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Abstract
Background: Rare population variants are known to have important biomedical implications, but
their systematic discovery has only recently been enabled by advances in DNA sequencing. The
design process of a discovery project remains formidable, being limited to ad hoc mixtures of
extensive computer simulation and pilot sequencing. Here, the task is examined from a general
mathematical perspective.

Results: We pose and solve the population sequencing design problem and subsequently apply
standard optimization techniques that maximize the discovery probability. Emphasis is placed on
cases whose discovery thresholds place them within reach of current technologies. We find that
parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set
of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample
redundancy, refuting current notions that sample size should be selected outright. Optimal project-
wide redundancy and sample size are then shown to be inversely proportional to the desired
variant frequency. A second family of constants governs these relationships, permitting one to
immediately establish the most efficient settings for a given set of discovery conditions. Our results
largely concur with the empirical design of the Thousand Genomes Project, though they furnish
some additional refinement.

Conclusion: The optimization principles reported here dramatically simplify the design process
and should be broadly useful as rare-variant projects become both more important and routine in
the future.

Background
Technological developments continue to dramatically
expand the enterprise of DNA sequencing. In particular,
the emergence of so-called "next-generation" instruments
(NGIs) is opening a new chapter of genomic research [1].
If we characterize sequencing economy by the ratio of
project speed to total project cost, NGIs are orders of mag-
nitude superior to their traditional Sanger-based predeces-
sors. Indeed, they are the first systems to demonstrate the

economic feasibility of sequencing individual genomes
on a large scale [2].

Future efforts will undoubtedly use NGIs to address issues
in medical sequencing and personal genomics [3], but
these instruments are also poised for major contributions
at the population level [4,5]. For example, the Thousand
Genomes Project (TGP) is focusing on comprehensive
identification of variants in the human population
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through cohort-level whole-genome sequencing using
NGIs [6,7]. One of its main goals is to discover and char-
acterize rare single nucleotide alleles, basically those
present at minor allele frequencies around 1% or less. This
region was not accessible to the earlier HapMap Project
[8]. Rarer instances are obviously much more difficult to
find and necessitate gathering enormously larger amounts
of data. Such demands will obviously extend to any future
such projects one might envision, including those for
model organisms, agriculturally important species, cancer
genomes, infectious agents, etc.

The success of such variation projects depends upon ade-
quately understanding the relevant process engineering
issues and subsequently crafting a suitable project design.
One concern in traditional single-genome sequencing is
the so-called "stopping problem" [9-11], which is the
proposition of estimating what redundancy will suffice
for a desired level of genomic coverage. Variation projects
similarly require specification of a total, project-wide
redundancy, R. Yet, because they necessarily involve mul-
tiple genomes, an essentially new design question also
emerges. That is, how does one optimize the number of
samples, σ, versus the redundancy allotted per sample, ρ,
such that the probability of finding a rare variant, Pv, is
maximized? The existence of such optima is intuitively
clear. Heavily sequencing only a few samples will tend to
miss a variant because it is unlikely to be present in the
original sample set. Conversely, light sequencing of too
many samples may overlook the variant by virtue of insuf-
ficient coverage for any samples actually harboring it.
Somewhere between these extremes lie optimum combi-
nations of parameters.

At present, this issue can only be addressed in ad hoc, fairly
inefficient ways. For example, the TGP conducted both
painstaking computer simulations and pilot sequencing
phases involving hundreds of genomes to aid in designing
the full-scale project [6,7]. While certainly informative,
even such seemingly extensive data may not, by them-
selves, give a complete picture of optimization because
combinations of the many underlying variables (Table 1)
lead to an enormous solution space. We comment further
on this aspect below. Existing theory is also ineffective
because sequence coverage has not yet been considered
[12].

Here, we examine optimization from a more focused
mathematical perspective. Our treatment accounts for
sequence errors via the proxy of a variable read covering
count [3,13], but it omits secondary, project-specific
details like software idiosyncrasies [14], instrument-spe-
cific biases [15], and alignment issues [16]. The solution
leads to a set of general, though unexpectedly simple opti-
mization principles, which correct some earlier specula-

tion [17] and are useful as first approximations for actual
projects. Because these rules appreciably narrow the solu-
tion space, they also offer good starting points for even
more targeted numerical and empirical searches that
might account for secondary effects, if such are deemed
necessary.

Results
The term "rare variant" is routinely taken to mean a rare
allele, although it can also mean a rare SNP genotype.
Take ϕ to be the variant frequency, i.e. the minor allele fre-
quency or the rare homozygous genotype frequency, as
appropriate. We assume the TGP convention whereby
samples are sequenced separately to uniform depths [6,7],
instead of being pooled first. The general theory then
encompasses the multiple-genome population sequenc-
ing problem and its subsequent design optimization.

Analytical Characterization of Discovery in Multiple 
Genomes
Theorem 1 (Allele Variants). Let DA be the event that a
rare allele is detected, i.e. found by the investigator in a
sequenced diploid genome sample. Its probability is

where

is the coverage probability of spanning the allele's
genomic position on a chromosome with at least τ
sequence reads. Let σ independent, randomly-selected
samples each be sequenced uniformly to haploid depth ρ.
Then, if K is the random variable representing the number
of samples the variant is found in and if N is the mini-
mum number of observations necessary to declare the var-
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Table 1: Variables in a Multi-Genome Variant Detection Project

variable† meaning

Pv probability of finding a rare variant
Pv, min minimum acceptable value of Pv for a project
ρ haploid per-sample sequence redundancy
R total, project-wide redundancy
ϕ frequency of variant in population
σ number of samples sequenced in project
τ minimum read coverings for detection
N minimum variant observations to declare discovery

†Some variables are modified with a "star" superscript to denote 
optima, for example σ* is the optimum sample size for a project, ρ* 

the optimum per-sample redundancy, and  the discovery 

probability under optimal conditions.

Pv
∗
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iant as being "discovered", the discovery event is defined
as K ≥ N and its probability is

Theorem 2 (Genotype Variants). The probability of DG,
the event that a rare genotype is detected in a sample, is

and its discovery probability is again given by Eq. 3, except
where DG, replaces DA.

Statement of the Optimization Problem
Variant discovery is a constrained optimization problem
[18], which can be stated as follows. Given the biological
parameter ϕ and project-specific design parameters R, σ, τ,
Pv, min, and N, maximize the objective function Pv, subject
to both the equality constraint

and to the auxiliary constraint

In practical terms, we want to most efficiently discover a
variant at the lowest possible cost, as represented by R.

Although the problem is framed in terms of finding a sin-
gle variant, actual projects are apt to be specified accord-
ing to discovering a certain average number of rare
variants. These scenarios are equivalent, as Eq. 6 also
quantifies the expected fraction of variants that will be
found in the project. For example, Pv, min = 0.95 indicates
finding 95%, on average, of the variants occurring at some
value of ϕ.

Optimizing for Single and Double Variant Observations
Leaving aside the optimization of ρ versus σ for a
moment, the least obvious of the project-specific parame-
ters to specify is arguably N. Higher values may exceed the
actual number of instances in the sample set, resulting in
a priori failure of the project. We will therefore concentrate
on the experimentally relevant special cases N = 1 and N
= 2. The former is clearly a minimum requirement, while
the latter serves to better discern between a rare popula-
tion variant and a SNP that is unique to an individual
sample (a "private SNP").

Because we have an explicitly-defined equality constraint
in the form of Eq. 5, the number of design variables can
be reduced by one [18]. Specifically, substituting ρ = R/σ

into Eq. 2 allows us to write a constrained form of the cov-
erage probability, which in turn furnishes constrained
expressions for the probabilities of events DA and DG. It is
expedient at this point to switch from the event-based
notation of probability used up until now to the Eulerian
(functional) convention for the calculus-based aspect of
optimization. Specifically, let fτ, iwith i ∈ {A, G} represent
the now-constrained probabilities of DA and DG. (A
detailed explanation of the switch in notation appears in
"Mathematical Preliminaries".) We now state the follow-
ing important optimization conditions.

Theorem 3 (Optimal Conditions). The optimum
number of samples in a multiple-genome variation
project for N = 1 is governed by the differential equation

and for N = 2 by the differential equation

In particular, the roots of these equations in σ indicate
maxima in Pv for rare alleles and genotypes. Each setting
of the independent variables has one such optimum, σ*,
which is necessarily a global optimum.

Discussion
Finding rare variants is clearly an important aspect of both
population and medical genetics [19]. The discovery proc-
ess was not feasible before the advent of NGIs, but is now
being actively prototyped through efforts like the TGP
[6,7] and will likely become more routine in the future.
This eventuality motivates examination of the problem
from a general perspective, similar in spirit to theoretical
treatments of single genomes [20]. The following sections
report on both some of the broad trends across the design
variable spectrum, as well as optimal conditions for the
important special cases of N = 1 and N = 2.

General Trends
Fig. 1 shows Pv versus σ for variants appearing at 1% fre-
quency for thresholds of N = 1 and τ = 2. The latter
appears to have emerged as the de facto choice to better
control for sequencing errors [3,13]. Aside from the
expected trend that performance improves as more data
are gathered, the curves show two notable properties.
First, σ*, the sample size at which the maximum Pv occurs,
increases with the project redundancy. This dependence
means that a project cannot generally be optimized by

P K N
k

P D P Dv
k

A A
k

k N

( ) ( ) ( ) .≥ =
⎛

⎝
⎜

⎞

⎠
⎟ −[ ] −

=
∑ σ σ
σ

1

(3)

P D P CG( ) ( ),= φ 2 (4)

R = ⋅σ ρ , (5)

P Pv v min≥ , . (6)

ln( )
,

, ,,1
1

0− −
−

⋅
∂
∂

=f
f i

f i
iτ

σ

τ
τ
σ

(7)

ln( ) ,
( ) ,

( ) , ,

,1
1 1

1
1 1

1
1

− +
+ −

+

−
+ −

− −
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥

f
f i

f i

f i f i

iτ
τ

σ τ

σ
σ τ

σ

τ ⎥⎥

∂
∂

=
f iτ
σ
, .0

(8)



BMC Genomics 2009, 10:485 http://www.biomedcentral.com/1471-2164/10/485

Page 4 of 9
(page number not for citation purposes)

selecting σ in advance of other factors. Put another way,
outright specification of σ almost certainly assures that
the discovery process will not be optimal. We expand fur-
ther upon this point below.

Fig. 1 also shows that curves are not symmetric with
respect to σ*. The rate of drop-off of Pv for a given project-
wide redundancy is much more severe for σ <σ*, implying
that it is better to err in sequencing too many samples
rather than too few. It is interesting to examine one of the
TGP sequencing pilot phases in this context, which speci-
fies 2× data collection for each of σ = 180 samples [6,7].
Here, R = 2·180 = 360, which is one of the curves plotted
in Fig. 1. Using the above thresholds, this design yields Pv
≈ 61%, whereas the optimal configuration returns Pv ≈
66% for only about 100 samples. Despite using almost
twice as many samples as is optimal, this design remains
relatively good, precisely because of the non-symmetric
behavior.

Constant Sample-Size Designs and the Stalling Effect
The above discussion suggests that investigators should
consider abandoning the idea of choosing σ outright. An
earlier projection offers an interesting case study to further
illustrate this point. Gibbs [17] postulated that σ = 2,000
samples would be a good way of discovering extremely
rare variants occurring at 0.05%. (This number may sim-
ply have been an expeditious choice, as further details
were not specified, nor was there any description of how
this prediction was made.) Fig. 2 shows the implications
of such a σ-based design. As R increases, σ* marches to the
right on the abscissa, eventually passing through the pre-
selected σ = 2,000 at around R = 7,000. It continues right-

ward, leaving our fixed sample datum in the left-side wake
of the optimum (σ <σ*, as mentioned above), where the
associated probability is now heavily penalized. In fact,
the probability stalls at a value of roughly Pv ≈ 0.85,
regardless of the amount of additional data poured into
the project.

Although this stalling effect may initially seem counter-
intuitive, its explanation is quite straightforward. If we
hold σ fixed while letting R increase without bounds, then
ρ also grows without bounds (Eq. 5). In the limit, each
sample will be perfectly sequenced, i.e. P(C) → 1 in Eq. 2.
Discovery is then simply a function of whether or not the
variant is present in the original sample set. If so, it is
absolutely certain to be discovered. The corresponding
probabilities are then simple special cases of the model in
Thms. 1 and 2. For example, for N = 1 observation of a
rare allele we find

which is asymptotically identical to what is obtained if
coverage is not considered at all [5]. The basic problem
associated with constant sample-size designs is immedi-
ately apparent in this equation. Given small ϕ, the expo-
nential term decays very slowly and can only be
compensated for by increasing σ. The challenge, of course,
is to do this such that Pv attains a maximum.

P K ev
R

( ) ~ ,,≥ −
→∞

−1 1 2
constant σ

φσ
(9)

Probability of discovering variants at ϕ = 1% as a function of sample size for N = 1 and τ = 2Figure 1
Probability of discovering variants at ϕ = 1% as a func-
tion of sample size for N = 1 and τ = 2. The single square 
datum represents the TGP pilot project at R = 360×. Circles 
indicate maxima for each curve.
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Remarks on Optimization Methods
We commented above that empirical prototyping and
numerical simulation are unlikely to give complete
insights to the general optimization problem because of
the size of the solution space. Consider that the relation-
ship between two parameters requires only a single curve
on an X-Y plot, three parameters require a family of curves
on one plot, four a textbook of family-type plots, and so
forth. Richard Bellman, who developed the optimization
technique of dynamic programming, called this phenom-
enon the "curse of dimensionality". Table 1 shows that we
have 8 variables in our particular problem, however, even
this is somewhat misleading because it does not consider
the probabilistic nature of the problem. That is, Pv can
only be established as an expected value through a suffi-
cient number of repeated trials for each particular combi-
nation of the independent variables. This is the basic tactic
used in simulation.

The population model in Thms. 1 and 2 improves matters
considerably, furnishing Pv explicitly in terms of (τ, R, σ,
ϕ, N). One could march through every combination of
these variables, evaluating Pv for each, and log maxima
that attain given levels of Pv, min. Though this approach
would be enormously more efficient than naïve brute-
force simulation, the calculations needed to adequately
survey the floating-point "continuum" of the real-valued
variables remain basically infeasible. Consequently, we
still might not expect to discern any latent general laws.

The Weak Optimization Problem

We resort instead to Thm. 3, whose roots for N = 1 and N

= 2 represent optimal sample sizes, σ*. Let us first describe
some unexpected properties found among the independ-
ent variables. These are important in that they furnish a
direct solution to what might be called the weak optimiza-
tion problem. This is the proposition that relaxes the con-
dition defined by Pv, min. In effect, weak optimization

provides the optimal probability, , subject to a pre-

determined R rather than a given Pv, min > 0.

Fig. 3 shows σ* versus R for representative parameter set-
tings. Data collapse onto curves according to variant type.
In each case, σ* = σ*(R, τ) and σ* ∝ R. These observa-
tions, coupled with σ* = R/ρ* from Eq. 5 then imply
σ*(R, τ) = R/ρ*(τ). In other words, ρ* is only a function
of τ (Table 2). This is quite a significant finding because it
immediately establishes the best sample redundancy for a
project. In essence, this observation indicates that opti-
mizable designs for rare variants are based on constant
values of ρ rather than constant values of σ [17].

We emphasize that the numbers in Table 2 are not based
on first-principles and are not strictly encoded in the gov-
erning equations. Rather, they are fortuitous empiricisms,
restricted to the parameter values that characterize rare-
variant projects. Fig. 4 demonstrates that, while ρ* does
indeed only depend upon τ up to allele frequencies of
about 1%, it becomes a more complicated function of
additional variables for higher frequencies.

Remarks on the Special Case of τ = 1 for Rare Alleles
The case of τ = 1 is conspicuously absent for rare alleles in
Figs. 3 and 4 because its optimum sample size is not finite.
Unlike the other cases, Pv approaches its maximum as σ →
∞, for example

Here, we have the seemingly contradictory implication
that we should spread a finite amount of sequence
resources over the largest number of samples, each of
which will then have a vanishingly small ρ. Mathemati-

Pv
∗

P K ev R
R( ) ~ .,≥ −

→∞

−1 1constant 
σ

φ
(10)

Table 2: Constants Associated with Optimum Designs

rare variant τ ρ*(τ)

genotype 1 2.5 0.512 2.5
genotype 2 6.4 0.690 6.4
allele 2 3.6 0.537 1.8

allele 1 special case, see Eq. 10

†See Eqs. 14, 15, 16

λτ
† βτ

†

Optimal sample size versus project-wide redundancy for parameters representative of rare-variant projectsFigure 3
Optimal sample size versus project-wide redundancy 
for parameters representative of rare-variant 
projects.
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cally speaking, the rate by which the per-sample f1, A
decreases precisely offsets the favorable rate of increasing
sample size, whereby Pv does not asymptotically vanish.
However, there will usually be good secondary reasons for
limiting σ in practice, e.g. cost of sample procurement.
Moreover, conditions approach the limiting value rather
quickly, for example setting ρ = R/σ ≤ 0.1 brings Pv very
close to the expression in Eq. 10. R is the main factor gov-
erning discovery under these conditions and its value can
be calculated for a desired Pv by simply inverting Eq. 10.

Optimal Designs for Single and Double Variant 
Observations
The weak solution specifies constants of ρ* (Table 2),
which simultaneously imply σ* for any choice of R. These
properties subsequently fix certain relationships within
the general problem, so that optimization for a desired Pv,

min in Eq. 6 reduces to the task of solving directly for ϕ (see
Methods). Fig. 5 shows the resulting optimal designs for τ
= 2, a setting characteristic of recent projects [3,13].
Results are plotted for Pv, min = 95%, the same threshold set
by the TGP. All curves show a special kind of log-log rela-
tionship between ϕ and R* in which the slope is -1. In
other words, optimal designs can be expressed as a family
of log-log curves having the form ϕ R* = C(N, τ, Pv, min),
where C is a so-called optimization coefficient for each com-
bination of the variables. Of course, knowing C immedi-
ately enables one to compute R* and subsequently σ* =
R*/ρ* for a desired ϕ, which is of enormous practical
value for project design. Table 3 shows C for the configu-
rations having well-defined optimum redundancies,
although we note that Eq. 10 also follows this form, hav-
ing C = 3.0. R* is indicative of the total resources a project

requires, so C is also useful in comparing relative costs.
For example, requiring two observations of a rare allele
instead of just one would only be, somewhat counter-
intuitively, about 60% more expensive if both schemes
were to be done optimally.

Consider the example of the TGP, whose sizable ad hoc
design effort was already mentioned above. For N = τ = 2
at the 95% level, Table 3 indicates C = 15.8. Assuming 1%
rare allele discovery, optimal processing calls for roughly
440 samples sequenced to 3.6× each, for a project total of
R = 1580×. Given the long-standing convention of speci-
fying ρ in whole units, these results largely confirm the
TGP design, though in a more precise fashion. That is,
TGP has only winnowed the sample size to 400-500 per
population cluster, with each sample sequenced to 4×
[6,7]. The associated Pv curve is relatively flat in 400 ≤ σ ≤
500, but this imprecision, coupled with a round value of
ρ, still imposes a degree of cost liability. For instance, on
the outer end, the project would expend 4·500 = 2000×
in data, roughly 25% more than that required for 95%
confidence. Project modifications are readily analyzed, for

Optimum redundancy per sample, ρ*, is essentially constant for each value of τ within the conventional range of ϕ ≤ 1% for rare variantsFigure 4
Optimum redundancy per sample, ρ*, is essentially 
constant for each value of τ within the conventional 
range of ϕ ≤ 1% for rare variants.
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example, reaching alleles down to ϕ = 0.5% would simply
require doubling the project: about 880 samples with R =
3160×. Analysis of genotypes is now similarly trivial.

Conclusion
Sequence variation is often called the "currency" of genet-
ics [4] and whole-genome sequence variation projects,
enabled by continuing advances in technology, will likely
become both increasingly important and routine in bio-
medical research. Although finding common occurrences
is no longer considered to be very difficult, rare ones
remain challenging because of the significantly larger
amounts of data that must be gathered. Process optimiza-
tion has to be considered much more carefully here. We
have reported a general, though remarkably simple set of
optimization principles based on analyzing the popula-
tion sequencing problem. Results largely confirm the
design of a special case, that of the TGP, but also permit
immediate analysis of a much broader set of possible
project requirements. Derivation of optimal conditions
for even higher N and/or τ would be a mechanical, albeit
not entirely trivial extension of the mathematics shown
here, but the experimental feasibility of such designs for
future projects remains unclear.

Population structure is another consideration, as rare var-
iants are likely to be associated with particular geographic
regions and their sub-populations [4]. A few issues are rel-
evant here. First, some studies target the variation under-
lying specific phenotypes [21], but variant discovery
projects do not place strong preference on the kinds of
variation that are sought. Second, ρ* is not a function of
rareness (Fig. 4), meaning that latent population-related
differences in frequency will not ruin optimality. One
should simply treat each desired sub-population sepa-
rately, making no differential adjustments to per-sample
redundancies. This strategy assures discovery of popula-
tion-specific variants and, incidentally, is precisely what
the TGP is following.

Methods
Mathematical Preliminaries
This section expands on some of the mathematical esoter-
ica involved in establishing the theory.

Chain Rule
This principle enables one to find the derivative of a func-
tion that itself depends on another function [22]. In
essence, it establishes a product rule for the respective
derivatives. For example, if y = z3 and z = x2 + 1, then dy/dx
= dy/dz·dz/dx = 3z2·2x = 6x(x2 + 1)2. Chain Rule is used in
the logarithmic differentiation process described below.

Independently and Identically Distributed (IID)
This term means that all random variables in a collection
are independent of one another, i.e. they have no mutual
influences or relationships, and that each has the same
probability as all the others [23]. Coin flipping is a simple
example. The current flip is not influenced by past ones,
nor does it influence future ones, and each flip has the
same probability of showing, say, "heads". This concept is
the basis of ultimately establishing the binomial nature of
Pv in Theorem 1.

Logarithmic Differentiation
This mathematical device employs the Chain Rule (see
above) to differentiate functions whose forms render
them difficult to handle using more basic rules. Proof of
Theorem 3 (below) requires this treatment because the
independent variable being differentiated against appears
in the exponent. An illustrative example having precisely
the same issue is y = ex, which is readily shown by this pro-
cedure to be its own derivative. Applying Chain Rule to
the logarithmic form, ln y = x, yields y-1·dy/dx = 1, from
which dy/dx = y = ex immediately follows.

Notation
This aspect is complicated by the fact that the theory strad-
dles two different branches of mathematics: probability
and calculus. In the former case, notation is primarily con-
cerned with specifying configurations of events, while in
the latter, Euler's convention is used to describe functional
dependence on a set of independent variables. This neces-
sitates a change in notation as we move from the probabi-
listic discovery model in Thms. 1 and 2 to the calculus-
based optimization process in Thm. 3.

Substituting the constraint in Eq. 5, ρ = R/σ, into Eq. 2, we
can write the constrained form of the coverage probability
as

which now depends upon τ, R, and σ. In turn, this expres-
sion is substituted into Eqs. 1 and 4 to obtain constrained
probabilities for events DA and DG, respectively, with
dependence now extending to ϕ, as well. From here on, let
us consider these event probabilities simply as mathemat-
ical functions. For example, f1, G is the expression obtained
by setting τ = 1 in Eq. 11, squaring it, and multiplying by
ϕ, i.e. it is the constrained probability of the event DG orig-
inally introduced in Eq. 4. Under this notation, we can
then easily represent all such functions universally by writ-
ing them in a form fτ, i = fτ, i (ϕ, R, σ), where i ∈ {A, G}.
This is the convention we follow in both Thm. 3 (above)
and its proof (below).

1
1

2
2

0

1

− ⎛
⎝⎜

⎞
⎠⎟

−

=

−

∑ k
R

e
k

R

k
!

,/( )

σ
σ

τ

(11)



BMC Genomics 2009, 10:485 http://www.biomedcentral.com/1471-2164/10/485

Page 8 of 9
(page number not for citation purposes)

Roots of a Function
Roots are values of the independent variable which cause
a function to vanish, i.e. to be equal to zero. For example,
y = x2 - 9 can be factored as y = (x + 3) (x - 3), showing that
x = ±3 are the roots for which y = 0. This concept is relevant
to the proof of Theorem 3 (below) because maxima
within the Pv family of functions occur at roots in σ of the
first derivatives. Roots play a similar role in solving Eqs.
15 and 16.

Proofs of Theorems 1 to 3
Theorem 1: Let Aj and Cj be the events, respectively, that
an allele variant exists on chromosome j in a sample at
location x and that x is spanned (covered) by at least τ
sequence reads. The detection event is DA = (A1 ∩ C1) ∪
(A2 ∩ C2). Given the presumed IID (see "Mathematical
Preliminaries") nature of alleles and coverage with respect
to chromosomes, ϕ = P(A1) = P(A2) and P(C) = P(C1) =
P(C2), from which Eq. 1 follows directly. Eq. 2 is a corol-
lary of diploid covering theory [24]. Finally, with respect
to any given sample, DA is a Bernoulli process: an allele is
either detected, or it is not. Given uniform ρ for each sam-
ple and the random selection of presumably independent
genomes, the process is IID. The distribution of detected
variants is then binomial [23], from which Eq. 3 follows
directly.

Theorem 2: Let G represent the existence of a rare geno-
type in a sample. Since both alleles must be discerned, the
detection event is DG = G ∩ C1 ∩ C2. Because coverage of
x is not a function of whether the genotype is actually
present and vice versa, G and C1 ∩ C2 are independent,
whereby Eq. 4 follows directly.

Theorem 3: The optimization problem is cast by substi-
tuting the single-sample detection probability, fτ, i (see
"Mathematical Preliminaries"), into the project-wide dis-
covery probability, Pv(K ≥ N) in Eq. 3. Noting that fτ, i and
Pv are both functions of σ (among other variables), but
omitting the functional notation, this process gives

for the special cases of interest, N = 1 and N = 2, respec-
tively.

Roots in σ of the first derivatives of these equations are a
necessary condition in identifying the extrema of Pv[22].
Their forms require us to use logarithmic differentiation.
(This procedure and the concept of roots are both out-
lined in the "Mathematical Preliminaries" section above.)

Setting the resulting derivatives equal to zero gives the cor-
responding characteristic equations

and

for N = 1 and N = 2, respectively. In general, Pv ≠ 1 in either
case, so the conditions must instead be satisfied by the
terms in square brackets. Eqs. 7 and 8 follow directly.

The fact that there is only a single, global optimum, σ*,
for each case is a consequence of Pv being a unimodal
function in σ. In general, Pv vanishes monotonically for σ
>σ* because P(C) → 0, and consequently fτ, i → 0, as σ is
increased under finite values of R. The exception is f1, A, for
which Pv asymptotically approaches a maximum (Eq. 10).

Solution of the General Optimization Problem

Optimal conditions are described by constants of ρ*,
which can be substituted into the single-sample probabil-

ity to obtain an optimized . For N = 1, we can then

derive the following expression, valid for both alleles and
genotypes, directly from Eq. 12

where constants λτ and βτ are given in Table 2. This equa-
tion describes the relationship between ϕ and R under
optimal conditions when given user-specified values of τ
and Pv, min. For N = 2, we cannot readily obtain an explicit
optimization rule from Eq. 13. Instead, we cast the rela-
tionship as a root-finding problem in ϕ for genotypes as

and for alleles as
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That is, given τ, R, and Pv, min the values of ϕ under which
the process is optimal are the roots of Eqs. 15 and 16.

Derivatives and Numerical Method
Eqs. 7 and 8 depend upon partial derivatives of fτ, i. For
rare alleles and genotypes, i.e. i ∈ {A, G}, we follow stand-
ard rules of differentiation [22] to obtain

Note that an equation for f1, A is absent because the case of
τ = 1 for rare alleles does not have a well-defined opti-
mum (Eq. 10).

Eqs. 7, 8, 15, and 16 all depend upon the concept of find-
ing the roots of an equation. (See "Mathematical Prelimi-
naries" above.) Although none is readily factorable, they
can be solved by the bisection algorithm, which is
straightforward to apply, has reasonably good conver-
gence behavior, and is extremely robust [25].
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