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Abstract

The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an
important tool to test Quantum Chromdynamics (QCD) through precision measurements of the
strong coupling constant αs(M

2
Z) and the different parton distribution functions. The exact knowl-

edge of these quantities is also of importance for all precision measurements at hadron colliders.
During the last two decades very significant progress has been made in performing precision calcu-
lations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron
scattering based on perturbative QCD.

1 Introduction

Matter consists of regular structures at microscopic distances, which exhibit themselves at the crys-
talline, molecular, and atomic levels [1]. The discovery of α, β and γ radioactivity [2] provided new
natural probes beyond the visible spectrum of light and X-rays to resolve even smaller structures of
matter. In 1911 E. Rutherford discovered the atomic nucleus of a size much smaller than that of atoms
through scattering of α-particles at gold [3]. Herewith the picture of matter at small distances changed
dramatically rising the question for further sub-structures. The composite nature of nuclei could be
explained after Chadwick’s [4] discovery of the neutron and Yukawa’s model for nuclear forces [5]. An-
other important discovery was made by Frisch and Stern in 1933 measuring the anomalous magnetic
moment of the proton with a different value from that of point-particles, like electrons [6]. Later in
1939 Alvarez and Bloch measured the anomalous magnetic moment of the neutron [7], both of which
constituted first evidence on the compositeness of nucleons. The current values of the nucleon magnetic
moments are [8]

µp = 2.792847356± 0.000000023 µN , µn = −1.9130427± 0.0000005 µN , (1.1)

with µN = eℏ/2mp the nuclear magneton.
During the 1950ies the Hofstadter experiments [9] operated at virtualities being large enough to re-

veal the charge distribution inside nucleons, which is illustrated in Figure 1. A positive core distribution
and tail are found both for the proton and neutron, with a positive vector cloud in case of the proton
and a negative one for the neutron, pointing to first details of the nucleon sub-structure. However, the
specific nature of these distributions remained yet unexplained.
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Figure 1: Charge distribution for the proton and the neutron implied by the form factors of Ref. [10], Figure 2(b);
from [10], c©(1961) by the American Physical Society.

In 1964 Gell-Mann [11] and Zweig [12] proposed the quarks 1 as building blocks of hadrons to catalog
the plethora of observed mesons and baryons. During the late 1960ies the MIT-SLAC experiments
[13–19] measured deep-inelastic electron-nucleon scattering at the Stanford Linear Accelerator at much
shorter distances and beyond the resonance region. The important finding of these experiments were
scaling and the observation that the longitudinal structure function is small, Figure 2, confirming
a prediction by Callan and Gross [20] for scattering off spin 1/2 particles. The scaling behaviour
of structure functions had been predicted by Bjorken using current algebra methods [21]. These new
observations led Feynman to the parton model [22,23] of point-like fermionic constituents of the nucleons
which react at high virtualities with the exchanged gauge bosons in the deep-inelastic process directly.

Figure 2: Left: An early observation of scaling: νW2 for the proton as a function of −q2 for W > 2GeV, at
x = 1/ω = 0.25; Right: The Callan-Gross relation: K0 = F2/(2xF1)− 1 vs −q2. These results established the spin
of the partons as 1/2; from [18], c©(1991) by the American Physical Society.

Deep-inelastic scattering off constituent quarks has been discussed as early as 1967 [24] in connection to
data of that time [25]. After the discovery of scaling at SLAC also data taken in other experiments were
analyzed for this behaviour. One example concerns data taken at DESY at lower values of |q2| [26], cf.
Figure 3, presented using the Rittenberg-Rubinstein variable ωW .

1 G. Zweig named the hadron constituents aces.
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Figure 3: The function νW2 plotted vs |q2| assuming R = |q2|/ν2 for different fixed ωW = (1/x+M2
N/|q2|)/(1 +

0.2/|q2|); from [26] c©(1972) by Elsevier Science.

The parton model introduced a new level of compositeness for fermions being confined inside hadrons
and related to the strong interactions. The final quantum field theory of the strong interactions devel-
oped over a series of years. Already in 1965 Nambu [27] proposed a Yang-Mills [28] SU(3) gauge theory
for the strong interactions, based on a three-valued charge degree of freedom [29]. Before a symmetry
was introduced using para-statistics [30] which later became color. At this time it was unknown whether
Yang-Mills theories could be renormalized. The formalism by Faddeev and Popov [31] needed for their
quantization in covariant gauges has been found two years later only. The renormalization of massless
Yang-Mills theories was proven by ’t Hooft in 1971 [32] and Quantum Chromodynamics (QCD) as
the theory of strong interactions was proposed by Fritzsch and Gell-Mann in 1972 [33] and Fritzsch,
Gell-Mann and Leutwyler [34]. In 1973 Gross, Wilczek [35] and Politzer [36] studied the running of the
strong coupling constant of color octet Yang-Mills theory with color triplet quarks and found asymptotic
freedom, see also [37,38]. The Lagrangian of QCD, referring to the covariant Rξ-gauges, is given by [39]

LQCD =
∑

q

ψ̄q,j(x)
[
iD/ jk −mq

]
ψq,k(x)−

1

4
F µν
a (x)F a

µν(x)−
1

2ξ
(∂µA

µ
a(x))

2 + ∂µχ
a
µ(x)D

ab,µχb(x) , (1.2)

where ψq(x) denotes the quark fields, Aµa(x) the gluon fields, F µν
a = ∂µAνa − ∂νAµa + gfabcA

b,µAc,ν the
field strength tensor, fabc the structure constants of SU(3)c, the gauge group of QCD, ξ ∈ R the
gauge parameter, χa(x) the ghost field, and the covariant derivatives Dab

µ = δab∂µ− gfabcAc,µ(x), D/
jk =

γµ
[
δjk∂

µ − igAµat
a
jk

]
, with ta the generators of SU(3)c. Based on this, perturbative calculations in

Quantum Chromodynamics can be performed at large virtualities. Due to their high complexity these
calculations are usually being performed using computer algebra programs, a first dedicated of which
was SCHOONSCHIP by M. Veltman [40].

At short distances, resp. large scales of the momentum transfer, the nucleon structure functions
Fi(x,Q

2) obey the light–cone expansion [41–44] through which they are represented in terms of Wilson
coefficients Ck

i and non-perturbative operator matrix elements (OMEs) fk of local operators, charac-
terized by their twist [45]. At leading twist the functions fk are the parton densities and at higher
twist they correspond to parton correlation functions. In this separation an arbitrary scale µ2

F , the
factorization scale, emerges. Applying the renormalization group equations [46–49] to the structure
functions one obtains separate evolution equations for the Wilson coefficients and operator matrix ele-
ments which are usually of matrix-type due to the mixing of different operators. The solution of these
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evolution equations exhibits scaling violations 2, implied by the renormalization group equations, and
the running of the strong coupling constant and finite quark masses.

During the last 40 years the deep–inelastic structure functions both in neutrino and charged lepton–
nucleon scattering were measured at a steadily increasing precision and allow at present for important
QCD precision tests at the per cent level. The strong coupling constant αs(M

2
Z) can be measured at an

accuracy of ∼ 1% from the scaling violations of the deep–inelastic structure functions. Very accurate
extractions of the twist-2 parton densities are possible, which are an essential ingredient for the physics
at hadron colliders as Tevatron and the LHC, and are thus instrumental in the search for new elementary
particles.

At the theoretical side, the deep–inelastic structure functions are best described at the level of the
twist-2 contributions. The QCD coupling constant is known to 4-loop order [53, 54]. The anomalous
dimensions and Wilson coefficients for the unpolarized massless case were calculated to 3-loop order
[55–61]. There are first results at 4-loop order [62–64]. Heavy quark corrections are known to 2-loop
order [65, 66] and for larger scales a series of Mellin moments has been calculated to 3-loop order
[67]. In the polarized case the level of 2-loop corrections has been reached for massless and massive
corrections [68–72], with first results at 3-loop order [73]. The present massless and massive 3– and 4–
loop calculations require powerful computer algebra systems and packages like FORM [74], MATAD [75], and
Sigma [76], cf. also [77], to perform these voluminous calculations which amount even in parallel form
to several CPU years and request O(100 Gbyte) RAM at multi-processor systems. QED corrections to
the deep-inelastic scattering cross sections are large in certain kinematic regions and have to be known
at the accuracy defined by the measured data. The region of small values of x or large hadronic masses
at a given virtuality requires special attention because of potentially large perturbative corrections.
In the large x region target mass effects and higher twist corrections contribute. For large values of
x higher order resummations are important. In the polarized case the structure function g2(x,Q

2)
provides an inclusive observable at which twist–3 contributions can be studied. Structure functions
and parton distributions obey a series of sum rules, to which also QCD corrections are available and
one may perform QCD tests using these relations. The nucleon spin problem [78] rouse the question
of also angular momentum contributions. These can be accessed in deeply-virtual Compton scattering
and similar reactions [79] as has been shown in [80].

In this article we review the present theoretical understanding of the deep–inelastic process, mainly
in the region of large scales. In Section 2 the scattering cross sections are described and a brief survey on
the present deep inelastic data is given. Section 3 deals with the light-cone expansion and in Section 4
the parton model is described. The renormalization of deep-inelastic structure functions in the twist-2
approximation is discussed in Section 5. Related to this, a survey on the perturbative expansion of the
strong coupling constant αs(Q

2), the anomalous dimensions, resp. splitting functions, and the massless
Wilson coefficients are given in Section 6–8. In Section 9 we discuss QED and electro-weak corrections
to deep inelastic scattering. The heavy quark corrections are described in Section 10. Section 11 deals
with the target mass corrections. The solution of the evolution equations is outlined in Section 12.
Here we also discuss the results of different NNLO QCD analyses and the status of the determination
of αs(M

2
Z) from deep-inelastic data. In Section 13 a series of aspects of small-x resummations are

considered. Resummations in the region of large values of x are discussed in Section 14. Major sum
rules and integral relations for deep-inelastic structure functions are summarized in Section 15. Higher
twist corrections and aspects of nuclear parton distributions are considered in Sections 16 and 17. In
this review we will fully concentrate on firmly established results on the basis of perturbative Quantum
Chromodynamics and will not discuss other approaches of a more phenomenological character, including
other assumptions.

2Scaling violations emerge naturally through radiative corrections in all renormalizable field theories. Drell and
collaborators at the end of the 1960ies were seeking for scaling describing structure functions by fermion-meson interactions
with loop corrections and found scaling violations in general [50, 51], see also [52].

4



2 The deep-inelastic process

The deep-inelastic process, at Born level, can be illustrated by the diagram shown in Figure 4. A
lepton l = e±µ±, νi(νi) with momentum k1 scatters off a nucleon N exchanging an electro-weak gauge
boson V = γ, Z0,W± to a lepton l′ with momentum k2 = k1 − q and an ensemble of hadrons X in an
effective 2 → 2 process k1 + p1 → k2 + p2. Here p1 is the momentum of the incoming nucleon and p2
the momentum of the outgoing hadrons.

In many deep-inelastic scattering experiments the kinematic variables can be measured only from
a sub-set of the momenta of the external particles. This applies in particular to the momentum of
outgoing neutrinos but also for the momentum p2 in fixed target experiments. As will be shown later in
Section 9 the size of the radiative corrections strongly depends on the choice of the kinematic variables.
For the measurement at HERA a wide variety of sets of kinematic variables was designed to allow for
cross checks and to limit the size of QED radiative corrections.

} spectators

l

current jet

V

k2

pqf

k1

pqi = xp1

q

N {

Figure 4: Diagram describing deep inelastic lN scattering.

At Born level the unpolarized scattering cross section depends on the virtuality of the exchanged gauge
boson V , q2 = −Q2 and the inelasticity y. At a given cms energy s = (k1 + p1)

2 these quantities define
the Bjorken variable x,

y =
p1.(k1 − k2)

p1.k1
(2.1)

x =
Q2

sy
. (2.2)

The different sets of variables are :

i) Leptonic variables q ≡ ql = k2 − k1, yl = p1.(k1 − k2)/p1.k1
ii) Hadronic variables [81] q ≡ qh = p2 − p1, yl = p1.(p2 − p1)/p1.k1
iii) Jacquet-Blondel variables [82] Q2

JB = (~p2,⊥)
2/(1− yJB), yJB = Σ/(2E(k1))

Σ =
∑

h(Eh − ph,z)
iv) Mixed variables [81] q = ql, ym = yJB

v) Double angle method [83] Q2
DA =

4E(k2)
2 cos2(θ(k2)/2)

sin2(θ(k2)/2) + sin(θ(k2)/2) cos(θ(k2)/2) tan(θ(p2)/2)
,

yDA = 1− sin(θ(k2)/2)
sin(θ(k2)/2) + cos(θ(k2)/2) tan(θ(p2)/2)

,

vi) θy method [84] Q2
θy = 4E(k2)

2(1− yJB)
1 + cos(θ(k2))
1− cos(θ(k2))

, yθy = yJB

vii) Σ method [85] Q2
Σ =

(~k2,⊥)
2

1− yΣ
, yΣ = Σ

Σ+ E(k2)[1− cos(θ(k2))]

viii) eΣ method [85] Q2
eΣ = Q2

l , yeΣ =
Q2
l

sxΣ
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Here E(li) and θ(li) are measured in the detector’s rest frame. The invariant mass W of the final state
hadrons is given by

W 2 = p22 = (q + p1)
2 =M2 + 2q.p1 −Q2 =M2 +Q2(1− x)/x , (2.3)

and M is the nucleon mass. The inclusive lepton-nucleon process is denoted as deep inelastic if W >
2GeV and the values of Q2 are sufficiently large, normally Q2 > 4GeV2. If W ≈ M the process is
called (quasi-)elastic, allowing also for proton–neutron transitions. Here the scattering cross section is
described by the (quasi-)elastic nucleon form-factors [86, 87]. The resonance region is characterized by
M < W <

∼ 2GeV. Corresponding models for the scattering cross sections were given in [88].
The double differential scattering Born cross section off unpolarized nucleons read [87, 89, 90]

d2σl
±N
NC

dxdy
=

2πα2s

Q4

{[
2(1− y)− 2xy

M2

S

]
F̂2(x,Q

2) + Y−xF̂3(x,Q
2) + y2

(
1− 2m2

l

Q2

)
2xF̂1(x,Q

2)

}

(2.4)

d2σ
ν(ν̄N
NC

dxdy
=

G2
F s

16π

[
M2

Z

Q2 +M2
Z

]2 {
Y+W

NC
2 (x,Q2)± Y−xW

NC
3 (x,Q2)− y2WNC

L (x,Q2)
}

(2.5)

d2σCC

dxdy
=

G2
F s

4π

[
M2

W

Q2 +M2
W

]2 {
Y+W

CC
2 (x,Q2)± Y−xW

CC
3 (x,Q2)− y2WCC

L (x,Q2)
}
, (2.6)

where α and GF denote the fine-structure and Fermi constants, MW,Z and ml are the W,Z-boson and
lepton masses and

Y± = 1± (1− y)2 . (2.7)

Three of the electro-weak parameters in (2.4–2.6) are independent. One choice is given by the set
(α,MZ , GF ). The others are expressed by corresponding relations, cf. [90]. In case of neutral current
scattering the functions F̂i are propagator-weighted structure functions, [90] :

F̂1,2(x,Q
2) = F1,2(x,Q

2) + 2|Qe|(ve + λae)χ(Q
2)G1,2(x,Q

2) + 4(v2e + a2e + 2λveae)χ
2(Q2)H1,2(x,Q

2)

(2.8)

xF̂3(x,Q
2) = −2sign(Qe)

{
|Qe|(ae + λve)χ(Q

2)xG3(x,Q
2) + [2veae + λ(v2e + a2e)]χ

2(Q2)xH3(x,Q
2)
}
,

(2.9)

with Qe = −1, λ = signξ, vf = 1 − 4|Qf | sin2 θeffw , af = 1, χ(Q2) = GFM
2
ZQ

2/(
√
2 8πα(Q2 +M2

Z)). θ
eff
w

denotes the effective weak mixing angle, MZ the Z-boson mass, and ξ the lepton polarization. The
structure function 2xF1 can be expressed using

2xF1(x,Q
2) = F2(x,Q

2)− FL(x,Q
2) (2.10)

and similar for G1, H1,W
±
1 . At this level the Callan-Gross relation [20] implies vanishing longitudi-

nal structure functions, which take finite values due to QCD corrections and target mass effects, see
Sections 8,11.

The scattering cross sections (2.4–2.6) can be represented in the general form

∑

i

d3σi
dxdydφ

=
∑

i

Pi(s,Q
2)Lµνi Wµν,i , (2.11)

where Pi(s,Q
2) denotes a propagator term and Lµν,i and W

µν
i are the respective contributions to the

leptonic and hadronic tensor. Here we specified also the azimuthal angle of the final state lepton which
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emerges in the scattering cross section of polarized leptons off transversely polarized nucleons. The
leptonic tensor can be calculated perturbatively. The hadronic tensor is given by

Wµν,i =
1

4π

∫
d4xeiqx〈PS | [J i1µ (x)

†
, J i2ν (0)] | PS〉 . (2.12)

Here S denotes the four–vector of the nucleon spin with S · P = 0 and the normalization S2 = −M2.
In the framework of the quark–parton model the currents J jµ are given by

J jµ(x) =
∑

f,f ′

q̄′(x)γµ(v
j
q + ajqγ5)q(x)Uff ′ , (2.13)

with vjq and a
j
q the vector and axial-vector couplings of the quarks. For charged current interactions Uff ′

denotes the Cabibbo-Kobayashi-Maskawa matrix, whereas for neutral current interactions Uff ′ = δff ′ .
The hadronic tensor obeys the following properties [91, 92]

Covariance : Wµ′ν′(q
′, P ′) = Λµµ′Λ

ν
ν′Wµν(q, P ), Λ ∈ L↑

+ (2.14)

Hermiticity : Wµν(q, P ) = W ∗
νµ(q, P ) (2.15)

Spectrality : Wµν(q, P ) = 0, − q2

2P.q
> 1 (2.16)

Causality : W̃µν(x, P ) =

∫
d4qe−iqxWµν(q, p) (2.17)

T− invariance : Wµν(q̄, P̄ , S̄) = [W µν(q, P, S)]∗ , (2.18)

where L↑
+ is the orthochronous Lorentz group and āµ = aµ. In general,

Parity : Wµν(q̄, P̄ ,−S̄) =W µν(q, P, S) (2.19)

Symmetry : Wµν(q, P ) =Wµν(−q, P ) (2.20)

Current conservation : qµW
µν = W µνqν = 0 . (2.21)

are not obeyed. We construct the following hadronic tensor including the case of polarized targets, [93]:

Wµν =

(
−gµν +

qµqν
q2

)
F1(x,Q

2) +
P̂µP̂ν
P · q F2(x,Q

2)− iεµνλσ
qλP σ

2P · qF3(x,Q
2)

+
qµqν
P · qF4(x,Q

2) +
(pµqν + pνqµ)

2P · q F5(x,Q
2)

+iεµνλσ
qλSσ

P · q g1(x,Q
2) + iεµνλσ

qλ(P · qSσ − S · qP σ)

(P · q)2 g2(x,Q
2)

+

[
P̂µŜν + ŜµP̂µ

2
− S · q P̂µP̂ν

P · q

]
g3(x,Q

2)

P · q

+S · q P̂µP̂ν
(P · q)2g4(x,Q

2) + (−gµν +
qµqν
q2

)
(S · q)
P · q g5(x,Q

2),

+iεµνλσ
PσSλ
P · q g6(x,Q

2) + S · q qµqν
(P · q)2g7(x,Q

2)

+
(pµqν + qµpν)S · q

2(P · q)2 g8(x,Q
2) +

Sµqν + Sνqµ
2P · q g9(x,Q

2) , (2.22)

with

P̂µ = Pµ −
P · q
q2

qµ , Ŝµ = Sµ −
S · q
q2

qµ .
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The choice of the polarized structure functions beyond g1,2 is not unique in the literature, cf. [94]. For
the functions g3,4,5 we used the convention of [94], and for the further structure functions that of [95,96].
The spin-vector in the longitudinal and transversal case is defined by

SL = (0, 0, 0,M) ,

ST = M(0, cosα, sinα, 0) . (2.23)

For the purely polarized nucleon contributions one obtains the following differential scattering cross
sections, [93] :

d2σ(λ,±SL)
dxdy

= ±2πs
α2

Q4

∑

i

Ciηi(Q
2)

×
[
−2λy

(
2− y − 2xyM2

S

)
xgi1 + 8λ

yx2M2

S
gi2 +

4xM2

s

(
1− y − xyM2

s

)
gi3

− 2

(
1 +

2xM2

s

)(
1− y − xyM2

s

)
gi4 − 2xy2

(
1 +

2xM2

s

)
gi5

+ 4λ
xyM2

s
gi6 − 2

(
1− y − xyM2

s

)
gi9

]
, (2.24)

d3σ(λ,±ST )
dxdydφ

= ±s α
2

Q4

∑

i

Ciηi(Q
2)

× 2

√
M2

s

√
xy

[
1− y − xyM2

s

]
cos(α− φ)

[
−2λyxgi1 − 4λxgi2 (2.25)

− 1

y

(
2− y − 2xyM2

s

)
gi3 +

2

y

(
1− y − xyM2

s

)
gi4 + 2xygi5 − 2λgi6 − gi9

]
.

Here λ denotes the lepton polarization and Cγ = 1, CγZ = gV + λgA, g
γ
V = 1, gγA = 0, gZV =

(1 − 4Ql sin
2 θeffW )/2, gZA = −1/2, gW

−

V = 1, gW
−

A = −1, CZ = (gV + λgA)
2, CW±

= (1 ± λ), η|γ|
2

=
1, ηγZ = GFQ

2/(2
√
2πα)(M2

Z/(Q
2 +M2

Z), η
|Z|2 = (ηγZ)2, η|W

±|2 = [GFQ
2/(4πα)(M2

W/(Q
2 +M2

W )]2. 3

The structure functions g7 to g9 do not contribute in case of vanishing lepton masses and the structure
functions F4,5 are related to F1,2,3.

The individual structure functions can be measured form the scattering cross sections (2.4–2.6,2.24,
2.25) applying the QED and electro-weak radiative corrections to the data, cf. Section 9. Current
data analyses in the unpolarized case refer to the structure function data on F2 and charged current
scattering cross sections for proton and deuteron targets taken at SLAC [98,99], from BCDMS [100,101],
NMC [102, 103] at CERN, and HERA [104]. Surveys on earlier neutrino and charged lepton deep-
inelastic data were given in [105].

Moreover, there are data on the longitudinal structure function FL(x,Q
2) [99, 100, 103, 106–109].

To separate the contributions due to the different sea-quark flavors Drell-Yan data [110] and di-muon
data [111] are used. In some analyses [112, 113] also other sets of inclusive and semi-inclusive deep-

inelastic scattering data, including data on FQQ̄
2 (x,Q2), Q = c, b, data from E665, CHORUS, and

Tevatron data on weak boson production [114] are used. Various PDF-fitting groups use also the
Tevatron jet data [115] in their analysis.

3A factor of 1/2 has to be corrected for η|W
±|2 in [93, 94], cf. [97].
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Figure 5: Left: HERA combined NC e+p reduced cross section as a function of Q2 for six x-bins compared to
the separate H1 and ZEUS data input to the averaging procedure. The error bars indicate the total experimental
uncertainty. The individual measurements are displaced horizontally for better visibility; Right : The combined data
with the HERAPDF1.0 fit [116] is superimposed. The bands represent the total uncertainty of the fit. Dashed lines
are shown for Q2 values not included in the QCD analysis; from [104] c©(2009) Springer Verlag.
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Figure 6: The data on FL versus x obtained by the H1 collaboration [109] confronted with the 3-flavor scheme
NNLO predictions based on the different parton distributions functions (PDFs). Solid line: ABM11 [117], dashes:
JR09 [118], dots: MSTW [112]). The NLO predictions based on the 3-flavor NN21 PDFs [119] are given for
comparison (dashed dots). The value of Q2 for the data points and the curves in the plot rises with x in the range
of 1.5 ÷ 45 GeV2; from [117].

In the polarized case the data stem from SLAC [120–124] EMC, SMC, COMPASS [78, 125–128] at
CERN, CLAS [130–132], and HERMES [133, 134] at HERA, taken at p, d, and n (3He) targets on the
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polarization asymmetry A1, the ratio g1/F1 or for the structure function g1. Data on the structure
function g2(x,Q

2) were taken by the SLAC experiments, SMC and HERMES [122, 135].
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Figure 7: HERMES results on xgp1 and xgd1 vs x, shown on separate panels, compared to data from SMC [126],
E143 [122], E155 [123,124] and COMPASS [129]. The error bars represent the sum in quadrature of statistical and
systematic uncertainties. The HERMES data points shown are statistically correlated by unfolding QED radiative
and detector smearing effects; the statistical uncertainties shown are obtained from only the diagonal elements
of the covariance matrix. The E143 and E155 data points are correlated due to the method for correcting for
QED radiation. For the HERMES data the closed (open) symbols represent values derived by selecting events with
Q2 > 1GeV2(Q2 < 1GeV2); from [134] c©(2007) by the American Physical Society.

The current precision in the measurement of the unpolarized structure function F2(x,Q
2) is illus-

trated in Figure 5 showing the combined HERA data together with the world fixed target data. Also
the individual measurements of H1 and ZEUS are compared. The present experimental errors reach
the 1% level and the scaling violations of F2(x,Q

2) are clearly visible over a wide range in Q2.
In Figure 6 recent measurements of the structure function FL(x,Q

2) at low values of x by the H1
experiment are shown together with predictions by different PDF-fits. The structure function FL(x,Q

2)
can only be measured changing the beam energy in given bins of (x,Q2) to separate it from F2(x,Q

2)
via the y-dependence of the scattering cross section. A precise measurement requires high luminosities
and can be expected at the EIC, and at even smaller values of x at a future high energy ep collider.

Finally, we illustrate the current precision of the measurement of the polarized structure function
g1(x,Q

2) at p and d targets in Figure 7. If compared to the structure function F2(x,Q
2) the experimental

errors are larger since g1(x,Q
2) is measured from a polarization asymmetry. The range in Q2 of these

measurements is smaller than in case of F2(x,Q
2) since all measurements were performed in fixed target

experiments.
In Figure 8 the kinematic region which has been probed by the different fixed target experiments

at CERN, SLAC and the HERA experiments is illustrated. For virtualties Q2 ≥ 4GeV2 values of
x ≃ 4 · 10−4 are reached. The highest values of Q2 reached are ∼ 20.000GeV2. There is a proposal for
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an ep experiment in the LHC ring operating at Ep = 7TeV and Ee = 140GeV, which would extend
the present x and Q2 ranges by about 1.5 orders of magnitude [136].

The kinematic region for polarized data ranges for 0.005 < x < 0.75 and 1 <∼Q
2 <
∼ 70 GeV2 with a

kinematic correlation between these two variables. At a future facility like the Electron-Ion Collider
EIC [137, 138] this region will be extended significantly. Moreover, the high luminosity available will
allow precision measurements also for polarized scattering.

Figure 8: The kinematic range in x and Q2 probed by the deep-inelastic scattering experiments at HERA, CERN,
and SLAC. The region accessible to a possible future e±p experiment with Ep = 7TeV and Ee = 140GeV is also
shown; by courtesy of M. Klein and E. Lobodzinska.

3 The Light-Cone Expansion

We consider the hadronic tensor (2.12) and limit the discussion for brevity to the case of pure photon
exchange. It is given by the absorptive part of the forward Compton-amplitude Tµν

Wµν(P, q) =
1

π
ImTµν(P, q) (3.1)

with

Tµν(P, q) = i

∫
d4ξeiqξ〈P |TJµ(ξ)Jν(0)|P 〉 (3.2)

=
1

2x

(
gµν +

qµqν
Q2

)
T1(x,Q

2) +
2x

Q2

(
PµPν +

Pµqν + Pνqµ
2x

− Q2

4x2
gµν

)
T2(x,Q

2) . (3.3)

One may integrate (3.2), [44], which yields

Tµν(P, q) = Tµν(q
2, ν) = 4π

∫ +∞

−∞

dξ0

∫ ∞

0

d|ξ| |ξ|
[
eiνξ0 sin(

√
ν2 − q2|ξ|)√

ν2 − q2

]

×〈P |T[Jµ(x)Jν(0)]|P 〉 . (3.4)

For ν → ∞ the exponentials behave like

eiνξ0e±i
√
ν2−q2|ξ| ≈ eiν(ξ0±|ξ|)e±iM |ξ|x . (3.5)
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Due to the Riemann-Lebesgue theorem [139] the dominant contributions to (3.4) come from

|ξ0 ± |ξ|| <∼
1

ν
, |ξ| <∼

1

Mx
, (3.6)

with x the Bjorken variable. Thus

ξ2 = ξ20 − ξ2 <
∼

1

Q2
(3.7)

and in the Bjorken limit ν,Q2 → ∞ the contributions very near to the light cone dominate.
At very short distances ξ2 ≈ 0 the light-cone expansion of the time ordered product of currents has

the following representation, [41–44] :

lim
ξ2→0

TJ(x)J(0) ∼
∑

i,N,τ

C̄N
i,τ(ξ

2, µ2)ξµ1 . . . ξµNO
µ1,...,µN
i,τ (0, µ2) (3.8)

Here we consider general currents and Oµ1,...,µN
i,τ denote local operators, which are finite as ξ2 → 0, and

C̄N
i,τ(ξ

2, µ2) are the corresponding Wilson coefficients. Let DO and DJ be the canonical dimensions of
the operators and currents and N their global spin. The twist τ [45] of the operator is given by

τ = DO −N . (3.9)

The Wilson coefficients behave then like

C̄N
i,τ(ξ

2, µ2) ≈
(

1

ξ2

)−τ/2+dJ

. (3.10)

The local operators of lowest twist are given by

ONS

q;r;µ1,...,µn
(0) = iN−1S

[
ψ̄γPγµ1Dµ2 . . .DµN

λr
2
ψ

]
(3.11)

OS

q;r;µ1,...,µn(0) = iN−1S
[
ψ̄γPγµ1Dµ2 . . .DµNψ

]
(3.12)

OS

g;r;µ1,...,µn(0) = 2iN−2SSp
[
Eβγ
µ1αF

a
βγDµ2 . . .DµN−1

F α,a
µN

]
. (3.13)

Here the indices q and g refer to quark and gluon field operators, respectively, and λr denotes the
Gell-Mann matrix of the corresponding light flavor representation; ψ is the quark field, F a

µν the gluonic
field strength tensor in QCD, Dµ the covariant derivative, S the symmetry operator for all Lorentz
indices and Sp the color-trace, where the index a is the color index in the adjoint representation. In
the unpolarized case γP = 1 and Eβγ

µ1α
= δβµ1δ

γ
α,while in the polarized case γP = γ5 and Eβγ

µ1α
= 1

2
εβγµ1α,

where εα1α2α3α4
is the Levi-Civita symbol. The operators (3.11–3.13) still contain trace terms, which

have to be subtracted. More generally than just by applying the symmetry operation a rigorous twist
decomposition can be obtained applying the method of [140].

Let us consider the case of twist-2 operators in the following. We form the expectation value of
the operator (3.8) between nucleon states and perform the Fourier transform of the Wilson coefficients
through which

T (x,Q2) =
∑

N

CN

(
Q2

µ2

)
AN

(
µ2

P 2

)
1

xN
(3.14)

is obtained, where
∫
d4ξeiξqξµ1 . . . ξµN C̄

N(ξ2, µ2) =
1

i

(
2

Q2

)N
qµ1 . . . qµNC

N

(
Q2

µ2

)
(3.15)

〈P |Oµ1,...µN (0, µ
2)|P 〉 = Pµ1 . . . PµNAN

(
µ2

P 2

)
. (3.16)
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The sum in (3.14) runs over even or odd moments starting with a value N0 ≥ 0 depending on the
crossing relation of the currents, cf. e.g. [94]. Here µ2 denotes the factorization scale. This scale
is arbitrary and cancels between the Wilson coefficients and the operator matrix elements since the
structure functions do not depend on it. Performing a contour integral in x around the singularities of
(3.14) one obtains the expressions for the structure functions in Mellin space :

F2,L(N,Q
2) = M[F2,L(x,Q

2)](N) =
∑

i

CN
i

(
Q2

µ2

)
Ai,N

(
µ2

P 2

)
. (3.17)

Eq. (3.17) shows the factorized form of the deep-inelastic structure function. The factorization theorems
[141] state this form is remaining under higher order corrections.

Here the Mellin transformation [142] is given by

M[A(x)](N) =

∫ 1

0

dxxN−1A(x) , (3.18)

with the Mellin-convolution

A(x)⊗ B(x) =

∫ 1

0

dx1

∫ 1

0

dx2δ(x− x1x2)A(x1)B(x2) (3.19)

M[A(x)⊗B(x)](N) = M[A(x)](N)M[B(x)](N) . (3.20)

The Wilson coefficients are perturbatively calculable and account for both the massless and massive
quark contributions. The operator matrix elements Ai,N are of non-perturbative nature. In case of twist-
2 they also denote the moments of the parton distributions for massless quarks and gluons, labeled by
the index i,

Ai,N

(
µ2

P 2

)
≡ fi(N, µ

2) (3.21)

being discussed in the following Section.

4 Parton Models

The SLAC-MIT experiments [15,16] found the strict correlation between the variables ν ≡ p.q/Mν and
Q2 for large enough values and at the fixed ratio

ω =
2Mν

Q2
=

1

x
. (4.1)

In the Bjorken limit [21] the structure functions are given by

lim
Q2,ν→∞

MW1(Q
2, ν) → F1(x) (4.2)

lim
Q2,ν→∞

νW2(Q
2, ν) → F2(x) . (4.3)

In the (naive) parton model by Feynman [22, 23] one assumes that the correlation (4.1) is exact. A
nucleon at short distances is assumed to constitute of individual partons which are charged and move
collinear to the nucleon momentum with momentum fractions xi,

∑
i xi = 1. Let the parton which
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interacts with the virtual photon carry charge e1 and momentum fraction x1. The hadronic tensor is
then given by

Wµν =
4π

M

[
pµpνW2 − gµνM

2W1

]
=

∫ 1

0

dx1f(x1)
2E

2E1
|M |22πδ((x1p + q)2 −m2) (4.4)

|M |2 =
1

2
4e21
[
p1µp

′
1ν + p1νp

′
1µ − gµνp1.q

]
, (4.5)

with p′1 = p1+ q and m the mass of the parton. f(x1) denotes the number density of the struck parton.
The δ-distribution, which incorporates the correlation (4.1) in (4.4), can be written as

δ((x1p+ q)2 −m2) = δ(Q2 − 2x1p.q) ≡
1

2Mν
δ(x1 − x) . (4.6)

After performing the integral in (4.4) one obtains

νW2(Q
2, ν) =

∑

i

e2ixfi(x), 2MW1(Q
2, ν) =

∑

i

e2i fi(x) . (4.7)

Here, we summed over all charged partons and anti-partons contained in the nucleon. In the Bjorken
limit the structure functions are thus described by

F1(x) =
1

2

∑

i

e2i fi(x), F2(x) =
∑

i

e2ixfi(x). (4.8)

The parton distribution function fi(x) agrees with the Mellin inversion of Eq. (3.21). Furthermore, the
Callan-Gross relation [20]

F2(x) = 2xF1(x) (4.9)

holds. The above argument could have been also given assuming a micro-canonical ensemble in (4.4),
[143].

In the parton model the unpolarized structure functions at the Born level in (2.4–2.6) are given by :

F2(x,Q
2) = x

∑

q

Q2
q [q(x,Q

2) + q(x,Q2)] |γ|2

G2(x,Q
2) = x

∑

q

|Qq|vq[q(x,Q2) + q(x,Q2)] |γZ|

H2(x,Q
2) = x

∑

q

1
4
(v2q + a2q)[q(x,Q

2) + q(x,Q2)] |Z|2

xG3(x,Q
2) = x

∑

q

|Qq|aq[q(x,Q2)− q(x,Q2)] |γZ|

xH3(x,Q
2) = x

∑

q

1
2
vqaq[q(x,Q

2)− q(x,Q2)] |Z|2

WNC
2 (x,Q2) = x

∑

i

(v2i + a2i )[qi(x,Q
2) + qi(x,Q

2)] |Z|2

xWNC
3 (x,Q2) = 2x

∑

i

viai[qi(x,Q
2)− qi(x,Q

2)] |Z|2

WCC,+
2 (x,Q2) = 2x

∑

i

[di(x,Q
2) + ui(x,Q

2)] |W+|2

WCC,−
2 (x,Q2) = 2x

∑

i

[ui(x,Q
2) + di(x,Q

2)] |W−|2

xWCC,+
3 (x,Q2) = 2x

∑

i

[di(x,Q
2)− ui(x,Q

2)] |W+|2

xWCC,−
3 (x,Q2) = 2x

∑

i

[ui(x,Q
2)− di(x,Q

2)] |W−|2

(4.10)
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Examples for the polarized structure functions (2.24,2.25) are [94, 144, 145]:

g
|γ|2

1 (x,Q2) =
∑

q

Q2
q[∆q(x,Q

2) + ∆q(x,Q2)]

g
|Z|2

1 (x,Q2) =
∑

q

1
4
(v2q + a2q)[∆q(x,Q

2) + ∆q(x,Q2)]

g
|Z|2

5 (x,Q2) =
∑

q

1
2
vqaq [∆q(x,Q

2)−∆q̄(x,Q2)] , etc.

(4.11)

Here qi(x,Q
2) and q̄i(x,Q

2) denote the quark and antiquark distributions of the up (u) and down (d)
type for four active flavors in the massless limit. ∆qi(x,Q

2) and ∆q̄i(x,Q
2) are the corresponding

polarized parton densities. Qq denotes the charge of the quark. Furthermore,

g4(x,Q
2) = 2xg5(x,Q

2) (4.12)

holds. The remaining structure functions contain also twist-3 contributions [94,145], cf. Sections 15,16.
The applicability of the parton picture rests on the comparison of two times [146]: τint - the inter-

action time of the virtual gauge boson with the hadron and τlife - the life-time of individual partons.
Let these times be measured in an infinite momentum frame, with p the large longitudinal momentum.
Applying old fashioned perturbation theory, cf. [147], they are given by

τint ∼ 1

q0
=

4px

Q2(1− x)
(4.13)

τlive ∼ 1∑
i(Ei −E)

=
2p∑

i(k
2
⊥,i +m2

i )/xi −M2
. (4.14)

These are non-covariant quantities. Note that in this approach energy is not conserved across a vertex,
while momentum is conserved. Here, q0 is the energy component of the exchanged gauge boson and
Ei denote the energies of the individual quantum fluctuations over the hadronic background and E is
the average energy. The individual momentum fractions are xi with

∑
i xi = 1. mi denote the partonic

masses and M is the nucleon mass. The parton model is applicable if

Rτ =
τlive
τint

≫ 1 . (4.15)

This ratio is a covariant quantity. Yet px has to be a large momentum. If (4.15) is not fulfilled the
exchanged gauge boson is unable to resolve an individual parton.

In the massless casemi,M = 0 and assuming that all partons having the same transverse momentum
one obtains

Rτ =
Q2(1− x)

2k2⊥x
∑

i

1

xi

≈ Q2(1− x)2

2k2⊥
(4.16)

The last expression in (4.16) is obtained assuming two ‘essential’ parton with x1 = x, x2 = 1 − x.
Eq. (4.16) is valid for Q2 ≫ k2⊥ and if x neither becomes large or very small, sufficiently away from the
elastic and the high energy region. These arguments are qualitative of course. However, close to the
excluded regions multi-parton and higher twist effects are expected to contribute essentially.

The momentum fraction z of the nucleon momentum p carried by the single parton depends on the
mass of the parton before (mI) and and after (mF ) the interaction with the intermediate gauge boson
as well as the nucleon mass M [148]

z =
Q2 +m2

F −m2
I +

√
(Q2 +m2

F −m2
I)

2 + 4m2
IQ

2

2(ν +
√
ν2 +M2Q2)

. (4.17)
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Important special cases are M = 0, mI = 0 and M = 0, mI = mF ,

z(M = 0, mI = 0) = x

[
1 +

m2
F

Q2

]
(4.18)

z(M = 0, mI = mF ) =
x

2


1 +

√
1 +

2m2
F

Q2


 . (4.19)

Since z ≤ 1 in both cases x is constrained to values smaller than one. For mI = mF = 0,M 6= 0, z
coincides with the Nachtmann variable ξ, (11.1). In the fully massless case the momentum fraction is
given by the Bjorken variable

z = x . (4.20)

In many calculations the so-called collinear parton model is used. Here the partons carry the mo-
mentum

p′ = zp , z ∈ [0, 1] . (4.21)

This Ansatz is sufficient in cases where mass effects or transverse degrees of freedom can be safely
neglected.

The covariant parton model generalizes (4.21) accounting for transverse momentum effects and the
finite nucleon mass [145, 149, 150]. In Sudakov variables the parton momentum k in terms of the
momenta p and q, with p2 =M2, p.k⊥ = q.k⊥ = 0, k⊥.k⊥ = −k2⊥ is given by

k = xp+
k2 + k2⊥ − x2M2

Q2

2

[
1 +

√
1 +

4x2M2

Q2

]
+ 2x2M2

[
1

2

(
1 +

√
1 +

4x2M2

Q2

)
q + xp

]
+ k⊥ . (4.22)

Here k2 denotes the off-shellness of the parton. This representation is used to derive the correct integral
relations among polarized structure functions which are sensitive to transverse degrees of freedom, like
g2(x,Q

2), cf. Sections 15,16.

5 Renormalization and Factorization and Deep-Inelastic

Structure Functions

The quark masses and the strong coupling are scale dependent quantities due to renormalization, while
observables like the structure functions are independent of these arbitrary scales. The scale dependence
can be expressed by the operator D(µ2) [47, 48]

D(µ2) := µ2 ∂

∂µ2
+ β(as(µ

2))
∂

∂as(µ2)
− γm(as(µ

2))m(µ2)
∂

∂m(µ2)
(5.1)

with

β(as(µ
2)) = µ2∂as(µ

2)

∂µ2
(5.2)

γm(as(µ
2)) = − µ2

m(µ2)

∂m(µ2)

∂µ2
, (5.3)
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such that

[
D(µ2) + γJ1 + γJ2 − nψγψ − nAγA

]
Fi(x,Q

2) = 0 . (5.4)

Referring to (3.17) one obtains the following two renormalization group equations for the operator
matrix elements and the Wilson coefficients

∑

j

[
D(µ2)δij + γS,NS

ij − nψγψ − nAγA

]
Aj(N, µ

2) = 0 (5.5)

∑

j

[
D(µ2)δij + γJ1 + γJ2 − γS,NS

ij

]
Ci

(
N,

Q2

µ2

)
= 0 . (5.6)

Here γψ, γA and γJ1,2 denote the anomalous dimension of external quarks, gluons, and the currents,
which can be non-zero if the currents are not conserved, cf. e.g. [151]. Here the scale µ2 = µ2

F refers to
the factorization scale. Furthermore, one may introduce different scales for the renormalization of the
coupling and/or the masses. Often these more general scale choices are used for rough estimates of the
remaining uncertainties due to higher order corrections.

In the twist-2 approximation the deep-inelastic structure functions obey the following generic rep-
resentation :

Fi(x,Q
2) =

∑

l

Ci,l

(
as,

Q2

µ2
F

, mc, mb, x

)
⊗ f l

(
as, z,

µ2
F

P 2

)
, (5.7)

with as = as(µ
2
R), mc = mc(µ

2
R), mb = mb(µ

2
R), and µF,R the factorization and renormalization scales

and the sum runs over the corresponding partonic combinations. Furthermore, one has to specify the
scheme in which as, resp. mc,b are defined. Performing the perturbative calculations to a given order
one may match the µ2-dependence and formulate so-called scheme independent evolution equations for
observables, cf. [152–155].

Let us now consider some aspects of the renormalization of the parton distribution functions and
the Wilson coefficients. In the calculation we will refer to the MS scheme in D = 4 + ε dimensions for
the regularization of all singularities, expanding in the dimensional parameter ε. In the calculation of
operator matrix elements and Wilson coefficients a universal factor

Sε = exp
[ε
2
(γE − ln(4π))

]
(5.8)

occurs in each loop order, which is set to one, unlike in the MS-scheme. Here γE denotes the Euler-
Mascheroni constant. To account for mass effects usually different schemes will be used in intermediary
steps. The renormalized parton densities f l correspond to strictly massless partons and the coupling
constant is that of the MS scheme. So-called heavy quark parton densities will be introduced at a
later stage. All heavy quark effects are contained in the Wilson coefficients Ci,l. Let us now define the
massless flavor part of an (inclusive) structure function Fi(x,Q

2), Fmassless
i (x,Q2). It is given by (5.7)

in case the Wilson coefficients do not contain any direct or indirect heavy quark mass effects. Note that
this definition is different from one sometimes used in experiment, where one requests all final state
fermions being massless. Correspondingly, the massive part of Fi is given by

Fmassive
i (x,Q2) = Fi(x,Q

2)− Fmassless
i (x,Q2) . (5.9)

The local twist-2 operators (3.11–3.13), resp. the parton distribution functions, are renormalized by

ONS
q = ZNS(µ2)ÔNS

q , OS
i = ZS

ij(µ
2)ÔS

j (5.10)
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in the non-singlet and singlet case respectively. The Z-factors account for the ultraviolet singularities

Zα
ij(as, ε) = δij +

∞∑

k=0

als

l∑

n=1

zl,nα
εn

(5.11)

and the anomalous dimensions given by

γNS
qq = Z−1,NS(µ2)µ2 ∂

∂µ2
ZNS(µ2), γSij = Z−1,S

il (µ2)µ2 ∂

∂µ2
ZS
lj(µ

2) . (5.12)

The unrenormalized coupling âs = g2s/(16π
2) is related to the renormalized one by

âs = Z2
g (as, ε)as . (5.13)

The heavy quark masses in the Wilson coefficients are renormalized either in the on-shell scheme or
the MS scheme,

m̂ = Zmm = m

[
1 +

∞∑

k=1

âks

(
m2

µ2

)kε/2
δmk(ε)

]
. (5.14)

The functions δm1,2(ε) have been calculated in [156].
At large enough scales Q2 ≫ m2

q the heavy flavor Wilson coefficients factorize into massive operator
matrix elements and the massless Wilson coefficients [71]. In case of the structure function F2(x,Q

2)
this is the case for Q2 >

∼ 10 m2
Q, with mQ the heavy quark mass. In this kinematic regime the renor-

malization of the heavy flavor Wilson coefficients can be traced back to the massless flavor ones and
that of the scheme-independent massive operator matrix elements. As has been lined out in [67] charge
renormalization is somewhat more complicated and it is useful to first perform it in a MOM-scheme
using the background field method [157] before one transforms to the MS-scheme. The massive OMEs
contain collinear singularities due to massless sub-graphs, which have to be factorized by the matrices
Γ−1
ij (µ

2). Unlike the massless case, where

Γ−1
ij (µ

2) = Zij(µ
2), (5.15)

this is not the case for the massive OMEs. The renormalization of the massless Wilson coefficients is
performed by Γ−1

ij (µ
2) taken in the massless case, cf. [61] to 3-loop order. It is evident that the fragile

framework of renormalization scarcely allows for any manipulations on ‘phenomenological’ grounds ad
hoc. In any case, in this way a new scheme is chosen.

6 The strong coupling constant

The strong coupling as(µ
2) = g2s/(16π

2) = αs(µ
2)/4π is a central parameter in QCD. It is not an

observable itself but the various hard scattering processes are parameterized by it in perturbation
theory. Different renormalization schemes may be chosen, cf. [158]. Most commonly αs(µ

2) is expressed
in the MS–scheme [159]. All quark flavors are treated as effectively massless.

The running coupling is obtained as the solution of the equation

das(µ
2)

d lnµ2
= −β0a2s − β1a

3
s − β2a

4
s − β3a

5
s + . . . (6.1)
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So far the contributions to the β-function have been calculated up to 4–loop order in the MS–scheme,
where the LO [35–38], NLO [160, 161], NNLO [162, 163], and N3LO [53, 54] terms are given by 4 :

β0 = 11− 2

3
Nf , (6.2)

β1 = 102− 38

3
Nf , (6.3)

β2 =
2857

2
− 5033

18
Nf +

325

54
N2
f , (6.4)

β3 =

(
149753

6
+ 3564ζ3

)
−
(
1078361

162
+

6508

27
ζ3

)
Nf +

(
50065

162
+

6472

81
ζ3

)
N2
f +

1093

729
N3
f .

(6.5)

Here we refer to the color coefficients in SU(3)c and Nf denotes the number of active flavors. The
solution of (6.1) reads [165]

1

as(Q2)
=

1

as(Q2
0)

+ β0 ln

(
Q2

Q2
0

)
+ Φ(n)(as(Q

2); βi)− Φ(n)(as(Q
2
0); βi). (6.6)

The superscript n denotes the term at which the expansion of the β-function in (6.1) was truncated.
In NNLO one obtains

Φ(2)(x; βi) = − β1
2β0

ln

∣∣∣∣
x2

β0 + β1x+ β2x2

∣∣∣∣+
β2
1 − 2β0β2

β0
√

4β2β0 − β2
1

arctan

(
β1 + 2β2x√
4β0β2 − β2

1

)
.

(6.7)

Note that

Nf ≤ 5 : 4β0β2 − β2
1 > 0

Nf = 6 : 4β0β2 − β2
1 < 0. (6.8)

This explains the smaller change in as(µ
2) from NLO to NNLO at scales below the top threshold, if

compared to the logarithmic corrections characteristic for NLO.
Often (6.1) is solved expanding the approximate polynomial in as after the separation of variables.

Let us define L = ln(µ2/Λ2). Then, according to the convention in [159], one obtains [166] :

as(µ
2) =

1

β0L
− β1
β3
0L

2
ln(L) +

1

β3
0L

3

[
β2
1

β2
0

(
ln2(L)− ln(L)− 1

)
+
β2
β0

]

+
1

β4
0L

4

[
β3
1

β3
0

(
− ln3(L) +

5

2
ln2(L) + 2 ln(L)− 1

2

)
− 3

β1β2
β2
0

ln(L) +
β3
2β0

]
. (6.9)

Here Λ ≡ Λ(Nf) denotes the QCD scale. In applications the scale µ2 varies over a wider range and may
pass flavor thresholds. As a convention, one identifies the scale µ at which a new quark flavor becomes
active by mq, q = c, b, t. This definition implies matching conditions in as(µ

2). At LO and NLO they
are given by as(Nf − 1) = as(Nf), while in higher orders more specific conditions apply [166–168]. For
4-loop running the 3-loop matching conditions are

as(Nf − 1)

as(Nf )
= 1 + C2a

2
s(Nf) + C3(Nf)a

3
s(Nf) , (6.10)

with C2 = −14/3, C3 = −340.7289736 + 16.79813197(Nf − 1) for µ = mq. In Section 12 we will
summarize the current status of the determination of αs(M

2
Z) from deep-inelastic data.

4For Quantum Electrodynamics also the coefficient β4 = 195067/486+ (800/3)ζ3 + (416/3)ζ4 − (6800/3)ζ5 has been
calculated in [164].
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7 Anomalous Dimensions and Splitting Functions

The anomalous dimensions of local twist-2 operators γij(as, N) have the representation

γlij(as, N) =

∞∑

k=1

as(µ
2)γ

l,(k−1)
ij (N) , (7.1)

where N denotes the Mellin variable. They are related to the splitting functions in z-space by

γ
l,(k−1)
ij (N) = −

∫ 1

0

dzzN−1P
l,(k−1)
ij (z) (7.2)

uniquely [169], cf. also [170]. z denotes the collinear momentum fraction of the parton compared to its
emitting particle.

Here l labels the three flavor non-singlet (NS±, NSv) and singlet (S) cases, with partonic transitions
j → i. The three flavor non-singlet splitting functions are given by, cf. [59],

γNS,±
qq (N) = γvqq(N)± γvqq̄(N) (7.3)

γNS,v
qq (N) = γvqq(N)− γvqq̄(N) +Nf(γ

s
qq(N)− γsqq̄(N)) (7.4)

with

γqiqj(N) = γq̄j q̄i(N) = δijγ
v
qq(N) + γsqq(N) (7.5)

γqiq̄j(N) = γq̄iqj(N) = δijγ
v
qq̄(N) + γsqq̄(N) . (7.6)

γvqq̄(N) contributes for the first time at NLO and the non-zero difference γsqq(N) − γsqq̄(N) emerges
with NNLO. Up to exceptions the anomalous dimensions are different in the unpolarized and polarized
cases. Note that there are sometimes different conventions being used in the literature parameterizing
the anomalous dimensions, splitting functions and Wilson coefficients, due to a different normalization
of the strong coupling constant or using the operator µ∂/∂µ instead of µ2∂/∂µ2 in the renormalization
group equation. Fermion-number conservation implies

γNS,−
qq (1) = 0 (7.7)

γNS,v
qq (1) = 0 . (7.8)

7.1 Leading Order

The leading order QCD anomalous dimensions in the unpolarized case have been calculated in [171–173].
They are given by

γ(0)qq (N) = CF

[
4S1(N)− 3N2 + 3N + 2

N(N + 1)

]
= γ(0),NS

qq (N) (7.9)

γ(0)qg (N) = −4TFNf
2 +N +N2

N(N + 1)(N + 2)
(7.10)

γ(0)gq (N) = −2CF
2 +N +N2

(N − 1)N(N + 1)
(7.11)

γ(0)gg (N) = CA

[
−24 + 2N + 13N2 + 22N3 + 11N4)

3(N − 1)N(1 +N)(2 +N)
+ 4S1(N)

]
+

8

3
TFNf , (7.12)
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resp. in z-space

P (0)
qq (z) = 2CF

(
1 + z2

1− z

)

+

(7.13)

P (0)
qg (z) = 4TfNf

[
z2 + (1− z)2

]
(7.14)

P (0)
gq (z) = 2CF

1 + (1− z)2

z
(7.15)

P (0)
gg (z) = 4CA

[
1

(1− z)+
+

1

z
− 2 + z − z2

]
+ 2β0δ(1− z). (7.16)

Here, S1(N) denotes the simplest of the nested harmonic sums [174].

Sb,a1,...,an(N) =
N∑

k=1

(sign(b))k

k|b|
Sa1,...,an(k), S∅ = 1 . (7.17)

The structure of the splitting functions P
(0)
qq , P

(0)
qg , P

(0)
gq has been known from QED, [175], see also [176,

177]. Following [50,51] splitting functions for fermion-pseudoscalar and fermion-abelian vector theories

L = ψ̄γ5ψΦ, L = ψ̄γµψA
µ, (7.18)

were calculated in [178–181]. For Quantum Chromodynamics they were computed in Refs. [182–184]
in the space-like resp. in [185] in the time-like case. In [183, 186] also the individual helicity contri-
butions were given, [187]. The calculation of the QCD splitting functions [183] was of importance to
extend the naive parton model to the QCD improved parton model. The notion of splitting functions,
furthermore, forms a more intuitive picture, if compared to the more formal description obtained from
QCD corrections to the amplitudes in the light cone expansion, and contributed a lot to the detailed
understanding of the respective processes.

The following relations apply for z < 1 :

Pqq(z) = Pgq(1− z) (7.19)

Pqg(z) = Pqg(1− z) (7.20)

Pgg(z) = Pgg(1− z) . (7.21)

Furthermore, the integral relations
∫ 1

0

dzz [Pqq(z) + Pgq(z)] = 0 (7.22)

∫ 1

0

dzz [2NfPqg(z) + Pgg(z)] = 0 (7.23)

hold.
In the polarized case the leading order singlet anomalous dimensions were calculated in [188, 189] 5

using the operator approach and in Ref. [183] for the splitting functions :

∆γ(0)qq (N) = γ(0),NS
qq (N) = ∆γ(0),NS

qq (N) (7.24)

∆γ(0)qg (z) = −4TfNf
N + 2

N(N + 1)
(7.25)

∆γ(0)gq (z) = −2CF
N − 1

N(N + 1)
(7.26)

∆γ(0)gg (z) = 4CA

[
S1(N)− 2

N(N + 1)

]
− 2β0 . (7.27)

5The foregoing paper [190] was not fully correct.
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7.2 Next-to-Leading Order

The splitting functions at NLO were calculated in [191, 192]. For space-like virtualities they read :

γNS,−,(1)
qq (N) = CACF

[
−16S−2,1 −

51N5 + 102N4 + 655N3 + 484N2 + 12N + 144

18N3(N + 1)2
+ 8S−3 +

268

9
S1

+

(
16S1 −

8

N(N + 1)

)
S2 −

44

3
S2 + 8S3 −

8(−1)N

(N + 1)3

]
+ C2

F

[
32S−2,1 +

(
8(2N + 1)

N2(N + 1)2

−16S2

)
S1 +

4 (3N2 + 3N + 2)

N(N + 1)
S2 −

3N6 + 9N5 + 9N4 − 5N3 − 24N2 − 32N − 24

2N3(N + 1)3

−16S−3 +

(
16

N(N + 1)
− 32S1

)
S2 − 16S3(N) +

16(−1)N

(N + 1)3

]

+CFNf

(
3N4 + 6N3 + 47N2 + 20N − 12

9N2(N + 1)2
− 40

9
S1 +

8

3
S2

)
(7.28)

γPS,(1)qq (N) = −4CFNf
(2 + 5N +N2)(4 + 4N + 7N2 + 5N3)

(−1 +N)N3(1 +N)3(2 +N)2
(7.29)

γ(1)qg (N) = CANf

{
16(−1)N(5 + 7N + 4N2 +N3)

(1 +N)3(2 +N)3
− 4P1(N)

(−1 +N)N3(1 +N)2(2 +N)3

− 16(3 + 2N)

(1 +N)2(2 +N)2
S1 +

4(2 +N +N2)

N(1 +N)(2 +N)

(
2S−2 + S2

1 + S2

)
}

+CFNf

{
−2(4 + 8N + 25N2 + 51N3 + 36N4 + 15N5 + 5N6)

N3(1 +N)3(2 +N)

+
8

N2
S1 +

4(2 +N +N2)

N(1 +N)(2 +N)

(
−S2

1 + S2

)
}

(7.30)

γ(1)gq (N) = C2
F

{
2(−4− 12N −N2 + 28N3 + 43N4 + 30N5 + 12N6)

(−1 +N)N3(1 +N)3

−4(10 + 17N + 8N2 + 5N3)

(−1 +N)N(1 +N)2
S1 +

4(2 +N +N2)

(−1 +N)N(1 +N)

(
S2
1 + S2

)
}

+CACF

{
−8(−1)N (2 + 6N + 5N2 + 3N3)

(−1 +N)N2(1 +N)3
− 4P2(N)

9(−1 +N)2N3(1 +N)2(2 +N)2

+
4(−12− 22N + 41N2 + 17N4)

3(−1 +N)2N2(1 +N)
S1 +

4(2 +N +N2)

(−1 +N)N(1 +N)

(
S−2 − S2

1 + S2

)

+CFNf

{
8(16 + 27N + 13N2 + 8N3)

9(−1 +N)N(1 +N)2
− 8(2 +N +N2)

3(−1 +N)N(1 +N)
S1

}
(7.31)

γ(1)gg (N) = C2
A

{
−16(−1)N(8 + 36N + 61N2 + 61N3 + 36N4 + 12N5 + 2N6)

(−1 +N)N2(1 +N)3(2 +N)3

− 2P3(N)

9(−1 +N)2N3(1 +N)2(2 +N)3
− 8S−3 +

[
32(1 +N +N2)

(−1 +N)N(1 +N)(2 +N)
− 16S1

]
S−2
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+

[
4P4(N)

9(−1 +N)2N2(1 +N)2(2 +N)2
− 16S2

]
S1 +

32(1 +N +N2)

(−1 +N)N(1 +N)(2 +N)
S2

−8S3 + 16S−2,1

}

+CANf

[
8(6 + 28N + 41N2 + 29N3 + 22N4 + 9N5 + 3N6)

9(−1 +N)N2(1 +N)2(2 +N)
− 40

9
S1

]

+2CFNf
P5(N)

(−1 +N)N3(1 +N)3(2 +N)
(7.32)

with

P1(N) = 16 + 48N + 56N2 + 52N3 + 25N4 + 23N5 + 14N6 + 5N7 +N8 (7.33)

P2(N) = 144 + 432N − 152N2 − 900N3 − 275N4 + 592N5 + 834N6 + 512N7 + 109N8 (7.34)

P3(N) = 576 + 1488N + 1088N2 − 536N3 − 848N4 + 711N5 + 2075N6 + 1949N7 + 937N8

+288N9 + 48N10 (7.35)

P4(N) = −144− 144N + 772N2 + 844N3 − 109N4 − 392N5 + 134N6 + 268N7 + 67N8 (7.36)

P5(N) = −8− 8N − 10N2 − 22N3 − 3N4 + 6N5 + 8N6 + 4N7 +N8 . (7.37)

In the polarized case the anomalous dimensions were obtained in [69, 70] :

∆γNS,−,(1)
qq (N) = γNS,−,(1)

qq (N) (7.38)

∆γPS,(1)qq (N) = 16CFTFNf
(N + 2) (N3 + 2N + 1)

N3(N + 1)3
(7.39)

∆γ(1)qg (N) = 16CATFNf

{
N − 1

N(N + 1)

[
S2
1 + S2 + 2S−2

]
− 4

N(N + 1)2
S1

−N
5 +N4 − 4N3 + 3N2 − 7N − 2

N3(N + 1)3

}
+ 8CFTFNf

{
4

(N − 1)

N2(N + 1)
S1

−(N − 1)(5N4 + 10N3 −N + 2)

N3(N + 1)3
+ 2

(N − 1)

N(N + 1)

[
S2 − S2

1

]
}

(7.40)

∆γ(1)gq (N) = 8CACF

{
N + 2

N(N + 1)

[
−S2

1 + S2 + 2S−2

]
+

11N2 + 22N + 12

3N2(N + 1)
S1

−76N5 + 271N4 + 254N3 + 41N2 + 72N + 36

9N3(N + 1)3

}
+ 4C2

F (N + 2)

{
2

1

N(N + 1)

×[S2
1 + S2]− 2

3N + 1

N(N + 1)2
S1 +

(3N + 1)(3N3 + 3N2 −N − 2)

N3(N + 1)3

}

+32CFNfTF (N + 2)

[
5N + 2

9N(N + 1)2
− 1

3N(N + 1)
S1

]

∆γ(1)gg = 4C2
A

{
2 (67N4 + 134N3 + 67N2 + 144N + 72)

9N2(N + 1)2
S1 − 8S1[S2 + S−2]

−48N6 + 144N5 + 469N4 + 698N3 + 7N2 + 258N + 144

9N3(N + 1)3
+ 16

S2 + S−2

N(N + 1)
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+8S−2,1 − 4S3 − 4S−3

}

+32CATFNf

[
3N4 + 6N3 + 16N2 + 13N − 3

9N2(N + 1)2
− 5

9
S1

]

+8CFTFNf
N6 + 3N5 + 5N4 +N3 − 8N2 + 2N + 4

N3(N + 1)3
(7.41)

In the above expressions one may identify the leading behaviour at small x given by poles at N = 1
resp. N = 0, cf. Section 13. The leading large x behaviour manifests itself by powers of S1(N) ∝ ln(N)
in the limit N → ∞, cf. Section 14.

7.3 3-Loop Order

The unpolarized 3-loop anomalous dimensions have first been calculated for a series of fixed moments
in [55–58] and then in complete form in [59, 60]. Independent checks for the moments were obtained
as a by-product of the calculation of the massive operator matrix elements [67] for all color factors
∝ TF and for the leading Nf dependence [193–195]. In Mellin-space the anomalous dimensions may be
represented by basic harmonic sums up to weight w = 5 [196]. Analytic continuations for these functions
to complex values of N were given in [197]. In z-space they are given by harmonic polylogarithms [198].
The corresponding expressions are very lengthly and will not be presented here. At a given value of
αs their size can be compared to the corresponding values at LO and NLO, cf. Figure 9. As present
QCD-anlyses show, the seemingly small difference between the curves at NLO and NNLO account for
a difference of ∆αs(M

2
Z) ≈ 0.005, which is essential given the experimental accuracy of ∼ 1% being

reached at present, see Section 12.
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Figure 9: The perturbative expansion of the diagonal anomalous dimensions γqq(N) and γgg(N) for four flavors
at αs = 0.2. The pure-singlet (ps) contribution to γqq(N) is shown separately. From [60], c©(2004) by Elsevier
Science.

First numeric results on the quarkonic contributions to the 3-loop polarized anomalous dimensions were
given in [73].

24



7.4 4-Loop Order

At the 4–loop level at present the 2nd and 3rd moment of the non-singlet anomalous dimension have
been calculated [62–64]. Recently the general color structure of γ(3),NS(N = 2) has been given in [64].

γ
(3),NS
Nf=3 (N = 2) =

1680283336

177147
− 23873952

6561
ζ3 +

5120

3
ζ4 −

56960

243
ζ5, [62], (7.42)

γ
(3),NS
SU(3)c

(N = 2) =

[
3100369144

177147
+

26060864

6561
ζ3 −

7040

27
ζ4 −

1249280

243
ζ5

]

+

[
−167219672

59049
− 6322976

2187
ζ3 +

64640

81
ζ4 +

14720

9
ζ5

]
Nf

+

[
1084904

19683
+

2560

27
ζ3 −

1280

27
ζ4

]
N2
f +

[
−4096

6561
+

512

243
ζ3

]
N3
f , [64] . (7.43)

In numerical studies the 4-loop [62,63] moments were compared to the result of a Padé approximation
[199]

γ
(3),Padé
NS (N) =

γ
(2)
NS(N)

2

γ
(1)
NS(N)

(7.44)

for Nf = 3, as genuine number of massless flavors. For the second moment the Padé approximation
and the exact result deviate by 20.9 % and for the third moment by 14.9 % only. In Ref. [199] an
uncertainty of ±100% has been assumed for (7.44).

7.5 Anomalous dimensions in the large Nf limit

The leading and sub-leading coefficients in 1/Nf can be calculated for the anomalous dimensions and
the β-function using the method of Refs. [200] to all orders in the coupling constant in the MS–scheme.
The result of these computations give very useful predictions for the complete diagrammatic calculation,
which is more difficult. Results were obtained for the fermion mass anomalous dimensions [201–203], the
QCD β-function [204], the unpolarized anomalous dimensions of composite twist-2 operators [193,205],
the flavor non-singlet Wilson coefficient of FL(x,Q

2) [206], the polarized anomalous dimensions [207],
and the anomalous dimensions for transversity [208]. Here, the electron and quark mass anomalous
dimension [201, 202] have been calculated to O(1/N2

f ). As one example we show the prediction for the
4–loop flavor non-singlet anomalous dimension

γ(3),NS(N) = CF (TRNf )
3

{
2

27
S4(N)− 10

81
S3(N)− 2

81
S2(N)− 2

81
S1(N) +

131

1296

+

[
4

27
S1(N)− 2

27N(N + 1)
− 1

9

]
ζ3 +

(2N − 1)(2N5 − 5N4 − 10N3 + 7N + 3)

81N4(N + 1)4

}
,

(7.45)

which has been confirmed by an explicit calculation for N = 2 [62,64] and N = 3 [63]. Another example
concerns a combination of gluonic anomalous dimensions. At 3-loop order one obtains

γ̃(2)gg + γ̃(2)gq

γ
(0)
qg

γ̃
(0)
gg

= CFT
2
RN

2
f

{
64

3

(N2 +N + 2)2

(N + 2)(N + 1)2(N − 1)N2
S2
1 −

4

27

p1(N)

(N + 2)(N + 1)4(N − 1)N4
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−64

9

10N6 + 30N5 + 109N4 + 168N3 + 155N2 + 76N + 12

(N + 2)(N + 1)3(N − 1)N3
S1

}

+CAT
2
RN

2
f

{
8

27

8N6 + 24N5 − 19N4 − 78N3 − 253N2 − 210N − 96

(N + 2)(N + 1)2(N − 1)N2
S1

− 2

27

p2(N)

(N + 2)(N + 1)3(N − 1)N3

}
(7.46)

p1(N) = 33N10 + 165N9 − 32N8 − 1118N7 − 5807N6 − 12815N5 − 16762N4 − 13800N3

−7112N2 − 2112N − 288 (7.47)

p2(N) = 87N8 + 348N7 + 848N6 + 1326N5 + 2609N4 + 3414N3 + 2632N2 + 1088N + 192 .

(7.48)

Here γ̃
(l)
ij denotes the respective part of highest power in Nf . The result was confirmed in [60], and more

recently also in [195].

8 Coefficient functions

The Wilson coefficients in Mellin space obey the following perturbative expansion

Ci(N, as) = δiq +

∞∑

k=1

as(µ
2)C

(k)
i (N) . (8.1)

Similar expressions are also obtained for other hard scattering inclusive cross sections depending on
a single momentum-fraction scale like for the Drell-Yan and hadronic Higgs-boson production cross
section in the heavy top-quark approximation [209, 210].

8.1 First Order

The first order unpolarized coefficient functions in the massless case in the MS-scheme are given by,
cf. [152] :

C
(1)
2,q (N) = CF

{
−9N3 + 2N2 − 5N − 2

N2(1 +N)
+

3N2 + 3N − 2

N(1 +N)
S1 + 2S2

1 − 2S2

}
(8.2)

C
(1)
2,g (N) = Nf

{
−2(−2 −N − 4N2 +N3)

N2(1 +N)(2 +N)
− 2(2 +N +N2)

N(1 +N)(2 +N)
S1

}
(8.3)

C
(1)
L,q(N) =

4CF
1 +N

; C
(1)
L,g(N) =

8Nf

(1 +N)(2 +N)
(8.4)

C
(1)
3,q (N) = C

(1)
2,q (N)− 2CF

2N + 1

N(N + 1)
. (8.5)

Likewise the LO massless polarized Wilson coefficients for the twist-2 structure function g1(x,Q
2)

read, [211–214], see also [215] :

∆C
(1)
1,q (N) = C

(1)
3,q (N) (8.6)

∆C
(1)
1,g (N) = 2Nf

N − 1

N(N + 1)

[
1

N
− 1− S1

]
. (8.7)

The first moment of ∆C
(1)
1,g (N) vanishes, which is also observed for ∆C

(2)
1,g (N), [68].
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8.2 Higher Orders

The massless Wilson coefficients for the unpolarized structure functions at O(a2s) were calculated in
[192,216] for F2(x,Q

2), in [192,216,217] for FL(x,Q
2), and for xF3(x,Q

2) in [218]. A series of moments
was calculated in [219]. The polarized O(a2s) Wilson coefficients for the structure function g1(x,Q

2)
were computed in [68]. All Wilson coefficients can be expressed in terms of harmonic sums up to weight
w = 4. As an example we show the coefficient functions in case of FL(x,Q

2), with the quarkonic, the
pure-singlet and the gluonic contribution :

C
(2)
L,q(N) = CACF

{(
32

N + 1
S1 −

32 (N4 + 2N3 −N2 − 2N − 6)

(N − 2)N(N + 1)2(N + 3)

)
S−2 +

16

N + 1
[S−3 + S3]

+
92

3(N + 1)
S1 −

32

N + 1
S−2,1 −

16(−1)NP6(N)

5(N − 2)(N − 1)2N2(N + 1)4(N + 2)2(N + 3)3

+
2P7(N)

45(N − 1)2N2(N + 1)4(N + 2)2(N + 3)3
+

48

N + 1
ζ3

}
+ C2

F

{
−4 (9N2 + 13N + 2)

N(N + 1)2
S1

+

(
64 (N4 + 2N3 −N2 − 2N − 6)

(N − 2)N(N + 1)2(N + 3)
− 64

N + 1
S1

)
S−2 +

8

N + 1
S2
1 −

32

N + 1
[S−3 + S3]

− 8

N + 1
S2 +

64

N + 1
S−2,1 +

32(−1)NP6(N)

5(N − 2)(N − 1)2N2(N + 1)4(N + 2)2(N + 3)3

− 2P8(N)

5(N − 1)2N2(N + 1)4(N + 2)2(N + 3)3
+

96

N + 1
ζ3

}

+CFNF

[−4(19N2 + 7N − 6)

9N(N + 1)2
− 8

3(N + 1)
S1

]
(8.8)

C
(2),PS
L,q (N) = CFNF

[−16(N5 + 2N4 + 2N3 − 5N2 − 12N − 4)

(N − 1)N2(N + 1)3(N + 2)2
− 16(N2 +N + 2)

(N − 1)N(N + 1)2(N + 2)
S1

]

(8.9)

C
(2)
L,g(N) = CACF

{
32 (2N3 − 2N2 −N − 1)

(N − 1)N(N + 1)2(N + 2)
S1 +

16

(N + 1)(N + 2)
S2
1 −

32

(N + 1)(N + 2)
S−2

− 16

(N + 1)(N + 2)
S2 +

32(−1)N (N3 + 4N2 + 7N + 5)

(N + 1)3(N + 2)3

−16 (2N5 + 9N4 + 5N3 − 12N2 − 20N − 8)

(N − 1)N2(N + 1)2(N + 2)3

}
+ CFNf

{
− 8 (3N2 + 3N + 2)

N(N + 1)2(N + 2)
S1

+
32(N − 1)

(N − 2)(N + 1)(N + 3)
S−2 +

8P9(N)

15(N − 1)2N2(N + 1)3(N + 2)2(N + 3)3

+
32(−1)NP10(N)

15(N − 2)(N − 1)2N2(N + 1)3(N + 2)2(N + 3)3

}
(8.10)

P6(N) = 2N11 + 41N10 + 226N9 + 556N8 + 963N7 + 2733N6 + 7160N5 + 8610N4 + 1969N3

−2748N2 − 864N − 216 (8.11)

P7(N) = 1075N12 + 14390N11 + 73464N10 + 160740N9 + 35682N8 − 516984N7 − 979012N6

−627068N5 + 84099N4 + 300258N3 + 119124N2 − 648N + 7776 (8.12)

(8.13)

P8(N) = 85N12 + 1130N11 + 5472N10 + 9300N9 − 13574N8 − 85432N7 − 149336N6
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−114524N5 − 11383N4 + 44894N3 + 22992N2 − 4104N − 432 (8.14)

P9(N) = 26N9 + 539N8 + 3244N7 + 8465N6 + 9342N5 + 841N4 − 5720N3 − 2193N2

+2484N + 1404 (8.15)

P10(N) = N10 − 13N9 − 39N8 + 222N7 + 1132N6 + 1787N5 + 913N4 + 392N3 + 645N2

−324N − 108 (8.16)

The other Wilson coefficients have a similar structure, cf. [220, 221].
At O(a3s) a series of moments for the Wilson coefficients of the structure functions was calculated

in [55–58]. The complete expressions were computed in [61] and combinations of charged current
structure functions in [222]. In Figure 10 the relative size of the QCD corrections to two Wilson
coefficients is illustrated comparing the corrections O(as) to O(a3s). In the flavor non-singlet case the
corrections for the Wilson coefficients at NNLO are larger than in case of the anomalous dimension for
large values of N , resp. in the large x region.
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Figure 10: The perturbative expansion of the non-singlet (left) and gluon (right) N -space coefficient functions for
F2/x at αs = 0.2, Nf = 4. O(αs) dash-dotted lines, O(α2

s) dashed lines, O(α3
s) full lines. In the non-singlet case

LO corresponds to α0
s, From [61], c©(2005) by Elsevier Science.

The massless Wilson coefficient at O(a3s) can be represented in terms of harmonic sums up to
weight w = 6, resp. harmonic polylogarithms in z-space. The corresponding expressions are very large.
Structural simplifications can be obtained applying algebraic [223] and structural relations [196] of these
quantities. The Wilson coefficients obey difference equations of order ∼ 35 and degree ∼ 1000, which
can be found in principle determining somewhat more than 5000 moments, [220]. The corresponding
difference equations can be solved with the package Sigma [76].

9 QED and Electro-weak Radiative Corrections to Deep-

Inelastic Scattering

The QED radiative corrections to the deep–inelastic scattering cross sections become rather large in
part of the kinematic region due to logarithmic terms of O(α ln(Q2/m2

l )), with ml the charged lepton
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mass. The corrections in case of e±N are larger than for µ±N scattering. They have to be known
precisely since their unfolding is usually performed for the scattering cross section itself prior to the
QCD analyses of the deep–inelastic structure functions.

A first dedicated calculation of the QED radiative corrections to deep inelastic e±N scattering was
performed by Mo and Tsai [224] and applied in the analysis of the MIT-SLAC experiments, [15, 16].
Later calculations were carried out in [225, 226] for l±N scattering.

The detailed knowledge of QED and electroweak radiative corrections was of special importance
also for the measurements of the electroweak parameters in deep inelastic ν(ν)N scattering. Early
calculations were carried out in [227]. More recent calculations have been performed in [228] in relation
to the NuTeV anomaly [229]. The QED bremsstrahlung corrections apply to the lepton lines and
the incoming quark line, since the corrections to the inclusive hadronic final state vanish according to
the Kinoshita-Lee-Nauenberg theorem [230]. In [231] the leading logarithmic corrections in O(α) were
calculated, suggesting first to absorb the quarkonic QED corrections into the scaling violations of the
quark distributions.

With the advent of HERA the radiative corrections were partly recalculated and dedicated calcula-
tions for deep inelastic neutral and charged current e±p scattering were carried out by different groups,
also using a variety techniques, [84,90,226,232–250]. These approaches include both semi-analytic cal-
culations [84, 90, 226, 234–247, 250] and calculations based on Monte Carlo methods [232, 233, 248, 249].
The virtual electro-weak 1-loop corrections to neutral and charged current deep-inelastic scattering
were calculated in Refs. [232, 233, 235, 236]. The inclusive bremsstrahlung corrections are often pre-
sented integrating over the phase space of the emitted photons or lepton pairs, which can be performed
analytically [234–243].

Dominant contributions to the QED radiative corrections may be obtained using leading log (LLA)
techniques [84, 226, 231, 238–242, 244]. This approach, which is based on the factorization of (collinear)
fermion mass singularities, allows to determine the terms ∝ α ln(Q2/m2

f) in a straightforward way for
different settings of the measured kinematic variables. Also higher order terms were calculated within
this approach [84, 244].

The first order terms are described by:

d2σini(fin),1loop

dxdy
=

α

2π
Le

1∫

0

dzP (0)
ee (z)

{
θ(z − z0)J(x, y, Q

2)
d2σ0

dxdy

∣∣∣∣
x=x̂,y=ŷ,S=Ŝ

− d2σ0

dxdy

}
,

where P
(0)
ij (z) denote the leading order QED splitting functions with i, j ∈ {e, γ}. They are obtained

from the QCD splitting functions given in Sect. 7 setting CA = 0, CF = 1, TF = 1. The scale of the
correction is set by the logarithm

Le = ln
Q2

m2
e

− 1. (9.1)

The second order corrections O((αLe)
2) are:

d2σl,2loop

dxdy
=

[ α
2π
Le

]2 ∫ 1

0

dzP (2,1)
ee (z)

{
θ(z − z0)J(x, y, z)

d2σ0

dxdy

∣∣∣∣
x=x̂,y=ŷ,S=Ŝ

− d2σ0

dxdy

}

+
( α
2π

)2 ∫ 1

z0

dz

{
L2
eP

(2,2)
ee (z) + Le

∑

f=l,q

ln
Q2

m2
f

P
(2,3)
ee,f (z)

}
J(x, y, z)

d2σ0

dxdy

∣∣∣∣
x=x̂,y=ŷ,S=Ŝ

. (9.2)
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Initial State Radiation Ŝ = zS

Kinematics Q̂2 ŷ ẑ0 J(x, y, z)

leptonic variables zQ2
l

z + yl − 1
z

1− yl
1− xlyl

yl
z + yl − 1

mixed variables zQ2
l

yJB
z yJB 1

hadronic variables Q2
h

yh
z yh

1
z

JB variables
Q2
JB(1− yJB)z
z − yJB

yJB
z

yJB
1− xJB(1− yJB)

1− yJB
z − yJB

double angle method z2Q2
DA yDA 0 z

θl, yJB Q2
θy
z(z − yJB)
1− yJB

yJB
z yJB

z − yJB
1 − yJB

Σ method Q2
Σ yΣ xΣ

1
z

eΣ method zQ2
l zyeΣ xΣ 1

Final State Radiation Ŝ = S

leptonic variables
Q2
l
z

z + yl − 1
s 1− yl(1− xl)

yl
z(z + yl − 1)

mixed variables
Q2
l
z yJB xm

1
z

Σ method Q2
Σ
(1− yΣ(1− z))

z2
yΣz

1− yΣ(1− z)
zΣ,f0

1
z2

eΣ method
Q2
l
z

yeΣz
2

(1− yΣ(1− z))2
zΣ,f0

1 + yeΣ(1− z)
(1− yeΣ(1− z))z

Table 1: Scaling properties of various sets of kinematic variables for leptonic initial and final state radiation, cf. [90].

This notion reproduces the soft photon terms of complete calculations in leptonic variables (cf.
e.g. [90]). The shifted variables x̂, ŷ, the threshold z0 and the Jacobian J depend on the choice of the
external kinematic variables, see Table 1. S denotes the cms energy and the hats refer to variables in
the sub–system.

Here the different second order splitting kernels are given by

P (2,1)
ee (z) =

1

2

[
P (0)
ee ⊗ P (0)

ee

]
(z) =

1 + z2

1− z

[
2 ln(1− z)− ln z +

3

2

]
+

1

2
(1 + z) ln z − (1− z), (9.3)

P (2,2)
ee (z) =

1

2

[
P (0)
eγ ⊗ P (0)

γe

]
(z) ≡ (1 + z) ln z +

1

2
(1− z) +

2

3

1

z
(1− z3), (9.4)

P
(2,3)
ee,f (z) = Nc(f)Q

2
f

1

3
P (0)
ee (z)θ

(
1− z − 2mf

Ee

)
, (9.5)

denoting double-photon radiation, scattering of a fermion into a fermion by a collinear photon, and
collinear fermion pair production. Here, mf is the mass of the produced fermion, Qf its charge, Nc(f) =
3 for quarks, Nc(f) = 1 for leptons, respectively, and ⊗ denotes the Mellin-convolution (3.19). The
soft-photon exponentiation is performed solving the non-singlet evolution equation in the range z → 1
analytically, cf. e.g. [177]. Since the terms up to O(α2) were taken into account in Eq. (9.2) already the
corresponding contributions have to be subtracted. One obtains [84]:

d2σ(>2,soft)

dxdy
=

∫ 1

0

dzP (>2)
ee (z, Q2)

{
θ(z − z0)J(x, y, z)

d2σ(0)

dxdy

∣∣∣∣
x=x̂,y=ŷ,S=Ŝ

− d2σ(0)

dxdy

}
, (9.6)

with

P>2
ee (z, Q2) = ζ(1− z)ζ−1 exp

[
1
2
ζ
(
3
2
− 2γE

)]

Γ(1 + ζ)
,− α

2π
Le

2

1− z

{
1 +

α

2π
Le

[
11

6
+ 2 ln(1− z)

]}
,

(9.7)
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with ζ = −3 ln [1− (α/3π)Le].
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Figure 11: a) Radiative corrections in leptonic variables in per cent for Ee = 26.8 GeV, Ep = 820 GeV. Dotted
lines: O(α), dashed lines: O(α2), solid lines: in addition soft photon exponentiation, from [90], c©(1995) by Elsevier
Science; b) Radiative corrections in mixed variables in per cent for Ee = 26.8 GeV, Ep = 820 GeV. The lines left
from above to below correspond to x = 0.5, 0.1, 0.001 in consecutive order. Full lines O(α) +O(α2L2) +O(α2L);
dashed lines: O(α); Figure by courtesy of H. Kawamura.

Finally, there is also a fermion conversion term in O(α2L2
e), P (z, Q

2; e− → e+) =
(
α
2π

)2
L2
eP

(2,2)
ee (z),

[84].

In Figure 11 we illustrate the size of QED radiative corrections for two types of the measurement
of the kinematic variables in the case of neutral current deep inelastic scattering. In the first case
the variables x and Q2 are measured from the scattered lepton only, while in the second case mixed
variables, cf. Table 1, are applied, resulting into corrections of different type. The radiative corrections
for leptonic variables become very large at small x and high y. Choosing the double-angle method, one
obtains corrections which behave rather flat in y, cf. [84]. The different methods to calculate the QED
radiative corrections have been compared in O(α) for a variety of kinematic measurements and are well
understood. In 2nd order so far only LLA results are available [84, 244] for the full set of external
kinematic variables studied by the HERA experiments. Only in the case of mixed variables also the
O(α2L) corrections were calculated [251].

In the region in which the virtuality Q2 of the exchanged photon becomes very small the observed
final state consists of a p⊥-balanced electron-photon pair, with little hadronic activity near the beam-
pipe. This contribution is called Compton peak and has been studied first in [224]. It is given by

d2σC

dxldyl
=

α3

xlS

[
1 + (1− yl)

2
]
ln

(
Q2
l

M2
N

) 1∫

xl

dz

z2
z2 + (xl − z)2

xl(1− yl)

∑

f

[
qf (z, Q

2
l ) + q̄f(z, Q

2
l )
]

(9.8)

cf. [239] for leptonic variables. The scale setting is the same as being used in [234] referring to the
kinematic approach in which the hadronic structure is dealt with inclusively. A more refined expression
than (9.8) was derived in Ref. [250]. LLA higher order corrections are easily obtained applying the
corresponding radiators. The process was described using the parton model in [238] regulating the
collinear singularity by finite light quark masses.
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In the initial calculations of the QED corrections to deep-inelastic scattering based on the parton
model quark lines were treated as fermion lines with mass mq in the on-shell scheme [232,233,235,236].
This led to logarithmic corrections of O(αe2q ln(Q

2/m2
q)) behaving flat in y and growing with x to

∼ 7 − 12% for x = 0.9...0.99. Here eq denotes the light quark’s charge. The correct way in treating
these contributions is to absorb them into the scaling violations of the partons along with the QCD
corrections. At leading order one obtains the radiator

αs(µ
2)

[
1 + e2q

α(µ2)

CFαs(µ2)

]
P 0
qq(z) ln

(
µ2

m2
q

)
. (9.9)

In this way the correction becomes independent of the values of the light quark masses, cf. [231,239,243].
The overall effect is bounded by < 1.5% at HERA and hard to be resolved [252]. Later numerical studies
of the resummation of the leading order QED effect were performed in [253].

The integral leptonic QED corrections to polarized deep-inelastic l±N scattering, using the approach
of form factors, have been calculated in [254], also presenting the leading log results. Here also the effect
of the exchange of electro-weak gauge bosons was included, which is of relevance at high energy lepton-
nucleon colliders with polarized targets. Leading log results were given in [255]. Monte Carlo codes for
the QED corrections in case of polarized deep-inelastic were designed in [256].

The well-known resummation of the soft corrections [177] to all orders in O((αL)k) has been extended
including the hard corrections to O((αL)3) in [257, 258], to O((αL)5) in the flavor non-singlet case
in [259, 260], in the unpolarized flavor singlet case in [261], and in the polarized singlet case in [260].
These corrections are universal and can be applied as well for other scattering cross sections. For
cms energies up to the TeV range these corrections are sufficient. However, depending on the process
corrections to next-to-leading log may be needed.

Another higher order correction is due to small-x resummation in case of QED. These are the
resummed non–singlet corrections of O((α log2(x))l), cf. [262].

10 Heavy Flavor Wilson Coefficients

The heavy flavor contributions to the deep-inelastic structure functions are rather large in the unpo-
larized case for smaller values of x. Due to the different scaling violations of the massless and massive
contributions to the structure functions the exact knowledge of the heavy flavor Wilson coefficients is
important. At leading order they were calculated in the unpolarized case in [263] and in the polarized
case in [214, 264, 265]. They are given by :

H
(1)
g,F2

(
z,
m2

Q2

)
= 8TF

{
v

[
−1

2
+

(
4 +

2m2

Q2

)
z(1 − z)

]
+

[
−1

2
+ z(1 − z) + 2

m2

Q2
z(3z − 1) + 4

m4

Q4
z2
]

× ln

(
1− v

1 + v

)}
(10.1)

H
(1)
g,FL

(
z,
m2

Q2

)
= 16TF

{
vz(1 − z) + 2

m2

Q2
z2 ln

(
1− v

1 + v

)}
(10.2)

H(1)
g,g1

(
z,
m2

Q2

)
= 4TF

{
v(3− 4z) + (1− 2z) ln

(
1− v

1 + v

)}
, (10.3)

with v =
√
1− 4m2z/(Q2(1− z)) and m the heavy quark mass. The heavy flavor contribution to the

structure functions at LO is given by

FQQ̄
2,L (x,Q2, m2) = e2Qas

∫ 1

ax

dz

z
H

(1)
g,F2,L

(
x

z
,
m2

Q2

)
G(z, Q2), a = 1 +

4m2

Q2
, (10.4)
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and analogously for gQQ̄1 (x,Q2, m2). In the polarized case the heavy-flavor contributions to g1(x,Q
2)

and g2(x,Q
2) show an oscillatory behavior [265] since the first moment of H

(1)
g,g1 vanishes and H

(1)
g,g2

obeys a Wandzura-Wilczek relation [266]. In the unpolarized case the heavy-flavor Wilson coefficients
have been calculated at NLO in semi-analytic form in [65, 66].6 A detailed proof of hard-scattering
factorization including heavy quarks was given in [268].

In the region Q2 ≫ m2 the heavy-flavor Wilson coefficients factorize into massive operator matrix
elements with massless external lines7 and the corresponding massless Wilson coefficients [71]. For
the structure function F2(x,Q

2) this representation holds at the 1% level for Q2 >
∼ 10 m2 [71], while

for FL(x,Q
2) this is valid only at much higher scales Q2 >

∼ 800 m2. The results of [71] were confirmed
in [270] and the O(a2sε) corrections were derived in [271]. In the polarized case the NLO heavy flavor
Wilson coefficients were computed for the asymptotic region only [71, 72]. At LO and NLO also heavy
flavor corrections for the charged current case have been calculated [272].

Because of the high accuracy to which the structure function F2(x,Q
2) is measured, the heavy flavor

Wilson coefficients have to be computed to NNLO, like the massless contributions. This is analytically
possible using the method of massive operator matrix elements in the region Q2 >

∼ 10m2. At 3-loop order
the five Wilson coefficients LNS

q,i , L
PS
q,i , L

S
g,i, H

PS
q,i , H

S
g,i contribute, cf. [67]. In [67] a series of Mellin moments

has been calculated for the corresponding massive OMEs ranging up to N = 10, ..., 14, depending on
the process, applying the code MATAD [75]. First 3-loop results for general values of N were derived
in [194,195]. These calculations require completely different technologies. In [194] the Wilson coefficients
LPS
q,i and L

S
g,i were calculated completely. All logarithmic contributions ∝ lnk(Q2/m2), k = 1, 2, 3 in the

3-loop case have been computed for general values of N in [273]. The technology to calculate the
ladder topologies is already available [274] and first results have been obtained for other more involved
3-loop topologies. Here codes like Sigma and HarmonicSums [76,275] are essential, which were developed
further to cope with problems of this kind. In the asymptotic region also the 3-loop contributions for the
heavy flavor Wilson coefficients to FL(x,Q

2) were calculated [276]. Furthermore, a series of moments
of the massive OMEs contributing to transversity at O(a3s) were computed in [277]. The heavy flavor
Wilson coefficients at higher order can be expressed for the pole or running mass, which is implemented
through the renormalization procedure, cf. Sect. 5, up to 3-loop order in [67]; for a phenomenological
application at NLO see [278]. In the threshold region of heavy-quark pair production one may estimate
higher order corrections using soft resummations. They have been studied in the unpolarized case
in [279] and the polarized case in [280].

The above calculations were all performed in the fixed-flavor number scheme. As has been shown
in [281, 282] this description is sufficient throughout the kinematic range at HERA for charm and
bottom. Still one may consider to introduce a so-called variable flavor number scheme, in particular
to match the universal contributions on the way a single massive quark is becoming light. Here one
assumes that the transition always occurs for one heavy quark at the time. One problem in this context
is that m2

c/m
2
b ≈ 1/10 and one cannot consider charm quarks as massless at µ2 = m2

b . The matching
conditions for the flavor non-singlet and singlet parton distributions have been given at NLO in [283]
and NNLO in [67] and the transition functions in [67, 71, 72, 283, 284], with first general N results at
NNLO in [194,195]. Different descriptions to interpolate between the heavy-quark threshold region and
the asymptotic region are considered in the literature. As an example, in the BMSN-scheme [282, 283]
the interpolation in F2(x,Q

2) is given by

FQQ̄,BMSN
2 (x,Q2, Nf + 1) = FQQ̄

2 (x,Q2, Nf) + FQQ̄,asymp
2 (x,Q2, Nf + 1)− FQQ̄,asymp

2 (x,Q2, Nf) .(10.5)

Here FQQ̄,asymp
2 denotes the heavy flavor structure function in the limit of vanishing power corrections.

Other schemes were proposed in [285–287]. The schemes differ w.r.t. the way how fast a massive

6A fast numerical implementation in Mellin-space has been given in [267].
7Massive OMEs with massive external lines have been dealt with in [269].

33



quark becomes light. One may infer the correct behaviour from precision data. The matching scales
are usually chosen by µ = mq. However, this scale is usually process dependent and may turn out to
be much larger as has been pointed out in [288] comparing exact calculations with the interpolative
description. In any case, the reordering of terms in the interpolation schemes, cf. [282, 283, 285–287],
have to be compatible with the MS scheme. Otherwise an according scheme-transformation has to be
provided since in the PDF-fits usually MS parton distribution functions are determined and nearly all
partonic scattering cross sections in physical applications are computed in this scheme.

Finally we would like to mention that at 3-loop order also diagrams with two different fermion lines
contribute [289]. Here the moments N = 2, 4, 6 were calculated based on the code qexp [290]. These
contributions are even universal. However, due to the fact the mb is not very much larger than mc one
obtains here double-logarithmic contributions, which may not simply be absorbed into either the charm
or the bottom distribution.

11 Target Mass Corrections

At low 4-momentum transfer Q2 and large values of x the nucleon mass M modifies the scattering
kinematics and therefore the nucleon structure functions. The corresponding relations have first been
worked out by Nachtmann [291] in the unpolarized case.8 Besides the Bjorken variable x the new
variable

ξ =
2x

1 +
√

1 + 4x2M2/Q2
≡ 2x

1 + r
(11.1)

emerges. Here the mass of the quark in the scattering process is assumed to be the same, mi = mf .
For x ≪ 1 or Q2 → ∞ both variables approach each other. The corrections for the different structure
functions can be derived using the local operators as in the massless case, cf. Sect. 3, [293]. In the
following we discuss the corrections for deep inelastic scattering off unpolarized and polarized targets.

Let us define the integrals [93, 293]

G1(ξ) =

∫ 1

ξ

dξ′

ξ′
F (ξ′), G2(ξ) =

∫ 1

ξ

dξ′

ξ′

∫ 1

ξ′

dξ′′

ξ′′
F (ξ′′), G3(ξ) =

∫ 1

ξ

dξ′
∫ 1

ξ′

dξ′′

ξ′′

∫ 1

ξ′′′

dξ′′′

ξ′′′
F (ξ′′′),

H1(ξ) =

∫ 1

ξ

dξ′F (ξ′), H2(ξ) =

∫ 1

ξ

dξ′
∫ 1

ξ′
dξ′′F (ξ′′) (11.2)

and the operators

O
(1)
F1

=
x

2r
, O

(2)
F1

= −M
2

Q2
x2

d

dx

x

ξr
, OF2

= x2
d2

dx2
x2

ξ2r
, OF3

= −x d
dx

x

ξr

Og1 = x
d

dx
x
d

dx

x

rξ
, Og2 = −x d

2

dx2
x2

rξ
, Og3 = 2x2

d2

dx2
x2

rξ2
, Og4 = −x2 d

dx
x
d2

dx2
x2

rξ2
,

O(1)
g5 = −x d

dx

x

rξ
, O(2)

g5 =
M2

Q2
x2

d2

dx2
x2

rξ
. (11.3)

Here a generic function F (ξ) has been introduced, which reproduces the corresponding structure function
in the massless case containing the respective electro-weak couplings and parton content. As an example,
the function F in case of the unpolarized structure functions F1 and F2 is the same. The target mass

8The same method has been applied to the polarized case in [292].
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corrections can now be written in the following compact form for the unpolarized structure functions
F1,2,3 and the polarized structure functions g1,...,5 in the twist-2 approximation :

F1(x,Q
2) = O

(1)
F1
F (ξ) +O

(2)
F1
H2(ξ) (11.4)

F2(x,Q
2) = O

(1)
F2
H2(ξ) (11.5)

F3(x,Q
2) = O

(1)
F3
H1(ξ) (11.6)

gi(x,Q
2) = OgiG2(ξ), i = 1, 2 (11.7)

gi(x,Q
2) = OgiG3(ξ), i = 3, 4 (11.8)

g5(x,Q
2) = O(1)

g5
G1(ξ) + O(2)

g5
G3(ξ) . (11.9)

These relations easily transform into the corresponding integral representations.9 For the implemen-
tation of the target mass corrections in Mellin-space one may refer to contour integral representations
directly, see [93, 293]. In the unpolarized case they are given by

F1(x,Q
2) =

1

2πi

∫ i∞

−i∞

dN x−N
∞∑

j=0

(
M2

Q2

)j (
N + j

j

)[
1

2
a
(2)
N+2j + x

M2

Q2

Na
(2)
N+2j+1

(N + 2j)(N + 2j + 1)

]
,

(11.10)

F2(x,Q
2) =

1

2πi

∫ i∞

−i∞

dN x−N+1
∞∑

j=0

(
M2

Q2

)j (
N + j

j

)
N(N − 1)

(N + 2j)(N + 2j − 1)
a
(2)
N+2j, [293],

(11.11)

F3(x,Q
2) =

1

2πi

∫ i∞

−i∞

dN x−N
∞∑

j=0

(
M2

Q2

)j (
N + j

j

)
N

N + 2j
a
(3)
N+2j , (11.12)

with ak =
∫ 1

0
dzzkF (z). In the limit M2 → 0 the structure functions F1,3 contain one power in x less

than F2. Note that the definition of the OMEs ak differ in the literature. The target mass corrections
for the longitudinal structure function are obtained by [293]

2xFL = r2F2 − 2xF1 . (11.13)

The corresponding relations in the polarized case were given in [93]. For lower values of x < 0.7 and not
too small values of Q2 >

∼ 1GeV2 the infinite series in (11.10–11.12) may be approximated using the first
five terms to reach sufficient precision. In the large-x domain convergence is reached using up to ∼ 250
terms. This requires economic implementations of the OMEs ak, changing during fits to data, for the
respective complex values of k along the integration contour, which has been given in [295] recently.

Target mass corrections lead to a violation of the Callan-Gross relation [20]. Furthermore, one may
derive integral relations in the polarized case, cf. Sect. 15. In the limit x → 1 the structure functions
(11.4–11.9) do not vanish unlike the partonic functions F (x). This has led to numerous discussions in
the literature [296,297]. Effects in this region cannot be considered without of a careful study of higher
twist effects. In [298] besides the usual target mass corrections contributions of the jet-function at large
values of x were considered to improve the description in this region. However, this approach has to
be viewed in comparison with others w.r.t. a consequent twist expansion and the fact, that the whole
hadronic final state Fock-space has to be summed over.

Let us mention that in [93] also the corresponding relations for the twist-3 contributions to the
polarized structure functions were derived. The target mass corrections in case of twist-2 and 3, (11.7),
were also derived in [299]. For non-forward and diffractive scattering they have been calculated in
[300, 301] and [302].

9We agree with the results of [293] up to the obvious typos in (4.19) and (4.22), cf. also [294].
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12 Solution of the Evolution Equations and Parton Distribu-

tion Functions

In Mellin-space the singlet evolution equations can be solved analytically. We follow [303] and express
the evolution equation (5.5) in terms of as = αs(Q

2)/4π. The r.h.s. is expanded in the coupling
constant. The singlet evolution equation reads :

∂ q(as, N)

∂as
=

asP 0(N) + a2sP 1(N) + a3sP 2(N) + . . .

−a2s β0 − a3s β1 − a4s β2 − . . .
q(as, N) = − 1

β0as

[
P 0(N) + as

(
P 1(N)− β1

β0
P 0(N)

)

+a2s

(
P 2(N)− β1

β0
P 1(N) +

{(
β1
β0

)2

− β2
β0

}
P 0(N)

)
+ . . .

]
q(as, N)

= − 1

as

[
R0(N) +

∞∑

k=1

aksRk(N)

]
q(as, N), (12.1)

with R0 ≡ P 0/β0,Rk ≡ [P k −
∑k

i=1 βiRk−i]/β0.
10 Here βk, k ≥ 0 denote the expansion coefficients of

the β-function and P k, k ≥ 0 are the singlet matrices of the splitting functions and

q(as, N) =

(
Σ(as, N)
G(as, N)

)
, (12.2)

with Σ(as, N) =
∑Nf

i=1 [q(as, N) + q̄(as, N)] , G(as, N) the flavor singlet and gluon distributions.
One may obtain the evolution equations for the three flavor non-singlet cases by replacing the

matrices in (12.1) by scalars. In the singlet case the matrices Rk do not commute in general. Firstly,
the leading order solution is found by

q LO(as, N) = (as/a0)
−R0(N)

q(a0, N) ≡ L(as, a0, N) q(a0, N), (12.3)

with the starting distribution q(a0, N) and

L(as, a0, N) = e−(N) (as/a0)
−r−(N) + e+(N) (as/a0)

−r+(N) . (12.4)

The projectors e± are

e± =
1

r± − r∓

[
R0 − r∓I

]
; r± =

1

2β0

[
P (0)
qq + P (0)

gg ±
√(

P
(0)
qq − P

(0)
gg

)2
+ 4P

(0)
qg P

(0)
gq

]
. (12.5)

Here r± denote the leading order eigenvalues. The general solution is given by

q(as, N) = U(as, N)L(as, a0, N)U−1(a0, N) q(a0, N) (12.6)

=
[
1 +

∞∑

k=1

aksU k(N)
]
L(as, a0, N)

[
1 +

∞∑

k=1

ak0U k(N)
]−1

q(a0, N).

The matrices U k obey

[
U k,R0

]
= Rk +

k−1∑

i=1

Rk−iU i + kU k ≡ R̃k + kU k, k ≥ 1

U k = −1

k

[
e−R̃k e− + e+R̃k e+

]
+

e+R̃k e−

r− − r+ − k
+

e−R̃k e+

r+ − r− − k
. (12.7)

10The solution up to k = 3 was given in [304].
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Potential poles in U k(N) are canceled by those in U−1 in (12.6). The perturbative solution in NkLO is
obtained expanding (12.6) up to the kth common power in as and a0 keeping L(as, a0, N).

The different structure functions in N -space are represented by

Fl(as, a0, N) =
3∑

n=1

CNS
n,l (as, N)qNS

n (as, a0, N) + CS
l (as, N)Σ(as, a0, N) + Cg

l (as, N)G(as, a0, N), (12.8)

where CNS,S,g
n,l denote the corresponding Wilson coefficients and qNS

n are the flavor non-singlet distri-
butions. In a consistent representation one also expands (12.8) in powers of as, a0, similar to (12.6),
matching the factorization scales. All these operations can be performed analytically.

To transform to x-space a single precise contour integral is carried out numerically around the
singularities of the problem. Usually these are poles on the real axis for Re(z) < c, with a given
constant c. If small-x resummations are included the singularities may be located in the complex plane,
cf. Section 13. The contour integral is given by

xf(x) =
1

π

∫ ∞

0

dz Im[eiφx−Cf(N=C)] , (12.9)

since usually f ∗(N) = f(N∗) is obeyed, [305], and C = c + zeiφ. The solution of the evolution equa-
tions in Mellin space allows for fast and very precise numerical implementations. In other approaches
the evolution equations are solved in momentum-fraction space. Public codes for the solution of the
evolution equations are e.g. QCD-Pegasus [306], Hoppet [307], QCDNUM [308], and Openqcdrad [309].

The distributions qNS
n (a0, N),Σ(a0, N) and G(a0, N) are non-perturbative quantities, which have to

be fitted to the world precision data on deep-inelastic scattering and suitable other hard scattering
processes. Their shape is a prioiri unknown and the corresponding parameterizations, valid in the
kinematic region to be analyzed, have to be found. One way to determine these shapes is to express
the distribution functions in terms of orthogonal polynomials, which has been studied in detail in the
past [310, 311]. The Laguerre polynomials Ln[ln(1/x)] converge fastest [311]. In general the number of
orthogonal polynomials needed is too large compared to the possible amount of parameters which can
be fitted from the data. One way out consists in designing shapes in terms of polynomials or related
functions, which are suggested by the orthogonal polynomial analysis and extend these forms gradually.
The NNPDF collaboration uses neural network techniques [312] to find the correct shape of the parton
densities and to estimate their errors. Due to the finite experimental accuracy and the limited amount
of data points available it seems that the present number of parameters cannot exceed 30–40 in the
unpolarized case. In the polarized case this number is even lower. The errors of the statistical and
systematic errors of the parton distribution functions can be determined in χ2-analyses.
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Figure 12: The MSTW 2008 NLO PDFs at Q2 = 10GeV2 and 104 GeV2; from [112], c©(2009) by Springer Verlag.
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The valence quark distributions uv = u− ū and dv = d− d̄ are constrained by the following sum rules
in case of the proton :

∫ 1

0

dxuv(x,Q
2) = 2,

∫ 1

0

dxdv(x,Q
2) = 1 . (12.10)

Furthermore, assuming twist-2 dominance, the momentum sum rule reads :

∫ 1

0

dxx
[
Σ(x,Q2) +G(x,Q2)

]
= 1 . (12.11)

In the following we give a brief summary on the status reached for unpolarized11 and polarized twist-
2 parton distribution functions (PDFs). They are obtained by the QCD analysis of the deep inelastic
structure functions, supplemented by other hard scattering processes. The latter data sets mainly serve
the purpose to resolve the flavor structure of the quarkonic sea and also might give better constraints
on the gluon.
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12.1 Unpolarized Nucleons

Early QCD analyses of deep-inelastic structure functions have been performed starting in the late
1970ies in LO, and later in NLO, to derive first principal shapes of the parton densities, cf. [315–318].
Analyses of the Dortmund group [316, 319], the MRS group [320], and the CTEQ (then Morfin-Tung)
group [321] followed. In the first analyses the charm quark contributions were either treated as massless
or at LO, since higher order corrections were not yet know.

At present the differential scattering cross sections of unpolarized deep-inelastic scattering in the
massless case are known to NNLO and the heavy flavor corrections to NLO. The present highest order
parton fits are based on this approximation. We note that some of the data contain significant higher
twist contributions which have to be quantified, or, if possible for the corresponding reaction, cut away.
Furthermore, target mass corrections have to be applied, since part of the scaling violations in the large
x and lower Q2 region are due to these, cf. [199].

At present the six collaborations ABM [117], CTEQ [322], HERAPDF [323], JR [118], MSTW [112],
and NNPDF [119] perform NNLO analyses, partly using different data sets. In Figure 12 an overview
on the principal behaviour of the parton distributions as a function of x are given for two typical scales

11For extensive recent reviews see [313, 314].
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of Q2 by MSTW at NLO. The distributions rise towards small values of x and become steeper with
growing values of Q2.
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Science.

Furthermore, the heavier flavors, charm and bottom, contribute above the corresponding thresholds.
At large values of x the up- and down-quark distributions show a different behaviour due to the valence
quark contributions and the various sea quark contributions are of different size. In Figure 13 recent
results of the CTEQ and NNPDF analyses are shown. The size of the ratios of the PDFs by CTEQ
obtained in NNLO and NLO are compared at a low scale for the different partons showing a particular
sensitivity in the region of small and large values of x. The gluon density is an important distribution
for many processes at hadron colliders. A comparison is shown for the shapes obtained for G(x,Q2

0) in
the NNPDF analysis from LO to NNLO. Here the gluon distribution is becoming lower at higher orders
in the small x region, with still a wide error band. In Figure 14 the evolution of the light sea-quark
distributions of the JR NNLO analysis are shown in the small-x region. Both the dynamical approach
and the standard fit do agree rather well. The results of the HERAPDF 1.0 NLO analysis, which are
based on data taken at HERA only, are shown also quantifying the parameterization uncertainty. It
turns out, that the latter is of the size of the present experimental uncertainty. Figure 15 shows the 1σ
error bands obtained in the ABM11 analysis and compares the different massless parton distribution
to the results found by the latest JR, MSTW, NNPDF analyses at the scale µ = 2GeV. While the
valence distributions and the sum of the up and down sea-quarks do agree rather well in all the four
fits, there are still important differences in the gluon distribution at lower values of x. In particular
the gluon distribution of MSTW is taking low values in the small x region, and eventually becomes
negative unlike in all the other analyses. There are also differences in the ds − us = d̄− ū distribution
and for the strange quark density at medium values of x.

In Figure 16 different lattice determinations of the moment
∫ 1

0
dx[x(uv−dv)−x(ū− d̄)] are compared

with the corresponding value obtained from PDF fits, see also [326]. Very similar values are obtained
by the different fitting groups, cf. [117]. There is still a difference between the lattice results and the
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value from the PDF analyses, despite lower pion masses are used in the present lattice simulations,
which has to be understood further. A determination of the gluon momentum with lattice methods has
recently been performed in [327]. For a review on the status of the calculations of PDF-moments with
lattice methods see [328].
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Figure 16: Comparison of lattice computations for the second moment of the non-singlet distribution as a function
of the pion mass mπ with the result of ABM11 [117] along with the uncertainties of the respective measurement;
from [117], by courtesy of V. Drach.
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Figure 17: Left : The NLO polarized parton BB distributions [329] at the input scale Q2
0 = 4.0GeV2 (solid line)

compared to results obtained by GRSV [330] (dashed-dotted line), DSSV (long dashed-dotted line) [331], AAC
(dashed line) [332], and LSS (long dashed line) [333]. The shaded areas represent the fully correlated 1σ error
bands calculated by Gaussian error propagation; from [329], c©(2010) by Elsevier Science. Right : The polarized
DSSV PDFs [331] of the proton at Q2 = 10GeV2 in the MS scheme, along with their ∆χ2 = 1 uncertainty bands
computed with Lagrange multipliers and the improved Hessian approach; from [331], c©(2009) by the American
Physical Society.

12.2 Polarized Nucleons

Early determinations of the polarized parton densities were carried out at the beginning of the 1990ies
at LO under a series of model assumptions, see e.g. [334, 335]. With the advent of the NLO polarized
anomalous dimension NLO analyses were carried out [215,333,334,336,337]; cf. also [338,339]. In these
analyses SU(3)F symmetry was assumed for the sea quarks. In Figure 17 the results of different polarized
PDF-analyses are compared (left panel). The errors on these distributions are larger than in the
unpolarized case, with a basic agreement in the results for the valence distributions. For the sea-quark
and gluon distribution the errors are larger and there is a stronger variation of the current predictions,
widely within the present errors. We note also other approaches based on statistical distributions [340],
which allow for a very efficient modeling.

To resolve the flavor dependence of the sea-quarks data on semi-inclusive measurements, as e.g. [341],
are used. Furthermore, data on photo- and electro-production of hadrons and charm and proton-proton
collisions at RHIC can be used, along with the structure function data. A recent analysis based on
these data was carried out in [331]. The semi-inclusive data were also used in the analysis [342]. The
polarized PDFs of [331] are shown in Figure 17 (right panel) and allow, yet with larger errors, to derive
different shapes for the polarized sea quarks. The gluon distribution is found to be much lower than in
the case of the analysis of only the deep-inelastic structure function data.

12.3 αs(M
2

Z)

The strong coupling constant can be determined as one parameter in the QCD-analysis of the deep
inelastic world data along with the parameters of the non-perturbative parton distributions at a given
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scale Q2
0. In the following we will compare the results on αs(M

2
Z) in different NNLO analyses. The

results are summarized in Table 2, cf. [117].

αs(M
2
Z)

BBG 0.1134 + 0.0019
− 0.0021 valence analysis, NNLO [199]

GRS 0.112 valence analysis, NNLO [343]

ABKM 0.1135± 0.0014 HQ: FFNS nf = 3 [282]

ABKM 0.1129± 0.0014 HQ: BSMN-approach [282]

JR 0.1124± 0.0020 dynamical approach [118]

JR 0.1158± 0.0035 standard fit [118]

ABM11 0.1134± 0.0011 [117]

MSTW 0.1171± 0.0014 [344]

NN21 0.1173± 0.0007 [345]

CT10 0.118 ± 0.005 [346]

BBG 0.1141 + 0.0020
− 0.0022 valence analysis, N3LO(∗) [199]

world average 0.1183± 0.0010 [347] (2011)

Table 2: Summary of recent NNLO QCD analyses of the DIS world data.

There are two valence analyses [199,343], effectively limited to the region of x >∼ 0.3. In [199] an effective
N3LO fit has been performed, including the 3-loop Wilson coefficient, noting that the effect of the 4-loop
non-singlet anomalous dimension is very small. The other analyses cover the whole kinematic range.
In the valence analyses and [117, 118, 282] very similar values of αs(M

2
Z) are obtained, which agree

within their errors. The way in which the heavy flavor corrections are treated implies a systematic error
of 0.0006. The N3LO value is well compatible with the results obtained at NNLO. These values are
lower than the current world average [347]. Larger values are found in the MSTW [344] and NNPDF
analyses [345]. A preliminary value has been reported by CTEQ [346] at NNLO, yet with a rather
large error. In Ref. [117] a detailed analysis has been performed comparing the above results also with
respect to the pulls given by the different data sets used. Despite the final αs(M

2
Z) values of MSTW

and NNPDF are quite similar, there are still significant differences in the pulls. The Tevatron jet data
do not cause the larger values. It rather seems that the response of the MSTW and NNPDF fits to the
SLAC and also the HERA data is causing this difference, which needs to be investigated further.

In different other reactions larger values of αs(M
2
Z) were found. This applies to the analysis of the

3-jet rate with αs(M
2
Z) = 0.1175±0.0025 [348] and inclusive Z-decay yielding αs(M

2
Z) = 0.1189±0.0026

[349,350]. This also applies to the αs(M
2
Z) values measured for hadronic τ -decays, cf. [347]. On the other

hand, the analysis of thrust in e+e− annihilation led to αs(M
2
Z) = 0.1153± 0.0017± 0.0023 [351], resp.,

αs(M
2
Z) = 0.1135± 0.0011± 0.0006 [352]. In a NLO analysis of e+e− → 5 jets αs(M

2
Z) = 0.1156 +0.0041

−0.0034

was obtained. There are also first results on the measurements of αs(M
2
Z) with including dynamical

fermions from the lattice [353]. Very recently a NLO analysis of the ATLAS jet data resulted in
αs(M

2
Z) ∼ 0.1156 with a larger error [354]. Similar results are obtained in a multi-jet analysis of e+e−

data [355]. Usually the values of αs(M
2
Z) obtained at NNLO are lower than those at NLO. In various

classes of high energy reactions partly larger and lower values of αs(M
2
Z) are obtained at present. This

is due to systematics sources, which have to be understood better in the future. Further clarification
can be obtained from better hard scattering data. Here the LHC jet data will be of importance in the
near future.
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13 Small x Resummations

Approaching very small values of x at a fixed virtuality Q2 the criteria for the parton model, Section 4,
are no longer valid and new phenomena are expected to contribute. The small x region was probed at
HERA to values of x ∼ 10−4 at Q2 = 10GeV2 and at LHC values of x ∼ 10−6 at Q2 = 102GeV2 can
be reached. The potentially new effects will influence the size and scaling violations of the structure
functions both in the unpolarized and polarized case. To which extent these phenomena can be dealt
with using perturbative methods and resummations based on them, is not finally clear at present. Two
main extensions of the perturbative approach based on fixed order perturbative QCD were proposed:
i) the linear BFKL small-x resummation [356] of large logarithms (αs(Nc/π))

k(1/x) lnk(1/x)/k!, and
ii) saturation models with highly non-linear gluo-dynamics, cf. [357] related to Glauber-models [358].12

In both approaches elements known from the parton picture are used. Since perturbative kernels are
evaluated it has to be clarified whether factorization holds. In case of the saturation corrections this
also applies to multi-parton states. Due to the connection between the non-perturbative distributions
and the perturbative kernels, usually in terms of a convolution, both effects at small and larger values
of x will contribute. In the following we will not cover the saturation models and related theoretical
developments in nucleon-nucleus and nucleus-nucleus scattering, being an interesting broad topic in its
own right. We refer to recent detailed surveys, as e.g. given in [138, 361], and will discuss the effects
due to BFKL-type resummations.

The resummation of the leading small x terms [356] are often confronted to those in ln(Q2), stating
that the first ones results from the strong ordering x1 ≫ ...xi ≫ xi+1... and the second stem from
strong ordering in the transverse momentum k⊥,1 ≪ ...k⊥,i ≪ k⊥,i+1... along a ladder.13 Note that this
is a gauge-dependent statement and requires to use effective vertices in case of the first approach. The
second case refers to fixed-order perturbation theory using the renormalization group, as outlined in the
previous sections. In the first approach one would calculate in a more systematic way the scale-invariant
contributions to the evolution equation (5.5) in the massless case setting β = 0, i.e. considering the
strong coupling as const. One obtains

En
k (µ

2) = En
k (µ

2
0)

(
µ2

µ2
0

) 1

2(γOk
−nγΦ)

. (13.1)

The scale invariant part of the anomalous dimension has the representation

γOk
− nγΦ =

∞∑

l=1

γ
(l)
O a

l
s (13.2)

and exponentiates to all orders. The representation (13.1) applies also for higher order resummations
under the above requirements. To treat running coupling effects one has to systematically account
for scale-invariance breaking effects. Furthermore, to form observables, the small-x resummed Wilson
coefficients have to be calculated as well.

Both in the flavor non-singlet and singlet cases for scattering off unpolarized and polarized targets
the leading order small-x resummations were derived in form of evolution kernels. They seem to
correspond to a resummation of the leading order anomalous dimensions, as the comparison in the
known orders show, because the corresponding singularity in the Wilson coefficients turns out to be one
order lower [59, 60, 363].

12For early estimates of the transition line between the perturbative and non-perturbative domain and the onset the
possible of saturation effects see [359, 360].

13One may study this process under a more general point of view and consider angularly ordered emissions covering
both the above cases [362], which allows for interesting applications through Monte Carlo studies. Whereas this unified
treatment is possible at LO, higher order corrections cannot be cast into this form in general.
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13.1 The Non-singlet and Polarized Singlet Contribution

The most singular contributions to the Mellin transforms of the structure–function evolution kernels at
all orders in a stem from the poles at N = 0 in each individual order. In the flavor non-singlet case
the kernels K± can be obtained from the positive and negative signature amplitudes studied in [364]
for QCD via

M
[
K±
x→0(a)

]
(N) ≡

∫ 1

0

dx xN−1K±
x→0(x, a) ≡ −1

2
Γ±
x→0(N, a), (13.3)

with

Γ+
x→0(N, a) = −N

{
1−

√
1− 8aCF

N2

}
(13.4)

Γ−
x→0(N, a) = −N

{
1−

√
1− 8aCF

N2

[
1− 8aNc

N

d

dN
ln
(
ez2/4D−1/[2N2

c ](z)
)]
}
, (13.5)

where z = N/
√
2Nca, Dp(z) denotes the function of the parabolic cylinder, and Nc = 3 in case of QCD.

The LO small x evolution kernels in the case of the polarized singlet evolution were derived in [365].
The resummed splitting function is given by

P (x, as) ≡
∞∑

l=0

P
(l)
x→0a

l+1
s log2l x =

1

8π2
M−1[F 0(N, as)](x). (13.6)

The matrix valued function F 0(N, as) is obtained as the solution of

F 0(N, as) = 16π2as
N

(
CF −2TRNf

2CF 4CA

)
− 8as
N2

F 8(N, as)

(
CF 0
0 CA

)
+

1

8π2

1

N
F 2

0(N, as) (13.7)

with

F 8(N, as) = 16π2as
N

M 8 =

(
CF − CA/2 −TRNf

CA 2CA

)
+

2as
N
CA

d

dN
F 8(N, as) +

1

8π2

1

N
F 2

8(N, as).

(13.8)

Eq. (13.6) obeys [366]
P (l)
qg /(TRNf) = −P (l)

gq /CF (13.9)

to all orders, where TR = 1/2 and Nf denotes the number of flavors. The leading contributions of
the fixed order results in LO and NLO (MS) are correctly described. In the supersymmetric limit
CA = CF = Nf = 1, TR = 1/2 the relations

P (l)
qq + P (l)

gq = P (l)
qg + P (l)

gg (13.10)

are obeyed for all l and Eq. (13.6) can be given in a simple analytic form [366]. It is evident from
Eqs. (13.4–13.6) that the poles at N = 0 being present in the individual orders are resummed into
branch cuts, which usually exhibit a milder singularity.

To perform numerical studies it is interesting to consider the effect of less singular terms to estimate
the stability of the leading order resummed terms. In case of the fixed-order anomalous dimensions
they are known and one may try Ansätze like

(a) Γ(N, as) →Γ(N, as)− Γ(1, as) (b) Γ(N, as)→Γ(N, as)(1−N)

(c) Γ(N, as) → Γ(N, as)(1−N)2 (d) Γ(N, as)→Γ(N, as)(1− 2N +N3) , (13.11)
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cf. [303]. It turns out that the corrections to the flavor non-singlet contributions are numerically very
small [363]. Larger corrections are obtained in the polarized singlet case, see Figure 18. However, here
sub-leading terms e.g. of the type (13.11 (b)) do nearly completely cancel these contributions again.
Comparable results were obtained in [367]. Large effects as anticipated in [368] are not confirmed.
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Figure 18: The Q2 evolution of the polarized quark singlet and gluon momentum distributions evolving from
Q2

0 = 4GeV2; from [366], c©(1996) by Elsevier Science.
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Physical Society.

13.2 Unpolarized Singlet Distributions

The LO resummation for the evolution kernel of the unpolarized singlet distributions was derived
in [356]. It was shown in [369] that the eigenvalue

(N − 1) =
αsNc

π
χ0(γL) ≡

αsNc

π
[2ψ(1)− ψ(γL)− ψ(1− γL)] (13.12)

represents the LO resummed gluon-gluon anomalous dimension γL = γ
(0)
gg (N, as). The resummed LO

gluon-quark anomalous dimension is given by γ
(0)
gq (N, as) = (CF/CA)γL and the quarkonic terms do not
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contribute in O[(as/(N−1))l]. Eq. (13.12) can be solved iteratively demanding γL(N, as) → αs/(N−1)
as |N | → ∞ for N ∈ C, which selects the physical branch of the resummed anomalous dimension,

γL ≡ γgg,0(N,αs) =
αs

N − 1

{
1 + 2

∞∑

l=1

ζ2l+1γ
2l+1
gg,0 (N,αs)

}
. (13.13)

Here we rewrite αs = Ncαs/π. γL has the serial representation

γgg,0(N,αs) =
αs

N − 1
+ 2ζ3

(
αs

N − 1

)4

+ 2ζ5

(
αs

N − 1

)6

+ 12ζ23

(
αs

N − 1

)7

+ . . . (13.14)

Under the above conditions one may calculate γL(N, as) in the whole complex plane. It is a bounded
function of ρ = (N − 1)/αs, the singularities of which are branch points [370, 371] at

ρ1 = 4 log 2, ρ2,3 = −1.41048± 1.97212 i. (13.15)

Its analytic structure is shown in Figure 19. Note, that the resummed form of γL(N, as) removes all
the fixed–order pole singularities of Eq. (13.14) into branch cuts. Since the known NLO resummed
anomalous dimensions are functions of γL(N, as) which introduce no further singularities the contour
integral around the singularities of the problem has to cover the three BFKL branch points, the singu-
larities of the input distributions along the real axis left of N = 1, and the remaining singularities of
the fixed order anomalous dimensions at the non–positive integers [303, 371]. Any finite correction to
γL may thus lead to essential changes of the corresponding numerical results. Early numerical studies
on the impact of the LO resummed anomalous dimensions were performed in [372] and more recently
in Refs. [303, 370, 373].

The next-to-leading order resummed anomalous dimensions are given by

γ̂NL(N,αs) = −2




CF
CA

[
γNLqg − 8

3
asTF

]
γNLqg

γNLgq γNLgg


 , (13.16)

with TF = TRNf . The quarkonic contributions were calculated in Ref. [374], as well as the resummed
coefficient functions c2(N, as) and cL(N, as). In [375] cL(N, as) has also been calculated, giving a result
which differs form the one in [374] starting with O(a4s). γNLgg was computed in [376, 377]. In the
DIS–scheme γNLqg is found to be an analytic, scale–independent function of γL(N, as) and reads

γNL,DISqg (N,αs) = TF
αs
6π

2 + 3γL − 3γ2L
3− 2γL

[B(1− γl, 1 + γL)]
3

B(2 + 2γL, 2− 2γL)
R(γL), (13.17)

where R(γ) is given by

R(γ) =
1

γ
√

−χ′
0(γ)

exp

{
1

2

∫ γ

0

dz
2ψ′(1)− ψ′(1− z)− ψ′(z)

χ0(z)
+ χ0(z)

}
. (13.18)

in [374]. In a re-analysis in [375]

R(γ) =
1

−γ2χ′
0(γ)

exp

{
1

2

∫ γ

0

dz
2ψ′(1)− ψ′(1− z)− ψ′(z)

χ0(z)
+ χ0(z)

}
. (13.19)

has been obtained, with a different pre-factor. A future calculation of the 4th order Wilson coefficient
for the longitudinal structure function in the MS scheme may clarify this question further.
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The NLO resummed gluon anomalous dimension γNLgg was calculated in the Q0–scheme [378]. Here,
a scale Q2

0 ≫ Λ2
QCD is introduced suppressing k⊥ effects for k2 < Q2

0, see also [379].14 One has to solve
the Bethe–Salpeter equation

(N − 1)GN(q1, q2) = δD−2(q1 − q2) +

∫
dD−2q3K(q1, q2)GN(q3, q2) (13.20)

with
K(q1, q2) = δD−2(q1 − q2)2ω(q1) +Kreal(q1, q2) +Kvirtual(q1, q2). (13.21)
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Figure 20: Different contributions to the resummed splitting function xPgg(x, αs) in the DIS–scheme; Lx: LO
BFKL; NLxqq̄: NLO BFKL quarkonic contr.; NLx: NLO BFKL; from [380], c©(1998) by World Scientific.

For q21 ≫ q22 one diagonalizes as in the LO case using formally the same Ansatz :
∫
dD−2dq2K(q1, q2)

(
q22
)γ−1

= αs

[
χ0(γ)−

αs
4
δ(γ, q21, µ

2)

] (
q21
)γ−1

. (13.22)

Here the scale–invariant LO eigenvalue αsχ0(γ) is supplemented by the NLO correction term
(α2

s/4)δ(γ, q
2
1, µ

2),

δ(γ, q21, µ
2) = −

(
67

9
− 2ζ(2)− 10

27
Nf

)
χ0(γ) + 4Φ(γ)− π3

sin2(πγ)

+
π2

sin2(πγ)

cos(πγ)

1− 2γ

[
(22− β0) +

γ(1− γ)

(1 + 2γ)(3− 2γ)

(
1 +

Nf

3

)]

+
β0
3
χ0(γ) log

(
q21
µ2

)
+

[
β0
6

+
d

dγ

] [
χ2
0(γ) + χ′

0(γ)
]
− 6ζ3, (13.23)

with

Φ(γ) =

∫ 1

0

dz

1 + z

[
zγ−1 + zγ

]
[Li2(1)− Li23(z)] . (13.24)

14For a transformation into the DIS–scheme cf. [303].
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Figure 21: The gluon splitting functions xPgg plotted with αs = 0.2 and Nf = 4 The curves are (from top to
bottom for xPgg at x ∼ 0.2): fixed order perturbation theory LO (black dashed), NLO (black solid), NNLO (green),
resummed LO (red dashed) and NLO in Q0MS scheme (red solid) and in theMS scheme (blue); from [381], c©(2008)
by Elsevier Science.

Whereas the terms in the first two lines of Eq. (13.23) do contain contributions to the anomalous
dimension up to O(a2s) the third line contributes only with three–loop order. The agreement with the
perturbative results to 2-loop order has been known in the 1990ies. The O(a3s) from (13.23), given in
the DIS-scheme, agree with the perturbative result [60] after transforming it to the MS scheme. The
test of even further agreement in higher orders is left for the future. Note that the addend −6ζ3, being
numerically large, contains contributions of the gluonic contribution to the trajectory function ω(q21).
The result given in Ref. [382] was confirmed in a different calculation by Ref. [383]. A departing value
was reported in [384].15

Numerical results on the impact of the leading and next–to–leading anomalous dimensions and
coefficient functions were provided in a series of detailed studies, see e.g. [303,370,380,385] and references
therein. The matrix formalism for the solution of the all order evolution equations, extending a first
approach in Ref. [304] to all orders, both for hadronic and photon structure functions, is described in
Ref. [303] in detail. The quarkonic contributions lead to a strong enhancement of both F2(x,Q

2) and
FL(x,Q

2) at small x during the evolution. However, already simple choices for the yet unknown less
singular contributions, cf. (13.11), diminish these effects sizably so that a final conclusion cannot be
drawn at present. In the case of the resummed gluon anomalous dimension the NLO contributions
are found to be extremely large and negative. The large rise due to the LO BFKL term is already
canceled to the level of the fixed order contributions by the purely quarkonic contribution to γNLgg , see
Figure 20. Adding also the gluonic contribution leads to negative values for the resummed splitting
function already for αs = 0.2 and x ≃ 0.01 which has to be regarded as unphysical. The LO and
NLO resummed contributions to the gluon anomalous dimension seem to represent the first terms of a
diverging series, which might be eventually resummed.

An interesting approach in this direction was performed in Refs. [381, 386], and related work in
[387, 388]. In [381, 386] the coupled evolution equations

d

dt
f+(N, t) = γ+(as(t), N)f+(N, t),

d

dξ
f+(x,M) = χ(âs,M)f+(x,M), (13.25)

with t = log(Q2/Q2
0), ξ = ln(1/x), f+(x,M) =

∫ +∞

−∞
dt exp(−Mt)f+(x, t), and N the Mellin variable.

γ+(as, N) is the eigenvalue of the singlet-evolution kernel containing poles at N = 1 and χ(âs,M)

15Despite the fact that in Ref. [384] the quark contribution to ω(q21) agrees with [382, 383], it may still be that the
calculation in [384] addresses a different quantity.
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denotes the BFKL-kernel, where âs is the operator as(t → −∂/∂M). Eqs. (13.25) give rise to the
so-called duality relation

χ(as, γ
+(as, N)) = N, γ+(as, χ(as,M)) =M (13.26)

in the small-x region. These relations are used to organize the resummation of the small-x contributions,
which leads to a gradual stabilization of the dominant splitting functions at low x. For the splitting
function xPgg(x) this is illustrated in Figure 21, including all the presently known information. In the
MS scheme significantly larger values are found than in the 3-loop fixed order calculation at x ∼ 10−4

and below.
Finally, we would like to mention that the effect of potential sub-leading contributions to the LO

resummed anomalous dimension may be studied within Φ3 theory in D = 6 dimensions, as a simple
model with 3-boson interactions at the perturbative level. Here the leading order resummed anomalous
dimension can be calculated for all values of x solving a Bethe–Salpeter equation [389]. The correspond-
ing singularity at fixed orders is located at N = −1 due to the scalar field. In [390] the LO small-x
resummed terms were compared to the complete ladder solution adding the NLO corrections. In this
case it turns out that the pure small-x resummed terms do not give the correct result. To further
consolidate the knowledge on parton distributions in the small-x region it seems to be necessary to
calculate at least one further resummed series, i.e. NNLO BFKL.

14 Resummation at Large Values of x

The dominant contributions to the splitting functions and Wilson coefficients in the large-x region result
form the terms

[
lnk(1− x)

1− x

]

+

, δ(1− x), lnl(1− x), k, l ∈ N, k ≥ 0, l > 0 . (14.1)

This is best seen in Mellin space, where

1

k!
M

[(
lnk(1− x)

1− x

)

+

]
(N) = (−1)k+1S1, . . . ,1︸ ︷︷ ︸

k + 1

(N − 1) (14.2)

M [δ(1− x)] (N) = 1 (14.3)
1

k!
M
[
lnk(1− x)

]
(N) = (−1)k

1

N
S1, . . . ,1︸ ︷︷ ︸

k

(N) . (14.4)

The harmonic sums with equal index form a polynomial in single harmonic sums, cf. [174, 223],

S1, . . . ,1︸ ︷︷ ︸
k

(N) =
1

k

k∑

l=1

S1, . . . ,1︸ ︷︷ ︸
k − l

(N)Sl(N) . (14.5)

In the limit |N | → ∞ one obtains

S1, . . . ,1︸ ︷︷ ︸
k

(N) ∝ 1

k!
Sk1 (N) +O(Sk−2

1 (N)S2(N)) (14.6)

and

S1(N) ∝ ln(N̄) +
1

2N
+

1

12N2
− 1

120N4
+O

(
1

N6

)
. (14.7)
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with N̄ = N + γE .
Let us consider the splitting functions Pik and Wilson coefficients Cp,i

Pik(x, as) =

∞∑

j=0

aj+1
s P

(j)
ik (x) (14.8)

Cp,i(x, as) = δp,2(3)δ(1− x) +
∞∑

j=1

ajsc
(j)
p,i (x) . (14.9)

The large x structure for the spitting functions Pik and Wilson coefficients known up to O(α3
s) [59–61]

is

P
(l)
kk (x) = Al+1(1− x)+ +Bl+1δ(1− x) + Cl+1 ln(1− x) +O[(1− x)k≥1 lnl+1(1− x)] (14.10)

P
(l)
i 6=k(x) =

2l−1∑

j=0

D
(l,j)
kl ln2l−j(1− x) +O(1) (14.11)

ca,l(x) =
(2CF )

l

(l − 1)!
pqq(x) ln

2l−1(1− x) +O[(1− x)k≥−1 ln2l−2(1− x)], (14.12)

cf. [391,392]. Here ca,l(x) denotes the non-singlet Wilson coefficient with pqq(x) = 2/(1− x)+ − (1+ x).
The singlet Wilson coefficients are of a similar structure. The splitting function P s

qq(x) related to the
color factor dabcd

abc (7.5,7.6) behaves like (1− x)k≥1 ln(1− x) for large values of x, [391].
In Mellin-space the resummed Wilson coefficients have the structure [393, 394]

C(N) = g0(as) exp
{
ln(N)g1(λ) + g2(λ) + asg3(λ) +O(a2sf(λ))

}
, (14.13)

with g0(as) the normalization and λ = asβ0 ln(N). In the flavor non-singlet case the functions g1,2(as)
are given by

g1(as) =
A1

β0λ
[λ+ (1− λ) ln(1− λ)] (14.14)

g2(as) = −γEA1 −B1

β0
ln(1− λ)− A2

β2
0

[λ+ ln(1− λ)] +
A1β1
β3
0

[
λ ln(1− λ) +

1

2
ln2(1− λ)

]
,

(14.15)

with

A1 = 4CF , A2 = 8CF

[(
67

18
− ζ2

)
CA − 5

9
Nf

]
, [393] B1 = −3CF [394] . (14.16)

The universal part of g3 ∝ as ln(N) was derived in [395].
The leading order resummation corrections beyond O(a3s) valid for large values ofN in the non-singlet

case have been calculated in [396]. Next-to-leading-log contributions were accounted for in [391, 397].
One may investigate the large-x structure of the 4-loop anomalous dimensions studying scheme-

invariant evolution equations, cf. [152–155], for the F2, Fφ-system, with φ a scalar particle coupling to
the gluon as the photon couples to the quarks. The specific structure of the scheme-invariant kernels
to the level of a3s is assumed to hold at a4s. Knowing the 3-loop Wilson coefficients, one may determine

under this assumption the large x behaviour of the singlet splitting functions P
(3)
ij (x) in the highest two

powers in ln(1 − x), cf. [398]. A resummation of the contributions to Pqg, Pgq, C2,g and CL,g has been
performed in [392]. A systematic approach to obtain even higher order terms in case of the large-x
resummation has been proposed in Ref. [399].

50



15 Sum Rules and Integral Relations

Deep-inelastic structure functions obey a series of sum rules for special moments or even integral re-
lations, which are of interest for experimental tests. These relations are of different rigor. In most of
the cases they receive radiative corrections, mass corrections, and in some cases even non-perturbative
corrections a priori. Using current algebra techniques many sum rules have been investigated in [400].
A larger series of sum rules having been proposed for polarized scattering have been analyzed in [94].
Quark mass and QCD corrections have been given in [288,400]. In the following we give a brief descrip-
tion of the main sum rules and comment on the status of available QCD corrections.

Adler sum rule [401]:
This sum rule is rigorous and neither obtains QCD nor mass corrections.

∫ 1

0

dx

x

[
F ν̄p
2 (x,Q2)− F νp

2 (x,Q2)
]
= K(Nf ), (15.1)

with K(3) = 2 + 2 sin2 θc, (SUF (3)) and K(4) = 2, (SUF (4)), and θc the Cabibbo angle, cf [288, 400].
Unpolarized Bjorken sum rule [402]:
The sum rule refers to the charged current structure functions F1

∫ 1

0

dx
[
F ν̄p
1 (x,Q2)− F νp

1 (x,Q2)
]
= K(Nf )A

F1(Nf , Q
2), (15.2)

with K(3(4)) = 1 + sin2 θc, (1) and A
F(Nf , Q

2) = 1 +O(as). The 3-loop QCD corrections to AF1 were
given in [403].
Gross-Llewellyn Smith sum rule [404]:
Likewise, the combination for the charged current structure functions F3 yields

∫ 1

0

dx
[
F ν̄p
3 (x,Q2) + F νp

3 (x,Q2)
]
= K(Nf )A

F3(Nf , Q
2), (15.3)

with K(3(4)) = 6− 2 sin2 θc, (6). The 3-loop QCD corrections to AF3(Nf , Q
2) were given in [405] and

the 4-loop corrections in [406].
Polarized Bjorken sum rule [407]:
The sum rule refers to the flavor non-singlet combination

∫ 1

0

dx
[
gep1 (x,Q2)− gen1 (x,Q2)

]
=

1

6

∣∣∣∣
gA
gV

∣∣∣∣A
g1(Nf , Q

2), (15.4)

with gA,V the neutron decay constants, gA/gV ≈ −1.26. The 3-loop QCD corrections to Ag1(Nf , Q
2)

were given in [405] and the 4-loop corrections in [408].
Gerasimov-Drell-Hearn sum rule [409, 410]:
This sum rule is given by the first moment of the polarized structure function gp,n1 (x,Q2) in the form,
cf. e.g. [338, 411, 412],

Ip,n(Q
2) = 2

M2

Q2

∫ x0

0

dx gp,n1 (x,Q2) =

{ −1
4
µ2
p,n, Q2 → 0

2M2

Q2 Γp,n1 , Q2 → ∞ (15.5)

at proton and neutron targets, with x0 = Q2/(2Mmπ+m
2
π+Q

2), µp,n the anomalous magnetic moment
of the proton or nucleon (1.1), and Γ1 the first moment of the structure function g1 at infinite space-like
momentum transfer. The sum-rule has a very strong Q2-evolution for low values of the virtuality. In
case of proton targets it changes sign between Q2 = 0 and Q2 ≈ 1GeV2, [338].
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Burkhardt-Cottingham sum rule [413]:

∫ 1

0

dxg2(x,Q
2) = 0 . (15.6)

In the derivation of the sum rule it was assumed that the large ν-behaviour of the associated amplitude
A2, cf. [94], is governed by Regge-theory and it behaves as A2(Q

2, ν) ∼ ν−1−ǫ, ǫ < 0. However, this may
be questioned, see [414]. It was argued in [415] that Regge cuts spoil the sum rule, which would vanish
for large Q2, however. The sum-rule may be invalidated in case of a short-distance singularity [414], see
also [416]. The Burkhardt-Cottingham sum rule cannot be expressed in terms of expectation values of
(axial-)vector current operators and not be derived using the light-cone expansion, see e.g. [94], although
a formal analytic continuation for general values of the Mellin variable N would suggest it. It is well-
known, however, that specific moments may have a particular behaviour. The O(αs) corrections [400],
target mass corrections [93] and massive quark corrections [417] do not alter this relation. A brief review
on this sum rule has been given in Ref. [414].
Efremov-Teryaev-Leader sum rule [418]:
This sum rule refers to the valence (V) contributions of the polarized structure functions g1,2 related to

the twist-3 operator matrix element dγq,V1

∫ 1

0

dx x
[
gγq,V1 (x,Q2) + 2gγq,V1 (x,Q2)

]
=
e2q
8
dγq,V1 = 0 . (15.7)

It receives quark mass corrections and is thus only valid in the limit mq → 0, cf. [94]. It holds under
certain conditions also in the presence of target mass corrections [93].
Ellis-Jaffe sum rule [419]:
This sum rule is given by the integral

∫ 1

0

dxg
p(n)
1 (x,Q2) = CNS(Q2)ANS(Q2) + CS(Q2)AS(Q2). (15.8)

It was originally devised to describe the nucleon spin composition. However, the nucleon spin receives
also gluonic and angular momentum contributions. The latter can in principle be measured using non-
forward scattering [80]. Here CNS,S denote Wilson coefficients and ANS,S the corresponding OMEs in the
flavor non-singlet and singlet case. The non-singlet current is conserved for massless quarks, while the
singlet current is not conserved, which causes a non-vanishing singlet anomalous dimension at O(a2s).
The 3- and 4-loop QCD corrections to this sum rule have been calculated in [420, 421].
Gottfried sum rule [422]:

∫ 1

0

dx

x

[
F γp
2 (x,Q2)− F γn

2 (x,Q2)
]
=

1

3

∫ 1

0

dx
[
uv(x,Q

2)− dv(x,Q
2)−

(
d̄(x,Q2)− ū(x,Q2)

))
] . (15.9)

This sum rule is non-rigorous since the distributions d̄(x,Q2) and ū(x,Q2) are found to be different and
are non-perturbative quantities. It is currently studied in lattice simulations, cf. Figure 16. The 3-loop
corrections to the sum-rule follow from the Wilson coefficients [61]. The large-Nc limit was studied
in [423].
Integral Relations at Twist 2 and 3 [93, 266]:
The twist-2 and twist-3 contributions to the structure functions g1,2(x,Q

2) obey the relations

gτ=2
2 (x,Q2) = −gτ=2

1 (x,Q2) +

∫ 1

x

dy

y
gτ=2
2 (y,Q2) (15.10)

gτ=3
1 (x,Q2) =

4M2

Q2

[
gτ=3
2 (x,Q2)− 2

∫ 1

x

dy

y
gτ=3
2 (y,Q2)

]
. (15.11)
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The Wandzura-Wilczek relation (15.10) [266], originally derived in the massless case, remains valid in
case of quark- and target mass corrections [93], for the gluonic contributions [265], for non-forward scat-
tering [301,424], and diffractive scattering [302,425]. It can be derived using the covariant parton model,
as well as relations for other polarized structure functions containing twist-3 contributions, cf. [145,150].
In the limit of vanishing target masses g1 does not receive a twist-3 contribution. Eqs. (15.10,15.11)
allow to disentangle the fermionic twist-2 and 3 contributions to g1 and g2.

16 Higher Twist Contributions

Beyond the leading twist contributions, i.e. twist τ = 2 in Quantum Chromodynamics, a quite different
picture emerges for the structure functions both in the polarized and unpolarized case. With the twist-3
contributions to polarized deep-inelastic scattering the problem of the operator mixing becomes more
involved since the number of operators contributing at total spin N is growing with N . Both the
anomalous dimensions and Wilson coefficients have been calculated during the last three decades at the
level of the O(as) corrections. The twist-3 anomalous dimensions have been derived in Refs. [426,427].
The evolution in the non-singlet case in the large Nc limit has been studied in [428] and terms beyond
this limit were derived in [429]. The twist-3 non-singlet and singlet anomalous dimensions have been
calculated using light-ray operators in [430, 431]. The leading order Wilson coefficients were computed
in [432] in the non-singlet and in [433] in the singlet case. The renormalization of gauge invariant
operators contributing to the structure function g2(x,Q

2) has been studied in [434]. In Ref. [435] the
gluonic contributions to the structure function g2(x,Q

2) were calculated. The complete non-singlet and
singlet evolution of the twist-3 moments was derived in [436].

The data on g2(x,Q
2) [122, 135] have still large errors, which can be substantially improved at a

facility like the EIC [137, 138]. For first estimates on the behaviour of the twist-3 part of g2(x,Q
2)

see e.g. in [437]. Yet the experimental errors on the twist-3 contribution of the structure function
g2(x,Q

2) are large [295]. First lattice measurements of the lowest twist-3 moment have been performed
in [438, 439] at larger pion masses and have to be refined for realistic values of mπ in the future.

In the unpolarized case the contributions of higher (dynamical) twist are of τ = 4, 6, .... They are
largely suppressed in the limit of large virtualities Q2. However, the experimental data often exhibit a
correlation between x and Q2 due to similar values of S. Furthermore, in neutral current deep-inelastic
scattering the largest statistics is located in the region of lower values of Q2. It is difficult to decide from
which scale Q2 onwards a data sample is widely free of higher twist contributions, for which sometimes
a cut of W 2 = 12.5 − 15GeV2 is proposed [199, 440]. This cut has been verified in the non-singlet
analysis [199].

The local operators of higher twist can be constructed systematically near the light-cone. They are
formed by more external quark and gluon fields than the twist-2 operators and potential contributions
of lower twist operators in case mass scales are present. A twist-4 operator is given e.g. by

: ψ̄(x)γµ1∂µ2 ...∂µmψ(x)ψ̄(y)γν1∂ν2 ...∂νnψ(y) : (16.1)

A systematic twist-decomposition has to be performed, cf. [140]. One forms operator matrix elements
with these operators between nucleon states. A ‘partonic’ interpretation assumes, that all external
lines can be factorized. The corresponding contributions to deep-inelastic structure functions are then
similar as in the case of twist-2, with the generalization that both the Wilson coefficients and OMEs
depend on n− 1 dimensionless parameters

∑n−1
i=1 xi = x, where n denotes the number of external fields.

These parameters, except x, cannot be measured in the deep-inelastic process.
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Figure 22: Comparison of the higher twist coefficient CHT (x) ≡ Cτ=4
2 (x) in the large x region for the proton data

as function of x in a NLO (dotted lines), NNLO (dashed lines), N3LO analysis (dash-dotted lines) for the non-singlet
QCD Wilson coefficient (full lines). Some bin centers are slightly shifted for better visibility; from [455], c©(2010)
by Elsevier Science.

Early theoretical investigations of the structure of higher twist operators and their anomalous di-
mensions in D = 6 Φ3-theory [441] and QCD [186,426,442–448] revealed the principal structure of these
contributions. The lowest order anomalous dimensions have been calculated in [186, 445, 448] and the
Wilson coefficients, in different operator bases, in [443, 444, 446]. More recently also gluonic operators
were considered [447]. A systematic study of higher twist light-cone distribution amplitudes was given
in [448]. The renormalization of these operators has been worked out systematically in [449]. The
evolution of the lowest twist-4 moments at leading order has been studied in [450] recently.

Due to the fact that the OMEs of higher twist operators cannot be measured experimentally one
may envisage their determination with lattice simulations. At present, investigations of this kind are
still at the beginning. In Mellin–space the basis of higher twist operators grows considerably with the
value of the Mellin variable N and an according number of OMEs has to be measured on the lattice,
which further complicates quantifications of higher twist effects ab initio.

Estimates of higher twist effects have been obtained studying renormalon corrections to sum-rules
and deep-inelastic structure functions, see [451] and for reviews Refs. [452, 453].

Because of the complications mentioned the extraction of higher twist contributions to deep-inelastic
structure functions is usually being performed applying a suitable Ansatz for these contributions:

Fi(x,Q
2) = F τ=2

i (x,Q2)

[
1 +

Cτ=4
i (x,Q2)

Q2
+
Cτ=6
i (x,Q4)

Q2
+ ...

]
. (16.2)

Sometimes one considers the higher twist terms in (16.2) in additive form. In many cases these con-
tributions are fitted together with the PDFs, cf. [454, 455]. Since the logarithmic scaling violations of
the higher twist coefficients are in general different from those of the lowest twist it was suggested to
proceed in a different way, cf. [199,455]. In the flavor non-singlet case the lowest twist contributions to
the structure functions may be determined in the region which is free of higher twist terms. One then
extrapolates the twist–2 distributions into the region, where higher twist contributions are present and
measures the difference. The size of higher twist contributions thus obtained stabilizes including higher
order QCD corrections to the leading twist terms. The inclusion of the leading twist 3-loop Wilson
coefficients yields the dominant contribution and effectively describes the N3LO terms, while the N4LO
term is approximate only as it refers to the soft exponentiations [396]. In Figure 22 the corresponding
results are shown for a world analysis in the valence region for proton and deuteron data.
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Figure 23: Left: comparison between the higher twist values corresponding to the fits of inclusive DIS LSS06 [456]
and combined inclusive and SIDIS data set LSS10 [342] c©(2010) by the American Physical Society. Right: The
additive higher twist coefficients Cp(x), Cd(x) and Cn(x) [329],

c©(2010) by Elsevier Science.

A similar analysis is not possible in the polarized case at present, because of the smaller kinematic
range in Q2 and the larger errors of the data for the structure function g1(x,Q

2). Here the higher twist
contributions are fitted as additive terms in an NLO analysis for individual bins, cf. e.g. [329,342,456].
In Refs. [342, 456] smaller errors have been obtained with an excess at lower values of x in case of
neutron targets and proton targets, see Figure 23. In [329] higher twist contributions which are widely
compatible with zero have been obtained both for the proton and neutron targets, with a 1–1.5 σ effect
in two bins for the proton data. To reveal twist–4 contributions to the structure function g1(x,Q

2)
more precise data from future experiments are needed.

17 Nuclear Parton Distribution Functions

The parton densities for free nucleons and nuclei are different. This has been first demonstrated in detail
by the EMC-experiment [457]. One well-known effect is due to the Fermi-motion of nucleons within
nuclei [458]. Beyond these contributions other deviations have been observed, in the region of lower
values of x. Various phenomenological explanations have been proposed, like binding models of nucleons,
admixture models, change of nucleon mass, pion enhancement, multi-quark clusters, dynamical rescaling
(change of confinement size), shadowing, and others; for reviews see [459]. Nuclear effects also modify the
Drell-Yan process, W±/Z–production, high p⊥ hadron production, J/ψ– and direct photon production.

Recent global data analyses to extract the nuclear PDFs have been carried out by different groups
[460–465] extracting nuclear correction factors RA

i (xN , Q
2) for the parton densities fi(x,Q

2) in free
nucleons. In general the Bjorken variable xN for nuclear PDFs has support xN ∈ [0, A]. However,
measured distributions for values of xN > 1 do rapidly fall. Therefore, one often parameterizes the
nuclear PDFs only for the range xN ∈ [0, 1]. A recent parameterization was given in Ref. [465]. The
correction factors RA

i (xN , Q
2) are illustrated in Figure 24 for a series of nuclei for the quark distributions

uv, ū, s and the gluon distribution g. The dv distribution is assigned the same correction factor as the
uv distribution.

The nuclear corrections at very small and very large xN become stronger with the rising value of
A. At large xN Fermi-motion effects dominate. Anti-shadowing effects are observed in the region
xN ∈ [0.01, 0.1] and the correction factors become smaller than one for even smaller values of xN . The
comparison of different fits shows that there are still quite some uncertainties. On the theoretical side
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a complete understanding of the factors RA
i is not yet obtained, despite a large number of proposed

models.
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Figure 24: The NLO nuclear modification factors RA
i for different parton densities at Q2 = 10GeV2 for Be, Fe, Au

and Pb targets as a function of xN . The inner (outer) error bands correspond to ∆χ2 = 1(30), respectively. Red
lines: [465]; dash-dotted lines [464]; dashed lines [461]; from [465] c©(2012) by the American Physical Society.

Deep-inelastic data analyses include deuteron data to obtain an improved representation of the down-
quark distributions due to scattering off the neutron. The deuteron data require nuclear corrections
[466], which mainly concern Fermi-motion and the off-shell effect, cf. [117]. For the off-shell corrections
the Bonn [467] and Paris [468] potentials are used, including the induced differences into the systematic
errors. One assumes that the nuclear model suggested in [462] can be applied to the case of light nuclei,
like deuterium, which has recently been confirmed for 3He and 9Be targets [463]. Di-muon production
data, which are important to measure the strange-quark distributions, are currently measured at nuclear
targets, for which the corrections [469] were applied in [117]. Drell-Yan data of nuclear targets which
are used in present PDF-fits are measured in a region with lower nuclear effects, cf. [470].

18 Conclusions

During the last 40 years the understanding of the sub-structure of nucleons took a vast development.
The theory of strong interactions, QCD, can now be probed at the per-cent level in an increasing
number of reactions. High-luminosity measurements performed at SLAC, CERN, DESY, FERMILAB,
and JLAB more and more revealed the dynamics of quarks and gluons at short distances. With the
advent of the LHC this process will continue in an intimate partnership between precision measurements
and precision calculations. During the coming years the data analysis of the HERA-experiments will
be finalized. Here a remaining issue is the theoretical understanding of the ep → jet cross sections at
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NNLO. Jet physics, the production of W± and Z-bosons, the Drell-Yan cross section, and inclusive
tt̄- as well as single-top production will be important scattering cross sections measured at the LHC
to limit the present experimental errors on αs(M

2
Z) and to further refine the knowledge on the parton

distributions. The precision of the data requests NNLO QCD corrections.
In the more distant future high luminosity facilities like EIC may allow to answer many open

questions related to lower energies, like the partonic structure of polarized nucleons, twist-3 effects,
and higher twist effects in general, and unravel transverse degrees of freedom, including associated spin
effects in detail. This machine will also have the potential to measure αs(M

2
Z) very precisely. Proposed

facilities like LHeC, on the other hand, allow to further progress into the small x and high Q2 domain
by ep scattering. Many proposed theoretical concepts can be tested in this way at high precision, giving
a boost to even more refined theoretical calculations than carried out at present. Probing ever shorter
distances may finally answer the more fundamental question for a possible substructures of quarks,
which will request precision, both at the experimental and theoretical side.
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Neerven, M. Veltman, J. Vermaseren, A. Vogt, and F. Wißbrock. This work has been supported in part
by DFG Sonderforschungsbereich Transregio 9, Computergestützte Theoretische Teilchenphysik, and
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[94] J. Blümlein and N. Kochelev, Nucl. Phys. B 498 (1997) 285 [hep-ph/9612318].

[95] X. -D. Ji, Nucl. Phys. B 402 (1993) 217.

[96] M. Maul, B. Ehrnsperger, E. Stein and A. Schäfer, Z. Phys. A 356 (1997) 443 [hep-ph/9602377].
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[221] J. Blümlein and V. Ravindran, Nucl. Phys. B 716 (2005) 128 [hep-ph/0501178]; Nucl. Phys. B 749

(2006) 1 [hep-ph/0604019].

[222] S. Moch and M. Rogal, Nucl. Phys. B 782 (2007) 51 [arXiv:0704.1740 [hep-ph]];
S. Moch, M. Rogal and A. Vogt, Nucl. Phys. B 790 (2008) 317 [arXiv:0708.3731 [hep-ph]];
S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 813 (2009) 220 [arXiv:0812.4168 [hep-ph]].
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[244] J. Kripfganz, H. J. Möhring and H. Spiesberger, Z. Phys. C 49 (1991) 501.

[245] A. A. Akhundov, D. Y. Bardin, L. Kalinovskaya and T. Riemann, Phys. Lett. B 301 (1993) 447
[hep-ph/9507278].

[246] A. A. Akhundov, D. Y. Bardin, L. Kalinovskaya and T. Riemann, Fortsch. Phys. 44 (1996) 373
[hep-ph/9407266].

[247] D. Y. Bardin, P. Christova, L. Kalinovskaya and T. Riemann, Phys. Lett. B 357 (1995) 456
[hep-ph/9504423].

[248] H. Spiesberger, Nucl. Phys. B 349 (1991) 109.

[249] A. Kwiatkowski, H. Spiesberger and H. J. Möhring, Comput. Phys. Commun. 69 (1992) 155.
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