ḡ where they jump to infinity, all agents
will make effort Ḡ and smaller groups will exert less effort than large ones.

Finally we notice that if the contest success function were symmetric, in the
sense that the group that makes more effort wins the prize with greater probability,
Proposition 4.4 implies that the smaller group has better chances of getting the prize,
if and only if α + 1 > β.
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4.3 Applications

4.3.1 Litigation

Farmer and Pecorino (1999) compare British and American systems of financing legal
expenditures. In the American system each party pays its own expenses in advance.
In the British system the loser pays it all. They find that in the American system the
equilibrium is symmetric, and prior and posterior probabilities of winning the trial
coincide. This is a special case of Proposition 4.2, where we have seen that the result
needs identical ratio of marginal costs/valuation. Under the British system payoffs
look like

�i = pi (G, q)V − (1 − pi (G, q))(c(G1) + c(G2))

Computing equilibrium for suitable functional forms we find that, in general, prior
and posterior do not coincide. Thus, the American system appears to be “less biased”
than its British counterpart, at least in the case of identical costs/valuations.

4.3.2 Allocation of rights

Nugent and Sánchez (1989) discuss the conflict in Spain between migrant shepherds—
organized in a syndicate called La Mesta—and agricultural settlers during the Middle
Ages and beyond. The conflict involved the right of way and pasture of the shepherd.
The Spanish crown systematically favored shepherds. Some historians link the deca-
dence of Spain to this policy. Nugent and Sánchez (see also Ekelund et al. 1997) point
out that if the allocation of way and pasture rights were a contest, the agent with the
highest valuation spends more money and wins the contest with the highest proba-
bility, see our comments below (4.5). Indeed, it turns out that La Mesta channelled
large quantities of gold into royal pockets. Thus, it can be argued that value added by
shepherds was larger than the value added by agriculture and that the crown pursued
the right policy.15

4.3.3 Insurrections and conflicts

Sánchez-Pagés (2006) has provided a twist to the argument against the futility of con-
flicts. He shows that conflict can enhance efficiency in the long run. The reason is
that if current holders use a resource inefficiently—e.g., they over-exploit a natural
resource—a group that would manage the resource more efficiently may have incen-
tives to promote a conflict with current owners. From their point of view, conflict
pays off because its costs are overcomed by the value of the resource and the high
probability of winning as a consequence of the latter, see (4.6) above.

15 This can be objected on two counts. First, the outcome may reflect the superior organization of shepherds
with respect to farmers. Second, for reasons of their immediate needs, kings may have not taken into account
the long run negative effect of shepherding on the environment.
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Grossman (1991) has modeled insurrections as a contest where the probability of
a revolution depends on the military might of the group in power and the number of
insurrect. The former is financed by a tax paid by peasants. They can choose between
joining the insurrection or staying as peasants. There is free entry, so in equilibrium,
payoffs obtained in both activities must be equal. The group in power chooses the tax
rate in order to maximize the probability of staying in power. The basic trade-off for
the incumbent ruler is that high (resp. low) taxes allow for a powerful (resp. weak)
army but they do (resp. do not) give incentives for insurrection because they lower
(resp. raise) payoffs of peasants.

4.3.4 Divisionalized firms

Scharsftein and Stein (2000) studied rent-seeking in divisionalized firms. In these firms
many decisions, like pricing, are taken by the managers of divisions and only long run
decisions, like the internal allocation of capital, are taken by a central manager. Sup-
pose that the internal allocation of capital depends on the rent-seeking activities made
by the managers of divisions. Managers make effort in rent seeking and a productive
activity. For simplicity, assume that the marginal net return of the latter, denoted by
ρi , is exogenous. Efficient divisions have higher ρi ’s. The rational use of effort by the
manager of division i is to equalize the marginal return of effort in both rent-seeking
and productive activities, i.e.,

∂�i

∂yi
=

∑
j 
=i y j

(
∑m

j=1 y j )2
− d = ρi , or

∑
j 
=i y j

(
∑m

j=1 y j )2
= ρi + d ≡ di . (4.9)

Equilibrium is identical to that in Proposition 4.1. Notice that (4.9) implies that man-
agers with higher productivity have a higher cost of rent-seeking. Thus, if pi is the
fraction of funds allocated by the centre, divisions with high productivity receive fewer
funds than those with low productivity, see (4.5). This points to a disturbing conclu-
sion: in organizations where internal allocation of a resource is made by rent-seeking,
productive agents will obtain less than unproductive ones.

4.4 Rent-seeking, institutions and economic performance

Suppose that there are two sectors: rent-seeking and production of a socially valuable
item. Rent-seekers “prey” on producers by stealing, imposing taxes, etc. A free entry
condition—which we have encountered in previous sections—determines the number
of agents in each sector. Papers in this area differ in the mechanism of prey and fall
into three categories.

1. Random encounters with bandits: Agents either produce a good or to steal those
producing the good. The latter will be called bandits but they also could be interpreted
as corrupted civil servants. Any producer may encounter a bandit in which case she
looses a fixed part of her output. Let q be the proportion of bandits in the popula-
tion. Expected returns of a producer, denoted by R P , are a decreasing function of q
because when bandits are a few (resp. many) the probability of encounter one of them
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is low (resp. high). Expected returns to a bandit, denoted by RB, are also a decreasing
function of q because when there are many (resp. few) producers it is easy (resp.
difficult) to find one. The proportion of bandits is in equilibrium when R P = RB.
It is not difficult to obtain multiple equilibria because both functions have negative
slope with respect to q (Acemoglu 1995). Murphy et al. (1991) showed that if talent
is necessary for growth an economy can be trapped in a low growth path in which
talented individuals work in rent-seeking activities. In these models two economies
with the same basic data can be in equilibria that are very far apart.

These models formalize the idea that an economy may get into a poverty trap in
which rent-seeking is determined by economic fundamentals. However, they imply
that there is nothing virtuous in rich economies—e.g., Northern European countries-
and nothing wrong in poor ones—Sub-Saharan countries. In fact all countries are
essentially identical. It is simply a matter of being lucky or unlucky.

2. Institutional rent-seeking: The previous model does not pay sufficient attention
to the question of institutions that make Northern European and Sub-Saharan countries
so different. The background of the previous model is one of a weak government but
this is not modelled. In contrast, the literature here emphasizes the connection between
institutions, rent-seeking and economic performance.

North and Weingast (1989) discuss the events surrounding the Glorious Revolu-
tion in Great Britain in 1688. They argue that under absolute monarchy, it was “very
likely…that the sovereign will alter property rights for his…own benefit” (id. p. 803).
The methods were taxes unapproved by the Parliament, unpaid loans, sale of monopoly
and peerage, purveyance or simply seizure. All these promoted rent-seeking activi-
ties that diverted potentially useful talents away from productive business. With a
Parliament dominated by “…wealth holders, its increased role markedly reduced the
king’s ability to renege” (id. p. 804). Countries in which the Parliament was not strong,
“…such as early modern Spain, created economic conditions that retarded long-run
growth” (id, p. 808).16

3. Governance and rent-seeking: There is little doubt that in the case of seventeenth
century Britain, Parliament played a prominent role in providing the basis for a sound
economic performance. But according to Buchanan and Tullock (1962) and Olson
(1982), parliaments can foster rent-seeking activities. Also, casual empiricism sug-
gests that countries that experienced no institutional change dramatically altered their
growth rates: Spain (1950–1959 vs. 1960–1974), India (1950–1992 vs. 1993–2005)
and China, (1950–1975 vs. 1976–2005).17 In these cases the policies pursued in the
contrasting periods were very different but the basic institutions remained practically

16 The question is why the Parliament “…would not then proceed to act just like the king?” (id. p. 817).
On the one hand the coordination necessary for this made “…rent-seeking activity on the part of both mon-
arch and merchants more costly” (Ekelund and Tollinson 1981). On the other hand, the legislative changes
introduced by the Glorious Revolution made rent-seeking very difficult. Judges were elected from among
prominent local people who had little incentive to punish those locals who defied monopoly laws selling
goods at cheaper prices (Tullock 1992).
17 Despite the similar experiences in terms of growth, these countries were politically very different: Spain
was a right-wing dictatorship, India a democracy and China a left-wing dictatorship.
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the same.18 In other words, institutions do not determine policies univocally. This
point has been made by Glaezer et al. (2004). They examine the existing empirical
evidence and find little impact by institutions per se but a large impact by policies.
See Gradstein (2004) for a dynamic model of evolution of a particular policy, namely
that of protection of property rights.

Corchón (2007) offers a model where the connection between institutions and poli-
cies is explicitly addressed. There are two possible institutions: autocracy where taxes
are set by the king and Parliament rule where taxes are decided by majority voting.
Productive agents are taxed in order to finance the rent-seeking activities. Under parlia-
ment rule there is an equilibrium in which there are no rent-seekers. This equilibrium
captures the idea that the Parliament wips out rent-seekers. Unfortunately under not
implausible assumptions there is another equilibrium in which the Parliament is dom-
inated by rent-seekers and the tax rate is identical to that under absolute monarchy. In
this equilibrium the size of rent-seeking is larger than under autocracy. This cast doubts
on the idea that “right” institutions necessarily promote good economic performance.
Finally, it is shown that rent-seekers may be interested in overthrowing autocracy.19

5 Social welfare under rent-seeking

In this section we provide a new look to two well-known problems: welfare losses
under monopoly and the Coase theorem with transaction costs. If property rights are
undefined we have contests for monopoly and property rights. We show that classical
welfare analysis is misleading because it does not consider the welfare loss due to this
contest. We will see that these welfare losses may overwhelm welfare losses arising
from standard misallocation.

5.1 The fight for a monopoly right

Tullock (1967) and Krueger (1974) pointed out that we have two kind of welfare losses
associated with a distortion such as a monopoly, tariffs, quotas, etc. On the one hand
the classical ones, measured by the welfare loss of the distortion. But once the prize
is created there is a contest in which agents fight over it. This fight is costly and this
cost must be added to the classical welfare loss in order to get a fair picture of the
total costs produced by the distortion. This is of practical importance given the low
estimates of welfare losses associated with monopoly that were found by Harberger
(1954) and many subsequent papers.

We will present a simple example that highlights this point and generalizes results
obtained by Posner (1975). We assume that in a market there is a single consumer

18 The change in the growth rate was so sudden and permanent that these cases cast doubts on the theories
of growth based on human capital.
19 This conclusion can be applied to the process of decolonization and suggests a reason for local rent-
seekers to fight against colonial powers.
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with a utility function

U = âx − b

α + 1
xα+1 − px, with â ≥ 0, αb > 0 and α > −1.

x and p are the output and the market price of the good.20 The consumer maximizes
utility taking p as given. Since ∂2U

∂x2 = −αbxα−1 < 0, utility is concave on output.
Thus, the first order condition of utility maximization yields the inverse demand func-
tion, namely p = â − bxα. If b > 0 and α = 1 this function is linear. If â = 0, b < 0
and α < 0 this function is isoelastic.

The Monopolist produces under constant marginal costs, denoted by k. Let a ≡
â −k. The monopolist profit function reads π = (a −bxα)x . This function is concave
because ∂2π

∂x2 = −bαxα−1(α+1) < 0. The first order condition of profit maximization
yields the monopolist output and profits, namely

x E =
(

a

b(1 + α)

) 1
α

and π =
(

a

b(α + 1)

) 1
α aα

α + 1
.

The socially optimal allocation is found by maximizing social welfare defined as the
sum of consumer and producer surpluses, i.e.,

W = U + π = âx − b

α + 1
xα+1 − kx = ax − b

α + 1
xα+1

This function is concave because ∂2W
∂x2 = −bαxα−1 < 0. The first order condition of

welfare maximization yields the optimal output

x O =
(a

b

) 1
α

.

Evaluating social welfare in the optimum (W o) and the equilibrium allocations (W E )
we obtain that

W 0 =
(a

b

) 1
α aα

1 + α
and W E =

(
a

b(1 + α)

) 1
α aα(2 + α)

(1 + α)2

Denoting by RM the relative welfare loss due to misallocation in the market of the
good, we have that

RM ≡ W O − W E

W O
= 1 −

(
1

1 + α

) 1
α 2 + α

1 + α
.

20 α is a measure of the curvature of demand function (inverse demand is concave iff α ≥ 1). b is an inverse

measure of the size of the market since the maximum welfare is obtained when x = ((â − t)/b)
1
α ). The

slope of the demand function is determined by the sign of −αb and thus, it is negative.
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The dotted line in Fig. 1 below plots the values of RM as a function of α. For instance,
for values of α = 1 (the case analyzed by Posner 1975) or α = −0.5, RM = 0.25.
See Hillman and Katz (1984) for the case of risk averse agents where risk aversion
lowers efforts and welfare losses.

If the monopoly right is subject to rent-seeking, agents incur on unproductive
expenses in order to obtain the prize. Assuming that rents are completely dissipated in
wasted effort—recall our discussion in Sect. 2—profits equal unproductive expenses
and thus become a welfare loss as well. Graphically, instead of the classical triangle—
as in Harberger—welfare loss becomes a trapezoid—the so-called Tullock’s trapezoid.
Denoting the relative welfare loss by R we have that

R = π + W O − W E

W O
.

Notice that

π = W O − W E

(1 + α)
1
α − α+2

α+1

.

Manipulating the previous expressions we obtain the following:

Proposition 5.1 In the example above and assuming complete wasteful rent dissipa-
tion, relative welfare loss associated with monopoly is

R =
(

1 −
(

1

1 + α

) 1
α 2 + α

1 + α

) ⎛

⎝
(1 + α)

1
α − 1

α+1

(1 + α)
1
α − α+2

α+1

⎞

⎠ .

The solid line in Fig. 1 above plots R as a function of α. For α = 1 or α = −0.5
welfare loss becomes, respectively, three times or twice the magnitude predicted by the
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classical theory. When α → ∞ relative welfare loss approaches one but the relative
welfare loss due to misallocation of resources approaches zero! However, recall that
rent-dissipation is by no means a general result. These calculations only illustrate the
point that the classical theory may underestimate the magnitude of welfare losses.

5.2 The Coase theorem

Coase (1960), states that with well defined property rights and “zero transaction costs,
private and social costs will be equal” (Coase 1988, p. 158). This result though, masks
the fight for the property rights that may result in a wasteful conflict (Jung et al. 1995).
For instance, suppose that two contenders fight for a property right that they value
in v1 and v2 respectively with v1 > v2. After the property right has been allocated,
agents can trade with probability r . r is an inverse measure of transaction costs that
preclude a mutually beneficial transaction. There are two outcomes: In the first, agent
1 gets the property right and no trade results: Payoffs are (v1, 0). In the second, agent
2 gets the property right and with probability r sells the object to agent 1 for a price
of v1+v2

2 .21 In this case expected payoffs are (r v1−v2
2 , r v1+v2

2 + (1 − r)v2). Suppose
that agents can influence the allocation of the right by incurring expenses G1 and G2.
Denoting by p1 the probability that agent 1 obtains the property right,

�1 = p1v1 + (1 − p1)r
v1 − v2

2
− c(G1)

�2 = (1 − p1)

(

r
v1 + v2

2
+ (1 − r)v2

)

− c(G2)

Setting V1 ≡ v1 − r v1−v2
2 and V2 ≡ r v1+v2

2 + (1 − r)v2 the previous equations read

�1 = p1V1 + r
v1 − v2

2
− c(G1)

�2 = (1 − p1)V2 − c(G2)

Since agents take r as given the first payoff function is strategically equivalent to
p1V1 − c(G1). Suppose now that the contest probability function is like in (1.1) and
that c(Gi ) = Gi . Then, the conditions of Proposition 4.1 are met and in equilibrium,
from (4.3)

G∗
i = V 2

i V j

(V1 + V2)2 and p∗
i = Vi

(V1 + V2)
, i 
= j = 1, 2.

If rent-seeking expenses are totally wasteful the total expected welfare loss is

W L = V1V2

V1 + V2
+ (1 − r)(v1 − v2)(1 − p1).

21 This corresponds to the so-called standard solution in bargaining theory, see Mas-Colell et al. (1995,
p. 846). For an analysis of the welfare losses yielded by different bargaining rules see Anbarci et al. (2002).
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Notice that for v1 ∼= v2 = v, say, the welfare loss due to transaction costs goes to
zero but the welfare loss due to rent-seeking goes to v/2. Again the classical approach
hides what might be the most significant welfare loss. But this is not the end of it.
Since V1 and V2 are functions of r , W L can be written as W L(r). We easily see that

W L(0) = v1v2

v1 + v2
+ (v1 − v2)

v2

v1 + v2
and W L(1) = v1 + v2

4
.

We see that when v2 � 0, W L(1) is larger than W L(0), i.e., welfare loss can increase
when transaction costs decrease, a complete reverse of what the classical approach
asserts. This reversion is due to the fact that a decrease in transaction costs may exac-
erbate the contest for the object and, thus, rent-seeking expenses. Formally,

Proposition 5.2 For some values of v1 and v2: a) The welfare loss associated with
transaction costs tends to zero (i.e., when v1 → v2) but the welfare losses due to
rent-seeking can be arbitrarily large (i.e., when v1 → ∞ and v2 → ∞). b) Total
welfare loss may increase when transaction costs decrease.

6 The design of optimal contests

This section may sound paradoxical since many contests are totally wasteful because
nothing socially valuable is produced (e.g., Examples 1.2–1.3 or the two cases consid-
ered in the previous section). In this case the best course from the social welfare point
of view is to forfeit the contest. However, we have seen that in other cases contenders
produce something valuable for society (e.g., Examples 1.4–1.6).22 Moreover, cer-
tain parameters of the contest can be chosen prior to the actual contest is played: for
instance in the case of selecting a host city for the Olympic Games, the Olympic Com-
mittee controls, at least to some extent, the form of the contest success functions and
the number of contenders. Thus, the question of how the contest should be organized
is a meaningful one.

6.1 Social objectives

Let us concentrate our attention on contests in which something valuable is produced.
First, we must have a criterion by means of which the planner ranks the results in
the contest. We have two classes of agents. On the one hand we have those that con-
sume the prize and on the other hand we have those that participate in the contest.
Following the example of the Olympic Games we will assume that consumers only
care about the quality of the winner. This assumption is also reasonable in other cases,
such as scientific or artistic prizes, etc. Following the interpretation given before,
we assume that φi (Gi ) measures the excellency/quality of the winner. Therefore, the
expected excellence of the winner when m agents make efforts of (G1, . . . , Gm) is

22 In some cases, rent-seeking might increase social welfare if it diverts efforts from industries where there
is too much effort (e.g., an industry characterized by negative externalities).
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∑m
i=1 pi (G)φi (Gi ). The payoffs obtained by contenders are

∑m
j=1 pi (G)Vi (G) −

∑m
j=1 C(G j ). We will assume the social welfare function is

W =α

m∑

i=1

pi (G)φi (Gi )+(1 − α)

⎛

⎝
m∑

j=1

pi (G)Vi (G)−
m∑

j=1

C(G j )

⎞

⎠ , α ∈ [0, 1]

(6.1)

where α can be interpreted as the proportion between consumers and contenders.
Notice that this social welfare function neither gives any weight to the quality of

the losers—who could add prestige to the contest—nor embodies any distributional
target. These are important points that we will ignore for the sake of simplicity. The
case in which effort does not have a social merit—recall Example 1.2—can be dealt
with by setting α = 0.

6.2 Properties of the socially optimal contests

In this section we will assume A1, identical agents and that the optimum is symmetric.
Denoting by y the common value of the efforts/investments (6.1) becomes

W = αφ(y) + (1 − α)(V0 + anφ(y) − nC(y)). (6.2)

To find the optimal contest we choose φ( ) and n in order to maximize W with the
restriction that efforts are those made in a Nash equilibrium of the contest. In the case
in which we only choose the number of contenders, we know that under A1 for each
n we have a unique Nash equilibrium. We represent this by means of the function
y = y(n) which summarizes the restriction faced by the planner.

In this subsection and the next we will be concerned with the case in which α = 1.

This case may be a good approximation to a situation where the number of consumers
is very large in relation to the number of contenders, as in the example of the Olympic
Games. An implication of this assumption is that in the symmetric case optimality
requires maximizing the effort per agent y.

First, let us look at the case in which the planner can choose the contest success
function. Let us assume that this function is parametrized by a real number γ which
belongs to an interval [γ , γ̄ ]. Hence, the function φ( ) is now written φ(Gi , γ ). We
now assume that γ affects φ( ) in the following way:

∂φ(Gi , γ )

∂Gi

Gi

φ(Gi , γ )
is increasing in γ. (6.3)

(6.3) means that γ raises the elasticity of φ( ) with respect to Gi . For instance, if
φ(Gi , γ ) = Gγ

i , γ ∈ [0, 1], we have that ∂φ(Gi ,γ )
∂Gi

Gi
φ(Gi ,γ )

= γ. Hence (6.3) holds:
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Proposition 6.1 Under A1, (6.3) and a = 0, the optimal contest is γ = γ̄ .

Proof Under our assumptions (3.4) reads

∂φ(y, γ )

∂Gi

V0(n − 1)

φ(y, γ )n2 − C ′(y) = 0.

Denote the left hand side of the previous equation by 
(y, γ ). 
( ) is decreasing in y
(because φ( ) is increasing and concave in y) and increasing in γ (by (6.3)). Since the
right hand side of the above equation is non decreasing in y, differentiating implicitly
we obtain that

dy

dγ
=

∂
(y,γ )
∂γ

d2C(y)

dy2 − ∂
(y,γ )
∂y

> 0.

Hence y is maximized with the largest value of γ. �
To get a feeling for the previous result let us go back to the case where φ(Gi , γ ) =

Gγ

i . Here, γ measures how the probability of getting the prize responds to efforts, for
instance if γ = 0, this probability does not depend on the efforts. Thus, if we want
to give incentives to agents to make the greatest effort possible, we must choose the
largest γ . In this case this yields a linear φ( ) (Dasgupta and Nti 1998 also proved—in
a different context—that linear functions are optimal). However, in other cases a larger
value of γ is optimal, provided that an equilibrium can be guaranteed.

Suppose now that the planner can choose the number of active contenders:

Remark 6.1 Under A1 the optimal number of active contenders is two.

Proof Maximizing φ(y) amounts to maximizing y which, according to Proposition
3.2, amounts to minimizing n. 23 �

The interpretation of this result is that competition is bad because it yields a low
level of effort by the winner but monopoly is even worse because it yields no effort.
Thus the optimal policy consists in choosing the smaller number of contenders.24 This
result may help to explain why in many sports finals are played by two teams or why
the USA defence department chose two firms to compete in the so-called Joint Strike
Fighter eliminating McDonell–Douglas which was the third contender. It could also
be used to explain the so-called Dual Sourcing in which a firm demanding equipment
chooses two companies as possible suppliers (Shapiro and Varian 1999, pp. 124–125).

This result does not hold when agents are either heterogeneous or when they have
a different valuation for their own effort than for other people’s. An example of the
second situation is available under request from the author. Here there is an example
of what may happen when agents are heterogeneous.

23 An example where this result holds for α 
= 1 is available from the author under request. See Chung
(1996) for the case a 
= 0.

24 Other examples in which an increase of competition may harm social welfare are markets with economies
of scale (von Weizacker 1980) or with moral hazard (Scharsftein 1988).
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Example 6.1 Assume n = 3 with V1 = V2 = V3 = 1, c1 = 0.2, c2 = 1 and c3 = 1.
Social welfare is W = ∑m

i=1 G∗
i p∗

i . NE when there are only two agents is p∗
1 = 0.83,

p∗
2 = 0.17, G∗

1 = 0.7, G∗
2 = 0.14, with W ∗ = 0.6048. NE with three agents is

p∗
1 = 0.82, p∗

2 = 0.09, p∗
3 = 0.09, G∗

1 = 0.745, G∗
2 = 0.08, G∗

3 = 0.08, with
W ∗ = 0.62.

The key to this example lies in the slope of best reply functions: If agent i is very
efficient, i.e., she has a small ci , her strategy increases with the strategies of the rest
(strategic complementarity). Conversely, if i is very inefficient, i.e., ci is large, her
strategy decreases with the strategies of the rest (strategic substitution). The introduc-
tion of a third agent increases the effort of the efficient agents and decreases the effort
of inefficient agents which is good from the point of view of social welfare: In the
previous example with two agents

∑
j 
=1 G j = 0.14 and

∑
j 
=2 G j = 0.7, but with

three agents
∑

j 
=1 G j = 0.16 and
∑

j 
=2 G j = 0.825, i.e., the introduction of a third
agent increases G∗

1 and decreases G∗
2.

We now turn our attention to the question posed by the statistician Francis Galton
in 1902 regarding the optimal number of prizes. Suppose that there is a maximum of k
prizes with values V 1, V 2, . . . , V k . Let M be the maximum amount of cash that can
be spent on prizes, i.e., M ≥ ∑n

l=1 V l . We will also assume that all agents contend
for all prizes (see Moldovanu and Sela 2001 for the case in which each agent can only
receive one prize). Let pl

i l = 1, 2, . . . k be the probability that agent i obtains prize l.
We will assume that

pl
i = Gεl

i∑n
j=1 Gεl

j

, where εl ∈ [0, 1]. (6.4)

The planner has to choose the values V 1, V 2, . . . , V k with the restriction M ≥∑n
l=1 V l and taken as given n and εl, l = 1, 2, . . . , k. Let εM ≡ maxl=1,...,k(εl)

and εm ≡ minl=1,...,k(εl) be respectively the maximum and the minimum values of
εl.

Proposition 6.2 Assume A1a) and (6.4). If εM = εm any number of prizes is optimal.
If εM > εm, the optimal number of prizes is one, namely prize M.

Proof The first order condition of payoff maximization is

ε1Gε1−1
i

∑
j 
=i Gε1

j
(∑n

j=1 Gε1
j

)2 V 1 + ε2Gε2−1
i

∑
j 
=i Gε2

j
(∑n

j=1 Gε2
j

)2 V 2 + · · ·

+εkGεk−1
i

∑
j 
=i Gεk

j
(∑n

j=1 Gεk
j

)2 V k = C ′(Gi )

Using methods like those used in Propositions 3.1 and 4.1 it can be shown that the
second order condition holds and that there are no asymmetric equilibria. Thus, the
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previous equation can be re-written as

ε1(n − 1)V 1

n2 + ε2(n − 1)V 2

n2 + · · · + εk(n − 1)V k

n2 = yC ′(y) ≡ �(y)

This equation yields the unique Nash equilibrium because �( ) is strictly increasing
and can be inverted, hence,

y = �−1

(
(n − 1)

n2

k∑

l=1

V lεl

)

.

Maximizing y yields the result. �
The interpretation of this result lies in the fact that εl’s measure how the probability

of getting the prize responds to efforts: If the planner wants to give incentives to agents
to exert effort, she should choose the larger value of εl.

References

Acemoglu D (1995) Rewards structures and the allocation of talent. Euro Econ Rev 39:17–33
Alcalde J, Dahm M (2007) Tullock and Hirshleifer: a meeting of the minds. This issue
Amegashie JA (1999a) The number of rent-seekers and aggregate rent-seeking expenditures: an unpleasant

result. Public Choice 99:57–62
Amegashie JA (1999b) The design of rent-seeking competitions: committees, preliminary and final contests.

Public Choice 99:63–76
Amir R (1996) Cournot oligopoly and the theory of supermodular games. Games Econ Behav 15:132–148
Anbarci N, Skaperdas S, Syropoulos C (2002) Comparing bargaining solutions in the shadow of conflict.

J Econ Theory 106(1):1–16
Baik KH (1998) Difference-form contest success functions and effort level in contests. Eur J Polit Econ

14:685–701
Baland J-M, Francoise P (2000) Rent-seeking and resource booms. J Dev Econ 61:527–542
Baye M, Hoppe H (2003) The strategic equivalence of rent-seeking, innovation, and patent-race games.

Games Econ Behav 44:217–226
Becker G (1983) A theory of competition among pressure groups for political influence. Q J Econ 98:371–

400
Buchanan J, Tullock G (1962) The calculus of consent: logical foundations of constitutional democracy.

University of Michigan Press, Ann Arbor
Bulow J, Geanakoplos J, Klemperer P (1985) Multimarket oligopoly: strategic substitutes and complements.

J Polit Econ 93:488–511
Che Y-K, Gale I (2000) Difference-form contests and the robustness of all-pay auctions. Games Econ Behav

30:22–43
Chung T-Y (1996) Rent-seeking contest when the prize increases with aggregate efforts. Public Choice

87(1/2):55–66
Clarke D, Riis C (1998) Contest success functions: an extension. Econ Theory 11:201–204
Coase RH (1960) The problem of social cost. J Law Econ 3:1–44
Coase RH (1988) Notes on the problem of social cost. The Market, the Firm and the Law. The University

of Chicago Press, Chicago
Corchón LC (1994) Comparative statics for aggregative games: the strong concavity case. Math Soc Sci

28:151–165
Corchón LC (2000) On the allocative effects of rent-seeking. J Public Econ Theory 2(4):483–491
Corchón LC (2007) Forms of governance and the size of rent-seeking. Soc Choice Welf (in press)
Cornes R, Hartley R (2005) Asymmetric contests with general technologies. Economic Theory (in press)

30



Cournot AA (1838) Recherches sur les principles mathematiques de la thèory des Richesses. Hachette,
Paris

Dasgupta A, Nti KO (1998) Designing an optimal contest. Eur J Polit Econ 14:587–603
Ekelund RB, Tollinson RB (1981) Mercantilism as a rent-seeking society. Texas A&M University Press,

College Station
Ekelund RB, Streety DR, Tollinson RD (1997) Rent-seeking and property rights’ assignment as a process:

the Mesta Cartel of Medieval-Mercantile Spain. J Eur Econ Hist 1:9–35
Esteban J, Ray D (2001) Collective action and the group paradox. Am Polit Sci Rev 95(3):663–672
Fang H (2002) Lottery versus all-pay auction models of lobbying. Public Choice 112:351–371
Farmer A, Pecorino P (1999) Legal expenditure as a rent-seeking game. Public Choice 100:271–288
Fullerton RL, McAfee RP (1999) Auctioning entry into tournaments. J Polit Econ 107:573–605
Glaezer E, La Porta R, López de Silanes F, Shleifer A (2004) Do institutions cause growth? J Econ Growth

9:271–303
Gradstein M (1995) Intensity of competition: entry and entry deterrence in rent-seeking contests. Econ

Polit 7
Gradstein M (2004) Governance and growth. J Dev Econ 73:505–518
Grossman HI (1991) A general equilibrium model of insurrections. Am Econ Rev 81:912–921
Harberger A (1954) Monopoly and resource allocation. Am Econ Rev Pap Proc 44:77–87
Hausken K (2005) Production and conflict models versus rent-seeking models. Public Choice 123(1–2):

59–93
Hillman A, Katz E (1984) Risk-averse rent seekers and the social cost of monopoly power. Econ J 94:

104–110
Hillman A, Riley J (1989) Politically contestable rents and transfers. Econ Polit 1(1):17–39
Hirshleifer J (1989) Conflict and rent-seeking success functions: ratio vs. difference models of relative

success. Public Choice 63:101–112
Jung C, Krutilla K, Viscusi WK, Boyd R (1995) The Coase theorem in a rent-seeking society. Int Rev Law

Econ 15:259–268
Katz E, Nitzan S, Rosenberg J (1990) Rent-seeking for pure public goods. Public Choice 65:49–60
Konrad K (2000) Sabotage in rent-seeking contests. J Law Econ Organ 16:155–165
Konrad K (2006) Strategy in contests. An introduction. Mimeo, November 16
Krueger A (1974) The political economy of the rent-seeking society. Am Econ Rev 64:291–303
Lazear EP (1989) Pay equality and industrial politics. J Polit Econ 97:561–580
Mas-Colell A, Whinston M, Green J (1995) Microeconomic theory. Oxford
Milgrom P, Roberts J (1990) Rationalizability, learning and equilibrium in games with strategic comple-

mentarities. Econometrica 58:1255–1277
Moldovanu B, Sela A (2001) The optimal allocation of prizes in contests. Am Econ Rev 91:542–558
Murphy KM, Shleifer A, Vishny RW (1991) The allocation of talent: implications for growth. Q J Econ

106:503–530
Nash J (1950) Equilibrium points in N-person games. Proc Natl Acad Sci 36:48–49
Neary H (1997) A comparison of rent-seeking models and economic models of conflict. Public Choice

93(3–4):373–388
Nitzan S (1994) Modelling rent-seeking contests. Eur J Polit Econ 10:41–60
North D, Weingast B (1989) Constitutions and commitment: the evolution of institutions governing public

choice in seventeenth-century England. J Econ Hist XLIX, 4
Nti KO (1997) Comparative statics of contests and rent-seeking games. Int Econ Rev 38:43–59
Nti KO (1998) Effort and performance in group contests. Eur J Polit Econ 14(4):769–781
Nti KO (1999) Rent-seeking with asymmetric valuations. Public Choice 98(4):415–430
Nugent JB, Sánchez N (1989) The efficiency of the Mesta: a parable. Explor Econ Hist 26:261–284
Olson M (1965) The logic of collective action. Harvard University Press, Cambridge
Olson M (1982) The rise and decline of nations. Yale University Press, New Haven
Pérez-Castrillo D, Verdier T (1992) A general analysis of rent-seeking games. Public Choice 71:351–361
Posner R (1975) The social costs of monopoly and regulation. J Polit Econ 83(4):807–827
Sánchez-Pagés S (2006) On the social efficiency of conflict. Econ Lett 90(1):96–101
Scharsftein D (1988) Product-market competition and managerial slack. Rand J Econ 19:147–155
Scharsftein D, Stein J (2000) The dark side of internal capital markets: divisional rent-seeking and inefficient

investment. J Finance 55(6):2537–2564
Shapiro C, Varian H (1999) Information rules. Harvard Business School Press

31



Skaperdas S (1996) Contest success functions. Econ Theory 7:283–290
Szidarovsky F, Okuguchi K (1997) On the existence and uniqueness of pure Nash equilibrium in rent-

seeking games. Games Econ Behav 18:135–140
Takayama A (1974) Mathematical economics. The Dryden Press, Illinois
Torvik R (2002) Natural resources, rent-seeking and welfare. J Dev Econ 67:455–470
Tullock G (1967) The welfare cost of tariffs, monopolies and theft. West Econ J 5:224–232
Tullock G (1980) Efficient rent-seeking. In: Buchanan JM, Tollison RD, Tullock G (eds) Towards a theory

of a rent-seeking society. Texas A&M University Press, College Station, pp 97–112
Tullock G (1992) Why the industrial revolution occur in England? In: Tullock G (eds) Economic hierarchies,

organization and the structure of production. Kluwer, Dordrecht
Tullock G (2003) The origin rent-seeking concept. Int J Bus Econ 2:1–8
Vives X (1990) Nash equilibrium with strategic complementarities. J Math Econ 19:305–321
von Weizacker CC (1980) A welfare analysis of barriers to entry. Bell J Econ 11:399–420

32


