UNCLASSIFIED

THE THDORY OF CORRELATION BETWEEN TWO CONTINUOUS VARIABLES WHEN ONE IS DICHOTOMIZED

By

Robert F. Tate
University of Washington

Technical Report No. 14
April 2, 1954

Contract M8onr-520 Task Order II Project Number RRW042-038

Laboratory of Statistical Research
Dopartment of Mathematics
University of Washington
Seattle, Washington

The problem of biserial correlation arises when one is sampling from a bivariate normal population in which one of the variables has been dichotomized, giving rise to only two observable values, say 0 and 1 , and one wishes to use this dichotomized sample to estimate, or test hypotheses concorning the correlation coefficient P of the original bivariate normal distribution. P is sometimes given the name biserial correlation coefficient. This name reflects the former confusion between sample statistics and popelation parameters, referring of course to the fact that a sample drawn from the observable bivariate population just described may be thought of as two separate series of observations, those in which the dichotomized variable has the value 0 and those in which it has the value 1 . It is apparent that the numbers of observations in the two series are dependent binomial random variables whose sum is the sample size.

The term biserial correlation was introduced in 1909 by Karl Pearson [6], who was the first to perceive the statistical importance of this particular type of problem. He proposed as an estimator the sample biserial correlation coefficient. The asymptotic variance of this estimator was dorived in 1913 by Soper [8]. Since that time, with the exception of certain references to discriminatory analysis (see [73]), in which the use of the sample biserial correlation coefficient goes unquestioned, no results of a mathematical nature were contributed until a recent paper by Maritz [5]. Much literature exists, however, on the subject of how best to compute Pearson's coefficient. In this connection the reader should see DuBois [2], Dunlap [3], and Foyer [7].

The problem of biserial correlation occurs quite often in psychological work, especially in that branch of the subject known as Test Construction and Validation. In connection with an objective test one may be interested in obtaining a measure of the strength of the relation between the ability
to answer correctly a particular item in the test, and ability to perform at some task, or in testing hypotheses concerning the strength of this relation. Such a measure, together with a random sample of individuals, selected of course from the population for which inferences are to be drawn, helps to determine whether or not the given item should be included in the test. In order to put the problem in the proper form certain assumptions must be made. Suppose that the ability to answer the test item correctly can be represented numerically by a random variable with a normal probability distribution, which however cannot be observed due to the restrictions of the test; in particular, suppose that observations on this ability take the value O if the question is answered incorrectly, and the value ?. if the question is answered correctly. If in addition to the underlying normal distribution just postulated, wo assume that the ability to perform at the task is also measurable with a normal distribution, and that the two normal variables have correlation coefficient P, then we have the problem of biserial correlation. ${ }^{1}$ A simple example would occur when a true-false question is included snog the questions in a preliminary college aptitude test and then a follow-ap study is conducted on the sampled students in order to observe their final grade point average upon graduation four years later. In this case P would represent the degree of association between ability to answer the question correctly and ability in school, and would be estimated by some function of the paired observations on the sample students. It should be noted that in such a case acceptable test items are those for which $|P|$ is judged to be near 1 . We shall refer to this example several times in the sequel in order to illustrate certain points. $1_{\text {Pearson's original formulation was less restrictive than that given here. }}$ Anticipating the fact that problems in estimation and testing hypotheses will require assumptions of normality, we make these assumptions at the outset.

In the above example it is assumed that there exists an underlying distribution of ability to answer the true-walse question correctly, and that in addition this diatribution is normal. Since j.t is not possible to observe the underlying distribution, it also is not possible to test the assumption of underlying normality, but only that the underlying distribution is normal given that there is an underlying continuous distribution. Therefore, in many situations in which biserial correlation is appealed to, the assumptions involved are open to serious attack, an attack for which there is no adequate statistical defense.

If one wishes, he may give up the assumption of underlying normality and assume instead that the observed bivariate distribution is that of a discrete random variable which takes the values 0 and 1 , and a contimous random variable with the property that its conditional distribution be normal for each given value of the discrete variable. With this formulation good results may be obtained if one is willing to make the assumption that the two normal conditional distributions have the same variance. The problem of estimating or testing hypotheses concerning P under this set of conditions is known as the problem of point-biserial correlation and is treated in reference [10]. Some of the results obtained there are similar to those of the present paper. Note that this set of conditions may be tested statistically by testing the normality of the conditional distributions. Moreover, no confusion between the two models would occur, since in the case of biserial correlation, it is sasily shown to be imposaible for the conditional distributions to be noxmal. In tise problem of eatimating the correlation between ability to answer a test itern correctily and ability in school, the use of pointmbiserial correlation requires that (1) for each student who anewers the test item correctly, the cousditional distribution of his gradempoint average be normal with, say, mean

and variance σ^{2}, and that (ii) for each student who unowers the test itom incorrectiy, the conditionsl distribution of his grade-point average be normal with mean μ_{0} and variance σ^{2}. Note that it is necessary for the variability of grade-point average to be the same for the two groups of students.

Professor Harold Hotelling realised some years ago that the extisting methode for dealing with the prosiem of biserial correlation were far from satisfactory, and suggested to tise author that the whole situation be reconsidered. The results of this examination are contained in the present paper.

Section 2 contains a list oif most of the notation which has boen adopted, and Section 3 deals with the matizematical arodel.

In Section 4 the question of madmum likelihood is treated. The maxdmum likelihood estimator is shown to be asymptotically normal and asymptotically efficient. The asymptotic variances for $\hat{\rho}$ and $\hat{\omega}$, the maximum likelihood estimators of the correlation P and point of dichotomy ω, are found by the usual methsd which employs the information matrix and side-steps the sclution of the likelihood equations. A valuable contribution to the theory of biserial correlation was made by Maritz [5]. Comments are made on his work, and on a paper of Tocher [il], in the early part of Section 4.

An evaluation of r^{*}, the sample biserial correlation coefficient, is given in detail in Section 5. It is shown that r^{*} has asymptotic efficiency for estimating P which is 1 whon $P=0$, but which approaches 0 when $|p|$ approaches 1. Consistency of \mathbf{r}^{*} was shown by Karl Pearson [6]. The wellknown fact that x^{*} may be greater than 1 is pointed out and some notion of the magaitude of r^{*} is obtainei by a consideration of the product moment correlation coofficient r. Asynptotic normality of r^{*} is verified by the use of a theoren of Cramér. The asymptotic standard deviation of r^{*} is tabolated in Table I at the end of the paper. One interesting point in

Section 5 is an inturitively appealing fact which the author diacouered is universally assumed, but apparently was never proved: panely, tha\% the nejmptotic variance of \mathbf{r}^{*} is a ainimum at $\omega=C$ for each ined P. A. proof is given for this result. For the case $\omega=0$ an approximate variance stabilising transformation is derived. Calculations pertaining to this transformation may be carried out by using Table VB of Fisher [4] for the function $\tanh ^{-1}(x)$. This result should prove useful in many situations. Section 5 concludes with a discussion of the preceding results and of the feasibility of using r^{*} to test the hypoinesis $\mathrm{Hz} P=\rho_{0}$ when $\left|P_{0}\right|$ is sunail.

Section 6 is devoted to a discussion of an iterative method cf solution for the likelin. s yations. Ths method is essentially Newton's nethod for two variables, the ericulated values w^{*}, r^{*} being used to start the iteration. The congutations are not really prohibitive, considaring the import- • ance of the problem, and are to a certain extent organizable for punchodcarde methods. As axampie is givan with all of the calculstions illustrated. The data consist of a exaple of 23 observations taken from an artificially constructed bivariace normal population with $\rho=.707$. Values of Mills' ratio,

$$
\phi(x)=\frac{\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}}{\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e} \frac{-\frac{\pi}{2}_{2}^{2}}{d x}
$$

are required for the cilmiations. For purpceses hore we siall nead a table wh: is gives $\phi(x)$ for x ranging from -3 to 13 in ateps of 001 , so that no transformation or extersive irterpolation is required, since it will be necessary to obtr . n vilues of ϕ for a given problem in which a eample of n has been taksu. Accor-jingly, we include Table II at the end of the paper. Intexpolation by inspection in Table II should be quite satisfactory.

The aubject of biserial corzolstion ia generaliy given a ligit treatment in taxta on psychological statistics, centering on the unboundedness
of r^{*} and the questionable character of the assumption of underlying normality for the dichotomized variable. A notable exception is the recent book by Walker and L.v [12], which has a more complete treatment oi the subject. A few of the results contained ina the present paper are referred to, and flustated in [12].

2. Notation

To eliminate the distraction of searching through the text, we shall List here most of the symbols and notational devices used.

$$
\begin{aligned}
& \psi(x, y)=\frac{1}{2 \pi \sqrt{1-p^{2}}} \cdot-\frac{1}{2\left(1-p^{2}\right)}\left(x^{2}-2 p x y-y^{2}\right) \quad \text {, the bivariate } \\
& \lambda(x)=\frac{1}{\sqrt{2 \pi}} \cdot{ }^{-\frac{x^{2}}{2}} \text {, the normal density } \\
& p(x)=\int_{x}^{\infty} \lambda(t) d t, \quad q(x)=1-p(x) . \\
& \phi(x)=\frac{\lambda(x)}{p(x)} \text {, MiLes' ;ratio. } \\
& \xi(x, \omega)=\int_{\omega}^{\infty} \psi(x, y) d y \\
& \eta(x, \omega)=\int_{-\infty}^{\omega} \psi(x, y) d y \\
& \text { I the undichotomised normal random variable. } \\
& 1 \text { the dichotomised normal randan variable. } \\
& \text { A) the point of dichotomy of } Y \text {, measured in standard units. } \\
& Z \quad \text { the discrete random variable induced by the dichotomisation of } Y \text {. }
\end{aligned}
$$

$f(x, y)$	the joint density of the random variables \mathbf{X} and 2.
$p(X, Y)$	the corcelation coefficient of the random variables X and Y.
\hat{p}	the maximum likelihood estimator of P
r^{*}	the eample biserial correlation coefficient.
\boldsymbol{r}	the ordinary sample correlation coefficient based on the
	sample $\left(x_{1}, z_{1}\right), 1=1,2, \ldots \ldots, n_{\text {c }}$
$\nabla\left(x^{*} \mid 0, \rho\right)$	the asymptotic variance of \boldsymbol{r}^{*}.
$\varepsilon\left(r^{*} \mid(0, p)\right.$	the asymptotic officiency of $r^{* *}$ for estimating ρ
$N\left(\mu, \sigma^{2}\right)$	a normal random variable with meen μ and variance σ^{2}.
$\operatorname{BN}\left(\mu, \nu ; \tau^{2}, \tau^{2} ; p\right)$	a bivariate norme: randicm rector with means μ, γ,
	variances σ^{2}, τ^{2}, and correlation P. .
$U_{h} \sim \mathcal{H}\left(\mu, \sigma^{2}\right)$	cisnotes the fact that U_{n} is asymptotically normal with
	moan μ and variance σ^{2}.

3. Mathematical Yodel

Let $(x, y)=\varnothing \mathcal{N}\left(j, y ; \sigma^{2}, \tau^{2} ; p\right)$, and ω be any fixed constant. Now let 2 be a Bernoulli random variable defined as follows:

$$
\begin{equation*}
Z=1 \text { if } \frac{Y-\nu}{\tau} \geqslant \omega \text { and } Z=0 \text { if } \frac{Y-\nu}{\tau}<\omega \text {. } \tag{3.1}
\end{equation*}
$$

Qboiousiy,

$$
P(z=1)=\int_{\frac{y-y}{z}}^{\infty} \lambda\left(\frac{\gamma-z}{\tau}\right) d y=p(\omega), \quad P(z=0)=q(\omega)
$$

Consider s rample of n independent random vectors $\left(X_{1}, z_{1}\right),\left(X_{2}, z_{2}\right), \ldots$, $\left(X_{n}, z_{n}\right)$. The problem of biserial correlation consists in finding a auitable function of $\left(X_{i}, n!\right.$! $1=1,2, \ldots, n$, with which to eatimate P.

Karl Pearson [6] introduced the eatimator r^{*} ("hisemal r^{n}), which we express in the following forms
(3.2) $-^{*}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)\left(z_{i}-\bar{Z}\right)}{\left\{\frac{1}{n} \sum^{n}\left(x_{i}-\bar{I}\right)^{2}\right\}^{\frac{1}{2}} \lambda(T)}=r \frac{\left\{\frac{1}{n} \sum_{i=1}^{n}\left(z_{i}-\bar{Z}\right)^{2}\right\}^{\frac{1}{2}}}{\lambda(I)}$,
where is the product moment correlation coefficient of ($\left.X_{i}, \bar{Z}_{i}\right)$, and I is the solution of the equation

$$
\begin{equation*}
\int_{T}^{\infty} \lambda(y) d y=\bar{z} \tag{3.3}
\end{equation*}
$$

r^{*} will be discussed completely in Section 5. For the present we shall merely state the asymptotic variance obtained by Coper [8]:
(3.4) $v\left(r^{*} \mid u_{0}\right)=\frac{1}{n}\left\{p^{4}+p^{2}\left[\frac{p q \omega^{2}}{\lambda^{2}}+\frac{(2 p-1) \omega}{\lambda}-\frac{5}{2}\right]+\frac{p q}{\lambda^{2}}\right\}$,
where the functions p, q, and λ all have argument ω_{0}

$$
\sqrt{n}=\sigma\left(r^{*}\right)=\left\{n \nabla\left(r^{*} \mid \omega, p\right)\right\}^{\frac{1}{2}} .
$$

is given in Tatice I at the end of the paper. In view of synctry about the values $p=0$ and $p(\omega)=\frac{1}{2}$, the tainlation is given for $p=0$ to 1 in the steps of 10 , and for $p=.05$ ta .50 in steps of .05 .

Since the random variable 2 takes the value 0 or j, the joint density - of (x, Z) can be written
(3.5)

$$
f(x, z)=z f(x, 1) \div(1-s) f(x, 0),
$$

where
(3.6)

$$
f(x, C)=\int_{-\infty}^{\omega \tau+\nu} \Psi(x, y) d y, f(x, 1)=\int_{\omega \tau+\nu}^{\infty} \Psi(x, y) d y
$$

with $\Psi(x, y)$ denoting the density of $B A\left(\nu, \nu ; \sigma^{2}, 2: 2 ; \rho\right)$. Sections 4 and 6 are devoted to a discussion of the likelihood function,

$$
\begin{equation*}
L=\prod_{i=1}^{n}\left\{\left(1-x_{i}\right) f\left(x_{1}, 0\right)+x_{i} f\left(x_{i}, 1\right)\right\} . \tag{3.7}
\end{equation*}
$$

4. Pronartion of the Maximum Likelihood Estimatore

It may be seen that I is actually independent of γ and τ, since a change of variable $y^{\prime} x(y-\nu) / \tau$ in the integrals of $f(x, 0)$ and $f(x, 1)$ removes ν and τ. Hence, in all further work we shall set $\nu=0$ and $\tau=1$

The main stumbling block is the exdstence of the nuisance parameters μ and σ^{2}. The 4 likelihood equations in the variables $\omega, P, \mu, \sigma^{2}$ are not hard to write down, but the algebraic difficulties involved in the deviation of asymptotic variances and covariances, and the numerical difficulties involved in solving the equations by an iterative method, prove far too prohibitive. It seems intuitively clear that were we able to solve the 4 likelihood equations for $\hat{\omega}, \hat{\rho}, \hat{\mu}, \hat{\sigma}$, we would find that $\hat{\rho}=\hat{\rho}\left(x_{1}, x_{2}, \ldots, x_{n} ;\right.$ $\left.z_{1}, m_{2}, \ldots, z_{n}\right)$ is invariant under any transformation of the form $x_{1}{ }^{\prime}=a x_{1}+b$. This, of course, does not give us the right to set $\mu=0$ and $\sigma^{2}=1$, and then expect to find the correct maxdmm likelinood estimstors for μ and σ^{2}. The following course of action has been adopted as a way outs set $\mu=0$ and $\sigma^{2}=1$. Then solve the 2 likelihood equations, and in the resulting solution replace x_{1} by

$$
\begin{equation*}
\bar{x}-x_{i}\left\{\frac{\sum\left(x_{1}-x\right)^{2}}{n-1}\right\}^{\frac{1}{3}} \tag{4.1}
\end{equation*}
$$

If we know the values of μ and σ^{2}, the problem is naturally avoided by an immediate trandformation of the original data. In all future work we shall assume $\mu=0$ and $\sigma^{2}=1$. $\Psi(x, y)$ now becomes $\psi(x, y)$, and the likelihood function takes the forro

$$
\begin{equation*}
L(\omega, p)=\prod_{i=1}^{n}\left\{\varepsilon_{1} \xi\left(x_{1}, \omega\right) \dot{p}\left(1-\varepsilon_{1}\right) \eta\left(x_{1}, \omega\right)\right\} \tag{4,2}
\end{equation*}
$$

We shall pause at this point to discuss the work of Maritz [5]. Using Probit Analyaia, together with a result of Tocher [II], he has given a very nice approximation scheme for the solution of the likelihood equations. In what follows we shall give a short outline of his metiod in terms of the notation of the present paper.

Let $(x, y)=8 \mathcal{N}\left(0,0 ; 1,\left(1-p^{2}\right)^{-1} ; p\right)$. In view of the fact that the likelihood equations are invariant under a change of ν or τ^{2}, this formur lation is equivalent to ours. Now introduce a grouping of the observations $\left\{x_{1} ; i=1,2, \ldots, n\right\}$ with a set of k cells of equal width. Denote this grouping by

$$
\left\{I_{j, k} ; j=1,2, \ldots, k\right\}_{0}
$$

Denote the collection of midpoints of these cells by

$$
\left\{{ }_{j}, k j j=1,2, \ldots, k\right\}
$$

Let

$$
\begin{equation*}
P_{j, k}=P\left(I \in I_{j, k}\right), \quad \pi_{j, k}=P\left(Z-1 \mid X=\xi_{j, k}\right) \tag{4.3}
\end{equation*}
$$

Now let $N_{j, k}$ be the number of observations in the sample $\left\{X_{i} ; i=1,2, \ldots, n\right\}$ which fall in $I_{j, k}$, and $M_{j, k}$ be the number among the $N_{j, k}$ for which the correaponding 2 observation is 1 . Thus, $\left\{N_{j, k} ; j=1,2, \ldots, k\right\}$ have a multinomial distribution with parameters $\left\{P_{j, k} ; j=1,2, \ldots, k\right\}$. The conditional distribution of $\left\{M_{j, k} ; j=1,2, \ldots, k\right\}$ given $N_{j, k}=n_{j, k}$ is the product of k binomial distributions.

$$
\text { (4.4) } \quad \sum_{j=1}^{k} H_{j, k}=n, \quad \sum_{j=1}^{k} P_{j, k}=1, \quad(k=1,2, \ldots)
$$

Marite now assumes that the observations $\left\{x_{i} ; 1-1,2, \ldots, n\right\}$ are concentrated at their raapective cell mid points. Since the marginal distribution of the x_{i} is independent of ω and ρ, the part of the likelihood function
which depends on P and $\omega w i l l$ be the conditional distribution of the $M_{j, k}$ given $N_{j, k}=n_{j, k}$, which has parameters $\pi_{j, k}$. We are thus ultimately led to two simultaneous equations for $\hat{\omega}$ and $\hat{\rho}$ which contein terms

$$
\frac{\partial \pi_{1, k}}{\partial \rho} \cdot \frac{\partial \pi_{j, k}}{\partial \rho} .
$$

These equations are then transformed slightly and probit analysis is used for the solution.

Presumably, as the grouping becomes finer, the estimates $\hat{\omega}\left(m_{1,1}, m_{2, k}, \ldots, m_{k, k}\right)$ and $\hat{p}\left(m_{1, k}, m_{2, k}, \ldots, m_{k, k}\right)$, together with the asymptotic variances $\sigma_{\hat{\omega}}^{2}$ and σ_{p}^{2}, will approach the correct values for the original problem. A proof of this result must depend on a close examination of the limiting processes involved. The situation which arises may be described as follows. We assume that the grouping becones finer and we wish to assert two thingas

$$
\begin{align*}
& \left\{\pi_{j, k ; j}=1,2, \ldots, k\right\} \rightarrow\left\{\pi_{i}=P\left(z=1 \mid x=x_{1}\right) ; 1=1,2, \ldots, n\right\}, \\
& \left\{\begin{array}{l}
\left.M_{j, k}, j=1,2, \ldots, k\right\}
\end{array},\left\{\pi_{j ; k} ; j=1,2, \ldots, k\right\}\right. \tag{4.5}
\end{align*}
$$

in the sense of probability.
The meaning of (4.5) is, then, that as k and n both becorne large the cell width must becone small, but in such a way that each cell still contains sufficiently many observations for $\pi_{j, k}$ to be a valid approximation of $M_{j, k f} / N_{j, k}$ 。 This result does indeed appear quite plausible, but a detailed proof would be lengthy.

Instead of attempting a discussion of the above point, we offer an alternative dorivation of the asymptotic variances of $\hat{\boldsymbol{\rho}}$ and $\hat{\omega}$ in this section, and in Section 6 and iterative scheme for obtaining ($\hat{\boldsymbol{p}}, \hat{\omega}$) which, while more time consuming than that of Maritz, does not require any grouping. It should be noted here that Tocher's axact method (pp. 9-11, [11]), also known as the
"scoring" method, doesn't help in this case, owing to the difficulty in obtaining the expectations of the second partial der!vatives of L. Again, the plausibility of Maritz' scheme should be emphasizei.

Many results have been obtained concerning the abynitotic normality and asymptotic officiency of maximum likolinood ostimators. In each case the parametric fenily of probability distributions is subjest to cortain regularity conditions. The density of (x, z) is $f(x, z)$. We shall not dwell here at any length on the regularity conditions, but shall meresp reank that the regularity conditions given by Cramer (Chap. 33.3, [2]) may be easily verified, since $f(x, 0)$ and $f(x, 1)$ are both integrals of bivariate normal densities. Consequently, $\hat{\omega}, \hat{\rho}$ will be asymptoticall; normal, and asymptotically efficient estimators for ω and ρ respectively. Asymptotic variances of the maximun likelihood estimators may be found by as inversion of the inverse metrix without actually oolving the likelihood equations. We now use this technique.

Theorem I.
The asymptotic verianc: of $\hat{\rho}$ is given by
(4.6) $\nabla(\hat{p} \mid u, p)=\frac{1}{n}\left(1-p^{2}\right)^{3} \cdot\left\{\int_{-\infty}^{+\infty} x^{2} g(x, \omega, p) d x \cdots \frac{\left(\int_{-\infty}^{+\infty} x g(x, \omega, p) d x\right)^{2}}{\int_{-\infty}^{+\infty} g(x, \omega, p) d x}\right\}^{-1}$,
where

$$
g(x, \omega, p)=\lambda(x) \phi\left(\frac{\omega-p_{x}}{\sqrt{1-p^{x}}}\right) \phi\left(-\frac{\omega-p_{x}}{\sqrt{1-p^{2}}}\right)
$$

Proof:

$$
\log L=\frac{\sum^{n}}{\sqrt{n} 1} \log \left\{x_{i} \xi\left(x_{1} ; \omega\right) \div\left(1-x_{i}\right) \eta\left(x_{1}, \infty\right)\right\} .
$$

We will need the quantities

$$
\mathbf{E}\left(\frac{\partial^{2}-\log }{\partial \omega^{2}}\right), \mathbf{E}\left(\frac{\partial^{2} \log }{\partial w \partial \rho}\right), \mathbf{E}\left(\frac{\partial^{2} l_{0} t}{\partial \rho^{2}}\right)
$$

Letting. δ^{2} refer to any of the three second order partial operators, we have the fundamental relation
(4.7) $\mathrm{E}\left\{\delta^{2} \log L\right\}=\operatorname{nqE}_{0}\left\{\delta^{2} \log \eta(x, \omega)\right\}+\operatorname{npE}_{1}\left\{\delta^{2} \log \xi(x, \omega)\right\}$,
where E_{0} means expectation with respect to the conditional density of X given $Y<\omega$, and E_{1} means expectation with respect to the conditional density of X given $Y \geqslant \omega$. The conditional densities are

$$
\begin{align*}
& \psi(x \mid Y<\omega)=\frac{1}{q} \int_{-\infty}^{u_{i}} \psi(x, y) d y=\frac{1}{q} \eta(x, c) \tag{4.8}\\
& \psi(x \mid Y ; \omega)=\frac{1}{p} \int_{\omega}^{\infty} \psi(x, y) d y=\frac{1}{p} \xi(x, \omega) . \tag{4.9}
\end{align*}
$$

For each of the possible operators δ^{2} the calculation of (4.7) procedes in about the same way. As an illustration, we shall confute

$$
E\left\{\frac{\partial^{2} \frac{10 g}{} L}{\partial w^{2}}\right\} \cdot
$$

For a random variable U with density $h(u ; \theta)$, it is well known that

$$
\begin{equation*}
E\left\{\frac{\partial^{2} \log h(U ; \theta)}{\partial \theta^{2}}\right\} \equiv-E\left\{\left(\frac{1}{h(U ; \theta)}\right)^{2}\left(\frac{\partial h(U ; \theta)}{\partial \theta}\right)^{2}\right\}, \tag{4.10}
\end{equation*}
$$

provided the expectations exist and differentiation twice under the expectaction sign is permissible. It is easily seen that

$$
\begin{equation*}
\frac{\partial \eta(x, \omega)}{\partial \omega}=\Psi(x, \omega) . \tag{4.11}
\end{equation*}
$$

Consider the first term in the right member of (4.7). From the definition of E_{0} and (4.8), together with (4.10), we have the result
(4.12) $n q E_{0}\left\{\frac{\left.\lambda^{2} \frac{10 g}{}\right)\left(x_{0} \omega\right)}{\partial \omega^{2}}\right\}=-n \int_{-\infty}^{+\infty} \frac{\{\psi(x, \omega)\}^{2}}{y(x, \omega)} d x$.

In a similar manner we show that
(4.13) $n p \xi_{1}\left\{\frac{\partial^{2}{ }_{10 g} E\left(x_{\omega} \omega\right)}{\partial \omega^{2}}\right\}=-n \int_{-\infty}^{+\infty} \frac{\{\Psi(x, \omega)\}^{2}}{5(x, \omega)} d x$.

Hence, combining (4.12) and (4.13), we get
(4.1/t) $E\left\{\frac{\partial^{2} 1 o x}{\partial \omega^{2}}\right\}=-n \int_{-\infty}^{+\infty} \frac{\lambda(x)\{\psi(x, \omega)\}^{2}}{\xi(x, \omega) 7(x, \omega)} d x$.

Using the relations,

$$
\left\{\begin{aligned}
\{\psi(x, \omega)\}^{2}= & \{\lambda(x)\}^{2}\left\{\lambda\left(\frac{\omega-p x}{1-p^{2}}\right)\right\}^{2} \frac{1}{1-p^{2}} \\
\xi(x, \omega)= & \lambda(x) \int_{\frac{\omega-p^{x}}{\sqrt{1-p^{2}}} \lambda(y) d y}^{\infty} \lambda \\
\eta(x, \omega)= & \lambda(x) \int_{-\infty}^{\frac{\omega .-p x}{\sqrt{-p^{2}}} \lambda(y) d y}
\end{aligned}\right.
$$

we have from (4.24) and the definition of $g\left(x, \mu_{3} p\right)$

$$
\begin{equation*}
\mathbf{E}\left\{\frac{\partial^{2} \log L}{\partial \omega^{2}}\right\}=-\frac{n}{\left(1-\rho^{2}\right)} \quad \int_{-\infty}^{+\infty} g(x, \omega, \rho) d x \tag{4.15}
\end{equation*}
$$

similarly,

$$
\begin{equation*}
E\left\{\frac{\partial^{2} \frac{10 g}{} L}{\partial \rho^{2}}\right\}=-\frac{n}{(1-\rho)^{3}} \int_{-\infty}^{+\infty}(x-\rho \omega)^{2} g\left(x, u_{0} \rho\right) d x \tag{4.16}
\end{equation*}
$$

$$
\begin{equation*}
E\left\{\frac{\partial^{2} \log L}{\partial \omega \partial \rho}\right\}=\frac{n}{\left(1-\rho^{2}\right)^{2}} \int_{-\infty}^{+\infty}(x-\rho \omega) g\left(x, \omega_{2} \rho\right) d x \tag{4.17}
\end{equation*}
$$

Forming the 2×2 information matrix

$$
\Lambda=\left[\begin{array}{cc}
E \frac{\partial^{2} 1_{0 \rho} L}{\partial \omega^{2}} & E \frac{\partial^{2} 1_{0 \rho L} L}{\partial \omega \partial \rho} \\
E \frac{\partial^{2} l_{0 \Omega} L}{\partial \rho \partial \omega} & E \frac{\partial^{2} \log _{0} L}{\partial \rho^{2}}
\end{array}\right] \text {, }
$$

and observing that $|\Lambda|$ is non-vanishing because of the Schvars inequality, we finally obtain

where $\lambda_{i j}^{-1}$ is the $1 j^{\text {th }}$ element of the inverse matrix Λ^{-1}, which proves Theorem I . Expressions (4.18) coincide with the previously mentioned results of Marta.

5. The Utility of $\underline{2}^{*}$

We shall now present a series of results concerning r^{*}, which will be followed by a general discussion of its value.

A little later we will need $E(X 2)$. Since, it is not difficult to obtain, we will give the expression for the general moment $\alpha_{K}=E\left(X^{X} Z\right)$.

Theorem II:

$$
\alpha_{K}=\sum_{j=0}^{K}\left(\frac{K}{j}\right)\left(1-\rho^{2}\right)^{\frac{j}{2}} \rho^{x-j} a_{j} \int_{\omega}^{\infty} y^{K-j} e^{-\frac{y^{2}}{2}} d y_{y}
$$

where of is the $j^{\text {th }}$ moment of the random variable $\cdot(1(0,1)$.

Proof: Using the definition of E_{1} and (4.9), we obtain

$$
E\left(X^{\mathbb{K}^{K}} z\right):=\mathrm{E}_{1}\left(\mathbf{X}^{\mathbb{K}}\right)=\int_{-\infty}^{+\infty} \int_{\omega}^{\infty} x^{K} \Psi(x, y) d y d x
$$

Make the transformation $t=(x-\rho y) \sqrt{1-\mu^{2}}$. The above then reduces to

$$
\int_{-\infty}^{+\infty}\left(t, \sqrt{1-p^{2}} r y p\right)^{K} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y d t .
$$

Using a binomial expansion and integrating with respect to t, we have Theorem II. The integrals contained in Theorem II may be evaluated by a recursion relation. Let

$$
b_{\nu}(\omega)=\int_{\omega}^{\infty} \frac{y^{\nu}}{\sqrt{2 \pi}} \neq-\frac{y^{2}}{2} d y
$$

Then,

$$
b_{\nu}(\omega)=(\nu-1) b_{\nu-2}(\omega)+\omega^{\nu-1} b_{1}(\omega) .
$$

We now easily arrive at

$$
\begin{equation*}
b_{0}(\omega)=p(\omega), b_{1}(\omega)=\lambda(\omega), \tag{5.1}
\end{equation*}
$$

whence

$$
\begin{equation*}
x_{0}=p(\omega), x_{1}=p \lambda(\omega), a_{2}=p(\omega)-\omega \lambda(\omega) p^{2} . \tag{5.2}
\end{equation*}
$$

The relation between $P(X, X)$ and $P(X, Z)$ is given by
Theorem III: $\rho(X, Z)=\rho\left(X, Y ; \frac{\lambda(N)}{\sqrt{P q}}\right.$
Proof: Let EX $=\mu=0$ and $V(X)=\sigma^{2}=1$. Then, $p(X, z)=(E X Z)[V(z)]^{-\frac{1}{2}}=(E X Z)(p q)^{-\frac{1}{2}}$. From (5.2), $\alpha_{1}=p \lambda(\omega)$, which proves the theorem.

It follows from the original definition of biserial correlation, as given by Pearson [6], that r^{*} is consistent. This fact is iso an immediate consequence of relation (3.2) between r^{*} and $r: r \rightarrow P(x, 2)$ in probability as $n \rightarrow \infty$. That,

$$
r^{*}=\frac{r}{\lambda(\bar{T})}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(z_{i}-\bar{z}\right)^{? \cdot \frac{1}{2}} \rightarrow \frac{P(x, z) \sqrt{p g}}{\lambda(\omega)} \quad\right. \text { in probability }
$$

and hence by Theorem III, $x^{*} \longrightarrow P(x, I)$ in probability.

With respect to the magnitude of r^{*}, it is well known that $\left|r^{*}\right|$ can be greater than 1. Something of the nature of this phenomenon can be under$s t o o d$ by looking at r. In order to prove a result concerning the magnitude of of \mathbf{r}^{*}, we shall need a result from reference [9].

Theorem IV (Lemma 2 of [9]):

$$
p(x) q(x) \geqslant \frac{\pi}{2} \quad \lambda^{2}(x), \quad(-\infty<x<+\infty)
$$

Now we have

Theorem Y:

$$
\frac{r^{*}}{r} \geqslant \sqrt{\frac{\pi}{2}}
$$

Proof: Rewriting (3.2) as

$$
r^{*}=r \frac{\sqrt{y-x^{2}}}{\lambda(T)},
$$

we have, in view of the definition of I ,

$$
r^{*}=r \frac{\sqrt{p(T) O(T)}}{\lambda(T)}
$$

Theorem IV applies for any T, so Theorem ∇ is proved. As a consequence of Theorem V, we see that

$$
\begin{aligned}
&>1 \\
&<-1
\end{aligned} \text { according as } r>\sqrt{\frac{2}{\pi}}
$$

Asymptotic normality of r^{*}, which will be needed later in this section is a trivial consequence of a theorem of Creamer.

Theorem VI: $\quad r^{*} \sim \mathcal{N}\left(\rho, V\left(x^{*} \mid \omega, \rho\right)\right)$.
Proof: In expression (3.2) the term $\lambda(T)$ is seen to be a continuous function of \bar{z}. Thus, r^{*} is a continuous function of the sample means $\bar{X}, \bar{z}, \overline{X^{2}}, \overline{\mathbf{X}}$. Applying Cramór's theorem (p. 366 of [1]), we have asymptotic normality with the asymptotic variance (3.4) calculated by Sober [8].

We shall now present two results which are more important than those just preceding. They concern the asymptotic, or Large-sample, efficiency of r^{*} : Theorem VII: x^{*} is an asymptotically most efficient estimator of ρ when $\rho=0$.
Proof: In View of Theorem VI on asymptotic normality, we have a right to inquire about the asymptotic efficiency of r^{*}, which will be denoted by

$$
\xi\left(r^{*} \mid \omega_{1} \rho\right)=\frac{v\left(\hat{\rho} \mid \omega_{0} \rho\right)}{v\left(x^{*} \mid \omega, \rho\right)}
$$

It may be seen from Theorem I, (4.6), that

$$
\begin{equation*}
v(\hat{p} \mid \omega, 0)=\frac{p(\omega) \cdot(\omega))}{n[\lambda(\omega)]^{2}} . \tag{5.3}
\end{equation*}
$$

Now, from (3.4) we observe that (5.3) coincides with $V\left(r^{*} \mid \omega, 0\right)$. The conelusion follows from the definition of an asymptotically most efficient astigator.

Theorem $\quad r^{*}$ is an asymptotically least efficient estimator of P when $|P| \rightarrow 1$.

Prone: Ac application of Theorem IV show that

$$
\left.\phi\left(\frac{\omega-e^{2}}{\sqrt{1--^{2}}}\right) \phi-\frac{\omega_{1}-p_{x}}{\sqrt{1-\tau^{2}}}\right) \leqslant \frac{2}{\pi} .
$$

Hence, recalling the definition of $g(x, \omega, \rho)$ in Theorem I, we see that all integrals of the form $\int_{-\infty}^{+\infty} g(x, \omega, \rho) d x$ exist. Schwarz' inequality shows that $V(\hat{\rho} \mid \omega, p)$ is such that the terms in braces is non-vantshing. Thus, $\nabla\left(\hat{\rho} \mid \omega_{3} \rho\right) \rightarrow 0$ as $|\rho| \rightarrow 1$. From the fact $v\left(r^{*} \mid u_{,} \rho\right) \rightarrow \frac{2}{\pi}$ as $|\rho| \rightarrow 1$, we conclude that $\sum_{\delta}\left(r^{*} \mid \omega_{3} \rho\right) \rightarrow 0$.

The special case $\omega=0$ hes interesting features which will appear in Theorems X and II. First we shall need another result from reference [9].

Theorem IX (Lama 1 of [9])

$$
\{1-2 p(x)\} \lambda(x)-x p(x) q(x) \geq 0, \quad x \geqslant 0
$$

Theorem X:

The asymptotic variance of r^{*} has its minimum for each P at $\omega=0$.
-Proof: We must show

$$
\nabla\left(r^{*} \mid \omega, \varphi\right) \succcurlyeq \nabla\left(r^{*} \mid 0, \rho\right)
$$

for each P. In view of symmetry, it will be sufficient to show this for $\omega \geqslant 0$. Let,

$$
\begin{aligned}
\Delta(\omega) & =\frac{\omega^{2} p(\omega) \beta(\omega)}{}\{\lambda(\omega)\}^{2} \\
\cdot & \frac{\omega\{1-2 p(\omega)\}}{\cdot \lambda(\omega)}, \quad B(\omega)=\frac{p(\omega) g(\omega)}{\{A(\omega)\}^{2}} \\
g(\omega) & =\{1-2 p(\omega)\} \lambda(\omega)-\omega p(\omega) q(\omega), \quad h(\omega)=p i(\omega) q(\omega)-\pi\{\lambda(\omega)\}^{2} / 2 .
\end{aligned}
$$

From this point until the end of the proof, we shall omit ω whenever it. appears as an argument of any function. From reference [9] we have

$$
\begin{aligned}
& g^{\prime}=2 \lambda^{2}-p q, g^{\prime \prime}=-4 \lambda^{2}-\left(2 q-2 \lambda, g(0)=g(\infty)=0, g^{\prime}(0)>0,\right. \\
& h^{\prime}=\lambda(1-2 q)+\pi w \lambda^{2}, \quad h^{\prime \prime}=\lambda^{2}\left(\pi-2-2 \pi \omega^{2}\right)-\omega(1-2 q) \lambda,
\end{aligned}
$$

$$
h(0)=h(\infty)=h^{\prime}(0)=0, h^{\prime \prime}(0)>0 .
$$

Accordingly, we have $A:=-\omega g \lambda^{-2}, B=n \lambda^{-2}+\pi / 2$, with $A \leq 0$, $\mathrm{B} \geq \pi / 2$, toth equalities holding at $\omega=0$. The relation $V\left(r^{*} \mid \omega_{p}\right) \geqslant$ $V\left(x^{*} \mid O_{x} \rho\right)$ for all P may be written $\rho^{2} A+B \geqslant \pi / 2$ for all P. Since $A \leq 0$, this last expression is implleci by $A+E \geq \pi / \pi$, which in turn is equivalent to $h \geqslant \omega \mathrm{~g}$. Thus, we must show $k=i-\omega_{g} \geqslant D_{0}$

$$
\begin{aligned}
& k^{\prime}=20 q(1-q)-2(2 q-1) \lambda+\omega(\pi-2) \lambda^{2} \\
& k^{n}=2 q(1-q)-\lambda^{2}\left\{6-\pi+\omega^{2}\left(2 \pi^{\prime}-\theta\right)\right\} \\
& \left.x^{\prime}(0)=k(\infty)=k^{\prime}(0)=0, k^{n}(0)=i-3 \pi\right\rangle
\end{aligned}
$$

We shall show that there exista no y such such $k i(y)=0, k(y)<0$. Suppose such a y does exist. Then,

$$
\begin{align*}
2(2 q-1) \lambda & =2 y q(1-q)+(\pi-2) y \lambda^{2} \tag{5.5}\\
q(1-q)\left(1+y^{2}\right) & =\pi \lambda^{2} / 2-y(2 q-1) \lambda<0
\end{align*}
$$

Substituting the right meaber of the first expression into the second, we have $2 q(1-q)<\lambda^{2}\left\{\pi+(\pi-2) y^{2}\right\}$. Thue, $k^{\prime \prime}(y)<\lambda^{2}\left\{2 \pi-6-(\pi-2) y^{2}\right\}$. A negative maximum must, fram (5.4), be followed by a negative minimum. Hence, from the above relation in $k^{\prime \prime}(y)$, there exist no extrena which excoed $\{(2 \pi-6) /(\pi-2)\}$. desuming there is a negative extremum of k, then there muat be a nogative minimum in $(0,1)$. Let y be thia minimum point. Then $k^{\prime \prime}(y)>0$, or froa (5.h), $\left.\quad 2 q(1-q)-\lambda^{2}\{6-\pi-12 \pi-h) y^{2}\right\}>0$. Gubetituting the volve of $2 q(1-q)$ obtained frai the first equation in (5.5), we reach $(2 q-1)-y \lambda\left[2-(\pi-2) y^{2}\right]>0$.

The left member vanishes at $\mathrm{y}=0$ and has negative derivative for $0 \leqslant \mathrm{y}^{2} \leqslant 1$. Therefore, there is no negative minimum in (0,1), and from the previous argument $\mathbf{k} \geqslant 0$, which completes the proof.

Since for any fixed ρ, r^{*} is a better estimate when $\omega=0$, it will be useful to have something simpler in the way of an asymptotic distribution of x^{*} than that contained in Theorem VI. We are therefore led to

Theorem XI:

When $\omega=0$, we have to a close approximation

$$
\tanh ^{-1} \frac{2 x^{*}}{\sqrt{5}} \sim \mathcal{N}\left(\tanh ^{-1} \frac{2 f}{\sqrt{5}}, \frac{5}{4 n}\right) .
$$

Proof:

$$
v\left(r^{*} \mid 0, p\right)=\frac{1}{n}\left(p^{4}-\frac{5 p^{2}}{2}+\frac{\pi}{2}\right)=\frac{1}{n}\left(\frac{5}{4}-p^{2}\right)^{2}-\left(\frac{25-811}{16 n}\right) .
$$

Dropping the last term and solving the equation

$$
g^{\prime}(x)=\frac{1}{\left(\frac{5}{4}-x^{2}\right)},
$$

we have $g(x)=(2 / \sqrt{5}) \tan ^{-1}(2 x / \sqrt{5})$. It is known that

$$
\sqrt{n}\left\{g\left(r^{*}\right)-g(p)\right\} \sim \mathcal{N}(0,1),
$$

so the theorem is groved.

Discussion of Results Concerning r^{*}

In looking over Theorems V, VI, VII, VIII, X, and XI, several facts stand out. Firet, even though F^{*} is consistent and asymptotically normal, it is still inadequate for estimating P because of its posaible magnitude and its lack of large sample efficiency for large values of $|P|$. In the case of testing they hypothesis $H_{z} P=P_{0}$ the first defoct is suct of eo much consequence. Even in a problem of estimation, one can always operate under the rulet when $\left|r^{*}\right|<1$ eatimate P by r^{*}, when $r^{*} \geqslant 1$ eatimate $P=1$, and when $x^{*} \leqslant-1$ estimate $P=-1$. The gross defect is lack of officiency.

In practioally all applications it is of more interest to detect large values of $|p|$ than miall values. In just such cases r^{*} is a "worst" estimator. On the other hand, again speaking in large sample terms, when $P=0$, 2* is a "best" estimator. Hence, if we base a test of $H_{8} \mu_{=} \rho_{0}$ on r^{*}, good results ahould be achieved when $\left|r^{\prime}\right|$ is amall. It is then recomended that r^{*} be used for one and only one purpose, to test $H_{s} \rho=P_{0}$ when $\left|\rho_{0}\right|$ is small. If in addition the assumption $\omega=0$ is tenable, then the variance stabilizing transformation of Theorea XI may be used, calculations being performed with Table VB of Fisher (p.210, [4]). In such a case advantages of the type ifscussed by Fisher (pp. 197-204, [4]) will accrue. $\sqrt{n} \sigma_{r^{*}}$ is given in Sable I.

In the case of the problern of estimating the value of a particular test item for predicting student performance, $\omega=0$ would occur when the question is of such difficulty that the average student would have probability .50 of answering it correctly. We could then use r^{*} and the variance atabilizing transformation of Theoren XI to test the null hypothesis $\mathrm{Hz} P=0$, which is the hypothesis that the question doesn't add anything to the predictive value of the test. The acceptance of hypothesis H doesn't mean, of course, that the question should be onitted. It is well known that such questions have at times a useful purpose. Note that in view of the above discusaion it would be wrong to use r^{*} to obtain confidence limits for P. Also note that according to Thoorem X a question for which $\omega=0$ is a desirable ane to have.

6. Solution of the Likellhood Equatione

In what follows all anmations will be over the domain $1=1,2, \ldots, n_{0}$ From (4.2) it may be seen that the ilkelihood equations are

$$
\begin{equation*}
\sum\left\{\frac{\left(1-s_{1}\right) \delta \eta\left(x_{i}, \omega\right)+s_{j} \delta \xi\left(x_{i}, \omega\right)}{\left(1-s_{i}\right) \gamma\left(x_{1}, \omega\right)+s_{1} \xi\left(x_{1}, \omega\right)}\right\}=0 . \tag{6,1}
\end{equation*}
$$

where δ refers to differentiation with respect to ω or P. liecall from (4.11) that,
(6.2) $\frac{\partial \eta\left(x_{j}, \omega\right)}{\partial \omega}=\Psi\left(x_{i}, \omega\right), \frac{\partial \xi\left(x_{j}, \omega\right)}{\partial \omega}=-\Psi\left(x_{1}, \omega\right)$.

Also,
(6.3)

$$
\begin{aligned}
& \frac{\partial \eta\left(x_{i}, \omega\right)}{\partial p}=-\frac{\Psi\left(x_{i}, \omega\right)\left(x_{i}-\rho \omega\right)}{\left(1-\rho^{2}\right)}, \\
& \frac{\left.\partial \xi\left(x_{i}, \omega\right)\right)}{\partial \rho}=\frac{\psi\left(x_{i}, \omega\right)\left(x_{i}-\rho \omega\right)}{\left(1-\rho^{2}\right)}
\end{aligned}
$$

By tile use of (6.2) and (6.3) equations (6.1) can be written as

$$
\sum\left(x_{1}-p \omega\right)\left(2 z_{i}-1\right) \phi\left\{(2 z _ { i } - 1) \left(\frac{\omega-p_{x_{1}}}{\left.\left.\sqrt{1-p^{2}}\right)\right\}=0, ~}\right.\right.
$$

(6.4)

$$
\left.\sum\left(2 x_{i}-1\right)\right) \phi\left\{\left(2 x_{i}-1\right)\left(\frac{\omega-p x_{j}}{\sqrt{1-p^{2}}}\right)\right\}=0
$$

Now introduce the notation
(6.5) $\quad \delta_{i}=2 z_{i}-1, \quad \gamma_{1}=\left(\omega-\rho x_{1}\right)\left(1-\rho^{2}\right)^{-\frac{1}{2}}, \quad \phi_{i}=\phi\left(\delta_{i} \delta_{i}\right)$,

$$
A_{i}=\phi_{i}\left(\phi_{i}-\delta_{i} \phi_{i}\right)
$$

Rewriting (6.4) again, in the new notation, we have
(6.6)

$$
\sum \delta_{i} \phi_{i}=0, \sum \delta_{i} x_{i} \phi_{i}=0
$$

Easy differentiation gives $\phi^{\prime}(x)=\dot{\phi}(x)\{\phi(x)-x\}$. Newton's method in two variables gives the following equations in $\Delta \omega$ and ΔP, where $\Delta \omega=\omega_{-} \omega_{-1}, \Delta \rho=P-P_{1}, \omega_{1}$ and P_{1} being initial guesses:

$$
\left(\sum \frac{\Lambda_{1}}{\sqrt{1-\rho_{1}^{2}}}\right) \Delta \omega+\left(\frac{\rho_{1} \omega_{1} \sum \Lambda_{1}-\sum \Lambda_{1} x_{1}}{\left(1-\rho_{1}^{2}\right)^{\frac{3}{2}}}\right) \Delta \rho=-\sum \delta_{i} \phi_{1}
$$

(6.7)

$$
\left(\sum \frac{A_{j} x_{i}}{\sqrt{1 \cdots \rho_{1}^{2}}}\right) \Delta \omega+\left(\frac{\rho_{1} \omega_{1} \sum A_{1} x_{1}-\sum A_{1} x_{i}^{2}}{\left(1-\rho_{1}^{2}\right)^{\frac{3}{x}}}\right)_{\Delta \rho}=-\sum \delta_{1} x_{1} \phi_{1} .
$$

Let Δ be the determinant of the coefficients. The method of solution will then be the following:

Method of Solution
i) Compute $\left(\omega^{*}, r^{*}\right)$ from the sample $\left(x_{i}, x_{i}\right), i=1,2, \ldots, n$, where r^{*} is the sample biserial correlation coefficient and ω^{*} is the solution of the equation $p(\omega)=\xi_{\text {. Now, let }} \omega_{1}=\omega^{*}$ and

$$
P_{1}=\left\{\begin{array}{cl}
r * & \text { when }\left|r^{*}\right|<1 \\
+.90 & \text { when } r^{*} \geqslant 1 \\
-.90 & \text { when } r^{*} \leqslant-1 .
\end{array}\right.
$$

ii) Compute $\delta_{1}, \eta_{1}, \phi_{1}, \delta_{1} \phi_{1}, \delta_{1} x_{i} \phi_{1}, A_{i}, A_{1} x_{i}, A_{1} x_{1}^{2}$ for $1=2,2, \ldots, n$, where $\delta_{1}, \gamma_{1}, \phi_{1}, A_{i}$ are defined in (6.5), and Table II is used to obtain numerical values of the ϕ_{1}.
iii) Evaluate the three determinants

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ll}
\Sigma_{A_{1}} & p_{1} \omega_{1} \Sigma_{A_{i}-\Sigma A_{1} x_{1}} \\
\Sigma_{A_{i} x_{1}} & P_{1} \mu_{1} \Sigma_{A_{1} x_{1}}-\Sigma_{A_{1} x_{1}}{ }^{2}
\end{array}\right| \cdot \frac{1}{\left(1-\beta_{1}^{2}\right)^{2}}, \\
& \Delta \omega=\left|\begin{array}{lll}
-\Sigma \delta_{1} \phi_{1} & \rho_{1} \omega_{1} \Sigma A_{1} & -\Sigma \Lambda_{A_{1} x_{1}} \\
-\Sigma \delta_{1} x_{1} \phi_{1} & \rho_{1} \omega_{1} \Sigma A_{1} x_{1}-\Sigma \Lambda_{1} x_{1}^{2}
\end{array}\right| \cdot \frac{1}{\Delta\left(1-\rho_{1}^{2}\right)^{\frac{3}{2}}}, \\
& \Delta p=\left|\begin{array}{ll|l}
\sum_{1} & -\Sigma \delta_{1} \phi_{1} \\
\sum_{A_{i} x_{1}} & -\Sigma \delta_{1} x_{1} \phi_{1} &
\end{array}\right| \cdot \frac{1}{\Delta\left(1-\rho_{1}^{2}\right)^{\frac{1}{2}}} .
\end{aligned}
$$

iv) Obtain $i \omega, \rho)$ from $(\Delta \omega, \Delta \rho)$ and $\left(\omega_{1}, \rho_{1}\right)$, and repeat the process using $\omega=\omega_{2}, \rho=\rho_{2}$ in place of ω_{1} and ρ_{1}.

The rule giver in i) is somewhat arbitrary, but is believed to be a good rule of thumb. The longest stage in the scheme outlined above is the determination of $\phi_{i}, i=1,2, \ldots, n$, from Table II.

We shall now resent an illustration of the method. In order to have a good vantage point for observing the way the calculations run, we select a random sample from $B M(0,0 ; 1,1 ; 1 / \sqrt{2})$. A table of random numbers from such a population is not available directly, but can be constructed from a table of random numbers from $M(0,1)$ as follows: Let

$$
u=\mathscr{N}(0,1), \quad v=\mathscr{N}(0,1), \quad \omega=.50
$$

now, let

$$
X=U \quad, \quad Y=\frac{U+V}{\sqrt{2}} .
$$

Now dichotomise Y by introducing the Z variables

$$
Z=1 \text { if } Y \geqslant .50 \text { and } Z=0 \text { if } Y<.50
$$

The computing scheme for 20 pairs of observations followss

及－

N OHOOOOHOHHOOOHHHHOOO

4
0
0
4
0
9
0
0
0
0
0
11
6^{-1}

$\stackrel{A}{9}$	$\underset{s}{\xi}$	$\underset{\infty}{\underset{\sim}{7}}$
O	－	॥
－	$+$	${ }^{4}$
II	11	
\％	＊ 3	

9
0
0
0
0
0 －${ }_{7 \varepsilon \Sigma^{\circ} 0}=\tau_{\infty}$
 N

A accond iteration resulted in $\omega_{3}=0.251, \rho_{3}=0.489$. since \hat{P} remained unchanged in the third place, the results were not included. Recall that the true value of P is 707. On the basis of our sample of 20 , $\hat{\rho}=.489$ is the best we can do. However, by ueing the iterative scheme instead of r^{*} we removed 27% of the exror.

7. Symmary

The problem of biserial correlation is examined. An attempt is made to touch upon all aapects of the problem, without sacrificing mathematical rigor, and to describe the pertinent literature in its proper setting. Particular attontion is paid to the use of maximum likelihood, and to the asyaptotic officiency of the sample blserial correiation coefficient. Reculte may be summarised as followe.
(1) The likelihood equations for ω, the point of dichotomy, and P, the population correlation coofficient, are obtained.

A method for their solution is described and illuatrated by an example. Dotailed calculations are given.
(2) Asymptotic variances are derived for the maximum likelihood estimators, $\hat{\omega}$ and $\hat{\rho}$, and are found to coincide with expressions given by Marits [5].
(3) The mample bisarial correlation coofficiont (bisorial r) is show to be appropriate and very useful for certain problems in theting hypotibeses, but essentially worthleas in other eituations. Several results are given in reforance to the limiting diatribution and asymptotic officiency of this coefficient.
(4) Tables are given for the asymptotic standard deviation of the sample biserial corralation coefficient and for Mills' ratio, thas latter being useful in solving the likelihood equations.
(5) Practical suggestions are offered, for application of the results of the paper, wherever ponsible.

TABLE I
The Aaymptotic Standard Deviation of \mathbf{r}^{*} (biserial r)
as a Punction of p and ρ.
011 values must be divided by $\sqrt{2}$

	.05	.10	.15	.20	.25	.30	.35	.40	.45	.50
0	4.466	2.922	2.345	2.041	1.857	1.737	1.658	1.608	3.0580	1.571
.10	2.104	1.699	1.521	1.419	1.353	1.308	1.278	1.258	1.247	1.243
.20	2.077	1.668	1.491	1.389	1.323	1.279	1.248	1.228	1.217	1.213
.30	2.033	1.616	1.440	1.339	1.273	1.229	1.198	1.179	1.167	1.163
.40	1.97	1.543	1.370	1.269	1.203	1.159	1.128	1.109	1.097	1.093
.50	1.893	1.449	1.279	1.179	1.114	1.069	1.038	1.019	1.008	1.004
.60	1.799	1.333	1.167	1.069	1.004	0.960	0.930	0.910	0.898	0.894
.70	1.691	1.194	1.034	0.939	0.875	0.831	0.801	0.781	0.769	0.766
.80	1.569	1.031	0.881	0.789	0.727	0.683	0.653	0.632	0.620	0.616
.90	1.438	0.842	0.705	0.619	0.559	0.517	0.486	0.465	0.453	0.449
1.00	1.302	0.616	0.503	0.429	0.374	0.335	0.304	0.283	0.270	0.266

TABLE II
Mi31s: Ratio ${ }^{1,2}$

-	$\phi(x)$
. 00	. 79788
. 01	. 79152
. 02	. 78519
. 03	. 77887
. 04	. 77259
. 05	. 76632
. 06	. 76008
. 07	. 75387
. 08	. 74767
. 09	.74148
. 10	. 73532
. 11	. 72920
. 12	. 72309
. 13	. 71701
.14	. 71094
. 15	. 70491
. 16	. 69890
. 17	. 69291
. 18	. 68694
. 29	. 68099
. 20	. 67507
. 21	. 66917
. 22	. 66331
. 23	. 65747
. 24	. 65265
. 25	.64584
. 26	. 64006
. 27	. 63431
. 28	. 62860
. 29	. 62289
. 30	. 61723
. 31	. 61158
. 32	. 60594
. 33	. 60035
. 34	. 59478
. 35	. 58923
. 36	. 58371
. 37	. 57602
. 38	. 57274
. 39	. 56731

$-x$	$\phi(x)$
.40	.56188
.41	.55649
.42	.55112
.43	.54578
.44	.54047
.45	.53520
.46	.52993
.47	.5247
.48	.51948
.49	.51431

$.50 \quad .50917$
.51 . 50404
.52 . 49893
.53 . 49387
154 . 48883
.55 . 48380
.56 . 47883

.57	.47386
.58	.46093

$.59 \quad .46402$
.60 .45914
$\begin{array}{ll}.61 & .45429 \\ .62 & .44947 \\ .63 & .44468\end{array}$
$.64 \quad .43992$
$.65 \quad .43518$

.66	.43047
.67	.42580

.68	.42114
.69	.41652

.70	.41192
.71	.40736

.72 . 40282
.73 . 39832
.94 . 39383
.75 . 38939
$.76 \quad .38496$
.77 . 38056
.78 . 37621
$.79 \quad .37186$

2 This table is raproduced wititi the kind permisaion of Profemeor Z. W. Elymbum of the Laboratory of Statiatical Remearoh, Univeraity of Maphington.

-x	$\phi(x)$	-x	$\phi(x)$
. 50	. 36756	1.30	. 18974
. 81.	. 36329	1.31	. 18693
. 82	. 35904	1.32	. 18414
. 83	. 35481	1.33	. 18138
. 84	. 35062	1.344	. 17866
. 85	. 34646	1.35	. 17595
. 86	. 34234	1.36	. 17328
. 8 "	. 33823	1.37	. 17064
. 88	. 33416	1.38	. 16803
. 89	. 33012	1.39	. 16544
. 90	. 32611	1.40	. 16288
. 91	. 32213	1.41	. 16035
. 92	- 31818	1.42	.15784
. 93	. 31425	1. 43	. 15536
. 94	. 31035	2.44	.1529:
. 95	. 30649	1.45	. 15050
. 96	. 30264	1.46	. 14810
. 97	. 29884	1.47	. 145%
. 98	. 29506	2.48	. 14340
. 99	. 29132	3.49	. 14108
1.00	.. 289760	1.50	. 13879
1.01	. 28391	1.51	. 13653
1.02	. 28025	1. 52	. 13429
1.03	. 27662	1.53	. 13208
1.04	. 27303	1.54	. 12991
1.05	. 26945	1.55	. 12775
1.06	26591	1.56	. 12562
1.07	. 26240	1.57	. 12351
1.08	. 25892	2.58	. 12143
1.09	.. 25547	1.59	. 11938
1.10	. 25204	2.60	. 21735
1.11	. 24866	2.61	. 11534
1.12	. 24.529	2.62	. 11338
1.13	. 24196	3.63	. 11141
1.14	. 23865	1.64	. 10949
1.15	..23538	1.65	. 10758
1.16	. 23213	$\therefore .66$. 1057
1.17	. 228891	1.67	. 10386
1.18	,22572	1.68	. 10202
1.19	..22:56	1.69	. 10022
1.20	. 21944	2.70	. 09844
1.21	. 21634	こ.71	. 09668
1.22	. 21326	2.72	. 09495
1.23	. 21023	1.73	. 09323
1.24	. 20772	1.74	. 09155
1.25	. 20423	1.75	. 08988
1.26	. 20127	1.76	. 08824
1.27	. 19834	1.77	. 08661
1.28	.. 19545	2.78	. 08502
1.29	. 19257	1.79	. 08344

-x	$\phi(x)$	-x	$\phi(x)$
1.80		2.30	. 0286
1.81	. 08036	2.31	.02797
1.82	. 07885	2.31 2.32	.02797
1.83	. 07737	2.32 2.33	. 027369
1.84	. 07591	2.33 2.34	. 026609
1.85	. 07445	2.34 2.35	. 0262546
1.86	. 07304	2.35 2.36	. 02546
1.87	. 07163	2.36 2.37	. 02486
1.88	. 07025	2.37 2.38	. 02428
1.89	. 06889	2.38 2.39	. 023370
1.90	. 06756		
1.91	. 06625	2.40	. 02258
1.92	. 06494	2.41	. 02204
1.93	. 06366	2.42	. 02151
1.94	. 06240	2.43	. 02099
1.95	. 066115	2.44	. 02048
1.96	. 05994	2.45	. 01998
1.97	. 05873	2.46	. 01950
1.98	. 05755	2.47	. 01902
1.99	. 05639	2.48	. 01854
2.00	. 05525		
2.01	.05412	2.50	. 01764
2.02	. 05301	2.51	. 01719
2.03	. 05192	2.52	. 01677
2.04	. 05085	2.53	. 01634
2.05	. 04979	2.54	. 01594
2.06	. 04876	2.55	. 01553
2.07	.04774	2.56	. 01514
2.08	. 04674	2.57	. 01475
2.09	. 04575	2.58	. 01438
		2.59	. 01401
2.10	. 04476		
2.11	. 04383		. 01364
2.12	. 04290	2.61	. 01329
2.13	. 04198	2.62	. 01295
2.14	.04107	2.63	. 01261
2.15	.040.8	2.63 2.65	. 01228
2.16	. 03932	2.65 2.66	. 01196
2.17	. 03846	2.66	. 01165
2.18	. 03761	2.67	. 01134
2.19	. 03678	2.68 2.69	$.01104$
2.20	. 03597		
2.21	. 03518	2.70	. 01046
2.22	. 03439	2.71	. 010097
2.23	. 03362	2.72	. 00990
2.24	. 03287	2.73	. 00964
2.25	. 03213	2.74	. 00938
2.26	.03140	2.75	. 00912
2.27	. 03070	2.76	. 00888
2.28	. 02999	2.77	.00863
2.29	. 02930	2.78	. 00839
		2.79	.00816

$-x$	$\phi(x)$
2.80	.00794
2.81	.00772
2.82	.00750
2.83	.00729
2.84	.00709
2.85	.00689
2.86	.00669
2.87	.00650
2.88	.00632
2.89	.00614
2.90	.00596
2.91	.00579
2.92	.00563
2.93	.00546
2.94	.00531
2.95	.00515
2.96	.00500
2.97	.00486
2.98	.00472
2.99	.00458
3.00	.00444

x	$\phi(x)$	x	$\phi(x)$
. 00	. 79788	. 50	1.1410
. 01	. 80426	. 51	1.1484
. 02	. 81066	. 52	1.1557
. 03	. 81708	. 53	1.1631
. 04	. 82351	. 54	1.1704
. 05	. 82998	. 55	1.1779
. 06	. 83646	. 56	1.1854
. 07	. 84298	. 57	1.1926
. 08	. 84950	. 58	1.2000
. 09	. 85605	. 59	1.2076
. 10	. 86262	.65	1.2151
. 11	. 86923	. 61	1.2225
. 12	. 87582	. 62	1.2300
. 13	. 88246	. 63	1.2375
. 14	. 88909	. 64	1.2450
. 15	. 89577	. 65	1.2525
. 16	. 90246	. 66	1.2601
. 17	. 90916	. 67	1.2677
. 18	. 91589	. 68	1.2753
. 19	. 92266	. 69	1.2829
. 20	. 92941	. 70	1.2905
. 21	. 93621	. 71	1.2982
. 22	. 94300	. 72	1.3058
. 23	. 94984	. 73	1.3134
. 24	. 95668	. 74	1.3212
. 25	. 96357	. 75	1.3287
. 26	. 97043	. 76	1.3364
. 27	. 97734	. 77	1.3441
. 28	. 98427	. 78	1.3519
. 29	. 99119	. 79	1.3596
. 30	. 99816	. 80	1.3674
. 31	1,00516	. 81	1.3751
. 32	1.01215	. 82	1.3829
. 33	1.0192	. 83	1.3906
. 34	1.0262	. 84	1.3986
. 35	1.0333	. 85	1.4063
. 36	1.0404	. 86	1.4142
. 37	1.0474	. 87	1.4221
. 38	1.0545	. 88	1.4298
. 39	1.0616	. 89	1.4378
. 40	1.0687	. 90	1.4457
. 41	1.0760	. 91	1.4535
. 42	1.0831	. 92	1.4613
. 43	1.0903	. 93	1.4693
. 44	1.0975	. 94	1.4773
. 45	1.1047	. 95	1.4852
. 46	1.1120	. 96	1.4932
. 47	1.1193	. 97	1.5013
. 48	1.1265	. 98	1.5092
. 49	1.1338	. 99	2.5170

x	$\phi(x)$	x	$\phi(x)$
1.00	1.5251	1.50	1.9397
1.01	1.5330	1.51	1.9470
1.02	1.5413	1.52	1.9554
1.03	1.5492	1.53	1.9643
1.04	$1.5574{ }^{\circ}$	1.54	1.9728
1.05	1.5652	1.55	1.9814
1.06	1.5733	1.56	1.9904
1.07	1.5815	1.57	1.9984
1.08	1.5896	1.58	2.0068
1.09	1.5977	1.59	2.0153
1.10	1.6057	1.60	2.0243
1.11	1.6139	1.61	2.0325
1.12	1.6221	1.62	2.0412
1.13	1.6303	1.63	2.0500
1.14	1.6385	1.64	2.0585
1.15	1.6466	1.65	2.0670
1.16	1.6548	1.66	2.0756
1.17	1.6628	1.67	2.0846
1.18	1.6711	1.68	2.0929
1.19	1.6793	1.69	2.1022
1.20	1.6875	$\pm .70$	2.1102
1.21	1.6958	1.71	2.1191
1.22	1.7042	1.72	2.1277
1.23	1.7123	1.73	2.1358
1.24	1.7206	1.74	2.1450
1.25	1.7289	1.75	2.1538
1.26	1.7370	1.76	2.1626
1.27	1.7455	1.77	2.171
1.28	1.7538	1.78	2.1796
1.29	1.7618	1.79	2.1882
1.30	1.7702	1.80	2.1979
1.31	1.7787	1.81	2.2060
1.32	1.7870	1.82	2.2148
1.33	1.7953	1.83	2.2242
1.34	1.8038	1.84	2.2326
1.35	1.8119	1.85	2.2406
1.36	1.8205	1.86	2.2502
1.37	1.8288	1.87	2.2589
1.38	1.8372	1.88	2.2676
1.39	1.8457	1.89	2.2758
1.40	1.8539	1.90	2.2847
1.41	1.8625	1.91	2.2941
1.42	1.8709	1.92	2.3026
1.43	1.8793	1.93	2.3116
1.44	1.8879	1.94	2.3202
1.45	1.8961	1.95	2.3288
1.46	1.9051	1.96	2.3375
1.47	1.9131	1.97	2.3463
1.48	1.9216	1.98	2.3557
1.49	1.9301	1.99	2.3641

[2] Cramér, H. (1946). Uathenatical Methode of Statistice. Princoti: University Press.
[2] Du Bois, P. H. (1942). A note on the computation of biserial r in itam malidation. Esychometmik, Vol. 7, pp. 143-146.
[3] Dunlap, J. W. (1936) . A nonograph for computing biserial r. Psychometrika, Vol. 1, pp. 59-60.
[4] Fisher, K. A. (1946) Statistical Hethods for Hesearch Workers. Oliver and Boyd, (loth edition).
[5] Maritz, J. S. (1953). Estimation of tine correlation coefficient of a bivariate normal population when one of the varialles is dicnotonized. Psychometrika, Vol. 18, pp. 97-110.
[6] Yearson, K. (1909). On a new nethod for detemining the correlabion between a :neasured character A and a character i. Bionetrika, Voi. 7, pp. 96-105.
[7] Hoyer, E. B. (1942). Punched cards nethods for detemining bisarial coefficients. Psychometrika, Vol. 6, pp. 55-59.
[8] Soper, H. E. (1913). On the probable error for tise biserial expression for the correlation coefficient. Biometrika, Vol. 10, pp. 384-390.
[9] Tate, R. F. (1953). On a double inequality of the normal distribution. Annale of iathenatical Statistics, Vol. 24, No. 1, pp. 133-134.
[10] Tate, F. F. (1954). Correlation between a discrete and a continuous variable. Annals of Lathematical Statistics, Vol. 25, No. , pp.
[11] Tocher, K. D. (1949). A note on the analysis of grouped probit data. Biometrika, Vol. 36 , pp. 9-17.
[12] Walker, H. M. and Lev, J. (1953). Statistical Inference. Henry Holt and Co.
[13] Wherry, R. J. (1947). Nultiple biserial and multiple point-biserial correlation. Psychometrila, Vol. 12.

Chief of Maval Research Office of Navil Research Waeblugton 25, D. C. Attar Code 432 (Mathematics Branch)

Dr. E. Lukace
Head, Statiatics Branch Office of Naval Kesearch Depertment of the Navy Washington 25, D. C.

Scientific Section Office of Naval Research Department of the Navy 1000 Geary Street
San Francisco 9, Calif.
Attas Dr. J. Wilkes
Director, Naval Fiesearch Laboratory
Washington 25, D. C.
Attn: Technical Information Officer

Office of the Assistant Naval
Attache for Research
Naval Attache
American Embassy
Navy No. 100
Fleet Post Office
New York, New York
Director
Office of Naval Research
Branch Office
844 North flush Street
Chicago 11, Illinois
Director
Office of Naval fiesearch
Branch Office
346 Broadway
Hew Yoric 13, New Yort
Director
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena 1, Califormia
Commandor
U.S. Naval Ordnance Test Station
Inyokern, China Lake, California1
Chief of Naval Operations
Operation Evaluation Group-OP 374
The Pentagon
Washington 25, D. C. 1
Office of Naval Research
Department of the Nayy
Washington 25, D. C.
Attns Code 438(Mechanics Branch)2
Office of Naval Hesearch
Logistics Branch - Code 436T-3 BuildingWashington 25, D. C.1
ASTIA Documents Service Center
Knott Building
Dayton 2, Ohio 5
Headquarter, USAF
Director of Research and
DevelopmentVashington 25, D. C.1
Assistant Chief of Staff, G-4 for Research and Development
Washington 25, D. C. 1
Chairman
Research and Development Board
The Pentagon
Washington 25, D. C. 1
Office of Technical Services
Department of Comerce
Washington 25, D. C. 1
Commander, Lir Force Personnel and Training Researoh Centar Attas Director, Personnel Research Laboratory Leckland Air Force Base, Texas 1
National Bureau of StandardsInstitute for Numerical Analysis405 Hilgard Avenue
Los Angeles 24, California2
Chief, Statistical EngineeringLaboratoryNational Bureau of StandardeWashington 25, D. C.RAND Corporation1500 Fourth Street
Santa Monica, California 1
Applied Hatheatics and
Statistics Laboratory Stanford University Stanford, California 3
Professor Carl E. Allendoerfer Department of Mathema tics University of Washington Seattle 5, Washington1
Professor W. G. Cochran
Department of Biostatistics The Johns Hopkins University Baltimore S., Maryland 1
Professor Benjamin Epstein Department of Mathematics Wayne University
Detroit 1, Michigan 1
Professor Herbert Solamon
Teachers College Columbia University
New York, New York 1
Professor W. Allen Wallis
Committee on Statistics University of Chicago Chicago 37, Illinois 1
Profeasor J. Wolfowitz
Dopartment of Mathematics Cornell University Ithaca, New York 1

