
Chapter 3

The Theory of Electroweak Interactions

3.1 Introduction

In this chapter, we summarize the structure of the standard EW theory1 and

specify the couplings of the intermediate vector bosons W˙ and Z and those

of the Higgs particle with the fermions and among themselves, as dictated by

the gauge symmetry plus the observed matter content and the requirement of

renormalizability. We discuss the realization of spontaneous symmetry breaking

and the Higgs mechanism. We then review the phenomenological implications of

the EW theory for collider physics, that is, we leave aside the classic low energy

processes that are well described by the “old” weak interaction theory (see, for

example, [148]).

For this discussion, we split the Lagrangian into two parts by separating the terms

with the Higgs field:

L D Lgauge C LHiggs : (3.1)

Both terms are written down as prescribed by the SU.2/
N

U.1/ gauge symmetry

and renormalizability, but the Higgs vacuum expectation value (VEV) induces the

spontaneous symmetry breaking responsible for the non-vanishing vector boson and

fermion masses.

1Some recent textbooks are listed in [276]. See also [34, 313].
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98 3 The Theory of Electroweak Interactions

3.2 The Gauge Sector

We start by specifying Lgauge, which involves only gauge bosons and fermions,

according to the general formalism of gauge theories discussed in Chap. 1:

Lgauge D �1
4

3
X

AD1
FA
��F

A�� � 1

4
B��B

�� C N Li
�D� L C N Ri
�D� R : (3.2)

This is the Yang–Mills Lagrangian for the gauge group SU.2/˝ U.1/ with fermion

matter fields. Here

B�� D @�B� � @�B� ; FA
�� D @�WA

� � @�W
A
� � g�ABC WB

�WC
� ; (3.3)

are the gauge antisymmetric tensors constructed out of the gauge field B� associated

with U.1/ and WA
� corresponding to the three SU.2/ generators, while �ABC are the

group structure constants [see (3.5) and (3.6)], which, for SU.2/, coincide with the

totally antisymmetric Levi-Civita tensor, with �123 D 1 (recall the familiar angular

momentum commutators). The normalization of the SU.2/ gauge coupling g is

therefore specified by (3.3).

As discussed in Sect. 1.5, the standard EW theory is a chiral theory, in the sense

that  L and  R behave differently under the gauge group (so that parity and charge

conjugation non-conservation are made possible in principle). Thus, mass terms for

fermions (of the form N L R C h:c:) are forbidden in the symmetric limit. In the

following,  L;R are column vectors, including all fermion types in the theory that

span generic reducible representations of SU.2/˝ U.1/.

In the absence of mass terms, there are only vector and axial vector interactions

in the Lagrangian, and these have the property of not mixing  L and  R. Fermion

masses will be introduced, together with W˙ and Z masses, by the mechanism of

symmetry breaking. The covariant derivatives D� L;R are given explicitly by

D� L;R D
�

@� C ig

3
X

AD1
tA
L;RWA

� C ig0 1

2
YL;RB�

�

 L;R ; (3.4)

where tA
L;R and YL;R=2 are the SU.2/ and U.1/ generators, respectively, in the

reducible representations  L;R. The commutation relations of the SU.2/ generators

are given by

�

tA
L; t

B
L

�

D i�ABCtC
L ;

�

tA
R; t

B
R

�

D i�ABCtC
R : (3.5)
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We use the normalization in (1.11) [in the fundamental representation of SU.2/].

The electric charge generator Q (in units of e, the positron charge) is given by

Q D t3L C 1

2
YL D t3R C 1

2
YR : (3.6)

Note that the normalization of the U.1/ gauge coupling g0 in (3.4) is now specified

as a consequence of (3.6). Note also that ti
R R D 0, given that, for all known quarks

and leptons,  R is a singlet. But in the following, we keep ti
R R for generality, in

case one day a non-singlet right-handed fermion is discovered.

3.3 Couplings of Gauge Bosons to Fermions

All fermion couplings of the gauge bosons can be derived directly from (3.2) and

(3.4). The charged W� fields are described by W1;2
� , while the photon A� and weak

neutral gauge boson Z� are obtained from combinations of W3
� and B�. The charged-

current (CC) couplings are the simplest. One starts from the W1;2
� terms in (3.2) and

(3.4), which can be written as

g.t1W1
� C t2W2

�/ D g

�

1p
2
.t1 C it2/

1p
2
.W1

� � iW2
�/C h:c:

�

D g

�

1p
2

tCW�
� C h:c:

�

; (3.7)

where t˙ D t1 ˙ it2 and W˙ D .W1 ˙ iW2/=
p
2. By applying this generic relation

to L and R fermions separately, we obtain the vertex

V N  W D g N 
�
�

1p
2

tCL
1

2
.1 � 
5/C 1p

2
tCR
1

2
.1C 
5/

�

 W�
� C h:c: (3.8)

Given that tR D 0 for all fermions in the SM, the charged current is pure V � A. In

the neutral current (NC) sector, the photon A� and the mediator Z� of the weak NC

are orthogonal and normalized linear combinations of B� and W3
� :

A� D cos �WB� C sin �WW3
� ;

Z� D � sin �WB� C cos �WW3
� ; (3.9)

whence

W3
� D sin �WA� C cos �WZ� ;

B� D cos �WA� � sin �WZ� : (3.10)
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Equations (3.9) define the weak mixing angle �W. We can rewrite the W3
� and B�

terms in (3.2) and (3.4) as follows:

gt3W3
� C 1

2
g0YB� D

�

gt3 sin �W C g0.Q � t3/ cos �W

�

A�

C
�

gt3 cos �W � g0.Q � t3/ sin �W

�

Z� ; (3.11)

where (3.6) was also used for the charge matrix Q. The photon is characterized

by equal couplings to left and right fermions, with a strength equal to the electric

charge. Thus we immediately obtain

g sin �W D g0 cos �W D e ; (3.12)

so that

tan �W D g0=g : (3.13)

Once �W has been fixed by the photon couplings, it is a matter of simple algebra to

derive the Z couplings, with the result

V N  Z D g

2 cos �W

N 
�
�

t3L.1 � 
5/C t3R.1C 
5/� 2Q sin2 �W

�

 Z� ; (3.14)

where V N  Z is a notation for the vertex. Once again, recall that in the minimal SM,

t3R D 0 and t3L D ˙1=2.

In order to derive the effective four-fermion interactions, which are equivalent at

low energies to the CC and NC couplings given in (3.8) and (3.14), we anticipate

that large masses, as observed experimentally, are provided for W˙ and Z by LHiggs.

For left–left CC couplings, when the square of the momentum transfer can be

neglected (in comparison with m2
W ) in the propagator of Born diagrams with single

W exchange (see, for example, the diagram for� decay in Fig. 3.1), Eq. (3.8) implies

L
C

eff ' g2

8m2
W

� N 
�.1 � 
5/t
C
L  

�� N 
�.1 � 
5/t�L 
�

: (3.15)

By specializing further in the case of doublet fields, such as �e � e� or �� ���,

we obtain the tree-level relation of g with the Fermi coupling constant GF precisely

Fig. 3.1 Born diagram for �

decay
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measured from � decay [see (1.2) and (1.3)]:

GFp
2

D g2

8m2
W

: (3.16)

Recalling that g sin �W D e, we can also cast this relation in the form

mW D �Born

sin �W

; (3.17)

with

�Born D
�

�˛p
2GF

�1=2

' 37:2802GeV ; (3.18)

where ˛ is the QED fine-structure constant .˛ � e2=4� D 1=137:036/.

In the same way, for neutral currents, in the Born approximation, (3.14) yields

the effective four-fermion interaction:

L
NC

eff '
p
2 GF�0 N 
�Œ: : :� N 
�Œ: : :� ; (3.19)

where

Œ: : :� � t3L.1 � 
5/C t3R.1C 
5/� 2Q sin2 �W (3.20)

and

�0 D m2
W

m2
Z cos2 �W

: (3.21)

All couplings given in this section are valid at tree level, and are modified in higher

orders of perturbation theory. In particular, the relations between mW and sin �W

[(3.17) and (3.18)] and the observed values of � (� D �0 at tree level) in different

NC processes, are altered by computable EW radiative corrections, as discussed in

Sect. 3.11.

The partial width� .W ! Nf f 0/ is given in the Born approximation by the simplest

diagram in Fig. 3.2, and with tR D 0, one readily obtains from (3.8), in the limit of

Fig. 3.2 Diagrams for (a) the

W and (b) the Z widths in the

Born approximation
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neglecting the fermion masses and summing over all possible f 0 for a given f ,

� .W ! Nf f 0/ D NC

GFm3
W

6�
p
2

D NC

˛mW

12 sin2 �W

; (3.22)

where NC D 3 or 1 is the number of colours for quarks or leptons, respectively, and

(3.12) and (3.16) have been used. Here and in the following expressions for the Z

widths, the one-loop QCD corrections for the quark channels can be absorbed in a

redefinition of NC:

NC ! 3
�

1C ˛s.mZ/=� C � � �
�

:

Note that the widths are particularly large because the rate already occurs at order

g2 or GF. The experimental values of the total W width and the leptonic branching

ratio (the average of e, �, and £ modes) are [307, 350] (see Sect. 3.11):

�W D 2:085˙ 0:042GeV ; B.W ! lāl/ D 10:80˙ 0:09 : (3.23)

The branching ratio B is in very good agreement with the simple approximate

formula, derived from (3.22):

B.W ! lāl/ � 1

2 � 3 �
�

1C ˛s.m
2
Z/=�

�

C 3
� 10:8% : (3.24)

The denominator corresponds to the sum of the final states d0 Nu, s0 Nc, e� Nāe, �� Nā�,

£� Nā£, where d0 and s0 are defined in (3.63).

For tR D 0, the Z coupling to fermions in (3.14) can be cast into the form

V N f f Z D g

2 cos�W

N f 
�
�

g
f

V � g
f

A
5
�

 f Z
� ; (3.25)

with

g
f

A D t
3f

L ; g
f

V=g
f

A D 1 � 4jQf j sin2 �W ; (3.26)

and t
3f

L D ˙1=2 for up-type or down-type fermions. In terms of gA;V given in (3.26)

(the widths are proportional to g2V C g2A), for negligible fermion masses, the partial

width � .Z ! Nf f / in the Born approximation (see the diagram in Fig. 3.2) is given

by

� .Z ! Nf f / D NC

˛mZ

12 sin2 2�W

�

1C .1 � 4jQf j sin2 �W/
2
�

D NC�0
GFm3

Z

24�
p
2

�

1C .1� 4jQf j sin2 �W/
2
�

; (3.27)
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where �0 D m2
W=m2

Z cos2 �W is given in (3.52). The experimental values of the total

Z width and the partial rates into charged leptons (average of e, �, and £), into

hadrons and into invisible channels are [307, 350]

�Z D 2:4952˙ 0:0023GeV ; �lCl� D 83:984˙ 0:086MeV ;

�h D 1744:4˙ 2:0MeV ; �inv D 499:0˙ 1:5MeV :
(3.28)

The measured value of the Z invisible width, taking radiative corrections into

account, leads to the determination of the number of light active neutrinos [307,

350]:

Nā D 2:9840˙ 0:0082 ; (3.29)

well compatible with the three known neutrinos āe, ā�, and ā£. Hence, there exist

only the three known sequential generations of fermions (with light neutrinos), a

result which also has important consequences in astrophysics and cosmology.

At the Z peak, besides total cross-sections, various types of asymmetries have

been measured. The results of all asymmetry measurements are quoted in terms of

the asymmetry parameter Af , defined in terms of the effective coupling constants,

g
f

V and g
f

A, as

Af D 2
g

f

Vg
f

A

g
f2
V C g

f2
A

D 2
g

f

V=g
f

A

1C .g
f

V=g
f

A/
2
; A

f

FB D 3

4
AeAf : (3.30)

The measurements are the forward–backward asymmetry (A
f

FB D 3AeAf =4), the tau

polarization (A£) and its forward–backward asymmetry (Ae) measured at LEP, and

also the left–right and left–right forward–backward asymmetry measured at SLC

(Ae and Af , respectively). Hence, the set of partial width and asymmetry results

allows the extraction of the effective coupling constants: widths measure .g2V C g2A/

and asymmetries measure gV=gA.

The top quark is heavy enough to be able to decay into a real bW pair, which is

by far its dominant decay channel. The next mode, t ! sW, is suppressed in rate by

a factor jVtsj2 � 1:7 � 10�3 [see (3.68)–(3.70)]. The associated width, neglecting

mb effects but including 1-loop QCD corrections in the limit mW D 0, is given by

(we have omitted a factor jVtbj2 that we set equal to 1) [253]

� .t ! bWC/ D GFm3
t

8�
p
2

�

1�m2
W

m2
t

�2�

1C2m2
W

m2
t

��

1�2˛s.mZ/

3�

�

2�2

3
�5
2

�

C � � �
�

:

(3.31)

The top quark lifetime is so short, about 0:5 � 10�24 s, that it decays before

hadronizing or forming toponium bound states.
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3.4 Gauge Boson Self-Interactions

The gauge boson self-interactions can be derived from the F�� term in Lgauge using

(3.9) and W˙ D .W1 ˙ iW2/=
p
2. Defining the three-gauge-boson vertex as in

Fig. 3.3 (with all incoming lines), we obtain

VW�WCV D igW�WCV

�

g��.p � q/� C g��.r � p/� C g��.q � r/�
�

; (3.32)

with V � ”;Z and

gW�WC” D g sin �W D e ; gW�WCZ D g cos �W : (3.33)

Note that the photon coupling to the W is fixed by the electric charge, as imposed by

QED gauge invariance. The ZWW coupling is larger by a factor of cot �W. This form

of the triple gauge vertex is very special: in general, there could be departures from

the above SM expression, even if we restrict to Lorentz invariant, electromagnetic

gauge symmetric, and C and P conserving couplings. In fact, some small corrections

are already induced by the radiative corrections. But, in principle, the modifications

induced by some new physics effect could be more important. The experimental

testing of the triple gauge vertices has been done in the past, mainly at LEP2 and at

the Tevatron [235], and now also at the LHC [319].

As a particularly important example, the cross-section and angular distributions

for the process eCe� ! WCW� have been studied at LEP2. In the Born

approximation, the Feynman diagrams for the LEP2 process are shown in Fig. 3.4

[46]. Besides neutrino exchange, which only involves the well established charged

Fig. 3.3 The 3- and 4-gauge boson vertices. The cubic coupling is of order g and the quartic

coupling of order g2

Fig. 3.4 Lowest order diagrams for eCe� ! WCW�
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Fig. 3.5 Measured

production cross-section for

eCe� ! WCW� compared

to the SM and fictitious

theories, not including

trilinear gauge couplings, as

indicated. From [281]

current vertex, the triple weak gauge vertices VW�WCV appear in the ” and Z

exchange diagrams. The Higgs exchange is negligible because the electron mass

is very small. The analytic cross-section formula in the Born approximation can

be found, for example, in [307] (in the section entitled Cross-section formulae for

specific processes). The experimental data are compared with the SM prediction in

Fig. 3.5. Within the present accuracy, the agreement is good. Note that the sum of

all three exchange amplitudes has a better high energy behaviour than its individual

components. This is due to cancellations among the amplitudes implied by gauge

invariance, connected to the fact that the theory is renormalizable (the cross-section

can be seen as a contribution to the imaginary part of the eCe� ! eCe� amplitude).

The quartic gauge coupling is proportional to g2�ABCWBWC�ADEWDWE. Thus in

the term with A D 3, we have four charged W particles. For A D 1 or 2, we have

two charged W particles and two W3 particles, each W3 being a combination of ”

and Z according to (3.10). With a little algebra the quartic vertex can be cast in the

form

VWWVV D igWWVV

�

2g��g�� � g��g�� � g��g��
	

; (3.34)

where � and � refer to WCWC in the 4W vertex and to VV in the WWVV case, and

gWWWW D g2 ; gWW”” D �e2 ; gWW”Z D �eg cos�W ; gWWZZ D �g2 cos2 �W :

(3.35)

In order to obtain these results for the vertex, the reader must duly take into account

the factor of �1=4 in front of F2�� in the Lagrangian and the statistical factors which

are equal to 2 for each pair of identical particles (like WCWC or ””, for example).

As the quartic coupling is quadratic in g and hence small, it has not yet been possible

to test it directly.
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3.5 The Higgs Sector

We now turn to the Higgs sector of the EW Lagrangian [243]. Until recently, this

simplest realization of the EW symmetry breaking was a pure conjecture. But in July

2012 the ATLAS and CMS Collaborations at the CERN LHC announced [2, 135]

the discovery of a particle with mass mH � 126GeV that looks very much like

the long sought Higgs particle. More precise measurements of its couplings and the

proof that its spin is zero are necessary before the identification with the SM Higgs

boson can be completely established. But the following description of the Higgs

sector of the SM can now be read with this striking development in mind.

The Higgs Lagrangian is specified by the gauge principle and the requirement of

renormalizability to be

LHiggs D .D��/
�.D��/� V.���/� N L�  R� � N R�

� L�
� ; (3.36)

where � is a column vector including all Higgs fields which generally transforms as

a reducible representation of the gauge group SU.2/L ˝ U.1/. In the minimal SM,

it is just a complex doublet. The quantities � (which include all coupling constants)

are matrices that make the Yukawa couplings invariant under the Lorentz and gauge

groups. The potential V.���/, symmetric under SU.2/L ˝ U.1/, contains at most

quartic terms in � so that the theory is renormalizable:

V.���/ D ��2��� C 1

2
�.���/2 (3.37)

As discussed in Chap. 1, spontaneous symmetry breaking is induced if the minimum

of V , which is the classical analogue of the quantum mechanical vacuum state, is not

a single point but a whole orbit obtained for non-vanishing � values. Precisely, we

denote the vacuum expectation value (VEV) of �, i.e., the position of the minimum,

by v (which is a doublet):

h0j�.x/j0i D v D
�

0

v

�

6D 0 : (3.38)

The reader should be careful that, for economy of notation, the same symbol is

used for the doublet and for the only nonzero component of the same doublet. The

fermion mass matrix is obtained from the Yukawa couplings by replacing �.x/ by v :

M D N LM R C N RM
� L ; (3.39)

with

M D � v : (3.40)
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In the MSM, where all left fermions  L are doublets and all right fermions  R

are singlets, only Higgs doublets can contribute to fermion masses. There are

enough free couplings in � to ensure that a single complex Higgs doublet is indeed

sufficient to generate the most general fermion mass matrix. It is important to

observe that, by a suitable change of basis, we can always make the matrix M

Hermitian (so that the mass matrix is 
5-free) and diagonal. In fact, we can make

separate unitary transformations on  L and  R according to

 0
L D U L ;  0

R D W R ; (3.41)

and consequently,

M ! M
0 D U�

M W : (3.42)

This transformation produces different effects on mass terms and on the structure of

the fermion couplings in Lsymm, because both the kinetic terms and the couplings

to gauge bosons do not mix L and R spinors. The combined effect of these unitary

rotations leads to the phenomenon of mixing and, generically, to flavour-changing

neutral currents (FCNC), as we shall see in Sect. 3.6.

If only one Higgs doublet is present, the change of basis that makes M diagonal

will at the same time diagonalize the fermion–Higgs Yukawa couplings. Thus, in

this case, no flavour-changing neutral Higgs vertices are present. This is not true,

in general, when there are several Higgs doublets. But one Higgs doublet for each

electric charge sector, i.e., one doublet coupled only to u-type quarks, one doublet

to d-type quarks, one doublet to charged leptons, and possibly one for neutrino

Dirac masses, would also be acceptable, because the mass matrices of fermions with

different charges are diagonalized separately. For several Higgs doublets in a given

charge sector, it is also possible to generate CP violation by complex phases in the

Higgs couplings. In the presence of six quark flavours, this CP violation mechanism

is not necessary. In fact, at the moment, the simplest model with only one Higgs

doublet could be adequate for describing all observed phenomena.

We now consider the gauge boson masses and their couplings to the Higgs. These

effects are induced by the .D��/
�.D��/ term in LHiggs [see (3.36)], where

D�� D
 

@� C ig

3
X

AD1
tAWA

� C ig0 Y

2
B�

!

� : (3.43)

Here tA and Y=2 are the SU.2/ ˝ U.1/ generators in the reducible representation

spanned by �. Not only doublets, but all non-singlet Higgs representations can

contribute to gauge boson masses. The condition that the photon remain massless is

equivalent to the condition that the vacuum be electrically neutral:

Qjvi D
�

t3 C 1

2
Y

�

jvi D 0 : (3.44)
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We now explicitly consider the case of a single Higgs doublet:

� D
�

�C

�0

�

; v D
�

0

v

�

: (3.45)

The charged W mass is given by the quadratic terms in the W field arising from

LHiggs, when �.x/ is replaced by v in (3.38). Recalling (3.7), we obtain

m2
WWC

� W�� D g2
ˇ

ˇtCv=
p
2
ˇ

ˇ

2
WC
� W�� ; (3.46)

whilst for the Z mass we get [recalling (3.9)–(3.11)]

1

2
m2

ZZ�Z� D
ˇ

ˇ

ˇ

ˇ

�

gt3 cos �W � g0 Y

2
sin �W

�

v

ˇ

ˇ

ˇ

ˇ

2

Z�Z� ; (3.47)

where the factor of 1/2 on the left-hand side is the correct normalization for the

definition of the mass of a neutral field. Using (3.44), relating the action of t3 and

Y=2 on the vacuum v, and (3.13), we obtain

1

2
m2

Z D .g cos �W C g0 sin �W/
2jt3vj2 D g2

cos2 �W

jt3vj2 : (3.48)

For a Higgs doublet, as in (3.45), we have

jtCvj2 D v2 ; jt3vj2 D 1=4v2 ; (3.49)

so that

m2
W D 1

2
g2v2 ; m2

Z D g2v2

2 cos2 �W

: (3.50)

Note that by using (3.16), we obtain

v D 2�3=4G�1=2
F D 174:1GeV : (3.51)

It is also evident that, for Higgs doublets,

�0 D m2
W

m2
Z cos2 �W

D 1 : (3.52)

This relation is typical of one or more Higgs doublets and would be spoiled by the

existence of Higgs triplets, etc. In general,

�0 D
P

i

�

.ti/
2 � .t3i /2 C ti

�

v2i
P

i 2.t
3
i /
2v2i

; (3.53)
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for several Higgs bosons with VEVs vi, weak isospins ti, and z-components t3i .

These results are valid at the tree level and are modified by calculable EW radiative

corrections, as discussed in Sect. 3.11.

The measured values of the W (combined from the LEP and Tevatron experi-

ments) and Z masses (from LEP) are [307, 350]:

mW D 80:385˙ 0:015GeV ; mZ D 91:1876˙ 0:0021GeV : (3.54)

In the minimal version of the SM, only one Higgs doublet is present. Then the

fermion–Higgs couplings are in proportion to the fermion masses. In fact, from the

fermion f Yukawa couplings g�Nf f .
NfL�fRCh:c:/, the mass mf is obtained by replacing

� by v, so that mf D g�Nf fv. In the minimal SM, three out of the four Hermitian fields

are removed from the physical spectrum by the Higgs mechanism and become the

longitudinal modes of WC;W�, and Z. The fourth neutral Higgs is physical and

should presumably be identified with the newly discovered particle at �126 GeV. If

more doublets are present, two more charged and two more neutral Higgs scalars

should be around for each additional doublet.

The couplings of the physical Higgs H can be simply obtained from LHiggs, by

making the replacement (the remaining three Hermitian fields correspond to the

would-be Goldstone bosons that become the longitudinal modes of W˙ and Z):

�.x/ D
�

�C.x/
�0.x/

�

�!
�

0

v C H=
p
2

�

; (3.55)

so that .D��/
�.D��/ D @�H/2=2C � � � , with the results

L ŒH;W;Z� D g2
vp
2

WC
� W��H C g2

4
WC
� W��H2

Cg2
v

2
p
2 cos2 �W

Z�Z�H C g2

8 cos2 �W

Z�Z�H2 : (3.56)

Note that the trilinear couplings are nominally of order g2, but the dimensionless

coupling constant is actually of order g if we express the couplings in terms of the

masses according to (3.50):

L ŒH;W;Z� D gmWWC
� W��H C g2

4
WC
� W��H2

C gmZ

2 cos2 �W

Z�Z�H C g2

8 cos2 �W

Z�Z�H2 : (3.57)

Thus the trilinear couplings of the Higgs to the gauge bosons are also proportional

to the masses at fixed g [if instead GF is kept fixed then, by (3.16), g is proportional

to mW , and the Higgs couplings are quadratic in mW ]. The quadrilinear couplings
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are of order g2. Recall that, to go from the Lagrangian to the Feynman rules for the

vertices, the statistical factors must be taken into account. For example, the Feynman

rule for the ZZHH vertex is ig��g
2=2 cos2 �W.

The generic coupling of H to a fermion of type f is given after diagonalization

by

L ŒH; N ; � D gfp
2

N  H ; (3.58)

with

gfp
2

D mfp
2v

D 21=4G
1=2
F mf : (3.59)

The Higgs self-couplings are obtained from the potential in (3.37) by the replace-

ment in (3.55). From the minimum condition

v D
r

�2

�
; (3.60)

one obtains

V D ��2
�

v C Hp
2

�2

C �2

2v2

�

v C Hp
2

�4

D ��
2v2

2
C�2H2C �2p

2v
H3C �2

8v2
H4 ;

(3.61)

The constant term can be omitted in our context. We see that the Higgs mass is

positive [compare with (3.37)] and is given by

m2
H D 2�2 D 2�v2 : (3.62)

By recalling the value of v in (3.51), we see that, for mH � 126GeV, � is small,

in fact, �=2 � 0:13. Note that �=2 is the coefficient of �4 in (3.37), and the Higgs

self-interaction is in the perturbative domain.

The difficulty in the Higgs search is due to the fact that it is heavy and coupled

in proportion to mass: it is a heavy particle that must be radiated by another heavy

particle. So a lot of phase space and luminosity are needed. At LEP2, the main

process for Higgs production was the Higgs strahlung process eCe� ! ZH shown

in Fig. 3.6 [181]. The alternative process eCe� ! H� N�, via WW fusion, also

shown in Fig. 3.6 [44], has a smaller cross-section at LEP2 energies, but would

become important, even dominant, in higher energy eCe� colliders, like the ILC or

CLIC (the corresponding ZZ fusion process has a much smaller cross-section). The

analytic formulae for the cross-sections of both processes can be found, for example,

in [46]. The direct experimental limit on mH from LEP2 was mH & 114GeV at 95%

confidence level. The phenomenology of the SM Higgs particle and its production

and detection at hadron colliders will be discussed in Sects. 3.13 and 3.16.
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Fig. 3.6 Higgs production diagrams in the Born approximation for eCe� annihilation: (a) The

Higgs strahlung process eCe� ! ZH, (b) the WW fusion process eCe� ! H� N�

3.6 The CKM Matrix and Flavour Physics

Weak charged current vertices are the only tree level interactions in the SM that

change flavour. For example, by emission of a WC, an up-type quark is turned into

a down-type quark, or a āl neutrino is turned into a l� charged lepton (all fermions

are left-handed). If we start from an up quark that is a mass eigenstate, emission of

a WC turns it into a down-type quark state d0 (the weak isospin partner of u) which

is not in general a mass eigenstate. The mass eigenstates and the weak eigenstates

do not coincide, and a unitary transformation connects the two sets:

D0 D

0

@

d0

s0

b0

1

A D V

0

@

d

s

b

1

A D VD ; (3.63)

where V is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [121]. By analogy

with D, we let U denote the column vector of the three up-quark mass eigenstates.

Thus, in terms of mass eigenstates, the charged weak current of quarks is of the form

JC
� / NU
�.1 � 
5/t

CVD ; (3.64)

where

V D U�
uUd : (3.65)

Here Uu and Ud are the unitary matrices that operate on left-handed doublets in the

diagonalization of the u and d quarks, respectively [see (3.41)]. Since V is unitary

(i.e., VV� D V�V D 1) and commutes with T2, T3 and Q (because all d-type quarks

have the same isospin and charge), the neutral current couplings are diagonal in both

the primed and the unprimed basis. [If the down-type quark terms in the Z current are

written in terms of weak isospin eigenvectors as ND0� D0, then by changing basis we

get NDV�� VD, and V and� commute because, as can be seen from (3.20),� is made
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of Dirac matrices and T3 and Q generator matrices.] It follows that ND0� D0 D ND� D.

This is the GIM mechanism [226], which ensures natural flavour conservation of

the neutral current couplings at the tree level.

For N generations of quarks, V is a N � N unitary matrix that depends on N2

real numbers (N2 complex entries with N2 unitarity constraints). However, the 2N

phases of up- and down-type quarks are not observable. Note that an overall phase

drops away from the expression of the current in (3.64), so that only 2N � 1 phases

can affect V . In total, V depends on N2�2NC1 D .N�1/2 real physical parameters.

Similar counting gives N.N � 1/=2 as the number of independent parameters in an

orthogonal N � N matrix. This implies that in V we have N.N � 1/=2mixing angles

and .N � 1/2 � N.N � 1/=2 D .N � 1/.N � 2/=2 phases: for N D 2, one mixing

angle (the Cabibbo angle �C) and no phases, for N D 3 three angles (�12, �13, and

�23) and one phase ', and so on.

Given the experimentally near-diagonal structure of V , a convenient parametriza-

tion is the one proposed by Maiani [286]. It can be cast in the form of a product

of three independent 2 � 2 block matrices (sij and cij are shorthands for sin �ij and

cos �ij):

V D

0

@

1 0 0

0 c23 s23

0 �s23 c23

1

A

0

@

c13 0 s13e
i'

0 1 0

�s13e
�i' 0 c13

1

A

0

@

c12 s12 0

�s12 c12 0

0 0 1

1

A : (3.66)

The advantage of this parametrization is that the three mixing angles are of different

orders of magnitude. In fact, from experiment we know that s12 � �, s23 � O.�2/,

and s13 � O.�3/, where � D sin �C is the sine of the Cabibbo angle, and, as an order

of magnitude, sij can be expressed in terms of small powers of �. More precisely,

following Wolfenstein [370], one can set

s12 � � ; s23 D A�2 ; s13e
�i� D A�3.� � i�/ : (3.67)

As a result, by neglecting terms of higher order in �, one can write

V D

2

4

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

3

5 �

2

4

1� �2=2 � A�3.� � i�/

�� 1 � �2=2 A�2

A�3.1 � � � i�/ �A�2 1

3

5C O.�4/:

(3.68)

It has become customary to make the replacement �; � ! N�; N� with

� � i� D N� � i N�p
1 � �2

� . N� � i N�/
�

1C �2

2
C � � �

�

: (3.69)

The best values of the CKM parameters as obtained from experiment are

continuously updated in [344, 355] (a survey of the current status of the CKM

parameters can also be found in [307]). A Summer 2013 fit [355] led to the values
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Fig. 3.7 The unitarity

triangle corresponding to

(3.71)

(compatible values, within stated errors, are given in [344]):

� D 0:22535˙ 0:00065 ; A D 0:822˙ 0:012 ;

N� D 0:127˙ 0:023 ; N� D 0:353˙ 0:014 :
(3.70)

In the SM, the non-vanishing of the N� parameter [related to the phase ' in (3.66)

and (3.67)] is the only source of CP violation in the quark sector (we shall see that

new sources of CP violation very likely arise from the neutrino sector). Unitarity of

the CKM matrix V implies relations of the form
P

a VbaV�
ca D ıbc.

In most cases these relations do not imply particularly instructive constraints on

the Wolfenstein parameters. But when the three terms in the sum are of comparable

magnitude, we get interesting information. The three numbers which must add to

zero form a closed triangle in the complex plane (unitarity triangle), with sides of

comparable length. This is the case for the t–u triangle shown in Fig. 3.7 (or, what

is equivalent to a first approximation, for the d–b triangle):

VtdV�
ud C VtsV

�
us C VtbV�

ub D 0 : (3.71)

All terms are of order �3. For � D 0, the triangle would flatten down to vanishing

area. In fact, the area J of the triangle, of order J � �A2�6, is the Jarlskog invariant

[251] (its value is independent of the parametrization). In the SM, in the quark

sector, all CP violating observables must be proportional to J, hence to the area

of the triangle or to �. Its experimental value is J � .3:12˙ 0:09/� 10�5 [355].

Direct and by now very solid evidence for J being non-vanishing was first

obtained from the measurements of � and �0 in K decay. Additional direct evidence

has more recently been collected from experiments on B decays at beauty factories,

at the Tevatron and at the LHC (in particular by the LHCb experiment). Very

recently searches for CP violation in D decays (negative so far) have been reported

by the LHCb experiment [282]. The angles ˇ (the most precisely measured), ˛,

and 
 have been determined with fair precision. The angle measurements and

the available information on the magnitude of the sides, taken together, are in

good agreement with the predictions from the SM unitary triangle (see Fig. 3.8)

[344, 355]. Some alleged tensions are not convincing, either because of their poor

statistical significance or because of lack of confirmation from different potentially
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Fig. 3.8 Constraints in the N�; N� plane, including the most recent data inputs in the global CKM fit.

From [107] (with permission)

Fig. 3.9 Box diagrams describing K0– NK0 mixing at the quark level at 1-loop

sensitive experiments, or because the associated theoretical error estimates can be

questioned.

As we have discussed, due to the GIM mechanism, there are no flavour-changing

neutral current (FCNC) transitions at the tree level in the SM. Transitions with

j�Fj D 1; 2 are induced at one-loop level. In particular, meson mixing, i.e., M ! NM
off-diagonal j�Fj D 2mass matrix elements (with M D K, D, or B neutral mesons),

are obtained from box diagrams. For example, in the case of K0– NK0 mixing, the

relevant transition is Nsd ! sNd (see Fig. 3.9). In the internal quark lines, all up-type

quarks are exchanged. In the amplitude, two vertices and the connecting propagator

(with virtual four momentum p�) at one side contribute a factor (ui D u; c; t):

FGIM D
X

i

V�
uis

1

p= � mui

Vuid ; (3.72)
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which, in the limit of equal mui, is clearly vanishing due to the unitarity of the CKM

matrix V . Thus the result is proportional to mass differences.

For K0– NK0 mixing, the contribution of virtual u quarks is negligible due to the

small value of mu and the contribution of the t quark is also small due to the mixing

factors V�
tsVtd � O.A2�5/. The dominant c quark contribution to the real part of the

box diagram quark-level amplitude is approximately of the form (see, for example,

[176]):

Re Hbox D G2
F

16�2
m2

cRe.V�
csVcd/

2�1O
�sD2 ; (3.73)

where �1 � 0:85 is a QCD correction factor and O�sD2 D NdL
�sLNsL
�dL is the

relevant 4-quark dimension-6 operator. The �1 factor arises from gluon exchanges

among the quark legs of the 4-quark operator. Indeed the coefficients of the

operator expansion, which arises when the heavy particles exchanged are integrated

away, obey renormalization group equations, and the associated logarithms can

be resummed. (The first calculation of resummed QCD corrections to weak non-

leptonic amplitudes was carried out in [209]. For a pedagogical introduction see,

for example, [116].) To obtain the K0– NK0 mixing amplitude, the matrix element

of O�sD2 between meson states must be taken, and this is parametrized by a “BK

parameter”, defined in such a way that BK D 1 for vacuum state insertion between

the two currents:

˝

K0jO�sD2j NK0
˛

D 16

3
fKm2

KBK ; (3.74)

where BK � 0:75 (this is the renormalization group independent definition, usually

denoted by OBK) and fK � 113MeV, the kaon pseudoscalar constant, are best

evaluated by QCD lattice simulations [348]. Clearly, additional non-perturbative

terms must be added to the charm parton contribution in (3.73), some of them of

O.m2
K=m2

c/, because the smallness of mc makes a completely partonic dominance

inadequate. In (3.73), the factor O.m2
c=m2

W/ is the “GIM suppression” factor [1=m2
W

is hidden in GF according to (3.16)].

For B mixing the dominant contribution is from the t quark. In this case, the

partonic dominance is more realistic and the GIM factor O.m2
t =m2

W/ is actually

larger than 1. More recently D mixing has also been observed [53]. In the

corresponding box diagrams, down-type quarks are involved. But starting from

D � cNu, the b quark contribution is strongly suppressed by the CKM angles, given

that VcbV�
ub � O.�5C/. The masses of the d and s quarks are too small for a partonic

evaluation of the box diagram, and non-perturbative terms cannot be neglected. This

makes a theoretical evaluation of mixing and CP violation effects for D mesons

problematic.

All sorts of transitions with j�Fj D 1 are also induced at loop level. For example,

an effective vertex Z ! tNc, which does not exist at tree level, is generated at 1-loop
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Fig. 3.10 Examples of j�Fj D 1 transitions at the quark level at 1-loop: (a) Diagram for a Z ! tNc
vertex, (b) b ! s”, and (c) a “penguin” diagram for b ! seCe�

(see Fig. 3.10). Similarly, transitions involving photons or gluons are also possible,

like t ! cg or b ! s” (Fig. 3.10), or again b ! sg.

For light fermion exchange in the loop, the GIM suppression is also effective in

j�Fj D 1 amplitudes. For example, analogous leptonic transitions like � ! e”

or £ ! �” also exist, but in the SM are extremely small and out of reach for

experiments, because the tiny neutrino masses enter into the GIM suppression

factor. But new physics effects could well make these rare lepton flavour-violating

processes accessible to experiment. In fact, the present limits already pose stringent

constraints on models of new physics. Of particular importance is the recent bound

obtained by the MEG Collaboration at SIN, near Zurich, Switzerland, on the

branching ratio for � ! e”, viz., B.� ! e”/ . 5:7 � 10�13 at 90% [16].

The external Z, photon, or gluon can be attached to a pair of light fermions,

giving rise to an effective four-fermion operator, as in “penguin diagrams” like the

one shown in Fig. 3.10 for b ! slCl�. The inclusive rate B ! Xs” (here B stands

for Bd) with Xs a hadronic state containing a unit of strangeness corresponding to

an s quark, has been precisely measured. The world average result for the branching

ratio with E
 > 1:6GeV is [53]

B.B ! Xs”/exp D .3:55˙ 0:26/� 10�4 :

The theoretical prediction for this inclusive process is to a large extent free of

uncertainties from hadronization effects and is accessible to perturbation theory as

the b quark is heavy enough. The most complete result to order ˛2s is at present from

[86] (and references therein):

B.B ! Xs”/th D .2:98˙ 0:26/ � 10�4 :

Note that the theoretical value has recently become smaller than the experimental

value. The fair agreement between theory and experiment imposes stringent con-

straints on possible new physics effects.

Related processes are Bs;d ! �C��. These decays are very rare in the SM, their

predicted branching ratio being [117]

B.Bs ! �C��/�.3:35˙0:28/�10�9 ; B.Bd ! �C��/�.1:07˙0:10/�10�10 :
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These very small expected branching ratios result because these decays are FCNC

processes with helicity suppression in the purely leptonic final state (the decaying

meson has spin zero and the muon pair is produced by vector exchange in the SM).

Many models of new physics beyond the SM predict large deviations. Thus these

processes represent very stringent tests of the SM.

Recently, the LHCb and CMS experiments have reached the sensitivity to

observe the Bs mode. The LHCb result is [5]

B.Bs ! �C��/ D 2:9C1:1
�1:0 � 10�9 ;

and the same paper sets the bound

B.Bd ! �C��/ � 7:4 � 10�10 at 95% confidence level :

For the same decays, CMS has obtained [136]

B.Bs ! �C��/ D 3:0C1:0
�0:9 � 10�9 ;

and

B.Bd ! �C��/ � 11 � 10�10 at 95% confidence level :

The LHCb and CMS results have been combined [352] and give

B.Bs ! �C��/ D .2:9˙ 0:7/�9 ;

in good agreement with the SM, and

B.Bd ! �C��/ D 3:6C1:6
�1:4 � 10�10 ;

with the central value 1:7� above the SM. Another very demanding test of the SM

has been passed!

Among the exclusive processes of the b ! s type, much interest is at present

devoted to the channel B ! K��C�� [4, 106]. The differential decay distribution

depends on three angles and on the �C�� invariant mass squared q2. In general

12 C 12 form factors enter into the decay distribution (12 in B decay and 12 in

the CP conjugated NB decay), and many observables can be defined. By suitable

angular foldings and CP averages, the number of form factors is reduced. A

sophisticated theoretical analysis allows one to identify and study a number of

quantities that can be measured and are “clean”, i.e., largely independent of hadronic

form factor ambiguities [106]. For those observables most of the results agree

with the SM predictions (based on a Wilson operator expansion in powers of

1=mW and 1=mb, with coefficients depending on ˛s), but a few discrepancies are

observed. The significance, taking into account the number of observables studied
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and the theoretical ambiguities (especially in the estimate of 1=mb corrections), is

not compelling, but a substantial activity is under way on both the experimental and

the theoretical side (see, for example, [248]). Watch this space!

In conclusion, the CKM theory of quark mixing and CP violation has been

precisely tested in the last decade and turns out to be very successful. The expected

deviations from new physics at the EW scale have not yet appeared. The constraints

on new physics from flavour phenomenology are extremely demanding: when

adding higher dimensional effective operators to the SM, the flavour constraints

generically lead to powers of very large suppression scales � in the denominators

of the corresponding coefficients. In fact, in the SM, as we have discussed in

this section, there are very powerful protections against flavour-changing neutral

currents and CP violation effects, in particular through the smallness of quark

mixing angles. In this respect the SM is very special and, as a consequence, if there

is new physics, it must be highly non-generic in order to satisfy the present flavour

constraints.

Only by requiring new physics to share the SM set of protections can one reduce

the scale � down to O.1/ TeV. For example, the class of models with minimal

flavour violation (MFV) [152], where the SM Yukawa couplings are the only

flavour symmetry breaking terms also beyond the SM, have been much studied

and represent a sort of extreme baseline. Alternative, less minimal models that

are currently under study are based on a suitably broken U.3/3 or U.2/3 flavour

symmetry (the cube refers to the QL D uL; dL doublet and the two uR and dR

singlets, while U.3/ or U.2/ mix the three or the first two generations) [81].

3.7 Neutrino Mass and Mixing

In the minimal version of the SM, the right-handed neutrinos āiR, which have no

gauge interactions, are not present at all. With no āR, no Dirac mass is possible for

neutrinos. If lepton number conservation is also imposed, then no Majorana mass is

allowed either, and as a consequence, all neutrinos are massless. But at present, from

neutrino oscillation experiments, we know that at least two out of the three known

neutrinos have non-vanishing masses (for reviews, see, for example, [36]): the two

mass-squared differences measured from solar (�m2
12) and atmospheric oscillations

(�m2
23) are given by�m2

12 � 8� 10�5 eV2 and�m2
23 � 2:5� 10�3 eV2 [200, 201,

229].

Neutrino oscillations only measure jm2
i j differences. Regarding the absolute

values of each mi we know that they are very small, with an upper limit of a fraction

of an eV, obtained from the following:

• Laboratory experiments, e.g., tritium “ decay near the end point, which gives

mā . 2 eV [307].

• Absence of visible neutrinoless double “ decay (0ā““). From Ge76, it has been

shown that jmeej . 0:2–0.4 eV [21]. The range is from nuclear matrix element
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ambiguities and mee is a combination of neutrino masses (for a review, see, for

example, [373]). This result strongly disfavours, in a model-independent way,

the claimed observation of 0ā““ decay in Ge76 decays [267]. From Xe136, one

obtains the combined result jmeej . 0:12–0.25 eV [69].

• Cosmological observations [175]. After the recent release of the Planck data, the

quoted bounds for˙mā, the sum of (quasi-)stable neutrino masses, span a range,

depending on the data set included and the cosmological priors, like˙mā . 0:98

or . 0:32 or . 0:23 [18] (assuming three degenerate neutrinos, these numbers

have to be divided by 3 in order to obtain the limit on individual neutrino masses).

If �iR are added to the minimal model and lepton number is imposed by hand,

then neutrino masses would in general appear as Dirac masses, generated by the

Higgs mechanism, as for any other fermion. But for Dirac neutrinos, to explain the

extreme smallness of neutrino masses, one should allow for very small Yukawa

couplings. However, we stress that, in the SM, baryon B and lepton L number

conservation, which are not guaranteed by gauge symmetries (although this is

the case for the electric charge Q), are understood as “accidental” symmetries.

In fact the SM Lagrangian should contain all terms allowed by gauge symmetry

and renormalizability, but the most general renormalizable Lagrangian (i.e., with

operator dimension d � 4), built from the SM fields, compatible with the SM gauge

symmetry, in the absence of �iR, is automatically B and L conserving. (However,

non-perturbative instanton effects break the conservation of B C L while preserving

B � L, as discussed in Sect. 3.8.)

In the presence of �iR, this is no longer true, and the right-handed Majorana mass

term is allowed:

MRR D N�c
iRMij�jR D �T

iRCMij�jR ; (3.75)

where �c
iR D C N�T

iR is the charge-conjugated neutrino field and C is the charge

conjugation matrix in Dirac spinor space. The Majorana mass term is an operator of

dimension d D 3 with �L D 2. Since the �iR are gauge singlets, the Majorana mass

MRR is fully allowed by the gauge symmetry and a coupling with the Higgs is not

needed to generate this type of mass. As a consequence, the mass matrix entries Mij

do not need to be of the order of the EW symmetry breaking scale v, and could be

much larger. If one starts from the Dirac and RR Majorana mass terms for neutrinos,

the resulting mass matrix, in the L;R space, has the form

mā D
�

0 mD

mD M

�

; (3.76)

where mD and M are the Dirac and Majorana mass matrices [M is the matrix Mij in

(3.75)]. The corresponding eigenvalues are three very heavy neutrinos with masses

of order M and three light neutrinos with masses

mā D �mT
DM�1mD ; (3.77)
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which are possibly very small if M is large enough. This is the see-saw mechanism

for neutrino masses [291]. Note that, if no �iR existed, a Majorana mass term could

still be built out of �jL. But �jL have weak isospin 1/2, being part of the left-handed

lepton doublet l. Thus, the left-handed Majorana mass term has total weak isospin

equal to 1 and needs two Higgs fields to make a gauge invariant term. The resulting

mass term, viz.,

O5 D .Hl/Ti �ij.Hl/j

M
C h:c:; (3.78)

with M a large scale (a priori comparable to the scale of MRR) and � a dimensionless

coupling generically of O.1/, is a non-renormalizable operator of dimension 5, first

pointed out by S. Weinberg [363]. The corresponding mass terms are of the order

mā � �v2=M, where v is the Higgs VEV, hence of the same generic order as the

light neutrino masses from (3.77). Note that, in general, the neutrino mass matrix

has the form

mā D �Tmā� ; (3.79)

as a consequence of the Majorana nature of neutrinos.

In conclusion, neutrino masses are believed to be small because neutrinos are

Majorana particles with masses inversely proportional to the large scale M of energy

where L non-conservation is induced. This corresponds to an important enlargement

of the original minimal SM, where no �R was included and L conservation

was imposed by hand (but this ansatz would be totally unsatisfactory because L

conservation is true “accidentally” only at the renormalizable level, but is violated

by non-renormalizable terms like the Weinberg operator and by instanton effects).

Actually, L and B non-conservation are necessary if we want to explain baryogenesis

and we have Grand Unified Theories (GUTs) in mind. It is interesting that the

observed magnitudes of the mass-squared splittings of neutrinos are well compatible

with a scale M remarkably close to the GUT scale, where L non-conservation is

indeed naturally expected. In fact, for mā �
p

�m2
atm � 0:05 eV (see Table 3.1)

and mā � m2
D=M with mD � v � 200GeV, we find M � 1015 GeV which indeed

is an impressive indication for MGUT.

Table 3.1 Fits to neutrino

oscillation data from [229]

(free fluxes, including short

baseline reactor data)

�m2
sun .10

�5 eV2/ 7:45
C0:19
�0:16

�m2
atm .10

�3 eV2/ 2:417˙ 0:013 (�2:410˙ 0:062)

sin2 �12 0:306˙ 0:012

sin2 �23 0:446˙ 0:007
L

0:587
C0:032
�0:037

sin2 �13 0:0229
C0:0020
�0:0019

ıCP .
ı/ 265

C56
�61

The results for both the normal and the inverse (in brack-

ets) hierarchies are shown
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In the previous section, we discussed flavour mixing for quarks. But clearly, given

that non-vanishing neutrino masses have been established, a similar mixing matrix

is also introduced in the leptonic sector. We assume in the following that there are

only two distinct neutrino oscillation frequencies, the atmospheric and the solar

frequencies (both of them now also confirmed by experiments where neutrinos are

generated on the Earth like K2K, KamLAND, and MINOS). At present the bulk

of neutrino oscillation data are well reproduced in terms of three light neutrino

species. However, some (so far not compelling) evidence for additional “sterile”

neutrino species (i.e., not coupled to the weak interactions, as demanded by the

LEP limit on the number of “active” neutrinos) are present in some data. We discuss

here 3-neutrino mixing, which is in any case a good approximate framework to

discuss neutrino oscillations, while for possible sterile neutrinos we refer to the

comprehensive review in [8].

Neutrino oscillations are due to a misalignment between the flavour basis, i.e.,

�0 � .�e; ��; �£/, where �e is the partner of the mass and flavour eigenstate e� in

a left-handed (LH) weak isospin SU.2/ doublet (similarly for �� and �£/) and the

mass eigenstates � � .�1; �2; �3/ [36, 280, 312]:

�0 D U� ; (3.80)

where U is the unitary �3 mixing matrix. Given the definition of U and the

transformation properties of the effective light neutrino mass matrix mā in (3.79),

viz.,

�0Tmā�
0 D �TUTm�U� ; UTmāU D Diag .m1;m2;m3/ � mdiag ; (3.81)

we obtain the general form of mā (i.e., of the light ā mass matrix in the basis where

the charged lepton mass is a diagonal matrix):

mā D U�mdiagU� : (3.82)

The matrix U can be parameterized in terms of three mixing angles �12, �23, and �13
(0 � �ij � �=2) and one phase ' (0 � ' � 2�) [122], exactly as for the quark

mixing matrix VCKM. The following definition of mixing angles can be adopted:

U D

0

@

1 0 0

0 c23 s23

0 �s23 c23

1

A

0

@

c13 0 s13e
i'

0 1 0

�s13e
�i' 0 c13

1

A

0

@

c12 s12 0

�s12 c12 0

0 0 1

1

A ; (3.83)

where sij � sin �ij and cij � cos �ij. In addition, if ā are Majorana particles, we have

two more phases [101] given by the relative phases among the Majorana masses

m1, m2, and m3. If we choose m3 real and positive, these phases are carried by

m1;2 � jm1;2jei�1;2 . Thus, in general, nine parameters are added to the SM when

non-vanishing neutrino masses are included: three eigenvalues, three mixing angles,

and three CP violating phases.
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In our notation the two frequencies, �m2
I =4E .I D sun; atm/, are parametrized

in terms of the ā mass eigenvalues by

�m2
sun � j�m2

12j ; �m2
atm � j�m2

23j : (3.84)

where �m2
12 D jm2j2 � jm1j2 > 0 and �m2

23 D m2
3 � jm2j2. The numbering 1,2,3

corresponds to a definition of the frequencies and in principle may not coincide

with the ordering from the lightest to the heaviest state. “Normal hierarchy” is the

case where m3 is the largest mass in absolute value, otherwise one has an “inverse

hierarchy”.

Very important developments occurred in the data in 2012. The value of the

mixing angle �13 was shown to be non-vanishing and its value is now known to

fair accuracy. Several experiments were involved in the �13 measurement and their

results are reported in Fig. 3.11. The most precise result is from the Daya Bay reactor

experiment in China:

sin2 2�13 D 0:090˙0:012 ; or sin2 �13 D 0:023˙0:003 ; or �13 � 0:152˙0:010 :
(3.85)

Note that �13 is somewhat smaller but of the same order as the Cabibbo angle �C.

The present data on the oscillation parameters are summarized in Table 3.1 [229].

Daya Bay 217 Days

2
0
1
3

2
0
1
2

2
0
1
1

[1305.2734]

[1301.2948]

[1207.6632]

[1204.0626]

[1112.6353]

[Nu Tel2013]

DC RRM Analysis

reactor on+off data

reactor on data only

RENO 416 Days

DC n-H Analysis

DC 228 Days

RENO 229 Days

DC 101 Days

T2K 28 Events

T2K 11 Events

[EPS2013]

[1304.0841]

[ICHEP2012]

[1106.2822]T2K 6 Events

MINOS

Solar+Kamland
reevaluated flux

original fluxBest Fit +

68% C.L.

Inverted

Hierarchy

Reactor

Experiments

*All results assuming:

Rate only

Rate+Spectral

n-Gd

n-H

δCP = 0.

θ23 = 45°

Normal

Hierarchy

Accelerator

Experiments*

–0.05

sin22θ13

0 0.05 0.1 0.15 0.2 0.25 0.3

[1106.6028]

[1108.0015]

T2K 11 Events

[1210.6327]

[NuFact2013]

[1203.1669]

Daya Bay 139 Days

Daya Bay 55 Days

Fig. 3.11 Reactor angle measurements, updated to the NUFACT13 Conference, August 2013

[259], from the experiments T2K [12], MINOS [17], DOUBLE CHOOZ [13], Daya Bay [54],

and RENO [23], for the normal (inverse) hierarchy. Figure credit: S. Jetter
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Neutrino mixing is important because it could in principle provide new clues

for the understanding of the flavour problem. Even more so since neutrino mixing

angles show a pattern that is completely different from that of quark mixing: for

quarks all mixing angles are small, while for neutrinos two angles are large (one

is still compatible with the maximal value) and only the third one is small. In

reality, it is frustrating that there has been no real illumination of the problem of

flavour. Models can reproduce the data on neutrino mixing in a wide range of

dynamical setups that goes from anarchy to discrete flavour symmetries (for reviews

and references see, for example, [35, 37, 50–52, 264]), but we have not yet been

able to single out a unique and convincing baseline for the understanding of fermion

masses and mixings. Despite many interesting ideas and the formulation of many

elegant models, the mysteries of the flavour structure of the three generations of

fermions have not yet been unveiled.

3.8 Quantization and Renormalization of the Electroweak

Theory

The Higgs mechanism gives masses to the Z, the W˙, and to fermions, while the

Lagrangian density is still symmetric. In particular the gauge Ward identities and the

symmetric form of the gauge currents are preserved. The validity of these relations

is an essential ingredient for renormalizability. In the previous sections, we have

specified the Feynman vertices in the “unitary” gauge, where only physical particles

appear. However, as discussed in Chap. 1, in this gauge the massive gauge boson

propagator would have a bad ultraviolet behaviour:

W�� D �g�� C q�q�=m2
W

q2 � m2
W

: (3.86)

A formulation of the standard EW theory with good apparent ultraviolet behaviour

can be obtained by introducing the renormalizable or R� gauges [14], in analogy

with the Abelian case discussed in detail in Chap. 1. One parametrizes the Higgs

doublet as

� D
�

�C

�0

�

D
�

�1 C i�2

�3 C i�4

�

D
�

�iwC

v C .H C iz/=
p
2

�

; (3.87)

and similarly for ��, where w� appears. The scalar fields w˙ and z are the pseudo-

Goldstone bosons associated with the longitudinal modes of the physical vector

bosons W˙ and Z. The R� gauge fixing Lagrangian has the form

�LGF D �1
�

ˇ

ˇ@�W� � �mW w
ˇ

ˇ

2 � 1

2�
.@�Z� � �mZz/2 � 1

2˛
.@�A�/

2 : (3.88)
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The W˙ and Z propagators, as well as those of the scalars w˙ and z, have exactly

the same general forms as for the Abelian case in (1.67)–(1.69), with parameters

� and �, respectively (and the pseudo-Goldstone bosons w˙ and z have masses

�mW and �mZ). In general, a set of associated ghost fields must be added, again

in direct analogy with the treatment of R� gauges in the Abelian case of Chap. 1.

The complete Feynman rules for the standard EW theory can be found in a number

of textbooks (see, for example, [137]).

The pseudo-Goldstone bosons w˙ and z are directly related to the longitudinal

helicity states of the corresponding massive vector bosons W˙ and Z. This

correspondence materializes in a very interesting “equivalence theorem”: at high

energies of order E, the amplitude for the emission of one or more longitudinal

gauge bosons VL (with V D W;Z) becomes equal (apart from terms reduced by

powers of mV=E) to the amplitude where each longitudinal gauge boson is replaced

by the corresponding Goldstone field w˙ or z [149]. For example, consider top

decay with a longitudinal W in the final state: t ! bWC
L . The equivalence theorem

asserts that we can compute the dominant contribution to this rate from the simpler

t ! bwC matrix element:

� .t ! bWC
L / D � .t ! bwC/

�

1C O.m2
W=m2

t /
�

: (3.89)

In fact, one finds

� .t ! bwC/ D h2t

32�
mt D GFm3

t

8�
p
2
; (3.90)

where ht D mt=v is the Yukawa coupling of the top quark (numerically very close to

1), and we used 1=v2 D 2
p
2GF [see (3.51)]. If we compare with (3.31), we see that

this expression coincides with the total top width (i.e., including all polarizations for

the W in the final state), computed at tree level, apart from terms reduced by powers

of O.m2
W=m2

t /. In fact, the longitudinal W is dominant in the final state because

h2t � g2. Similarly, the equivalence theorem can be applied to find the dominant

terms at large
p

s for the cross-section eCe� ! WC
L W�

L , or the leading contribution,

in the limit mH � mV , to the width for the decay � .H ! VV/.

The formalism of the R� gauges is also very useful in proving that spontaneously

broken gauge theories are renormalizable. In fact, the non-singular behaviour of

propagators at large momenta is very suggestive of the result. Nevertheless, it is not

at all a simple matter to prove this statement. The fundamental theorem that a gauge

theory with spontaneous symmetry breaking and the Higgs mechanism is in general

renormalizable was proven by ’t Hooft and Veltman [278, 358].

For a chiral theory like the SM an additional complication arises from the

existence of chiral anomalies. But this problem is avoided in the SM because the

quantum numbers of the quarks and leptons in each generation imply a remarkable

(and, from the point of view of the SM, mysterious) cancellation of the anomaly,

as originally observed in [109]. In quantum field theory, one encounters an
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Fig. 3.12 Triangle diagram

that generates the ABJ

anomaly [19]

anomaly when a symmetry of the classical Lagrangian is broken by the process of

quantization, regularization, and renormalization of the theory. Of direct relevance

for the EW theory is the Adler–Bell–Jackiw (ABJ) chiral anomaly [19]. The

classical Lagrangian of a theory with massless fermions is invariant under U.1/

chiral transformations  0 D ei
5� (see also Sect. 2.2.3). The associated axial

Noether current is conserved at the classical level. But at the quantum level, chiral

symmetry is broken due to the ABJ anomaly and the current is not conserved. The

chiral breaking is produced by a clash between chiral symmetry, gauge invariance,

and the regularization procedure.

The anomaly is generated by triangular fermion loops with one axial and two

vector vertices (Fig. 3.12). For example, for the Z, the axial coupling is proportional

to the third component of weak isospin t3, while the vector coupling is proportional

to a linear combination of t3 and the electric charge Q. Thus in order for the chiral

anomaly to vanish, all traces of the form trft3QQg, trft3t3Qg, trft3t3t3g (and also

trftCt�t3g when charged currents are included) must vanish, where the trace is

extended over all fermions in the theory that can circulate in the loop. Now all of

these traces happen to vanish for each fermion family separately. For example, take

trft3QQg. In one family there are, with t3 D C1=2, three colours of up quarks with

charge Q D C2=3 and one neutrino with Q D 0 and, with t3 D �1=2, three colours

of down quarks with charge Q D �1=3 and one l� with Q D �1. Thus we obtain

trft3QQg D 1

2
� 3 � 4

9
� 1

2
� 3 � 1

9
� 1

2
� 1 D 0 :

This impressive cancellation suggests an interplay among weak isospin, charge, and

colour quantum numbers, which appears as a miracle from the point of view of the

low energy theory, but is in fact understandable from the point of view of the high

energy theory. For example, in Grand Unified Theories (GUTs) (for reviews, see, for

example, [315]) there are similar relations where charge quantization and colour

are related: in the 5 of SU.5/, we have the content .d; d; d; eC; Nā/ and the charge

generator has a vanishing trace in each SU.5/ representation: the condition of unit

determinant, represented by the letter S in the SU.5/ group name, translates into zero

trace for the generators. Thus the charge of d quarks is �1=3 of the positron charge,

because there are three colours. A whole family fits perfectly in one 16 dimensional
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representation of SO.10/ which is anomaly free. So GUTs can naturally explain the

cancellation of the chiral anomaly.

An important implication of chiral anomalies together with the topological

properties of the vacuum in non-Abelian gauge theories is that the conservation

of the charges associated with baryon (B) and lepton (L) numbers is broken by

the anomaly [336], so that B and L conservation are actually violated in the

standard electroweak theory (but B � L remains conserved). B and L are conserved

to all orders in the perturbative expansion, but the violation occurs via non-

perturbative instanton effects [87] [The amplitude is proportional to the typical

non-perturbative factor exp.�c=g2/, with c a constant and g the SU.2/ gauge

coupling.] The corresponding effect is totally negligible at zero temperature T, but

becomes relevant at temperatures close to the electroweak symmetry breaking scale,

precisely at T � O.TeV/. The non-conservation of B C L and the conservation

of B � L near the weak scale plays a role in the theory of baryogenesis that

aims quantitatively at explaining the observed matter–antimatter asymmetry in the

Universe (for reviews and references, see, for example, [115]).

3.9 QED Tests: Lepton Anomalous Magnetic Moments

The most precise tests of the electroweak theory apply to the QED sector. Here

we discuss the anomalous magnetic moments of the electron and the muon that

are among the most precise measurements in the whole of physics. The magnetic

moment� and the spin S are related by� D �geS=2m, where g is the gyromagnetic

ratio (g D 2 for a pointlike Dirac particle). The quantity a D .g�2/=2measures the

anomalous magnetic moment of the particle. Recently there have been new precise

measurements of ae and a� for the electron [242] and the muon [297]:

aexp
e D 11 596 521 807:3.2:8/� 10�13 ; aexp

� D 11 659 208:9.6:3/� 10�10 :
(3.91)

The theoretical calculations in general contain a pure QED part plus the sum of

hadronic and weak contribution terms:

a D aQED C ahadronic C aweak D
X

i

Ci

�˛

�

�i

C ahadronic C aweak : (3.92)

The QED part has been computed analytically for i D 1; 2; 3, while for i D 4 there

is a numerical calculation with an error (see, for example, [266] and references

therein). The complete numerical evaluation of i D 5 for the muon case was

published in 2012 [59] as a new and impressive achievement by Kinoshita and his

group. The hadronic contribution is from vacuum polarization insertions and from

light-by-light scattering diagrams (see Fig. 3.13). The weak contribution is from W

or Z exchange.
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Fig. 3.13 Hadronic contributions to the anomalous magnetic moment: vacuum polarization (left)

and light-by-light scattering (right)

For the electron case, the weak contribution is essentially negligible and the

hadronic term ahadronic
e � .16:82 ˙ 0:19/ � 10�13 does not introduce an important

uncertainty. As a result this measurement can be used to obtain the most precise

determination of the fine structure constant [59]:

˛�1 � 137:035 999 165 7.340/ ; (3.93)

In the muon case the experimental precision is less by about three orders of

magnitude, but the sensitivity to new physics effects is typically increased by a factor

.m�=me/
2 � 4 � 104. One mass factor arises because the effective operator needs

a chirality flip and the second because, by definition, one must factor out the Bohr

magneton e=2m. From the theory side, the QED term, using the value of ˛ from ae

in (3.93), and the weak contribution [151] are affected by small errors and are given

by

aQED
� D .116 584 718:853˙ 0:037/� 10�11 ; aweak

� D .154˙ 2:0/ � 10�11 ;
(3.94)

where all theoretical numbers are taken from [59].

The dominant ambiguities arise from the hadronic term. The lowest order (LO)

vacuum polarization contribution can be evaluated from the measured cross-sections

in eCe� ! hadrons at low energy via dispersion relations (the largest contribution

is from the    final state) [155, 239], with the result aLO
� � 10�11 D 6949 ˙

43. The higher order (HO) vacuum polarization contribution (from 2-loop diagrams

containing a hadronic insertion) is given by aHO
� � 10�11 D �98:4 ˙ 0:7 [239].

The contribution of the light-by-light (LbL) scattering diagrams is estimated to be

aLBL
� � 10�11 D 116˙ 40 [290]. Adding the above contributions, the total hadronic

result is reported as

ahadronic
� D .6967˙ 59/� 10�11 : (3.95)
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Fig. 3.14 Compilation of recently published results for a� (in units of 10�11) [245]: JN [252],

DHMZ [155], HLMNT [239]. Figure reproduced with permission. Copyright (c) 2012 by

American Physical Society

At face value, this would lead to a 2:9� deviation from the experimental value a
exp
�

in (3.91):

aexp
� � ath.eCe�/

� D .249˙ 87/ � 10�11 : (3.96)

For a recent exchange on the significance of the discrepancy, see [88]. However, the

error estimate in the LBL term, mainly a theoretical uncertainty, is not compelling,

and it could well be somewhat larger (although probably not by so much as to make

the discrepancy completely disappear). A minor puzzle is the fact that, using the

conservation of the vector current (CVC) and isospin invariance, which are well

established tools at low energy, aLO
� can also be evaluated from £ decays. But the

results on the hadronic contribution from eCe� and from £ decay, nominally of

comparable accuracy, are still somewhat different (although the two are now closer

than in the past), and the g � 2 discrepancy would be attenuated if one took the

£ result (see Fig. 3.14, which refers to the most recent results). Since it is difficult

to find a theoretical reason for the eCe� vs £ difference, one must conclude that

there is something which is not understood either in the data or in the assessment of

theoretical errors. The prevailing view is to take the eCe� determination as the most

directly reliable, which leads to (3.96), but some doubts remain. Finally, we note

that, given the great accuracy of the a� measurement and the relative importance of

the non-QED contributions, it is not unreasonable that a first signal of new physics

would appear in this quantity.
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3.10 Large Radiative Corrections to Electroweak Processes

Since the SM theory is renormalizable, higher order perturbative corrections can

be reliably computed. Radiative corrections are very important for precision EW

tests. The SM inherits all the successes of the old V � A theory of charged currents

and QED. Modern tests have focussed on neutral current processes, the W mass,

and the measurement of triple gauge vertices. For Z physics and the W mass,

the state-of-the-art computation of radiative corrections include the complete one-

loop diagrams and selected dominant multi-loop corrections. In addition, some

resummation techniques are also implemented, like Dyson resummation of vacuum

polarization functions and important renormalization group improvements for large

QED and QCD logarithms. We now discuss in more detail sets of large radiative

corrections which are particularly significant (for reviews of radiative corrections

for LEP1 physics, see, for example, [47], and for a more pedagogical description of

LEP physics, see [338]).

Even leaving aside QCD corrections, an important set of quantitative contribu-

tions to the radiative corrections arise from large logarithms, e.g., terms of the form

�

˛

�
ln

mZ

mfll

�n

;

where fll is a light fermion. The sequences of leading and close-to-leading loga-

rithms are fixed by well-known and consolidated techniques (ˇ functions, anoma-

lous dimensions, penguin-like diagrams, etc.). For example, large logarithms from

pure QED effects dominate the running of ˛ from me, the electron mass, up to mZ .

Similarly, large logarithms of the form

�

˛

�
ln

mZ

�

�n

also enter, for example, in the relation between sin2 �W at the scales mZ (LEP, SLC)

and �, e.g., the scale of low-energy neutral-current experiments. Furthermore, large

logs from initial state radiation dramatically distort the line shape of the Z resonance,

as observed at LEP1 and SLC, and this effect was accurately taken into account for

the measurement of the Z mass and total width. The experimental accuracy on mZ

obtained at LEP1 is •mZ D ˙2:1MeV.

Similarly, a measurement of the total width to an accuracy •� D ˙2:3MeV has

been achieved. The prediction of the Z line shape in the SM to such an accuracy

posed a formidable challenge to theory, and it has been successfully met. For the

inclusive process eCe� ! f Nf X, with f 6D e (for a concise discussion, we leave

Bhabha scattering aside) and X including photons and gluons, the physical cross-

section can be written in the form of a convolution [47]:

�.s/ D
Z 1

z0

dz O�.zs/G.z; s/ ; (3.97)
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where O� is the reduced cross-section, G.z; s/ is the radiator function, which

describes the effect of initial-state radiation, and O� includes the purely weak

corrections, the effect of final-state radiation (of both photons and gluons), and also

non-factorizable terms (initial- and final-state radiation interferences, boxes, etc.)

which, being small, can be treated in lowest order and effectively absorbed in a

modified O� . The radiator function G.z; s/ has an expansion of the form

G.z; s/ D ı.1 � z/C ˛

�
.a11L C a10/C

�˛

�

�2

.a22L
2 C a11L C a20/

C � � � C
�˛

�

�n
n
X

iD0
aniL

i ; (3.98)

where L D ln.s=m2
e/ ' 24:2 for

p
s ' mZ . All first- and second-order terms

are known exactly. The sequence of leading and next-to-leading logs can be

exponentiated (closely following the formalism of structure functions in QCD). For

mZ � 91GeV, the convolution displaces the peak by C110MeV, and reduces it

by a factor of about 0.74. The exponentiation is important in that it amounts to an

additional shift of about 14 MeV in the peak position with respect to the 1-loop

radiative correction.

Among the one-loop EW radiative corrections, a remarkable class of contribu-

tions are those terms that increase quadratically with the top mass. The sensitivity

of radiative corrections to mt arises from the existence of these terms. The quadratic

dependence on mt (and on other possible widely broken isospin multiplets from

new physics) arises because, in spontaneously broken gauge theories, heavy virtual

particles do not decouple. On the contrary, in QED or QCD, the running of ˛ and

˛s at a scale Q is not affected by heavy quarks with mass M � Q. According to

an intuitive decoupling theorem [60], diagrams with heavy virtual particles of mass

M can be ignored at Q � M, provided that the couplings do not grow with M and

that the theory with no heavy particles is still renormalizable. In the spontaneously

broken EW gauge theories, both requirements are violated.

First, one important difference with respect to unbroken gauge theories is in

the longitudinal modes of weak gauge bosons. These modes are generated by

the Higgs mechanism, and their couplings grow with masses (as is also the case

for the physical Higgs couplings). Second, the theory without the top quark is

no longer renormalizable since the gauge symmetry is broken because the .t; b/

doublet would not be complete (also the chiral anomaly would not be completely

cancelled). With the observed value of mt, the quantitative importance of the terms

of order GFm2
t =4�

2
p
2 is substantial but not dominant (they are enhanced by a factor

m2
t =m2

W � 5with respect to ordinary terms). Both the large logarithms and the GFm2
t

terms have a simple structure and are to a large extent universal, i.e., common to a

wide class of processes. In particular, the GFm2
t terms appear in vacuum polarization

diagrams which are universal (virtual loops inserted in gauge boson internal lines

are independent of the nature of the vertices on each side of the propagator) and

in the Z ! bNb vertex which is not. This vertex is specifically sensitive to the top
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quark which, being the partner of the b quark in a doublet, runs in the loop. Instead,

all types of heavy particles could in principle contribute to vacuum polarization

diagrams. The study of universal vacuum polarization contributions, also called

“oblique” corrections, and of top enhanced terms is important for an understanding

of the pattern of radiative corrections. More generally, the important consequence

of non-decoupling is that precision tests of the electroweak theory may a priori be

sensitive to new physics, even if the new particles are too heavy for their direct

production, but a posteriori no signal of deviation has clearly emerged.

While radiative corrections are quite sensitive to the top mass, they are unfortu-

nately much less dependent on the Higgs mass. In fact, the dependence of one-loop

diagrams on mH is only logarithmic, viz., � GFm2
W log.m2

H=m2
W/. Quadratic terms

� G2
Fm2

H only appear at two-loop level [356] and are too small to be detectable.

The difference with the top case is that the splitting m2
t � m2

b is a direct breaking

of the gauge symmetry that already affects the 1-loop corrections, while the Higgs

couplings are “custodial” SU.2/ symmetric in lowest order.

3.11 Electroweak Precision Tests

For the analysis of electroweak data in the SM, one starts from the input parameters:

as is the case in any renormalizable theory, masses and couplings have to be

specified from outside. One can trade one parameter for another and this freedom

is used to select the best measured ones as input parameters. Some of them, ˛,

GF, and mZ , are very precisely known, as we have seen, and some others, mflight
,

mt, and ˛s.mZ/ are less well determined, while mH was largely unknown before

the LHC. In this section we discuss the EW fit without the new input on mH from

the LHC, in order to compare the limits so derived on mH with the LHC data. The

LHC results will be discussed in the following sections. Among the light fermions,

the quark masses are poorly known, but fortunately, for the calculation of radiative

corrections, they can be replaced by ˛.mZ/, the value of the QED running coupling

at the Z mass scale. The value of the hadronic contribution to the running, embodied

in the value of �˛
.5/
had.m

2
Z/ (see Fig. 3.15 [350]) is obtained through dispersion

relations from the data on eCe� ! hadrons at moderate centre-of-mass energies.

From the input parameters, one computes the radiative corrections to a sufficient

accuracy to match the experimental accuracy. One then compares the theoretical

predictions with the data for the numerous observables which have been measured

[351], checks the consistency of the theory, and derives constraints on mt, ˛s.mZ/,

and mH.

The basic tree level relations

g2

8m2
W

D GFp
2
; g2 sin2 �W D e2 D 4�˛ ; (3.99)
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Fig. 3.15 Summary of

electroweak precision

measurements at high

Q2 [350]. The first block

shows the Z-pole

measurements. The second

block shows additional results

from other experiments: the

mass and the width of the W

boson measured at the

Tevatron and at LEP2, the

mass of the top quark

measured at the Tevatron, and

the contribution to ˛ of the

hadronic vacuum

polarization. The SM fit

results are also shown with

the corresponding pulls

(differences data and fits in

units of standard deviations)

Measurement Fit  O
meas−O

fit
 /σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5)
0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0
41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA
0,l

0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA
0,b

0.0992 ± 0.0016 0.1038

AfbA
0,c

0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al 0.1513 ± 0.0021 0.1481

sin
2θeffsin
2θlept

(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

can be combined into

sin2 �W D �˛p
2GFm2

W

: (3.100)

Still at tree level, a different definition of sin2 �W comes from the gauge boson

masses

m2
W

m2
Z cos2 �W

D �0 D 1 H) sin2 �W D 1 � m2
W

m2
Z

; (3.101)

where �0 D 1, assuming that there are only Higgs doublets. The last two relations

can be put into the convenient form

�

1 � m2
W

m2
Z

�

m2
W

m2
Z

D �˛p
2GFm2

Z

: (3.102)
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Beyond tree level, these relations are modified by radiative corrections:

�

1 � m2
W

m2
Z

�

m2
W

m2
Z

D �˛.mZ/p
2GFm2

Z

1

1��rW

;

m2
W

m2
Z cos2 �W

D 1C��m : (3.103)

The Z and W masses are to be precisely defined, for example, in terms of the pole

position in the respective propagators. Then in the first relation, the replacement of ˛

with the running coupling at the Z mass ˛.mZ/ makes �rW completely determined

at 1-loop by purely weak corrections (GF is protected from logarithmic running

as an indirect consequence of V � A current conservation in the massless theory).

This relation defines �rW unambiguously, once the meaning of mW;Z and ˛.mZ/ is

specified (for example, NM NS). In contrast, in the second relation, ��m depends on

the definition of sin2 �W beyond the tree level. For LEP physics sin2 �W is usually

defined from the Z ! �C�� effective vertex. At the tree level, the vector and axial-

vector couplings g
�
V and g

�
A are given in (3.26). Beyond the tree level a corrected

vertex can be written down in terms of modified effective couplings. Then sin2 �W �
sin2 �eff is generally defined through the muon vertex:

g
�
V

g
�
A

D 1–4 sin2 �eff ; sin2 �eff D .1C�k/s20 ; s20c
2
0 D �˛.mZ/p

2GFm2
Z

; g
�2
A D 1

4
.1C��/ :

(3.104)

We see that s20 and c20 are “improved” Born approximations (by including the

running of ˛) for sin2 �eff and cos2 �eff. Actually, since lepton universality is only

broken by masses in the SM, and is in agreement with experiment within the

present accuracy, the muon channel can in practice be replaced with the average

over charged leptons.

We can write a symbolic equation that summarizes the status of what has been

computed up to now for the radiative corrections �rW [70], �� [193], and �k

[71] (listing some recent work on each item from which older references can be

retrieved):

�rW ; ��;�k D g2.1C ˛s/C g2
m2

t

m2
W

.˛2s C ˛3s /C g4 C g4
m4

t

m4
W

˛s C g6
m6

t

m6
W

C � � � :
(3.105)

The meaning of this relation is that the one loop terms of order g2 are completely

known, together with their first order QCD corrections, while the second and third

order QCD corrections are only known for the g2 terms enhanced by m2
t =m2

W , the

two-loop terms of order g4 are completely known, and for�� alone, the terms g4˛s

enhanced by the ratio m4
t =m4

W and the terms g6
m6t

m6W
are also computed.
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In the SM, the quantities�rW ,��,�k, for sufficiently large mt, are all dominated

by quadratic terms in mt of order GFm2
t . The quantity ��m is not independent and

can be expressed in terms of them. As new physics can more easily be disentangled

if not masked by large conventional mt effects, it is convenient to keep ��, while

trading �rW and �k for two quantities with no contributions of order GFm2
t . One

thus introduces the following linear combinations (epsilon parameters) [48]:

�1 D �� ;

�2 D c20��C s20�rW

c20 � s20
� 2s20�k ; (3.106)

�3 D c20��C .c20 � s20/�k :

The quantities �2 and �3 no longer contain terms of order GFm2
t , but only logarithmic

terms in mt. The leading terms for large Higgs mass, which are logarithmic, are

contained in �1 and �3. To complete the set of top-enhanced radiative corrections

one adds �b, defined from the loop corrections to the ZbNb vertex. One modifies gb
V

and gb
A as follows:

gb
A D �1

2

�

1C ��

2

�

.1C �b/ ;
gb

V

gb
A

D
1 � 4

3
sin2 �eff C �b

1C �b

: (3.107)

�b can be measured from Rb D � .Z ! bNb/=� .Z ! hadrons/ (see Fig. 3.15).

This is clearly not the most general deviation from the SM in the Z ! bNb vertex,

but �b is the quantity where the large mt corrections are located in the SM. Thus,

summarizing, in the SM one has the following “large” asymptotic contributions:

�1 D 3GFm2
t

8�2
p
2

� 3GFm2
W

4�2
p
2

tan2 �W ln
mH

mZ

C � � � ;

�2 D � GFm2
W

2�2
p
2

ln
mt

mZ

C � � � ;

�3 D GFm2
W

12�2
p
2

ln
mH

mZ

� GFm2
W

6�2
p
2

ln
mt

mZ

C � � � ;

�b D � GFm2
t

4�2
p
2

C � � � ; (3.108)

The �i parameters vanish in the limit where only tree level SM effects are kept

plus pure QED and/or QCD corrections. So they describe the effects of quantum

corrections (i.e., loops) from weak interactions. A similar set of parameters are the

S, T, U parameters [310]: the shifts induced by new physics on S, T, and U are

proportional to those induced on �3, �1, and �2, respectively. In principle, with no
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model dependence, one can measure the four �i from the basic observables of LEP

physics � .Z ! �C��/, A
�
FB, and Rb on the Z peak plus mW . With increasing model

dependence, one can include other measurements in the fit for the �i. For example,

one can use lepton universality to average the � with the e and £ final states, or

include all lepton asymmetries and so on. The present experimental values of the �i,

obtained from a fit of all LEP1-SLD measurements plus mW , are [142]

�1 � 103 D 5:6˙ 1:0 ; �2 � 103 D �7:8˙ 0:9 ;

�3 � 103 D 5:6˙ 0:9 ; �b � 103 D �5:8˙ 1:3 :
(3.109)

Note that the � parameters are of order a few 10�3 and are known with an accuracy

in the range 15–30%. These values are in agreement with the predictions of the SM

with a 126 GeV Higgs [142]:

�SM
1 � 103 D 5:21˙ 0:08 ; �SM

2 � 103 D �7:37˙ 0:03 ;

�SM
3 � 103 D 5:279˙ 0:004 ; �SM

b � 103 D �6:94˙ 0:15 :
(3.110)

All models of new physics must be compared with these findings and pass this

difficult test.

3.12 Results of the SM Analysis of Precision Tests

The electroweak Z pole measurements, combining the results of all the experiments,

plus the W mass and width and the top mass mt, are summarised in Fig 3.15, as of

March 2012 [350]. The primary rates are given by the pole cross-sections for the

various final states �0, and ratios thereof correspond to ratios of partial decay widths:

�0h D 12�

m2
Z

�ee�h

� 2
Z

; R0l D �0h

�0l
D �h

�ll

; R0q D �qNq
�h

: (3.111)

Here �ll is the partial decay width for a pair of massless charged leptons. The partial

decay width for a given fermion species contains information about the effective

vector and axial-vector coupling constants of the neutral weak current:

�ff D N
f

C

GFm3
Z

6
p
2�

�

g2af CAf C g2vf CVf

	

C�ew=QCD ; (3.112)

where N
f

C is the QCD colour factor, CfA;Vgf are final-state QCD/QED correction

factors, also absorbing imaginary contributions to the effective coupling constants,
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gaf and gvf are the real parts of the effective couplings, and � contains non-

factorisable mixed corrections.

Besides total cross-sections, various types of asymmetries have been measured.

The results of all asymmetry measurements are quoted in terms of the asymmetry

parameter Af , defined in terms of the real parts of the effective coupling constants

gaf and gvf by

Af D 2
gvf gaf

g2vf C g2af

D 2
gvf=gaf

1C .gvf =gaf /2
; A

0;f
FB D 3

4
AeAf : (3.113)

The measurements are the forward–backward asymmetry (A
0;f
FB), the tau polarization

(A£) and its forward–backward asymmetry (Ae) measured at LEP, as well as the

left–right and left–right forward–backward asymmetry measured at SLC (Ae and

Af , respectively). Hence the set of partial width and asymmetry results allows the

extraction of the effective coupling constants.

The various asymmetries determine the effective electroweak mixing angle for

leptons with highest sensitivity (see Fig. 3.16). The weighted average of these

results, including small correlations, is

sin2 �eff D 0:23153˙ 0:00016 ; (3.114)

Note, however, that this average has a �2 of 11.8 for 5 degrees of freedom,

corresponding to a probability of a few %. The �2 is pushed up by the two most

precise measurements of sin2 �eff, namely those derived from the measurements of

Al by SLD, dominated by the left–right asymmetry A0LR, and measurements of the

forward–backward asymmetry A
0;b
FB measured in bNb production at LEP, which differ

by about 3� .

We now extend the discussion of the SM fit of the data. One can think of different

types of fit, depending on which experimental results are included or which answers

one wants to obtain. For example, in Table 3.2 we present in column 1 a fit of all Z

pole data plus mW and �W (this is interesting as it shows the value of mt obtained

Fig. 3.16 Summary of

sin2 �eff precision

measurements at high

Q2 [350]



3.12 Results of the SM Analysis of Precision Tests 137

Table 3.2 Standard Model fits of electroweak data [350]

Fit 1 2 3

Measurements mW , �W mt mt, mW , �W

mt .GeV/ 178:1
C10:9
�7:8 173:2˙ 0:9 173:26 ˙ 0:89

mH .GeV/ 148
C237
�81 122

C59
�41 94

C29
�24

log ŒmH.GeV/� 2:17˙ C0:38 2:09˙ 0:17 1:97˙ 0:12

˛s.mZ/ 0:1190˙ 0:0028 0:1191˙ 0:0027 0:1185 ˙ 0:0026

mW .MeV/ 80381˙ 13 80363˙ 20 80377˙ 12

All fits use the Z pole results and �˛
.5/
had.m

2
Z/, as listed in Fig. 3.15. In addition, the measurements

listed at the top of each column are included in that case. The fitted W mass is also shown [350]

(the directly measured value is mW D 80 385˙ 15MeV)

indirectly from radiative corrections, to be compared with the value of mt measured

in production experiments), in column 2, a fit of all Z pole data plus mt (here it is

mW which is indirectly determined), and finally, in column 3, a fit of all the data

listed in Fig. 3.15 (which is the most relevant fit for constraining mH).

From the fit in column 1 we see that the extracted value of mt is in good

agreement with the direct measurement (see Fig 3.15). Similarly, we see that

the experimental measurement of mW is larger by about one standard deviation

with respect to the value from the fit in column 2. We have seen that quantum

corrections depend only logarithmically on mH. In spite of this small sensitivity,

the measurements are still precise enough to obtain a quantitative indication of the

mass range. From the fit in column 3 we obtain

log10 mH .GeV/ D 1:97˙ 0:12 ; or mH D 94C29
�24 GeV :

This result on the Higgs mass is truly remarkable. The value of log10 mH .GeV/

is compatible with the small window between � 2 and � 3 which is allowed, on

the one side, by the direct search limit mH > 114GeV from LEP2 [350], and on

the other side by the theoretical upper limit on the Higgs mass in the minimal SM,

mH . 600–800 GeV [320], to be discussed in Sect. 3.13.

Thus the whole picture of a perturbative theory with a fundamental Higgs is well

supported by the data on radiative corrections. It is important that there is a clear

indication for a particularly light Higgs: at 95% confidence level mH . 152GeV

(which becomes mH . 171GeV, including the input from the LEP2 direct search

result). This was quite encouraging for the LHC search for the Higgs particle.

More generally, if the Higgs couplings are removed from the Lagrangian, the

resulting theory is non-renormalizable. A cutoff � must be introduced. In the

quantum corrections, log mH is then replaced by log� plus a constant. The precise

determination of the associated finite terms would be lost (that is, the value of

the mass in the denominator in the argument of the logarithm). A heavy Higgs

would need some unfortunate accident: the finite terms, different in the new theory

from those of the SM, should by chance compensate for the heavy Higgs in a few
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key parameters of the radiative corrections (mainly �1 and �3, see, for example,

[48]). Alternatively, additional new physics, for example in the form of effective

contact terms added to the minimal SM Lagrangian, should accidentally do the

compensation, which again needs some sort of conspiracy.

To the list of precision tests of the SM, one should add the results on low energy

tests obtained from neutrino and antineutrino deep inelastic scattering (NuTeV

[353]), parity violation in Cs atoms (APV [274]), and the recent measurement of the

parity-violating asymmetry in Moller scattering [354]. When these experimental

results are compared with the SM predictions, the agreement is good except

for the NuTeV result, which differs by three standard deviations. The NuTeV

measurement is quoted as a measurement of sin2 �W D 1 � m2
W=m2

Z from the ratio

of neutral to charged current deep inelastic cross-sections from ā� and Nā� using the

Fermilab beams. But it has been argued, and it is now generally accepted, that the

NuTeV anomaly probably simply arises from an underestimation of the theoretical

uncertainty in the QCD analysis needed to extract sin2 �W. In fact, the lowest order

QCD parton formalism upon which the analysis has been based is too crude to match

the experimental accuracy.

When confronted with these results, the SM performs rather well on the whole,

so that it is fair to say that no clear indication for new physics emerges from the

data. However, as already mentioned, one problem is that the two most precise

measurements of sin2 �eff from ALR and Ab
FB differ by about 3� . In general, there

appears to be a discrepancy between sin2 �eff measured from leptonic asymmetries,

denoted .sin2 �eff/l, and from hadronic asymmetries, denoted .sin2 �eff/h. In fact,

the result from ALR is in good agreement with the leptonic asymmetries measured

at LEP, while all hadronic asymmetries, though their errors are large, are better

compatible with the result of Ab
FB. These two results for sin2 �eff are shown in

Fig. 3.17 [210]. Each of them is plotted at the mH value that would correspond

to it given the central value of mt. Of course, the value for mH indicated by each

sin2 �eff has a horizontal ambiguity determined by the measurement error and the

width of the ˙1� band for mt.

Even taking this spread into account, it is clear that the implications for mH are

significantly different. One might imagine that some new physics effect could be

hidden in the ZbNb vertex. For instance, for the top quark mass there could be other

non-decoupling effects from new heavy states or a mixing of the b quark with some

other heavy quark. However, it is well known that this discrepancy is not easily

explained in terms of any new physics effect in the ZbNb vertex. A rather large change

with respect to the SM of the b quark right-handed coupling to the Z is needed

in order to reproduce the measured discrepancy (in fact, a � 30% change in the

right-handed coupling), an effect too large to be a loop effect, but which could be

produced at the tree level, e.g., by mixing of the b quark with a new heavy vector-

like quark [140], or some mixing of the Z with ad hoc heavy states [170]. But then

this effect should normally also appear in the direct measurement of Ab performed at

SLD using the left–right polarized b asymmetry, even within the moderate accuracy

of this result. The measurements of neither Ab at SLD nor Rb confirm the need for
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Fig. 3.17 The data for sin2 �
lept

eff are plotted vs mH. The theoretical prediction for the measured

value of mt is also shown. For presentation purposes the measured points are each shown at the mH

value that would ideally correspond to it, given the central value of mt. Adapted from [210]. New

version courtesy of P. Gambino

such a large effect (recently a numerical calculation of NLO corrections to Rb [204]

appeared at first to indicate a rather large result, but in the end the full correction

turned out to be rather small). Alternatively, the observed discrepancy could simply

be due to a large statistical fluctuation or an unknown experimental problem. As a

consequence of this problem, the ambiguity in the measured value of sin2 �eff is in

practice greater than the nominal error, reported in (3.114), obtained from averaging

all the existing determinations, and the interpretation of precision tests is less sharp

than it would otherwise be.

We have already observed that the experimental value of mW (with good

agreement between LEP and the Tevatron) is a bit high compared to the SM

prediction (see Fig. 3.18). The value of mH indicated by mW is on the low side,

just in the same interval as for sin2 �
lept

eff measured from leptonic asymmetries.

In conclusion, the experimental information on the Higgs sector, obtained from

EW precision tests at LEP1 and 2 and the Tevatron can be summarized as follows.

First, the relation M2
W D M2

Z cos2 �W in (3.52), modified by small, computable

radiative corrections, has been demonstrated experimentally. This relation means

that the effective Higgs (be it fundamental or composite) is indeed a weak isospin

doublet. The direct lower limit mH & 114:5GeV (at 95% confidence level) was



140 3 The Theory of Electroweak Interactions

Fig. 3.18 The data for mW

are plotted vs mt [350]
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obtained from searches at LEP2. When compared to the data on precision EW tests,

the radiative corrections computed in the SM lead to a clear indication of a light

Higgs, not too far from the direct LEP2 lower bound. The upper limit for mH in the

SM from the EW tests depends on the value of the top quark mass mt. The CDF

and D0 combined value after Run II is at present mt D 173:2 ˙ 0:9GeV [350].

As a consequence, the limit on mH from the LEP and Tevatron measurements is

rather stringent [350]: mH < 171GeV (at 95% confidence level, after including the

information from the 114.5 GeV direct bound).

3.13 The Search for the SM Higgs

The Higgs problem is really central in particle physics today. On the one hand,

the experimental verification of the Standard Model (SM) cannot be considered

complete until the structure of the Higgs sector has been established by experiment.

On the other hand, the Higgs is also related to most of the major problems of particle

physics, like the flavour problem and the hierarchy problem, the latter strongly

suggesting the need for new physics near the weak scale (something that so far

has not been found). In its turn, the discovery of new physics could throw light on

the nature of dark matter. It was already clear before the LHC that some sort of

Higgs mechanism is at work. The W or the Z with longitudinal polarization that we

observe are not present in an unbroken gauge theory (massless spin-1 particles, like

the photon, are transversely polarized): the longitudinal degrees of freedom for the

W or the Z are borrowed from the Higgs sector and hence provide evidence for it.

Furthermore, it has been precisely established at LEP that the gauge symmetry is

unbroken in the vertices of the theory: all currents and charges are indeed symmetric.

Yet there is obvious evidence that the symmetry is instead badly broken in the



3.14 Theoretical Bounds on the SM Higgs Mass 141

masses. Not only do the W and the Z have large masses, but the large splitting of, for

example, the t–b doublet shows that even a global weak SU.2/ is not at all respected

by the fermion spectrum. This is a clear signal of spontaneous symmetry breaking

and the implementation of spontaneous symmetry breaking in a gauge theory is via

the Higgs mechanism.

The big questions are about the nature and the properties of the Higgs particle(s).

The search for the Higgs boson and for possible new physics that could accompany it

was the main goal of the LHC from the start. On the Higgs the LHC should answer

the following questions: do some Higgs particles exist? And if so, which ones: a

single doublet, more doublets, additional singlets? SM Higgs or SUSY Higgses?

Fundamental or composite (of fermions, of WW, or other)? Pseudo-Goldstone

bosons of an enlarged symmetry? A manifestation of large extra dimensions (fifth

component of a gauge boson, an effect of orbifolding or of boundary conditions, or

other)? Or some combination of the above, or something so far unthought of? By

now we have a candidate Higgs boson that really looks like the simplest realization

of the Higgs mechanism, as described by the minimal SM Higgs. In the following

we first consider the a priori expectations for the Higgs sector and then the profile

of the Higgs candidate discovered at the LHC.

3.14 Theoretical Bounds on the SM Higgs Mass

A strong argument indicating that the solution of the Higgs problem may not be

too far away (that is, either discovering the Higgs or finding the new physics

that complicates the picture) is the fact that, in the absence of a Higgs particle

or any alternative mechanism, violations of unitarity appear in some scattering

amplitudes at energies in the few TeV range [279]. In particular, amplitudes

involving longitudinal gauge bosons (those most directly related to the Higgs sector)

are affected. For example, at tree level, in the absence of Higgs exchange and for

s � m2
Z , one obtains

A.WC
L W�

L ! ZLZL/no Higgs � i
s

v2
: (3.115)

In the SM this unacceptable large energy behaviour is quenched by the Higgs

exchange diagram contribution

A.WC
L W�

L ! ZLZL/Higgs � �i
s2

v2.s � m2
H/
: (3.116)

Thus the total result in the SM is

A.WC
L W�

L ! ZLZL/SM � �i
sm2

H

v2.s � m2
H/
; (3.117)



142 3 The Theory of Electroweak Interactions

which at high energies saturates at a constant value. To be compatible with unitarity

bounds, one needs m2
H < 4�

p
2=GF or mH < 1:5TeV. This is an important theorem

that guarantees that either the Higgs boson(s) or new physics or both must be present

in the few TeV energy range.

It is well known that, as described in [241] and references therein, in the SM

with only one Higgs doublet an upper bound on mH (with mild dependence on mt

and the QCD coupling ˛s) is obtained from the requirement that the perturbative

description of the theory remains valid up to a large energy scale � where the SM

model breaks down and new physics appears. Similarly, a lower bound on mH can be

derived from the requirement of vacuum stability [38, 123, 323] (or, in milder form,

a requirement of moderate instability, compatible with the lifetime of the Universe

[160, 249]). The Higgs mass enters because it fixes the initial value of the quartic

Higgs coupling � in its running up to the large scale �. We now briefly recall the

derivation of these limits.

The upper limit on the Higgs mass in the SM is clearly important for an a priori

assessment of the chances of success for the LHC as an accelerator designed to

solve the Higgs problem. One way to estimate the upper limit [241] is to require

that the Landau pole associated with the non-asymptotically free behaviour of the

��4 theory does not occur below the scale �. The running of �.�/ at one loop is

given by

d�

dt
D 3

4�2

�

�2 C 3�h2t � 9h4t C small gauge and Yukawa terms
�

; (3.118)

with the normalization such that at t D 0, � D �0 D m2
H=2v

2, from the minimum

condition in (3.60), and the top Yukawa coupling is given by h0t D mt=v. The initial

value of � at the weak scale increases with mH and the derivative is positive at large

� because of the positive �2 term (the �'4 theory is not asymptotically free), which

overwhelms the negative top Yukawa term. Thus, if mH is too large, the point where

� computed from the perturbative beta function becomes infinite (the Landau pole)

occurs at too low an energy. Of course, in the vicinity of the Landau pole the 2-loop

evaluation of the beta function is not reliable. Indeed, the limit indicates the frontier

of the domain where the theory is well described by the perturbative expansion.

Thus the quantitative evaluation of the limit is only indicative, although it has been

to some extent supported by simulations of the Higgs sector of the EW theory on

the lattice. For the upper limit on mH, one finds [241]

mH . 180GeV for� � MGUT–MPlanck ; mH . 0:5–0:8TeV for � � 1TeV :

(3.119)

As for a lower limit on the SM Higgs mass, a possible instability of the Higgs

potential VŒ�� is generated by the quantum loop corrections to the classical

expression for VŒ��. At large � the derivative V 0Œ�� could become negative and

the potential would become unbound from below. The one-loop corrections to VŒ��

in the SM are well known and change the dominant term at large � according to
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��4 ! .� C 
 log�2=�2/�4. This one-loop approximation is not enough in this

case, because it fails at large enough �, when 
 log�2=�2 becomes of order 1.

The renormalization group improved version of the corrected potential leads to the

replacement ��4 ! �.�/�04.�/, where �.�/ is the running coupling and �0.�/ D
� exp

R t

.t0/dt0, with 
.t/ an anomalous dimension function, t D log�=v, and

v the vacuum expectation value v D .2
p
2GF/

�1=2. As a result, the positivity

condition for the potential amounts to the requirement that the running coupling

�.�/ should never become negative.

A more precise calculation, which also takes into account the quadratic term in

the potential, confirms that the requirement of positive �.�/ leads to the correct

bound down to scales � as low as � 1TeV. We see that, for mH small and mt fixed

at its measured value, � decreases with t and can become negative. If one requires �

to remain positive up to � D 1016–1019 GeV, then the resulting bound on mH in the

SM with only one Higgs doublet, obtained from a recent state-of-the-art calculation

[118, 160] is given by

mH .GeV/ > 129:6C 2:0

�

mt .GeV/ � 173:35
0:7

�

� 0:5
˛s.mZ/ � 0:1184

0:0007
˙ 0:3 :

(3.120)

The estimate of the ambiguity associated with mt can be questioned: is the definition

of mass as measured at the Tevatron relevant for this calculation [25]? Note that this

limit is avoided in models with more Higgs doublets. In that case the limit, applies

to some average mass, but the lightest Higgs particle can be well below, as is the

case in the minimal SUSY extension of the SM (MSSM).

In conclusion, for mt � 173GeV, only a small range of values for mH is allowed,

viz., 130 < mH <� 180GeV, if the SM holds and the vacuum is absolutely stable

up to an energy scale� � MGUT or MPlanck. For Higgs masses below this range, one

can still have a domain where the SM is viable because the vacuum can be unstable,

but with a lifetime longer than the age of the Universe [111, 118, 160]. We shall

come back to this later (see Fig. 3.21).

3.15 SM Higgs Decays

The total width and the branching ratios for the SM Higgs as a function of mH are

given in Fig. 3.19 [169]. Since the couplings of the Higgs particle are proportional

to masses, when mH increases, the Higgs particle becomes strongly coupled. This

is reflected in the sharp rise of the total width with mH. For mH in the range 114–

130 GeV, the width is below 5 MeV, much less than the widths of the W or the

Z, which have a comparable mass. The dominant channel for such a Higgs is

H ! bNb. In the Born approximation, the partial width into a fermion pair is given
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Fig. 3.19 Left: The total width of the SM Higgs boson as a function of the mass. Right: The

branching ratios of the SM Higgs boson as a function of the mass (solid line fermions, dashed line

bosons) [169]

by [169, 238]

� .H ! f Nf / D NC

GF

4�
p
2

mHm2
f ˇ

3
f ; (3.121)

where ˇf D .1 � 4m2
f =m2

H/
1=2. The factor of ˇ3 appears because parity requires the

fermion pair to be in a p-state of orbital angular momentum for a scalar Higgs (with

parity P D C1). This factor would be ˇ for a pseudoscalar Higgs boson. We see

that the width is suppressed by a factor m2
f =m2

H (the Higgs coupling is proportional

to the fermion mass) with respect to the natural size GFm3
H for the width of a particle

of mass mH decaying through a diagram with only one weak vertex.

A glance at the branching ratios shows that the branching ratio into £ pairs is

larger by more than a factor of 2 with respect to the cNc channel. This is at first sight

surprising because the colour factor NC favours the quark channels and the masses

of £ leptons and D mesons are quite similar. This is due to the fact that the QCD

corrections replace the charm mass at the scale of charm with the charm mass at the

scale mH, which is lower by about a factor of 2.5. The masses run logarithmically in

QCD, similarly to the coupling constant. The corresponding logs are already present

in the 1-loop QCD correction, which amounts to the replacement

m2
q �! m2

q

"

1C 2˛s

�

 

log
m2

q

m2
H

C 3

2

!#

� m2
q.m

2
H/ :
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The Higgs width increases sharply as the WW threshold is approached. For decay

into a real pair of V bosons, with V D W;Z, one obtains in the Born approximation

[169, 238]

� .H ! VV/ D GFm3
H

16�
p
2
ıVˇV .1� 4x C 12x2/ ; (3.122)

where ˇV D
p
1 � 4x with x D m2

V=m2
H and ıW D 2, ıZ D 1. Well above threshold,

the VV channels are dominant and the total width, given approximately by

�H � 0:5 TeV
� mH

1 TeV

�3

; (3.123)

becomes very large, signalling that the Higgs sector is becoming strongly interact-

ing, if we recall the upper limit on the SM Higgs mass in (3.119). The VV dominates

over the tNt because of the ˇ threshold factors, which disfavour the fermion channel,

and at large mH, by the cubic versus linear behaviour with mH of the partial widths

for VV versus tNt. Below the VV threshold, the decays into virtual V particles is

important: VV� and V�V�. Note in particular the dip in the ZZ branching ratio just

below the ZZ threshold. This is due to the fact that the W is lighter than the Z

and the opening of its threshold depletes all other branching ratios. When the ZZ

threshold is also passed, the ZZ branching fraction then comes back to the ratio of

approximately 1:2 with the WW channel (just the number of degrees of freedom,

i.e., two Hermitian fields for the W, one for the Z). The decay channels into ””, Z”,

and gg proceed through loop diagrams, with the contributions from W (only for ””

and Z” ) and from fermion loops (for all) (Fig. 3.20).

We reproduce here the results for � .H ! ””/ and � .H ! gg/ [169, 238]:

� .H ! ””/ D GF˛
2m3

H

128�3
p
2

ˇ

ˇ

ˇ

ˇ

AW.�W/C
X

f

NCQ2
f Af .�f /

ˇ

ˇ

ˇ

ˇ

2

; (3.124)

� .H ! gg/ D GF˛
2
s m3

H

64�3
p
2

ˇ

ˇ

ˇ

ˇ

X

f DQ

Af .�f /

ˇ

ˇ

ˇ

ˇ

2

; (3.125)

Fig. 3.20 Typical one-loop diagrams for Higgs decay into ””, Z”, and for only the quark loop, gg
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where �i D m2
H=4m2

i and

Af .�/ D 2

�2

�

� C .� � 1/f .�/
�

; AW.�/ D � 1

�2

�

2�2 C 3� C 3.2� � 1/f .�/
�

;

(3.126)

with

f .�/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

arcsin2
p
� for � � 1 ;

�1
4

 

log
1C

p
1 � ��1

1 �
p
1� ��1

� i�

!2

for � > 1 :

(3.127)

For H ! ”” (as well as for H ! Z”), the W loop is the dominant contribution

at small and moderate mH. We recall that the ”” mode is a possible channel for

Higgs discovery only for mH near its lower bound (i.e., for 114 < mH < 150GeV).

In this domain of mH, we have � .H ! ””/ � 6–23 KeV. For example, in the

limit mH � 2mi, or � ! 0, we have AW.0/ D �7 and Af .0/ D 4=3. The

two contributions become comparable only for mH � 650GeV, where the two

amplitudes, still of opposite sign, nearly cancel. The top loop is dominant among

fermions (lighter fermions are suppressed by m2
f =m2

H modulo logs), and as we have

seen, it approaches a constant for large mt. Thus the fermion loop amplitude for

the Higgs would be sensitive to effects from very heavy fermions. In particular, the

H ! gg effective vertex would be sensitive to all possible very heavy coloured

quarks (of course, there is no W loop in this case, and the top quark gives the

dominant contribution in the loop). As discussed in Chap. 2, the gg ! H vertex

provides one of the main production channels for the Higgs boson at hadron

colliders, while another important channel at present is WH associate production.

3.16 The Higgs Discovery at the LHC

On 4 July 2012 at CERN, the ATLAS and CMS Collaborations [341, 345]

announced the observation of a particle with mass around 126 GeV that, within

the present accuracy, does indeed look like the SM Higgs boson. This is a great

breakthrough which, by itself, already makes an adequate return for the LHC

investment. With the Higgs discovery, the main building block for the experimental

validation of the SM is now in place. The Higgs discovery is the last milestone in the

long history (some 130 years) of the development of a field theory of fundamental

interactions (apart from quantum gravity), starting with the Maxwell equations

of classical electrodynamics, going through the great revolutions of relativity and

quantum mechanics, then the formulation of quantum electrodynamics (QED) and

the gradual buildup of the gauge part of the Standard Model, and finally completed

with the tentative description of the electroweak (EW) symmetry breaking sector of
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the SM in terms of a simple formulation of the Englert–Brout–Higgs mechanism

[189].

The other extremely important result from the LHC at 7 and 8 TeV center-of-

mass energy is that no new physics signals have been seen so far. This negative

result is certainly less exciting than a positive discovery, but it is a crucial new input

which, if confirmed in the future LHC runs at 13 and 14 TeV, will be instrumental

in redirecting our perspective of the field. In this section we summarize the relevant

data on the Higgs signal as they are known at present, while the analysis of the data

from the 2012 LHC run is still in progress.

The Higgs particle has been observed by ATLAS and CMS in five channels ””,

ZZ�, WW�, bNb, and £C£�. If we also include the Tevatron experiments, especially

important for the bNb channel, the combined evidence is by now totally convincing.

The ATLAS (CMS) combined values for the mass, in GeV=c2, are mH D 125:5˙0:6
(mH D 125:7˙0:4). This light Higgs is what one expects from a direct interpretation

of EW precision tests [73, 142, 350]. The possibility of a “conspiracy” (the Higgs

is heavy, but it falsely appears to be light because of confusing new physics effects)

has been discarded: the EW precision tests of the SM tell the truth and in fact,

consistently, no “conspirators”, namely no new particles, have been seen around.

As shown in the previous section, the observed value of mH is a bit too low for

the SM to be valid up to the Planck mass with an absolutely stable vacuum [see

(3.120)], but it corresponds to a metastable value with a lifetime longer than the

age of the universe, so that the SM may well be valid up to the Planck mass (if

one is ready to accept the immense fine-tuning that this option implies, as discussed

in Sect. 3.17). This is shown in Fig. 3.21, where the stability domains are shown

as functions of mt and mH, as obtained from a recent state-of-the-art evaluation of

the relevant boundaries [118, 160]. It is puzzling to find that, with the measured

values of the top and Higgs masses and the strong coupling constant, the evolution

of the Higgs quartic coupling ends up in a narrow metastability wedge at very high

energies. This criticality looks intriguing, and is perhaps telling us something.
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In order to be sure that this is the SM Higgs boson, one must confirm that the

spin-parity is 0C and that the couplings are as predicted by the theory. It is also

essential to search for possible additional Higgs states, such as those predicted in

supersymmetric extensions of the SM. As for the spin (see, for example, [179]),

the existence of the H ! ”” mode proves that the spin cannot be 1, and must

be either 0 or 2, in the assumption of an s-wave decay. The bNb and £C£� modes

are compatible with both possibilities. With large enough statistics the spin-parity

can be determined from the distributions of H ! ZZ� ! 4 leptons, or WW� !
4 leptons. Information can also be obtained from the HZ invariant mass distributions

in the associated production [179]. The existing data already appear to strongly

favour a JP D 0C state against 0�, 1C=�, or 2C [68]. We do not expect surprises

on the spin-parity assignment because, if different, then all the Lagrangian vertices

would be changed and the profile of the SM Higgs particle would be completely

altered.

The tree level couplings of the Higgs are proportional to masses, and as a

consequence are very hierarchical. The loop effective vertices to ”” and gg, g

being the gluon, are also completely specified in the SM, where no states heavier

than the top quark exist and contribute in the loop. This means that the SM Higgs

couplings are predicted to exhibit a very special and very pronounced pattern (see

Fig. 3.22) which would be extremely difficult to fake by a random particle. In fact,

only a dilaton, a particle coupled to the energy–momentum tensor, could come close

to simulating a Higgs particle, at least for the H tree level couplings, although

in general there would be a common proportionality factor in the couplings. The

hierarchy of couplings is reflected in the branching ratios and the rates of production

channels, as can be seen in Fig. 3.23. The combined signal strengths (which, modulo

acceptance and selection cut deformations, correspond to � D �Br=.�Br/SM) are

obtained as � D 0:8 ˙ 0:14 by CMS and � D 1:30 ˙ 0:20 by ATLAS. Taken

together these numbers constitute a triumph for the SM!

Within the somewhat limited present accuracy (October 2013), the measured

Higgs couplings are in reasonable agreement (at about a 20% accuracy) with the

Fig. 3.22 Predicted

couplings of the SM Higgs
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Fig. 3.23 Branching ratios of the SM Higgs boson in the mass range mH D 120–130 GeV (left)

and its production cross-sections at the LHC for various center-of-mass energies (right) [168]

sharp predictions of the SM. Great interest was excited by a hint of an enhanced

Higgs signal in ””, but if we put the ATLAS and CMS data together, the evidence

appears now to have evaporated. All included, if the CERN particle is not the SM

Higgs, it must be a very close relative! Still it would be really astonishing if the

H couplings were exactly those of the minimal SM, meaning that no new physics

distortions reach an appreciable level of contribution.

Thus, it becomes a firm priority to establish a roadmap for measuring the H

couplings as precisely as possible. The planning of new machines beyond the LHC

has already started. Meanwhile strategies for analyzing the already available and the

forthcoming data in terms of suitable effective Lagrangians have been formulated

(see, for example, [222] and references therein). A very simple test is to introduce

a universal factor multiplying all H N  couplings to fermions, denoted by c, and

another factor a multiplying the HWW and HZZ vertices. Both a and c are 1 in the

SM limit. All existing data on production times branching ratios are compared with

the a- and c-distorted formulae to obtain the best fit values of these parameters (see

[72, 194, 218] and references therein). At present this fit is performed routinely by

the experimental collaborations [66, 260], each using its own data (see Fig. 3.24).

But theorists have not refrained from abusively combining the data from both

experiments and the result is well in agreement with the SM, as shown in Fig. 3.25

[194, 218].

Actually, a more ambitious fit in terms of seven parameters has also been

performed [194] with a common factor like a for couplings to WW and ZZ, three

separate c-factors ct, cb, and c£ for u-type and d-type quarks and for charged leptons,

and three parameters cgg, c”” , and cZ” for additional gluon–gluon, ”–” and Z–”

terms, respectively. In the SM a D ct D cb D c� D 1 and cgg D c”” D cZ” D 0.

The present data allow a meaningful determination of all seven parameters which
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see [3]
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1� � , with � defined in Sect. 3.17. Right: From [194], with

ct D cb D c£ D c and cV D a

turns out to be in agreement with the SM [194]. For example, in the MSSM, at

the tree level, a D sin .ˇ � ˛/, for fermions the u- and d-type quark couplings are

different: ct D cos˛= sinˇ and cb D � sin ˛= cosˇ D c£. At the tree level (but

radiative corrections are in many cases necessary for a realistic description), the ˛
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angle is related to the A, Z masses and to ˇ by tan 2˛ D tan 2ˇ.m2
A�m2

Z/=.m
2
ACm2

Z/.

If ct is enhanced, cb is suppressed. In the limit of large mA, a D sin .ˇ � ˛/ ! 1.

In conclusion it really appears that the Higgs sector of the minimal SM, with

good approximation, is realized in nature. Apparently, what was considered just

as a toy model, a temporary addendum to the gauge part of the SM, presumably

to be replaced by a more complex reality and likely to be accompanied by new

physics, has now been experimentally established as the actual realization of the

EW symmetry breaking (at least to a very good approximation). If the role of the

newly discovered particle in the EW symmetry breaking is confirmed, it will be the

only known example in physics of a fundamental, weakly coupled, scalar particle

with vacuum expectation value (VEV). We know many composite types of Higgs-

like particles, like the Cooper pairs of superconductivity or the quark condensates

that break the chiral symmetry of massless QCD, but the Higgs found at the LHC

is the only possibly elementary one. This is a death blow not only to Higgsless

models, to straightforward technicolor models, and to other unsophisticated strongly

interacting Higgs sector models, but actually a threat to all models without fast

enough decoupling, in the sense that, if new physics comes in a model with

decoupling, the absence of new particles at the LHC helps to explain why large

corrections to the H couplings are not observed.

3.17 Limitations of the Standard Model

No signal of new physics has been found, either by direct production of new

particles at the LHC, or in the electroweak precision tests, or in flavour physics.

Given the success of the SM, why are we not satisfied with this theory? Once

the Higgs particle has been found, why don’t we declare particle physics closed?

The reason is that there are both conceptual problems and phenomenological

indications for physics beyond the SM. On the conceptual side the most obvious

problems are that quantum gravity is not included in the SM and that the famous

hierarchy (or naturalness or fine-tuning) problem remains open. Among the main

phenomenological hints for new physics we can list coupling unification, dark

matter, neutrino masses (discussed in Sect. 3.7), baryogenesis, and the cosmological

vacuum energy. At accelerator experiments, the most plausible departure from the

SM is the muon anomalous magnetic moment which, as discussed in Sect. 3.9,

shows a deviation by about 3 � , but some caution should be applied since a large

fraction of the uncertainty is of theoretical origin, in particular that due to the

hadronic contribution to light–light scattering [245].

The computed evolution with energy of the effective SM gauge couplings clearly

points towards the unification of the electroweak and strong forces (GUTs) at scales

of energy MGUT � 1015–1016 GeV [315], which are close to the scale of quantum

gravity, MPlanck � 1019 GeV. The crossing of the three gauge couplings at a single
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Fig. 3.26 Renormalisation of the SM gauge couplings g1 D
p
5=3gY , g2, g3, of the top, bottom,

and £ couplings (yt , yb, y£), of the Higgs quartic coupling �, and of the Higgs mass parameter m.

In the figure, yb and y£ are not easily distinguished. All parameters are defined in the NMNS scheme

[118]

point is not perfect in the SM and is much better in the supersymmetric extensions

of the SM. But still the matching is sufficiently close in the SM (see Fig. 3.26,

[118]) that one can imagine some atypical threshold effect at the GUT scale to

fix the apparent residual mismatch. One is led to imagine a unified theory of all

interactions, also including gravity (at present superstrings [231] provide the best

attempt at such a theory).

Thus GUTs and the realm of quantum gravity set a very distant energy horizon

that modern particle theory cannot ignore. Can the SM without new physics be

valid up to such high energies? One can imagine that some obvious problems of

the SM could be postponed to the more fundamental theory at the Planck mass. For

example, the explanation of the three generations of fermions and the understanding

of fermion masses and mixing angles can be postponed. But other problems must

find their solution in the low energy theory. In particular, the structure of the SM

could not naturally explain the relative smallness of the weak scale of mass, set by

the Higgs mechanism at v � 1=
p

GF � 250GeV, where GF is the Fermi coupling

constant. This so-called hierarchy problem [219] is due to the instability of the

SM with respect to quantum corrections. In fact, nobody can believe that the SM is

the definitive, complete theory but, rather, we all believe it is only an effective low

energy theory.

The dominant terms at low energy correspond to the SM renormalizable

Lagrangian, but additional non-renormalizable terms should be added which are

suppressed by powers (modulo logs) of the large scale �, where physics beyond

the SM becomes relevant (for simplicity we write down only one such scale of new

physics, but there could be different levels). The complete Lagrangian takes the
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general form

L D O.�4/CO.�2/L2CO.�/L3CO.1/L4 C O.1=�/L5 C O.1=�2/L6 C � � � :
(3.128)

Here LD are Lagrangian vertices of operator dimension D. In particular L2 D ˚�˚

is a scalar mass term, L3 D N�� is a fermion mass term (which in the SM only

appears after EW symmetry breaking), L4 describes all dimension-4 gauge and

Higgs interactions, L5 is the Weinberg operator [363] (with two lepton doublets and

two Higgs fields) which leads to neutrino masses (see Sect. 3.7), and L6 includes

4-fermion operators (among others). The first line in (3.128) corresponds to the

renormalizable part (that is, what we usually call the SM). The baseline power of

the large scale � in the coefficient of each LD vertex is fixed by dimensions. A

deviation from the baseline power can only be naturally expected if some symmetry

or some dynamical principle justifies a suppression. For example, for the fermion

mass terms, we know that all Dirac masses vanish in the limit of gauge invariance

and only arise when the Higgs VEV v breaks the EW symmetry. The fermion masses

also break chiral symmetry. Thus the fermion mass coefficient is not linear in �

modulo logs, but actually behaves as v log�. An exceptional case is the Majorana

mass term of right-handed neutrinos �R, MRR
N�c
R�R , which is lepton number non-

conserving but gauge invariant (because �R is a gauge singlet). In fact, in this case

one expects MRR � �. As another example, proton decay arises from a 4-fermion

operator in L6, suppressed by 1=�2, where in this case � could be identified with

the large mass of lepto-quark gauge bosons that appear in GUTs.

The hierarchy problem arises because the coefficient of L2 is not suppressed by

any symmetry. This term, which appears in the Higgs potential, fixes the scale of

the Higgs VEV and of all related masses. Since empirically the Higgs mass is light,

(and by naturalness, it should be of O.�/, we would expect �, i.e., some form of

new physics, to appear near the TeV scale. The hierarchy problem can be put in very

practical terms (the “little hierarchy problem”): loop corrections to the Higgs mass

squared are quadratic in the cutoff �, which can be interpreted as the scale of new

physics.

The most pressing problem is from the top loop. With m2
h D m2

bare C ım2
h, the top

loop gives

ım2
hjtop � � 3GF

2
p
2�2

m2
t�

2 � �.0:2�/2 : (3.129)

If we demand that the correction not exceed the light Higgs mass observed by

experiment (that is, we exclude an unexplained fine-tuning), � must be close,

� � O.1 TeV/. Similar constraints also arise from the quadratic � dependence

of loops with exchanges of gauge bosons and scalars, which, however, lead to less

pressing bounds. So the hierarchy problem strongly indicates that new physics must

be very close (in particular the mechanism that quenches or compensates the top
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loop). The restoration of naturalness would occur if new physics implemented an

approximate symmetry implying the cancellation of the �2 coefficient. Actually,

this new physics must be rather special, because it must be very close, while its

effects are not yet clearly visible, either in precision electroweak tests (the “LEP

paradox” [80]), or in flavour-changing processes and CP violation.

It is important to note that, although the hierarchy problem is directly related

to the quadratic divergences in the scalar sector of the SM, the problem can

actually be formulated without any reference to divergences, directly in terms of

renormalized quantities. After renormalization, the hierarchy problem is manifested

by the quadratic sensitivity of �2 to the physics at high energy scales. If there is

a threshold at high energy, where some particles of mass M coupled to the Higgs

sector can be produced and contribute in loops, then the renormalized running mass

� will evolve slowly (i.e., logarithmically according to the relevant beta functions

[195]) up to M and there, as an effect of the matching conditions at the threshold,

rapidly jump to become of order M (see, for example, [79]). In fact, in Fig. 3.26, we

see that, under the assumption of no thresholds, the running Higgs mass m evolves

slowly, starting from the observed low energy value, up to very high energies. In the

presence of a threshold at M one needs a fine-tuning of order �2=M2 in order to fix

the running mass at low energy to the observed value.

Thus for naturalness either new thresholds appear endowed with a mechanism for

the cancellation of the sensitivity or they had better not appear at all. But certainly

there is the Planck mass, connected to the onset of quantum gravity, which sets

an unavoidable threshold. One possible point of view is that there are no new

thresholds up to MPlanck (at the price of giving up GUTs, among other things) but,

miraculously, there is a hidden mechanism in quantum gravity that solves the fine-

tuning problem related to the Planck mass [221, 322]. For this one would need

to solve all phenomenological problems, like dark matter, baryogenesis, and so on,

with physics below the EW scale. Possible ways to do so are discussed in [322].

This point of view is extreme, but allegedly not yet ruled out.

The main classes of orthodox solutions to the hierarchy problem are:

• Supersymmetry [302]. In the limit of exact boson–fermion symmetry, quadratic

bosonic divergences cancel so that only log divergences remain. However, exact

SUSY is clearly unrealistic. For approximate SUSY (with soft breaking terms

and R-parity conservation), which is the basis for most practical models, �2 is

essentially replaced by the splitting of SUSY multiplets,�2 � m2
SUSY�m2

ord, with

mord the SM particle masses. In particular, the top loop is quenched by partial

cancellation with s-top exchange, so the s-top cannot be too heavy. After the

bounds from the LHC, the present emphasis is to build SUSY models where

naturalness is restored not too far from the weak scale, but the related new

physics is arranged in such a way that it would not have been visible so far. The

simplest ingredients introduced in order to decrease the fine tuning are either the

assumption of a split spectrum with heavy first two generations of squarks (for

some recent work along this line see, for example, [271]) or the enlargement of
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the Higgs sector of the MSSM by adding a singlet Higgs field (see, for example,

[196] on next-to-minimal SUSY SM or NMSSM) or both.

• A strongly interacting EW symmetry-breaking sector. The archetypal model

of this class is technicolor, where the Higgs is a condensate of new fermions

[332]. In these theories there is no fundamental scalar Higgs field, hence no

quadratic divergences associated with the �2 mass in the scalar potential. But this

mechanism needs a very strong binding force, �TC � 103�QCD. It is difficult to

arrange for such a nearby strong force not to show up in precision tests. Hence,

this class of models was abandoned after LEP, although some special classes

of models have been devised a posteriori, like walking TC, top-color assisted

TC, etc. [246] (for reviews see, for example, [275]). But the simplest Higgs

observed at the LHC has now eliminated another score of these models. Modern

strongly interacting models, like little Higgs models [63] [in these models extra

symmetries allow mh 6D 0 only at two-loop level, so that � can be as large as

O.10 TeV/], or composite Higgs models [223, 258] (where non-perturbative

dynamics modifies the linear realization of the gauge symmetry and the Higgs

has both elementary and composite components) are more sophisticated. All

models in this class share the idea that the Higgs is light because it is the pseudo-

Goldstone boson of an enlarged global symmetry of the theory, for example

SO.5/ broken down to SO.4/. There is a gap between the mass of the Higgs

(similar to a pion) and the scale f where new physics appears in the form of

resonances (similar to the �, etc.). The ratio � D v2=f 2 defines a degree of

compositeness that interpolates between the SM at � D 0 up to technicolor

at � D 1. Precision EW tests impose � < 0:05–0.2. In these models the bad

quadratic behaviour from the top loop is softened by the exchange of new vector-

like fermions with charge 2/3, or even with exotic charges like 5/3 (see, for

example, [143, 295]).

• Extra dimensions [62, 314] (for pedagogical introductions, see, for example,

[331]). The idea is that MPlanck appears very large, or equivalently that gravity

appears very weak, because we are fooled by hidden extra dimensions, so that

either the real gravity scale is reduced down to a lower scale, even possibly down

to O.1 TeV/ or the intensity of gravity is redshifted away by an exponential

warping factor [314]. This possibility is very exciting in itself and it is

really remarkable that it is compatible with experiment. It provides a very rich

framework with many different scenarios.

• The anthropic evasion of the problem. The observed value of the cosmological

constant � also poses a tremendous, unsolved naturalness problem [205]. Yet

the value of� is close to the Weinberg upper bound for galaxy formation [364].

Possibly our Universe is just one of infinitely many bubbles (a multiverse) contin-

uously created from the vacuum by quantum fluctuations. Different physics takes

place in different universes according to the multitude of string theory solutions

[177] (� 10500). Perhaps we live in a very unlikely universe, but the only one

that allows our existence [61, 220, 318]. Personally, I find the application of the

anthropic principle to the SM hierarchy problem somewhat excessive. After all,
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one can find plenty of models that easily reduce the fine tuning from 1014 to 102:

why make our universe so terribly unlikely? If we add, say, supersymmetry to the

SM, does the universe become less fit for our existence? In the multiverse, there

should be plenty of less finely tuned universes where more natural solutions are

realized and which are still suitable for us to live in them. By comparison, the

case of the cosmological constant is very different: the context is not as fully

specified as the one for the SM (quantum gravity, string cosmology, branes in

extra dimensions, wormholes through different universes, and so on). Further,

while there are many natural extensions of the SM, so far there is no natural

theory of the cosmological constant.

It is true that the data impose a substantial amount of apparent fine tuning, and our

criterion of naturalness has certainly failed so far, so that we are now lacking a

reliable argument to tell us where precisely the new physics threshold is located. On

the other hand, many of us remain confident that some new physics will appear not

too far from the weak scale.

While I remain skeptical I would like to sketch here one possibility of how

the SM can be extended in agreement with the anthropic idea. If we completely

ignore the fine-tuning problem and only want to reproduce, in a way compatible

with GUTs, the most compelling data that demand new physics beyond the SM, a

possible scenario is the following. The SM spectrum is completed by the recently

discovered light Higgs and there is no other new physics in the LHC range

(how sad!). In particular there is no SUSY in this model. At the GUT scale

of MGUT � 1016 GeV, the unifying group is SO.10/, broken at an intermediate

scale, typically Mint � 1010–1012 down to a subgroup like the Pati–Salam group

SU.4/
N

SU.2/L
N

SU.2/R or SU.3/
N

U.1/
N

SU.2/L
N

SU.2/R [98]. Note

that, in general, unification in SU.5/ would not work because we need a group

of rank larger than 4 to allow for (at least) two-step breaking: this is needed, in

the absence of SUSY, to restore coupling unification and to avoid a too fast proton

decay. An alternative is to assume some ad hoc intermediate threshold to modify the

evolution towards unification [224].

The dark matter problem is one of the strongest pieces of evidence for new

physics. In this model it should be solved by axions [262, 263, 309]. It must

be said that axions have the problem that their mass has to be fixed ad hoc to

reproduce the observed amount of dark matter. In this respect, the WIMP (weakly

interacting massive particle) solution, like the neutralinos in SUSY models, is much

more attractive. Lepton number violation, Majorana neutrinos, and the see-saw

mechanism give rise to neutrino mass and mixing. Baryogenesis occurs through

leptogenesis [115]. One should one day observe proton decay and neutrino-less beta

decay. None of the alleged indications for new physics at colliders would survive (in

particular, even the claimed muon g�2 [297] discrepancy should be attributed, if not

to an experimental problem, to an underestimate of the theoretical uncertainties, or

otherwise to some specific addition to the above model [257]). This model is in line

with the non-observation of the decay � ! e” at MEG [16], of the electric dipole
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moment of the neutron [75], etc. It is a very important challenge to experiment to

falsify such a scenario by establishing firm evidence for new physics at the LHC or

at some other “low energy” experiment.

In 2015 the LHC will restart at 13–14 TeV and in the following years should

collect a much larger statistical sample than available at present at 7–8 TeV. From

the above discussion it is clear that it is extremely important for the future of particle

physics to know whether the extraordinary and unexpected success of the SM,

including the Higgs sector, will continue, or whether clear signals of new physics

will finally appear, as we very much hope.
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