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1. Introduction

The theory of excess burden and optimal commodity taxation is one of the oldest

subjects of study in public finance, dating back to Dupuit (1844), and yet is also

closely associated with the rapid analytical development of the field which

commenced in the early 1970s. Perhaps more than in most areas of economics,

there has been a tendency to overlook contributions made in earlier decades. As a

result, much of the "new" public economics of the last decade may be viewed, in

part, as a restatement and extension, perhaps in less arcane language and

terminology, of previously proven propositions.

Probably the most celebrated example of such "rediscovery" is that of Ramsey's

(1927) derivation of optimal commodity tax formulae, now referred to as the

Ramsey rule. The lapse here is even harder to understand in that Ramsey's results

were succinctly described in Pigou's classic public finance text (1947) and

rederived by Boiteux (1956). The deadweight loss "triangles" made popular by

the work of Harberger (1964) were considered by Hotelling (1938), and appear

implicitly in Dupuit (1844):

"It follows that when the change in consumption brought about by a tax is

known, it is possible to find an upper limit to the amount of the utility lost

by multiplying the change in consumption by half the tax."'

Indeed, the generalization of such excess burden formulae by Boiteux (1951)

and Debreu (1951, 1954) has until recently2 been almost entirely ignored in the

subsequent literature. Even the "Laffer curve", popular for a time among non-

economists, might more appropriately be called the "Dupuit curve":

*1 am grateful to Angus Deaton, Avinash Dixit, Liam Ebrill, Jerry Hausman, Mervyn King, Randy

Mariger. Jack Mintz, Harvey Rosen, Efraim Sadka, Jon Skinner, Nick Stern and Lars Svensson for
comments on an earlier draft.

Dupuit (1844).
2

See, for example, Diewert (1981).
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"If a tax is gradually increased from zero up to a point where it becomes
prohibitive, its yield is at first nil, then increases by small stages until it

reaches a maximum, after which it gradually declines until it becomes zero

again. It follows that when the state requires to raise a given sum by means

of taxation, there are always two rates of tax which would fulfill the

requirement, one above and one below that which would yield the maximum.

There may be a very great difference between the amounts of utility lost

through these taxes which yield the same revenue." 3

The purpose of this chapter is to present the chronological development of the

concept of excess burden and the related study of optimal tax theory. A main

objective is to uncover the interrelationships among various apparently distinct

results, so as to bring out the basic structure of the entire problem.

1.1. Outline of the chapter

Any discussion of welfare economics inevitably begins with the problem of

welfare measurement, which in the present context involves a treatment of

Marshall's consumers' surplus and its relationship to Hicks' (1942) notions

of compensating and equivalent variations. These are discussed in Section 2,
where special attention is paid to the distinction between the measurement of the

welfare effects of price changes and the distortionary impact of tax changes.

Section 3 develops the various measures of excess burden, focusing on issues of

approximation, informational requirements and aggregation over individuals, and

the effects of a more general technology than the commonly supposed one with
fixed producer prices. Section 4 reviews some of the empirical attempts to

estimate various deadweight losses. Section 5 presents and interprets the basic

rules for optimal commodity taxation, including a discussion of the role of profits

taxation and the desirability of production efficiency. The analysis in Section 6
concerns the relative desirability of direct and indirect taxation and the structure

of individual preferences. Section 7 presents some applications of optimal tax

theory to questions such as the provision of public goods, correction of externali-

ties, and the allocation of risk. Finally, in Section 8, we explore the issue of tax
reform, as distinct from de novo tax design. This literature dates back to Corlett

and Hague (1953-54), and asks whether specified local movements away from an

initial suboptimal equilibrium will improve social welfare. In general, movement
of prices in the direction of their optimal levels does not guarantee such an

improvement.

3
Dupuit, op. cit., p. 278. For this particular rediscovery, I am indebted to the historical analysis of

Atkinson and Stern (1980).
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Ch. 2: Excess Burden and Optimal Taxation

2. Measures of surplus and excess burden

2.1. Consumers' surplus and the Hicksian variations

We begin with Marshall's (1920, p. 811) diagram, in Figure 2.1, depicting

consumers' and producers' surplus. The consumers' surplus is defined, somewhat

vaguely, to be the amount that consumers would pay in excess of the amount they

are paying, po, for the amount they are purchasing, x. Interpreting the

demand curve as an expression of willingness to pay, we obtain area A as such a

measure by integrating the vertical gap between the demand curve and po over x.

Similarly, interpreting producers' surplus as the level of profits received in

supplying the quantity sold, and assuming that competitive supply causes the

marginal social cost to coincide with the supply schedule S, we obtain the area B.

The sum A + B is maximized when price equals marginal cost, and changes in

each measure following from a price change are easily calculated. For example, if

the price rises from po to pl, the change in consumers' surplus is the area of a
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Figure 2.1. Consumers' and producers' surplus.
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trapezoid which equals

AS= - f x(p)dp, (2.1)

where x(-) is the demand function with respect to the good's own price, holding

other prices fixed. 4

The basic problem with consumers' surplus as a welfare measure is that it does

not come directly from underlying consumer preferences. As a result, it has the

serious flaw of path-dependence: if more than one price changes, the order in

which the trapezoids in (2.1) are calculated matters. That is, if we let x i and pi be

the quantity demanded and price in the ith market, the sum of individual changes

in consumers' surplus, AS', i.e., the line integral

AS=E AS= - fpExdp', (2.2)
i Po i

takes on different values according to the path of integration from the initial price

vector po to the ultimate price vector p,. To see this, consider a simple example

with two markets. If we change the price in market 1 first, the change in surplus is

AS 1 = - fx'( , p2 ) dp Px2( p, p2 )d p2
, (2.3a)

while if we change the price in market 2 first, we obtain

AS2 = _f lXl(pl, p)dpl-PIx2( pp2)(dp2). (2.3b)

Subtracting AS 1 from AS2, we obtain

AS2 - AS, = - Pl[xl( pl, pl2 ) xl(pl, p2)] d

+P[Ix2(pi pp2) _X2(p p2)] dp
2

- (2.4)

4Note that, by integrating (2.1) by parts, we obtain the formula for AS based on the difference
between the two levels of surplus themselves, i.e.,

p(dx-[px-poxo]= p( d -[ pxdx-Xo]
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Ch. 2: Excess Burden and Optimal Taxation

For this term to equal zero, it must generally be zero over all subintervals between

po and Pl. In particular, for small changes in p1 and p2 , with p2 =p 2 + dpo2 and

pl = pi + dp l, (2.4) becomes

aX2 ( Po" 2 ax ( po 
AS 2 - S = x2(P, P°) dp dp 2

_ (a ) dpldp2 , (2.5)

which equals zero only if the cross-price derivatives axl/ap2 and ax 2/ap are

equal.5 Such symmetry holds for compensated demands: the Slutsky matrix is
symmetric [Hicks (1946)]. However, ordinary demand derivatives also possess

income effects that are not generally equal.

The path-dependence problem does not arise from surplus measures based on

compensated commodity demands, for which the symmetry property holds. Here,

however, we face a different question: since utility does change with the change in

prices, which utility level should be used as a reference level for the compensated

demand functions? Two natural candidates are the levels of utility prevailing

before and after the price changes. Following Hicks (1942), we define the
compensating variation of a price change to be that amount of income the

consumer must receive to leave utility unaffected by the price change, and

the equivalent variation as the amount of income the consumer would forego to

avoid the price change. By definition, the compensating variation of a price

change from po to P1 equals the equivalent variation of a change from p, to p0 .
Using the expenditure function, defined by the minimization of expenditure at
given prices to satisfy a given level of utility:

E(p,U)=min(p.x) subjectto U(x)>U, (2.6a)

we may express concisely the equivalent and compensating variations as E(p, U)
-E(po, U), where U is the pre-change utility level in the case of the compensat-

ing variation, and the post-change utility level in the case of the equivalent

variation. Letting y be the consumer's actual income, 6 we can express these two

measures as functions of prices and income alone through use of the indirect
utility function, V(p, y), defined by

V(p,y)=maxU(x) subjectto p.x>y. (2.6b)

Substituting (2.6b) into (2.6a), we obtain for the compensating variation of a price

5
See Hotelling (1938) for the original statement of this result.

6
y should be thought of as a comprehensive "full income" measure not affected by individual

decisions regarding, for example, labor supply. This is discussed further in Section 5 below.
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change from po to p,

CV( po, pl) = E(pl, V(po, y)) - E(po, V(po, y))

= E(p l , V(po, y)) -y, (2.7a)

and for the corresponding equivalent variation,

EV(p 0 , p) = E(pl, V(p y)) -E(p o, V(pl, y))

=y - E(p o, V(p , , y)), (2.7b)

[where we use the identity y = E(p, V(p, y))].

These measures may be depicted graphically. By the envelope theorem, the
derivative of the expenditure function with respect to an individual price p' is

D

x(Pl, Y) x(po,y) x

Figure 2.2. Compensating and equivalent variations.
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simply the Hicksian or compensated demand x (p,U). Thus, either of the

Hicksian variations may be expressed (for the appropriate value of U) as

E(plU)-E(PoU) dp (p, U)dp= fi xc(p,U)dp. (2.8)

Since the cross-price derivatives are symmetric for compensated demands, these

measures are path-independent. For the case of a single price change, they may be

easily compared to the simple change in consumers' surplus, which is then

well-defined. This is shown in Figure 2.2, where Dc(U) is the compensated

demand curve corresponding to the compensated demands xc(p, U), drawn

more steeply than the ordinary demand curve D under the assumption of

normality. The ordinary consumers' surplus changes by the area A + B with an

increase in price from po to pi. The compensating variation of the change equals

the area A + B + C, while the equivalent variation equals the area A. The

bracketing of the Marshallian measure by the two Hicksian measures was

emphasized by Hicks (1942) and Willig (1976) in their attempts at rehabilitation

of consumers' surplus as a welfare measure. However, their argument becomes

weaker when more than one price changes, for then consumers' surplus is not

even single-valued. Moreover, for estimating the excess burden of a tax, it is not

the entire loss to the consumer in which we are interested but rather the loss in

excess of revenue collected. It turns out that in such a case, the felicitous outcome

with respect to the relative sizes of the three measures no longer holds.

2.2. Definitions of excess burden

The deadweight loss from a tax system is that amount that is lost in excess of

what the government collects. Unfortunately, while this definition makes intuitive

sense, it is too vague to permit a single interpretation.

We begin again with the simple Marshallian approach, which is adequate for

purposes of illustrating the concept of excess burden in a single market. We can

see the effects of a tax t in Figure 2.3. By raising the consumer price from p, to

pi + t, the tax reduces consumers' surplus by the area A + B. Producers' surplus

is reduced by C+ D, by the drop in producer price to p, but tax revenues

amount only to A + C, yielding a social loss of B + D, or approximately t(x o -

x,) = - tAx, as suggested by Dupuit.

A key aspect of this measure is that it is greater than zero whether the tax is

positive or negative. The case of a subsidy at rate s is depicted in Figure 2.4.

Here, there is an increase in consumption to x, and consumers' surplus and

producers' surplus both rise by the areas H + I and F + G, respectively. But the
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Figure 2.3. Excess burden of a tax.

amount of the subsidy exceeds those gains by the area J, equal to sAx or,
again, - t Ax for t= -s being the algebraic value of the tax. The loss comes
from the distortion of a Pareto optimal allocation, not simply the reduction in

output.

For the case where a tax already exists, we may ask what additional excess
burden would be caused by a tax increase. In this case, we subtract the change in
government revenue from the change in producers' and consumers' surplus, since

revenue is positive at the initial point. The resulting measure is shown in Figure
2.5.

By raising the consumer price from p, + t to P2 + t2, the tax causes a loss in
consumers' surplus of A + B. Producers' surplus declines by C + D, and, as

before, the government collects additional revenue on the purchases x2 equal to

(t2 - t) x2, or area A + C. However, the government loses the revenue it was
collecting on the purchases in excess of x2, equal to area E. Thus, the welfare loss

of the tax increase equals the trapezoidal area B + E + D, or approximately
-(tAx + At Ax). Thus, even if At is very small, the additional excess burden
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I-1'

11_' --,'

ID

Figure 2.4. Excess burden of a subsidy.

need not be, unlike in the case where no tax exists initially: there is now a

first-order welfare loss resulting from marginal tax changes.

If we wish to consider the effects of several taxes at once, we must use more

sophisticated measures based on the Hicksian variations. For the remainder of

this subsection, we focus on the case of a single consumer facing fixed producer

prices. These restrictions are relaxed in Section 3.

Using the equivalent variation, Mohring (1971) suggests that the excess burden

of taxation is the amount in excess of taxes being collected that the consumer

would give up in exchange for the removal of all taxes; that is, how much more

could be collected from the consumer (and thrown away) than is currently being

collected, with no loss in utility, if the collection method were lump sum taxation.

In the terminology used above, we may write this measure as

EBE = E(p, V(p, y)) - E(po, V(p 1, y)) -R(pl, y)

=Y - E(po, V(pl, y)) -(p, -po) x(pl, y),

Pi

IS

S,
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Figure 2.5. Excess burden with a pre-existing tax.

where R(p,, y) is the tax revenue collected when prices are at p and the

consumer's income equals y.

Alternatively, Diamond and McFadden (1974) suggest the use of the com-

pensating variation by defining excess burden to be that amount, in addition to

revenues collected, that the government must supply to the consumer to allow

him to maintain the initial utility level. That is, how much must come from

"outside" the system to compensate for the tax distortion. To avoid double-count-

ing, we include in the government's revenue the additional amount it collects

because the individual is compensated and (for a normal good) demands more of

the taxed commodity. Thus, the Diamond-McFadden measure may be written

EBc = E(pl, V(po, y)) - E(po, V(po, y)) - R(p,, E(p, V(p o, y)))

= E(Pl, V(po, y))-y-( , -Po) x(p, E(p, V(po, )))

= E(pl, V(po, y)) -y- (p, -po) xc(pl, V(po, y)),

70
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[where the last step uses the identity x(p, E(p, U))= xc(p, U)]. As with EBE,

EBc must be non-negative.

For a single price change, these two measures of excess burden may be

graphically compared to the Marshallian measure shown in Figure 2.3. The three

measures together are shown in Figure 2.6. To obtain the equivalent variation

measure or the consumers' surplus measure of excess burden, we subtract the

revenue actually collected at x(p, y) from the respective measures shown in

Figure 2.2. For the compensating variation measures, we subtract the revenue that

would be collected if utility were kept at V(p o, y). This yields the areas A,

A + B, and C for the three respective measures. Note that the two Hicksian

DC(V(p o , y))

DC(V(pi, y))

-~\

D

Figure 2.6. A comparison of excess burden measures.
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measures no longer bracket the Marshallian one.7 If the taxed good is normal, the

latter is necessarily larger than each of the former, and the discrepancy may be

quite large.

Other logical measures of excess burden involving the equivalent and com-
pensating variations may be conceived.8 In addition, it is easy to adapt the two
measures already derived to the case where the initial equilibrium is not Pareto

optimal but is already distorted by taxes. The equivalent variation measure of

additional excess burden would then be the amount, in excess of additional tax
revenues, that the consumer would pay to avoid the latest price increase from pl

to P2,

EBE = E(p 2, V(P 2, y)) - E(p,, V(p 2 , y))

- R(p 2, y)-R(p,, E(p,, V(p 2, y)))]

=Y - E(p1 , V(P 2 , y)) - (P2 -P).) (P2 , y)

+ (P - Po)' .x(PI, V(P 2 , y))

=y - E (p, V(p 2 , y)) -(P2 -P,) X(P 2, y)

+(P -Po)) (Xc(P, V(P2, y))- X(P2, )) (2.11)

Comparing (2.11) with (2.9), we find that (2.11) contains an additional expression
representing the reduction in tax revenues as demand declines with the new rise in

price, with utility held constant at V(p2, y). This additional term corresponds to

that found for the basic consumers' surplus measure in Figure 2.6. Likewise, the

compensating variation measure would be the amount in excess of the change in
revenues that would be required to maintain the initial utility level, or

EB = E(p2, V(p,, y))-E(p 1, V(pl, y))

- [R(P2 , E(P2 , V(p 1 , y)))- R(p 1 , y)]

=E(P2 , V(P 1, y)) -y - (P 2 -PO). Xc(P 2, V(P 1 , y))

+(P1- Po)- X(P, )

= E(P2, V(P1, y)) - - (p 2 -P 1). Xc(P 2, V(p 1, y))

+ (PI -P o ) (x(pI, y) -Xc(P 2, V(p1 , y))), (2.12)

7This was pointed out by Hausman (1981a), among others.
8See Auerbach and Rosen (1980) for further discussion.
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Ch. 2: Excess Burden and Optimal Taxation

where the additional term compared to (2.10) is the revenue lost as demand

declines with utility held constant at V(p l , y).

3. Evaluating the measures of excess burden

3.1. Taylor approximations and informational requirements

For purposes of exposition, it is sometimes easier to express the deadweight loss

calculations above in terms of second-order Taylor approximations. For example,

if we expand the exact measure EBc around the initial price vector Pi, we obtain

E EB d (P 2-Pl)+( 'p2_ p ) d2EBC (p2- PI)+ . (3.1)dEB- dl
dp dp

2

which, ignoring all terms beyond the second order, yields

[Bc ( -( OP ) d- o (P2 -Pi)

+ (P2-P1) [- dp (P-Po) d (P2-P (3.2)

where x c is evaluated at and V(pl, y). If we make a further approximation

by ignoring the curvature terms of the compensated demand function d2 XC/dp2 ,

we obtain

EBc - (tSAt + 2 At'At) = -(t'Axc + At'AXc), (3.3)

where t=(Pl-po), At=(P2 -P), S=dxc/dp is the Slutsky matrix, and
Ax = SAt. This is of a form similar to the single-market measure derived above

for simple consumers' surplus, but the changes in demand are now compensated

changes rather than ordinary ones. The approximation in (3.3) is that originally

derived by Harberger (1964), although the procedure used to derive it here is

somewhat simpler.9

From (3.3), we may observe a number of additional characteristics of tax-

induced excess burden. First of all, when there are pre-existing taxes in other

90ne can also derive higher-order approximations of EBc. For a comparison of the errors involved

in using second- and third-order approximations, see Green and Sheshinski (1979).
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markets, the introduction of another tax need not worsen things. We must weigh

the strictly positive term - (At) 2 Si for the new tax in market i against the

cross-effects - tS.i Ati in each other market j, which represent the loss in revenue

from the tax t due to the drop in demand resulting from the price increase in

market i. Since Si, may be positive or negative, so may each of those terms. In

general, if pre-existing taxes are on goods substitutable for good i (Sji > 0), the

new tax is more likely to lessen the total excess burden of the tax system.

A second observation to make from (3.3) is that excess burden is a non-linear

function of tax rates. Consider, for example, a single tax t imposed upon a state
without taxes. The excess burden is approximately - t, 2S,, so that it increases

with the square of the tax. This suggests that to raise a certain amount of revenue,

we might reduce excess burden by using several small taxes rather than a few

large ones, perhaps tilting toward those with smaller own-substitution effects for

which the scale of excess burden is lower. However, once several taxes are used,

the cross-effects just discussed need also be evaluated. How these aspects fit

together will become clearer in Section 5 when we formally consider the optimal

tax problem.

Aside from expositional purposes, the use of a Taylor approximation can only

be justified on grounds of insufficient information. If we know the consumer's

expenditure function, we can calculate either of the exact measures of excess

burden explicitly. Even if we know only the consumer's ordinary demand

function, we can solve for his indirect utility function and hence his compensated

demand function (in principle) using the system of partial differential equations

generated by Roy's identity, °1

x(p, y) =-dU/dy (3.4)

Thus, we must know less than the consumer's demand function if we are to justify

the use of an approximation; perhaps only its local properties. However, even in

this case, it is probably preferable to construct an exact measure to the extent of

one's limited knowledge of demand characteristics away from the initial equi-

librium, and use confidence bounds based on the precision of our underlying

parameter estimates. Alternatively, one can use revealed preference theory in

conjunction with observed data to derive bounds, without ever specifying a

particular demand function [Varian (1982)].

A second defense of the use of approximations or even of simple consumers'

surplus measures is that the demand function as estimated is not integrable, so

that we cannot use the procedure suggested above to derive the associated

t°See Hausman (1981a). Vartia (1983) presents a numerical algorithm for generating utility
functions from demand functions.
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compensated demand function. However, lack of integrability is synonomous

with the violation of the laws of demand. If such laws are violated, what

interpretation can we give any measure we use?

3.2. Variations in producer prices

The assumption made thus far in this section that producer prices are fixed is a

common one in the literature, but may do violence to our representation of the

actual situation prevailing in the economy. For example, we know that a tax on a

good in absolutely fixed supply is equivalent to a lump sum tax and therefore

non-distortionary, regardless of how elastic the demand for the good is. Our

preliminary examination of excess burden using consumers' surplus in Section 2

suggested that the excess burden of a tax is proportional to the reduction in the

output of the taxed good, taking account of both demand and supply conditions.

It would be useful to extend the Hicksian measures in the same direction.

The complication that arises in doing so is that it is no longer sufficient to posit

a certain money value of compensation: since producer prices change, the form of

compensation matters. For example, to extend the compensating variation mea-

sure of excess burden, we must specify the form in which the compensation from

"outside" the system, in excess of collected revenue, will come.

To develop a compensating variation measure of the additional excess burden

caused by an increase in taxes, starting at a distorted equilibrium, we let a be the

compensation vector of the elements of x, and the scalar that determines how

much of the compensation bundle the consumer receives, /Ba. If we denote

producer prices by q and consumer prices by p, then the compensating variation

measure of excess burden B can be defined implicitly by the equation

V(P2,y2 + R 2 -R 1 + q2 af) = V(p 1, Yl), (3.5)

where p, is the initial consumer price vector, P2 the distorted price vector, ql and

q2 the corresponding producer price vectors, y and Y2 the lump sum income in

the two states, and R=(p1 -ql)x(pl,y1 ) and R 2 =(p2 -q 2 )Xc(P 2,
V(p, Y)) the revenue in the two states. The values of y are indexed by their

respective states because they may vary when producer prices change. For

example, if the economy's production function exhibits decreasing returns to scale

in the consumer goods x, then the pure profits from competitive production are

positive and change with the change in producer prices. Letting z be the vector of

goods produced (negative for net factor inputs), total profits are y = q z. Note

that production and consumption differ by the infusion of additional compensa-

tion, /ja.
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Expression (3.5) can be transformed into another that is similar to those of the

previous section. Using the fact that UA = U -* E(p, UA) = E(p, UB), and that
E(p, U(p, y)) =y, we obtain

q2 a = E(p 2 , V(pl, Y)) -Y2 -(R 2 - RI)

= [E(p2 , V(pl, Y)) -E(Pl, V(pl, yl))] +(y -Y2) -(R 2 - R 1).

(3.6)

Compared to (2.12), there is a new term, (1 -Y 2), representing the reduction in
profit between states 1 and 2. Thus, there are now three terms in the expression

for excess burden, representing the changes in consumers', producers' and govern-
ment surplus, as in the simple, Marshallian example depicted in Figure 2.3.

This expression for excess burden also differs in that it is not actually a solution
for ,. It will hold regardless of the choice of a, though the solution for f, depends

on this choice. This dependence can be demonstrated by considering the second-

order approximation for /3,

,8= d At+ At' d2 At,(3.7)
dt 2 dt 2 (3.7)

evaluated at the initial point 1. Total differentiation of (3.5) yields

dV. dp+d y dq dq+Ba dq+dfia q+t dx+x dt]=O, (3.8)

where t = (p - q).

Again using the envelope theorem, one can show that dy/dq = z. Using this

and Roy's identity [(3.4) above], we obtain from (3.8)

dV [-x dp + z. dq + a dq + da q 4- t dx + x dt] = 0. (3.9)
dy

But since x = z + /,a and dV/dy * 0, (3.9) simplifies to

q2 ad:8= -t dx, (3.10)

which is precisely the form of the first-order effect derived above in (3.3).

We derive the second-order term by totally differentiating (3.10). This yields

q2 ad 2f,= -dt dx- da .dq-td 2 x, (3.11)

which, even if one ignores the last curvature term, has an additional term

76 Alan J. Auerhach



Ch. 2: Excess Burden and Optimal Taxation

compared to the second-order effect in (3.3), caused by the changing value of the

compensation bundle. This may be seen by substituting (3.10) and (3.11) into

(3.7) to obtain

q2 o (t'Ax + At'x + t'x.+ fa- A), (3.12)

where the right-hand side of (3.12) includes the first-order approximations

(dx/dt)At for Ax, (dq/dt)At for Aq, and (dr,/dt)At for Pl. Only in the case

that all compensation is in the form of the numeraire commodity will (3.12)

reduce to (3.3)."

This extra term may be represented graphically by considering the exact

measure (3.6) for the case in which there are two goods, one of which is taxed.

This is done in Figure 3.1. Let the untaxed good serve as numeraire, so that its

price does not change. The supply curve S shows the increasing relative producer

price, q, of the taxed good as its production increases. The ordinary demand

curve D represents the consumer's preference, given income y1 . With an initial

tax of (p, - qI), the initial equilibrium consumption is at x, where the supply

curve S1 is that facing the consumer.

As the tax is increased further, we assume the individual is maintained on the

same indifference curve, so that demand for x is described by the compensated

demand curve passing through the initial point. The supply curve facing the

consumer now depends on the form the compensation takes. If some of the taxed

good is included in a, then the supply to the consumer is described by curve S',

rather than S2, since total supply will exceed production. This leads to consump-

tion at x2, and production at z2, rather than the single value in between that

would obtain if all compensation were in the form of the numeraire commodity.

Consider now the three terms in expression (3.6). All may be represented in

Figure 3.1. The first, as before, is the area to the left of the compensated demand

curve between p and P2. Since dy = z dq, the second term in (3.6) equals the

area to the left of the supply curve S between q and q2 . Finally, R and R2

equal in area the rectangles defined by Pl, q and x, and P2, q2 and x2,

respectively. The resulting area for q2 a is the usual trapezoid defined by the

supply curve, the compensated demand curve, x and x2 (shaded in Figure 3.1),

less that of the triangle defined by the producers' supply curve S, the social

supply curve S', and prices q and q2 (cross-hatched in Figure 3.1). This new

piece has an area approximately equal to (ql - q2 )(x 2 - z2 ) or, since x = z + /3a

and only this good's price changes, - ½la - Aq.

Another familiar expression for the second-order effect may be derived from

(3.11). Again ignoring the last curvature term, we use the fact that x = /3a + z to

I In deriving a similar measure, Diamond and McFadden (1974) made this assumption.
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Figure 3.1. Excess burden with changing producer prices.

obtain

d2 = -dp - dx + dq dz = - dp'Sdp + dq'Hdq, (3.13)

where H is the Hessian of the profit function d2 y/dq2 = dz/dq.
This expression for the second-order effect of a change in taxes on welfare was

first developed by Boiteux (1951), although his derivation was limited to the case
where the initial equilibrium is undistorted and the first-order effect dEt vanishes.

Using the notion of equivalent variation, we can construct a measure by asking
what level of resources can be extracted from the consumer in excess of additional
revenue to avoid an additional tax increase. This yields the following implicit
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definition of /8:

V(p 2 , y2 ) = V(pl, y, -(R 2 -R 1 ) - q a ), (3.14)

where, in this case, state 2 is the actual state with taxes at t2, whereas state 1 is the
hypothetical state in which taxes do not rise from t but income is reduced to
yield the same level of utility as prevails in state 2. Here, (1 - P) is related to
Debreu's (1951) coefficient of resource utilization, which he defines to be the
proportion of society's resources that would be necessary to maintain each
individual's current level of utility if all distortions were removed. Our measure
differs in that we consider the marginal change, rather than removal of a
distortion, and let the vector a be arbitrary. (Of course, Debreu's measure is
defined relative to all kinds of distortions leading to an inefficient allocation, not
just tax-induced changes in the prices of consumer goods.) As before, we cannot
solve for explicitly, but we can calculate the first-order and second-order effects
d/3 and d2 8 at the initial distorted point. We leave further discussion of this
measure to the next subsection, which deals with aggregation over consumers.

3.3. Aggregation and welfare comparisons

Thus far, we have defined all our measures of excess burden for the case of a
single individual. They are easily generalized to the case of several identical
individuals. However, matters become more complicated if we wish to allow for
differences in individual tastes, or even differences in income among otherwise
identical individuals.

Except under very strict conditions on preferences, any measure of aggregate
excess burden will depend on the initial distribution of income. Consider the case
of fixed producer prices examined in Section 2, and define a measure of aggregate
excess burden, using the compensating variation, as the amount that must come
from outside the system to maintain each consumer at his pre-tax level of utility.
For two individuals, this measure equals [compare to (2.10)]

L = El(pl, Vl(po, yl)) +E 2 (pl, V 2(po, y2)) _- (yl +y 2)

-(Pl -Po).(x (pl, Vl(po, yl))+ x(p, V
2
(po, y2))), (3.15)

where superscripts index the consumers 1 and 2.
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Suppose now that the initial income distribution is changed by a small

reduction in y' and an equal size increase in y2 . The change in L would be

aEd av' aE2 aV2

dL= -U ay +1+ U U

-- (p-o)- l- au 'y ' ia (3.16)
a ax y 8V1 x2 aV2

which, using the fact that xc(pl, V(po, y)) = x(pl, E(pl, V(po, y))), can be

rewritten as

aEl av 1 aE2 aV 2

dL = .+
au ay au ay

0 axl aEl avl ax2 aE2 aV2) (3.17)

ay au ay + ay au ay (317)

Since E(po, V(po, y)) =y, we may rewrite (3.17) as

dL= AlI -( - o) dxl A2 ( Pi-Po) dx 2 ) (3.18)

where

(l= aU (pOVi(pOyi)) and A i= au( i(Po

are the marginal expenditures needed per unit of increased utility at base utility

level Vi'(po, y') and price levels po and P1 , respectively. Thus, dL will equal

zero, in general, only if two conditions are met:

1) ii//li equals some common function of prices alone (not income) for the two

individuals; and

2) the vector of income effects dx'/dy equals some common function of prices

alone.

Condition 2) implies that ordinary demand functions take the form

x'(p, y') = (p) +O(p)y', (3.19)

for some functions ii(.) and (.), the latter common across individuals. [The laws
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Ch. 2: Excess Burden and Optimal Taxation

of consumer demand imply, in turn, that 0i(.) is homogeneous of degree 0 in

prices and (.) is homogeneous of degree -1 in prices, since a proportional

change in p and y cannot affect x'(.).] The demand function specified in (3.19)

corresponds to the well-known Gorman (1953) "polar form", which plays a

central role in the theory of exact aggregation.

Condition 1) implies that, for suitable transformation of the utility function,

consumer i's expenditure function can be written

E'(p, U')= '(p) + y(p). U, (3.20)

[with V8(.) and y(.) homogeneous of degree 1 in prices]. This is the expenditure

function corresponding to the Gorman polar form [see Muellbauer (1976)], so

that conditions 1) and 2) are each satisfied if and only if preferences satisfy this

very restricted pattern that allows variations from identical homothetic prefer-

ences only through individual-specific displacements through the "basic needs"

function of zero-income consumption, pi().

Note that even identical preferences, unless homothetic, will not suffice. For

example, suppose individuals have a price-inelastic compensated demand for a

commodity at high incomes but an elastic demand at low incomes. Then the

excess burden of a tax on this good will be increased if we transfer income to the

poorer individual, for this will increase the overall demand elasticity for the taxed

good. Thus, any measure of excess burden we envisage is not independent of the

income distribution. Similarly, if we required not that each individual's utility be

kept constant, but that individual 1 receive one dollar less than would be

necessary, this, too, would affect the aggregate measure for the same reason.

Of course, it is still possible to define measures of excess burden for the

multi-individual case, given the initial resource distribution. For example, we may

implicitly define a compensating variation measure analogous to (3.5) by the

identities

V'(P2 , Wi(Y 2 + R 2 - R1 + q2 . O))= Vi(p 1l,iyl), Vi, (3.21)

where i indexes the individual, i3' is individual i's actual profit share, and w' is

the share needed to maintain each individual on the same indifference curve as

prices rise to P 2 and the extra compensation vector a - "enters" the system. For

the equivalent variation, the measure for /f corresponding to (3.14) for several

individuals is

V'(p 2, i'y2 ) = Vi(pl, i(yl - R2 + R 1 - q2 a@fl)). (3.22)

Again, it is not generally possible to solve explicitly for /3 in either case, but we

can derive expressions for the first-order and second-order effects dr, and d2/, by
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totally differentiating (3.21) or (3.22) for each i and then adding over i, making

use of the adding-up constraint on the profit shares . While the resulting

expressions for the compensating variation measure are essentially the same as

those described in Section 3.2 (with aggregate demands replacing individual

ones), an interesting result occurs in the second-order effect derived from the

measure defined by (3.22). It contains an additional term reflecting the indirect

impact of taxes on excess burden through the change in the income distribution in

state 1 [Debreu (1954)]. Since for an equivalent variation measure state 1 is simply

a hypothetical state based on the utility levels in state 2, changes in taxes, even

starting at a no-tax position, influence the distribution of real income in state 1.

Indeed, it should not be surprising that the condition required for this extra term

to vanish is the same one required above for excess burden to be independent of

the initial income distribution.

There is a temptation to respond to this dependency of excess burden on the

distribution of income by conceptually separating questions of allocation and

distribution, following Musgrave's (1959) framework for the different "branches"

of government: let the distribution branch worry about distribution, and the

allocation branch concern itself with minimizing excess burden. However, there

are two problems with this approach. First, if the distribution branch is not in

operation, we cannot obtain well-behaved social welfare prescriptions by compar-

ing levels of excess burden in different allocations through the device known as

the compensation principle: one state being preferred to another if winners could

compensate losers. Unless such compensation actually occurs, the orderings

coming out of such a procedure need not be well-behaved or consistent with any

particular social welfare function. This is the essence of the critique of the Hicks

(1940)-Kaldor (1939) approach to welfare economics [Samuelson (1947)].

A second response might be that we are only interested in efficiency, not

distribution, and so will assign equal distributional weights to individuals, thereby

allowing the interpretation of the aggregate measures derived above as

"efficiency-only" social welfare measures. Such is the approach suggested by

Harberger (1971). Unfortunately, this will not work either. We can certainly

imagine a social welfare function of the form

H

w(U ... ,U H ) = U i , (3.23)
i=1

and can even choose a normalization for the individual utility functions so that, in

the initial state, the marginal utility of income and hence the social marginal

utility of income for each individual is one ("money metric" utility). However,

once prices change, as they will when taxes are introduced, the changes in real

income, and hence the marginal utility of income, will generally be different.
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Thus, for our measure of excess burden to correspond to a social welfare function,

it would require price-dependent individual weights, even if the weights were

initially equal. Only when preferences satisfy the Gorman conditions will weights

initially set equal remain equal in all cases [Roberts (1980)]. Thus, it will generally

not be possible to make welfare comparisons on the basis of aggregate measures
of excess burden, no matter what our attitude is about the relative importance of

equity and efficiency.

4. The empirical measurement of excess burden

The ultimate value of the theory developed in Sections 2 and 3 is in its application

to measuring real world distortions. This section offers a brief review of some of
the research that has been done in this popular area of investigation. No attempt

will be made to provide an exhaustive summary of the empirical literature on the
measurement of excess burden.

4.1. Measurement with Taylor approximations

The earliest empirical work on the measurement of excess burden was done by

Harberger, in a series of papers. In each case, he applied a second-order Taylor
approximation of the form in (3.3), expanded around the no-tax point. An
example of this research may be found in Harberger (1964), which considers the
welfare cost of a progressive tax on labor income by individual income classes.

Treating capital as a factor supplied by households in static model, Harberger
(1966) considered the deadweight loss from the production distortion caused by

differential taxation of the return to capital in the corporate and non-corporate

sectors. Non-tax distortions, such as those caused by monopolistic pricing, can

also be analyzed using standard excess burden formulae [Harberger (1954)]. One
can also analyze the intertemporal allocation distortion caused by capital income
taxes by thinking of consumption in different periods as different commodities

[Feldstein (1978)].

Aside from the use of the Taylor approximation, a weakness typical of most of

this early work (excluding, of course, Harberger's piece on the corporate income
tax) was the assumption of fixed producer prices. With a convex production
frontier, changes in production prices would normally act to lessen the excess

burden caused by a tax increase. An example of the sensitivity of this assumption
about production parameters may be found in Chamley (1981) with respect to the
excess burden of capital income taxation.
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4.2. Exact measures

As stressed in Section 3, there is rarely a situation in which Taylor approxima-

tions need be used in place of exact measures based on the Hicksian variations.

This point is stressed by a number of authors [including Auerbach and Rosen

(1980) and Hausman (1981a)]. For many systems of demand functions (such as

the linear expenditure system discussed in Section 6) it is easy to recover the

parameters of the expenditure function from estimated ordinary demand func-

tions. Moreover, one can also use the standard errors of such estimates to place

confidence bounds on the excess burden measures themselves [Hausman (1981a)].

Several recent studies have used exact measures to calculate the excess burden of

taxation. For example, Rosen (1978) considered the excess burden of wage

taxation using a linear expenditure system estimated from a cross-section.

One of the additional benefits of the "exact" approach to measuring deadweight

loss is that it can readily be generalized to allow for changes in income. That is,

we can deduct from changes in the expenditure function not only changes in

revenue, but changes in income, to calculate the excess burden of a tax system

that changes individual incomes as well as the prices of some commodities. For

example, the compensating variation measure (2.10) would become

EBc = E(pl, V(po, Yo)) -yl -(p, -Po) xc(Pl, V(po, Yo)), (4.1)

where y0 is income in the undistorted state and y, is income in the distorted

state. This tool is particularly useful for the analysis of progressive taxes, where

individuals behave as if they faced a proportional tax equal to the actual

marginal rate, with the inframarginal excess in collections that results being

subtracted from lump sum income. For example, consider the case of a progres-

sive labor income tax in a two-good model. The individual's before-tax and

after-tax budget lines are represented in Figure 4.1. If the individual chooses

point A, we may pretend that he did so in response to a proportional tax at rate

(w0 - wA)/w o and lump sum income of YA. If he chooses point B, we could

imagine a proportional tax of (w0 - wB)/w0 and lump sum income of YB- This

technique has been used in labor supply estimation and excess burden calculation

by Hausman (1981b). King (1983b) has used the equivalent variation analogue of

(4.1), which he calls the "equivalent gain", to evaluate the effects of changes in

housing policy in the U.K.

An additional extension possible with exact measures is the case of discrete

choices, such as the decision to work or to purchase a durable good. Suppose

there are two regimes among which a consumer must choose. The general

methodology for calculating excess burden is, as before, to equate utility changes

from distortionary and lump sum taxation, and compare the tax revenue. How-

ever, the changes in utility take account of switches in regime that may occur in
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Before tax

After tax

B

-WB

= -WA

Figure 4.1. Progressive taxes and virtual income.

each case. This is a straightforward calculation when the consumer's indirect

utility function is known, for it is simple to identify the regime chosen in any

situation. However, if one wishes to use approximation formulae, one must take

explicit account of the effect of taxes on the probability of switching regimes. [See

Small and Rosen (1981).] An example of excess burden calculations with discrete

decision variables is the analysis of housing subsidy programs by Venti and Wise

(1984), in which individuals must decide whether to move or stay, and face

different budget constraints in the two situations.

4.3. Simulation methods

Ultimately, there are limitations on the extent to which we can obtain closed form

solutions for excess burden. This is particularly true of general equilibrium

calculations, for we must solve explicitly for the changes in producer prices

consistent with changes in consumer behavior. A solution to this problem is the
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simulation model, in which explicit parameterizations of preferences and technol-

ogy are made and actual equilibria calculated. It is then straightforward to

estimate changes in utility caused by a change in tax regime, or the resources one

could extract or must add to compensate for a given change. The latter type of

calculation corresponds to the price-varying excess burden measures cited in

Section 3. The use of disaggregated, static general equilibrium models to analyze

the effects of taxation has now become rather common. An early example of the

use of simulation technique is Shoven's (1976) reconsideration of the excess

burden caused by the corporate income tax. For other applications, see the

contributions in Feldstein (1983). In more recent work, Auerbach, Kotlikoff and

Skinner (1983) use a perfect-foresight, overlapping-generations growth model to

analyze the effects on different cohorts of individuals of various dynamic tax

changes, such as an unannounced switch from income taxation to consumption

taxation.

5. The theory of optimal taxation

Taxes distort behavior and cause excess burden. How can this excess burden be

kept to a minimum while government simultaneously raises the revenue it requires

for public expenditures? This is the optimal tax problem, solved in its basic form

by Ramsey (1927).

Of course, there do exist non-distortionary taxes, at least hypothetically. Taxes

on pure profits are just one form of such taxation. The optimal tax problem, in a

sense, embodies the concession that such ideal taxes may be difficult to institute

in practice. One might cite a number of reasons for this, including the political

constraints on non-uniform taxation dependent on personal characteristics. For

example, we might succeed in having a non-distortionary and progressive tax

system by taxing according to genetic characteristics associated with ability, but

such schemes are typically proscribed. In addition, it may be impossible to

observe such characteristics.

In the next subsection, we present and interpret the basic, single-individual

optimal tax results, paying particular attention to the role of the "untaxed"

numeraire commodity that is often a confusing part of such analysis. Section 5.2

discusses the relationship of the optimal tax solution to the measures of excess

burden described above. In Sections 5.3 and 5.4, we show how the results can be

extended to allow for profits and changing producer prices, and interpret the

classic results of Diamond and Mirlees (1971) and Stiglitz and Dasgupta (1971)

concerning the desirability of production efficiency in the presence of distor-

tionary commodity taxes.
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5.1. Basic optimal tax results

We imagine a representative consumer who has exogenous income y, and faces

consumer prices p = (p0 , Pl ... , PN) for the commodities 0, 1 N, which have

fixed producer prices q = (qo, q, ... , q). Without any loss of generality, we may

choose good zero as the numeraire and set q0 = 1.

The government may use unit excise taxes t = (t0 , t 1 ,..., tN) on the goods

0, 1,..., N, to raise a certain amount of required revenue, R. (We will relax this

ignorance of the expenditure side below.) Assuming the consumer maximizes

utility U(x) in the goods x, subject to the prices p and income y, we may express

the optimal tax problem by

max [ maxU(x)subjectto p x =y] subject to (p-q).x=R, (5.1)

or, using the definition of the indirect utility function V(-),

maxV(p,y) subjectto (p-q).x=R. (5.2)
p

Note that we specify the price vector, p, as our control rather than t, but this is a

trivial distinction when the social cost vector q is fixed since dt/dp = I, the

identity matrix of order N + 1.

The first-order conditions for the Lagrangian

V(p, y)- [R-(p--q) x] (5.3)

are

-Ax + EY[, Xiap + x =0, Vi, (5.4)

where A = dV/dy is the consumer's marginal utility of income. Condition (5.4)

may be rearranged in a number of ways. Perhaps the most useful involves

splitting the cross-price effects 8
ax/api using the Slutsky equation, and defining

ax
= X + E tj a (5.5)

a=X + aty
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to be the marginal social utility of income [Diamond (1975)], to obtain

-ESt ( -a ) Vi, (5.6)

where the Sjis are components of the Slutsky matrix S. The term a differs from A

because, in the presence of excise taxes, a dollar given to the individual increases

his utility directly by A and indirectly by the increased revenue resulting from

additional expenditure. Since we can interpret the Lagrange multiplier of the

revenue constraint, It, as the shadow cost in terms of utility of raising an

additional dollar of revenue, the indirect gain of revenue added by increased

expenditures out of an additional dollar of income equals jtjitj(8xJ/ay), the

second term in the definition of a.

The term ( - a) represents the difference between raising a dollar of revenue

at the actual margin and raising it through a direct taking of income from the

consumer: the marginal excess burden of the tax. This term is always non-nega-

tive [see expression (7.8)] and hence the terms ESujtj are also non-negative.

There is one potential solution to (5.6) that would be particularly attractive, for

it involves no distortion. If we choose equal proportional ad valorem taxes, or

t i = Opi, i, (5.7)

for some constant 0, we obtain

-YEMS jp,=(f-a)xi, Vi. (5.8)

But YSjp i equals (1/A)(dU/dpj)l = 0 for all i. (This is simply a statement of

the envelope theorem.) Therefore, the system of equations in (5.8) is satisfied for

IL = a and hence no excess burden. Thus, proportional excise taxes would appear

to be the solution.

The reason such taxes are non-distortionary, however, is the key to their limited

applicability. Since p = q + t = q + Op, p = q/(l - 0). Hence, the consumer's

budget constraint becomes

4 _O.x=y or q.x=y(1-0), (5.9)

where 0 is chosen to satisfy 0 = R/y. A system of equal excise taxes is nothing

more than a tax on the consumer's exogenous income, and hence a lump sum tax.
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If y = 0, then no finite value of 0 will satisfy the revenue constraint, so we must

ask when y will be non-zero.

First of all, y will be non-zero in general if there are decreasing returns to scale

in production (in a more general model not assuming fixed producer prices). Even

in the absence of pure profits, y will be non-zero if we interpret it as "full

income" and the x vector as consumption rather than demand. For example,

suppose the x vector consists of two commodities, consumption C and leisure 1,
and that the consumer has a labor endowment L. Without pure profits, the

consumer's budget constraint in the absence of taxes may be written either as

qCc + (- L) = 0, (5.10a)

or

qCc + I = L, (5.10b)

where labor is the numeraire and C and qc are the amount and relative price of

consumption. Interpreting the labor commodity we can tax as net purchase of
leisure (I- L), we have no income y to tax through proportional excise taxes.
Interpreting the commodity as consumption of leisure, 1, we can use the propor-

tional tax solution on C and I to tax L indirectly. Hence, the inability to use

proportional taxes to raise revenue is equivalent to restriction of taxing only

explicit purchases, rather than total consumption. Under this restriction, a
proportional tax raises no revenue [Baumol and Bradford (1970)]. Based on

examples of this sort, various authors have equated the need to use distortionary

taxes with the inability to tax leisure, but this is somewhat misleading on two

counts: we can tax leisure purchases (labor supply), and this restriction applies to

any commodity in which the consumer has an endowment.

Once we do restrict our taxes to net purchases, it is easiest to interpret the
vector x to be such flows rather than total consumption. In exchange for the loss

of non-distortionary tax scheme, we gain an additional free normalization. Since

the consumer's indirect utility function is homogeneous in prices and income, and

is now simply V(p), it is also homogeneous of degree zero in prices. So is the

revenue constraint: since p x = 0, it follows that for any constant 4,

(¢p-q)-x= (- 1)p x + (p- q) x = (p- q)x. (5.11)

Thus, we may choose any scale for p. It is customary to set po = 1, thereby

making the numeraire also the arbitrarily "untaxed" good. Typically, in models

where there is a single factor supplied, labor, and several commodities purchased,

labor is chosen as this numeraire. While such a normalization is innocuous and in

no way affects the real characteristics of the outcome, it can be very confusing:
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the untaxed good, labor, just happens to be the only good with an endowment, L,

that we cannot tax independently of its consumption, ; hence the loss of

distinction between untaxable and ntaxed goods. If we chose corn as the

untaxed good, labor would still have an untaxable endowment. This distinction is

important when one interprets the various rules derived below.

We now have only N first-order conditions, from (5.6), having dropped that

corresponding to Po. Hence, the strategy of equal proportional taxes at rate 0

(with a zero tax on good zero, of course) now gives us the terms

-0 5 S, jpj = S, (5.12)
j*0

on the left-hand side of (5.6). This will stand in constant proportion to x i over i,

as required for a solution, only if the compensated cross-elasticity of demand for

each good i with respect to the price of good 0, ei = Si. p/Xi = Sio/Xi, is the

same for all i 0. Thus, equal proportional taxes on all taxed goods satisfy the

first-order conditions only if all goods are equally complementary [in the sense of

Hicks (1946)] to the untaxed good. Naturally, if these conditions are satisfied for

a given choice of untaxed good, they will not generally work for another.

Our analysis of (5.6) has now generally ruled out uniform taxation. But how

should the taxes diverge from uniformity? Note that the N conditions in (5.6) can

be stacked to yield

Sgi= -ia)x (5.13)

where S is the Slutsky matrix excluding good zero and i= (t,,..., t). Although

there is no independent condition with respect to the tax on good zero (which has

been normalized to zero), it is helpful to note that these N conditions imply that

(5.6) also holds for good zero. This may be shown as follows. Adding a term

multiplied by to to each of the N first-order conditions in (5.6) has no effect,

since to = 0. Thus,'2

N N N N N

E Soi t i= E - PkSki ti = - E Pk E Skiti
i=O i=0 kil k=l i=O

=- E(Pk(=l- ( )k-) ( L- )Xo (5.14)

12
This uses the facts that NOPkSki = 0 and p x 0.~k-opk Ski =O ad p.· x =O.
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Combined with (5.13), this yields

st=- -a)x (5.15)

Suppose that the government is currently raising its revenue through lump sum

taxes, and must now shift over some of the revenue collection to distortionary

taxes. From above, we know that there is no first-order effect on utility of

introducing distortionary taxes from a Pareto optimum, so that the effects on

demand of this small change in prices will be compensated effects. Thus, to a

first-order Taylor approximation, the reduction in the demand for good i will be

-ax, = - siSapj = -i ESit, (5.16)

J J

so that (5.15) calls for an equiproportional reduction in demand for each good. As

suggested by Dixit (1970), this makes intuitive sense in light of the excess burden

formulae calculated above. From (3.3), the introduction of small taxes t starting

from a Pareto optimum induces an excess burden of approximately

L = E Ati Axi = Eti Axi, (5.17)
i i

so that each small tax t will induce an excess burden proportional to Ax,. On the

other hand, the revenue raised by such a tax is tx,. Thus, holding AxJ/xi

constant across goods results in a constant ratio of excess burden to a revenue for

each tax. This is precisely the sort of marginal condition one would expect from

minimizing total excess burden subject to a revenue constraint.

The actual taxes that lead to the achievement of (5.13) and (5.15) may be

obtained by inverting S and multiplying both sides of (5.13) by S to obtain

, = a(/Ia>)s1x (5.18)

This yields no neat general expressions for t, though for various special cases one

can go a little further.

If there are only three goods, two taxed, then (5.18) yields the two equations

t= ( )(-S2 2 X + S12 x2 ), (5.19a)

t2 = ( )(S21X - S11X2), (5.19b)

91



where = Sl1S22 - S12S 21, which must be 2> 0 because S is negative semi-
definite. Since Sio + plSi + p2S2 = 0 for i = 1, 2, we may divide (5.19a) by (5.19b)

and substitute to obtain

1
-(S 2 0 +plS 2 1 )xl + S1 2 x2

t- P2 , (5.20)

(Slo +p2 S1 2 )x2 + S2 1 x1P1

or, defining 0i = ti/pi and dividing the numerator and denominator of the
right-hand side of (5.20) by xIx 2, we obtain [Corlett and Hague (1953-54) and
Harberger (1964)]

01 E20 + 21 + 12 (5.21
(5.21)

82 e0 + 21 + el2

where, as before, eij is the compensated cross-elasticity S(pj/xj). As we
discovered above, 01 = 02 is an optimal solution only if the cross-elasticities eo,
and e20 are equal.

Because A > 0, expression (5.21) calls for a higher tax on the taxed good that is

the relative complement to the numeraire ( 0 is smaller). This has generated the
somewhat misleading explanation that we "cannot" tax good zero, so we mini-
mize distortions by taxing more heavily its relative complement. Recall that the

choice of untaxed good is arbitrary, and that (5.21) applies for any numbering of
the three goods.

For a larger number of commodities, a simple result obtains if we assume that

the matrix S is diagonal: all cross-effects except with respect to good zero are
zero. Since EjSjipj = 0, this implies that, for i = 1,..., N,

Sipi + Sio = 0. (5.22)

Thus, this restriction does depend on the choice of untaxed commodity. With

such a simplification, (5.18) yields the expressions

t,= - or 0,i (5.23)

This is the celebrated "inverse elasticity" rule that calls for higher proportional

taxes on goods with relatively low own-price elasticities. By (5.22), this rule is
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equivalent to

0i e -- , (5.24)
Cio

as derived above for the three-good case.

Since the inverse elasticity rule results from a restriction on preferences, the

choice of untaxed good becomes relevant in that it may make more sense to

assume no cross-effects among taxed goods if labor is numeraire and the other

goods are commodities, than to do so if one of the commodities serves as the

untaxed good.

The inverse elasticity rule of (5.24) is expressed in terms of compensated

elasticities. Yet in various places in the literature [Diamond and Mirrlees (1971)

and Bradford and Rosen (1976)], it is expressed in terms of uncompensated

elasticities. This is the result neither of a revision of demand theory nor an

assumption of zero-income effects. Rather, it comes about because of a different,

and equally arbitrary, restriction on preferences. We can express the optimal tax

formulae in terms of ordinary uncompensated demands by rearranging (5.4),

- axEt ] = (-X)X, (5.25)

which, assuming axj/api = 0 unless i = 0 or j, yields

08i- , (5.26)
7ii

where iij = -(pi/x)(axJ/api) is the uncompensated own-elasticity of demand

for good i. Expressions (5.26) and (5.24) differ because they result from different

restrictions on the structure of preferences: different matrices are being assumed

diagonal.

5.2. Minimizing excess burden through optimal taxation

By its definition, excess burden ought to be minimized when taxes are chosen to

maximize utility. However, even for the fixed producer price case, we have at least

two candidates for measuring excess burden, and they will generally take on

different values. It turns out that only one of these, that based on the equivalent

variation, satisfies the desirable duality property of being minimized by optimal

taxes [Kay (1980)].

93



Recall from (2.9) that the equivalent variation measure of the excess burden of

tax is

EBE= E(pl, V(pl, y))-E(po, V(pl, y))- R

= y - E(p o, V(p, y)) -R. (5.27)

Thus, minimizing this for a given value of R amounts to maximizing

E(p o, V(p l, y)). But, for a given price vector, expenditure increases monotoni-

cally with the level of utility. Thus, we are maximizing V(pl, y), just as in the

optimal tax problem. This is easily verified by differentiating the Lagrangian

E(po, V(pl, y)) + rT(R - (p -po) x), (5.28)

with respect to pi.

For the compensating variation measure, which [from (2.10)] equals

EBc = E(pl, V(p, y)) - E(po, V(po, y)) - R

= E(pl, V(po, y)) -y - R, (5.29)

minimizing excess burden amounts to minimizing E(pl, V(p 0 , y)): choosing

taxes to minimize the expenditure necessary to achieve the pre-tax utility level.

This need not be the same price vector as the one dictated by optimal taxation.

The appropriate Lagrangian here is

E(p,, V(po, y)) -r(R-(pe -po) x), (5.30)

which yields first-order conditions

-xi 7 + Y[$tajapij+ i=0, (5.31)

which looks like the one derived from (5.28). However, the value of x here is at

the hypothetical point at higher prices but with compensation. In the previous

case, it is at the actual optimal tax point. 3

13A fortiori, it can be seen that replacing po with any arbitrary "reference price vector" p6* in the
expenditure function in (5.27), to define a different concept of excess burden, i.e.,

EB = E(pl, V(pl, y)) - E(p*, V(p, y)) - R,

would also yield a measure consistent with the optimal tax problem [King (1983b)].
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This problem with the compensating variation also means that we cannot

compare two hypothetical alternatives to a given tax situation by comparing their

marginal excess burden measures. Only if preferences are homothetic [Chipman

and Moore (1980)] will this problem dissappear. Of course, for pairwise compari-

sons, where the "initial" point is not well-defined, the equivalent variation and

compensating variation are symmetrically defined, so there can be no a priori

benefit of using one versus the other.

5.3. Changing producer prices

The simple relaxation of the fixed producer price assumption has, perhaps

surprisingly, no effect at all on the optimal tax formulae in (5.18) as long as

producer prices result from competitive behavior and any pure profits are taxed

away by the government.

In place of the fixed producer price assumption of Section 5.1, we assume that

production is governed by the production function

f(z) = , (5.32)

where, as in Section 3, z is the production vector in the commodities 0,1,..., N.

By the assumption of competitive behavior, we know that the producer prices q

are proportional to the vector of derivatives of f, df= (f0, fl, ... , fN). Without

any loss of generality, we may set this proportionality constant equal to 1/f o and,

as before, choose good zero as numeraire, i.e., q0 = 1.

The government's revenue requirement must now be specified in terms of

individual commodities (as was the case of the compensation vector in Section 3),

since relative producer prices can change. We refer to this as the revenue vector,

R. Thus, z = x + R, where x is the household's vector of net purchases.

Once production has been generalized to this stage, the possibility arises of

pure profits coming from decreasing returns to scale. We will consider this more

general case after first solving the optimal tax problem when f(.) embodies

constant returns to scale, i.e., is homogeneous of degree zero in all commodities.

By Euler's Theorem, profits are q z = 0. Thus, the government's optimization

problem becomes

maxV(p) subject to f(x+R) = O, (5.33)
p

where, because pure profits are zero, we can set p0 = q0 = 1 without any loss of

generality, and choose only PI.., PN. To use p rather than t as the control

variables, we must insure that arbitrary changes in p can be brought about by
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changes in t. This is accomplished by noting that

dp = dt + dq = dt + d(df) = dt + H(dx + dR), (5.34)

where H is the Hessian d2 f of the production function, as before. Since dR = 0

and dx may be characterized by the Slutsky equation, we have

dp=dt +H S-ay X') dp, (5.35)

or

dp= I-H S -y.X') dt,

where S is the Slutsky matrix. Moreover, since the changes in t are constrained to

keep revenue constant, and hence, in the neighborhood of the optimum, utility as

well, the changes in x are compensated and (5.35) simplifies to

dp = [I- HS l-dt = 2dt. (5.36)

As long as 52 exists (i.e., [I- HS] is of full rank), we may control t indirectly

through p.

The Lagrangian corresponding to (5.33) yields the first-order conditions

ax.
-Xx - Efaxj = ,. , N, (5.37)

where A = dV/dy and /t is the Lagrange multiplier on the production constraint.

Since p- x = 0,

ax.
YEj api + xi = 0. (5.38)

Using this and the fact that q = df, we may express (5.37) as

- x + L tj + xi = 0, (5.39)

which is precisely condition (5.4). This result is due to Diamond and Mirrlees

(1971).
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In the more general case where f(-) is not homogeneous of degree zero, there

may be pure profits, y = q z > 0. In this case, we know from before, equal taxes

on all commodities amount to a profits tax on y, giving us N + 1 rather than N
independent instruments. Hence, if we cannot tax one good, this represents a

restriction unless we can tax profits directly. For expositional purposes, it is

easiest to let the N + 1 instruments be the taxes on goods 1,..., N and the profits

tax, keeping to = 0. We let T be the rate of profits tax. The Lagrangian now is

V(p, (1 - T)y) - tf(x + R). (5.40)

Using the fact that p x = (1 - T)y, we may arrange the N first-order conditions

with respect to the taxes t 1,..., t N to be

-x 1 -IL/+/ t + xi -(1 -T ) dy=0. (5.41)
[ i dpi d p

It is straightforward to show that if may be freely varied, then the N + 1

first-order conditions are solved for t = 0 and = It: no excess burden, with

profits taxes being used to raise all revenue. However, if T is constrained, we must

solve the N conditions (5.41), given . Unless profits taxes just happen to equal

q R, we again face an optimal tax problem.

If T = 1, SO that all profits are taxed away, then (5.41) reduces to the previous

optimal tax program, (5.39). Thus, pure profits do not change the picture unless

they accrue at least partially to the household [Stiglitz and Dasgupta (1971)]. If T

is fixed at some value not equal to one, the formulas differ.

Since producer prices, and hence profits, change with p, the derivatives

dxJ/dp, in (5.41) include the indirect effect of pi on profits through changes in

production,

dx ax. ax dy
__ = -_' + .(1-a ) (5.42)

dp i ap i ay' dp('

where y'= (1 - T)y. Using (5.42), the Slutsky equation, and the definition of a,

the social marginal utility of income, from (5.5), we may rewrite (5.41) as

- T)~= -j CL-~ d (5.43)

which differs from (5.6) only through the replacement of x i with

(xi - (1 - )(dy/dpi). One can interpret these terms as the net increase in

resources needed to maintain a given level of utility with respect to an increase in

pi in the two respective cases.
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If the profits tax T = 0, and if good zero is the single production factor and the

sole good from which revenue is extracted, then one can show that (5.43) yields

the result obtained above for fixed producer prices, that to a first-order Taylor

approximation, substituting optimal taxes for lump sum taxes causes an equipro-

portional reduction in the output of all taxed commodities. A fortiori, the

outcome also holds for the constant returns case just examined. This result is due

to Stiglitz and Dasgupta (1971), who in turn attribute it to Ramsey (1927), though

the exact equivalence is obscured by differences in methodology.

The key to the single-factor assumption is that, since the production function

may be written

f(x) =f(xl,...,xN) - x, (5.44)

the Hessian H = d2f is block diagonal in the untaxed good and all other goods

(Hio = Hoi = 0 for i * 0). Thus, the product of H and the substitution matrix S is

O :fl so SHHS= ( °° L_) - S-(--H^S, i 0=S (5 45)

where S' = (Sl, ... , SON) and H and S are the blocks of H and S for goods 1

through N. This means that the changes in consumer prices of the taxed goods,

P= (P, ..., PN), can be expressed [using (5.36)] in the neighborhood of the

optimum as

dp = [I - HS/]-ldi= 2di, (5.46)

where i= (t,..., tN). That is, dp does not depend on the demand for xo. From

(5.46), we may express the first-order change around = 0 in k, the vector of

taxed goods, as

Ax = SAP = Sg Ai = S9i = S9SS-1i9. (5.47)

The elements of the vector Si are described in (5.43). By the envelope theorem

and the fact that q0 = 1, we may solve for the term dy/dpi,

dy dqj E EHjkS ki= E j E HkSki, (5.48)
dpi 'dp, j>O k j>O k>O

where the last step relies on the assumption that Ho = 0 for j * O. Stacking these
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terms, we obtain

dy
dy = SHj, (5.49)

where = (z 1,..., ZN). But by assumption, all revenue is spent on good zero, so
= .. Since, also by assumption, = 0, it follows from (5.43) that

St= ( ~a )( ~~- gfoH(5.50)

Substituting (5.50) into (5.47), we obtain

AX=(k la S1 (IS i).

= - gy (/I- = a) (5.51)

as required.

In the special case where both f and are diagonal (i.e., there is no joint

production and commodity demands are independent except with relation to the

numeraire), the expression (5.49) for dy/dp simplifies to

dy
= iHiiSii, (5.52)

dp, "

which, if we again assume that all revenue raised is spent on the numeraire

(z i = x i for i > 0), allows us to rewrite (5.43) as

-Siiti= ( oa )(1 -(1 - T)HiiSii), (5.53)

or

-( ......-.. )ii

where eii = - S(pi/xi), a,, = (1/Hii)(qi/xi) and i = ti/p i are the demand and
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supply elasticities and ad valorem tax for good i. [See Stiglitz and Dasgupta

(1971) for a slightly different formulation. Also see Atkinson and Stiglitz (1980).]

5.4. Production efficiency

Thus far, we have assumed production to be efficient, with the only distortions

imposed by taxes to be with respect to household decisions. However, government

can induce distortions in production, either through differential taxation of

factors in different uses or through the use of different shadow prices in public

enterprises than those generated by coexisting competitive private markets. Should

these extra policy instruments be used? Under certain well-defined conditions,

they should not.

To consider the desirability of such distortions, we follow Diamond and

Mirrlees (1971) and suppose there to be two production sectors, each efficient in

its own production behavior. We shall refer to these as the private and public

sectors, though in some cases it may be more useful to think of them both as

subsectors of the private sector. The results are easily extended to several sectors.

As before, we let f(-) and z be the production function and output of the

private sector, and introduce g(-) and s as the corresponding variables for the

public sector. The use of distortions in the allocation of resources between the two

sectors may be thought of as the direct choice of public inputs, s. Thus, the

government's expanded choice problem is

maxV(p,(1-T)y) subjectto f(x+R-s)=O and g(s)= 0,
P.S

(5.54)

where y is private sector profits. Attaching the Lagrange multipliers /t and to

the production constraints, we obtain the same first-order conditions as before

with respect to p. With respect to s, we get

X( - T) dy L- (1 I dy _f ( d 0. (5.55)
A(1 ) dsi i ay, ds '

Using the normalization q = df and the consumer's budget constraint, we rewrite

this as

dy 8x 1 dy dy
X( - ) dLy -A ·- YCtja j (1-T)d + I-T)dy -i I Sg = ,

ds-. ay ds ds j5
(5.56)
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or

gi= D-i (1 )( A) dyi

where, as before, a = X + p(dR/dy) is the social marginal utility of income.

Thus, there are two important cases in which efficient overall production (fi/f =

gi/gj) will result: constant returns to scale in the private sector [Diamond and

Mirrlees (1971)] and decreasing returns with 100 percent profits taxation [Stiglitz

and Dasgupta (1971)]. Otherwise, inefficient production will be part of the

optimal solution. The basic intuition is that as long as we can tax all but one of

the commodities, we can bring about any possible configuration of relative prices

consistent with a given level of revenue. When after-tax profits (1 - )y equal

zero, these prices are the sole determinants of the consumer's decision. Thus, any

attainment of a set of relative prices using a production distortion could also be

obtained without one, with the simple result that the consumer could be made

better off. Note that this logic only holds if all the taxes t through tN can be

adjusted. With some of these held fixed, production inefficiencies may be helpful

in imposing indirect taxes on the goods that cannot be freely taxed directly. We

return to this point below in our discussion of tax reform.

For the case where profits are not zero, we may simplify (5.56) for the case of

independent production. Considering dy/dsi, we have (using the envelope theo-

rem and independence assumption)

dy dqj axj dy dqi
_ dyd= z _. 1- )--z- (5.57)
dsI dzj ay' dsi dzi

which, using the facts that q= df and dq = H, and the assumption that all

government expenditures are on the numeraire commodity (i = ), we may solve

as

dy xiHii fiii

dSj 1-( -T) X HJ (aX/ay) r

where a,, is the supply elasticity for good i, and r must be positive for a stable

solution. Thus (5.56) yields

g fi 1 + k/oii
k/u1 1 ) f where k >0. (5.59)
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6. Optimal taxation and the structure for preferences

This section considers the implications of the tax formulae derived above for

actual tax rates under different assumptions about the structure of preferences,

and for the more general case where there are several individuals and hence

distributional objectives to be satisfied. Although the results already presented

expressed the optimal taxes in terms of the demands and substitution matrix of

the representative consumer, these terms are not generally constant, so we have

little insight into the general conditions on consumer preferences required for

either uniform taxation or any other specific tax structure to be optimal. In

exploring this question, we will also be able to investigate more easily the impact

of distributional objectives on the optimal tax structure.

6.1. Optimal taxation from the dual perspective

To consider the role of preferences in determining optimal tax rules, it is helpful

to derive such rules using the direct utility function rather than the indirect utility

function. Though the derivation is less straightforward, the results are in terms of

the characteristics of the utility function and, hence, preferences. This approach is

taken by Atkinson and Stiglitz (1972, 1976, 1980). However, a simpler and more

elegant way of arriving at their results is by transforming the optimal tax

formulae themselves using duality theory. The technique described by Deaton

(1979a, 1981a, 1981b) makes use of the "distance" function, sometimes referred

to as the "direct" expenditure function [Cooter (1979)]. Our analysis here will

generally follow that of Deaton. Because consumer preferences are defined with

respect to consumption, rather than purchases, it is useful to separate these

concepts by letting the vector of purchases x equal - where is the

consumption vector and the endowment vector. Thus, we may rewrite the

indirect utility function V(p), which implicitly holds as fixed, as V(p, p x),
which does not. This allows us to consider the effects of changes in the consumer's

lump sum income.

In words, the distance function is the solution to the following problem:

consider a consumption bundle £, and also all the combinations of price vector p

and total endowment income y such that V(p, y) equals (strictly speaking, at

most equals) some constant utility level U. Choose the vector of prices that

minimizes p* -. /y, given . The resulting value is the distance function D(i, U).

Algebraically, the problem is

min(p*.k)/y subjectto V(p*,y)_ <U.
p
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It is explained diagrammatically in Figure 6.1, for the case of two goods. For

simplicity, we assume that is on the indifference curve corresponding to the

utility level U, although only the scale of D(-) and not the price vector chosen

would be affected by increasing or decreasing along the ray shown. This is

easily verified from inspection of (6.1), since minimizing (p*, x)/y is equivalent

to minimizing(p* Xi)/y for any X > 0. By choosing x to be just feasible, given

U, we will obtain a value D(i, U) = 1.

The figure depicts two different combinations of p* and y, indexed 1 and 2,

that satisfy V(p*, y)= U. Since the price vector p * results in a tangency away

from i, purchase of i would require a greater expenditure than Y2. This is not

the case with p*, since it is tangent to the indifference curve at . (A flatter

budget line would again necessitate an increase in expenditure to purchase i.)

Thus, the price vector chosen, given and U, is tangent to the indifference curve

corresponding to U at point (or, more generally, if is not on the indifference

curve, at the point on the indifference curve on the ray through from the

Y2F x Yl 'X

Figure 6.1. The distance function.
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origin). Just as the indirect expenditure function chooses consumption, given

prices and utility, the distance function chooses normalized prices, given con-

sumption and utility. Since these prices are based on the consumer's indirect

utility function, we may interpret them as points on the consumer's inverse

compensated demand curve, expressing willingness to pay. By the envelope

theorem, the partial derivatives of the distance function with respect to the

elements of x are those normalized inverse demands:

D = a(, U) = (6.2)

The Hessian of the distance function is referred to as the Antonelli matrix

A = (aij).14

Now, consider the actual price vector that prevails, p, and choose i such that

x = xc(p, U). Then by construction, p* =p and y = E(p, U) solve (6.1), and we

have the identity [from (6.2)]

ai((P, U), U) = E(U) (6.3)

Multiplying (6.3) through by E(p, U), and differentiating with respect to each

price, we obtain conditions which can be stacked to yield

E(p, U)AS = I -axc(p, U), (6.4)

where a = (a 0 . . .,aN). Evaluating at U= V(p, p x), this yields

(p )AS = I - ax(p, p x). (6.5)

Now, let us return to the optimal tax results described in Section 5. Multiplying

both sides of (5.15) by (p )A, and using the fact that since a is homogeneous

of degree zero with respect to , Ax = 0, we obtain

t= a(x + x)'t-( I'- )(P )A(x- )

a(R + t x) + (L )(P )Ax, (6.6)

1 4
See Deaton (1979a) for further discussion of the properties of the function D(.) and the

matrix A.
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where R = t- x is tax revenue. Using the fact that to = 0 to eliminate ( - a)/ ,

we obtain [Deaton (1981b)]

(6.7)

which, in turn, implies that, for any i and j,

aln(a /a,)
0 i - 0i = V' k X k , (6.8)

where ' = v/(5j~ d In ao/diJ). From (6.8), we see that a sufficient condition for

the taxes to be the same is that the ratio of marginal valuations (a/ai) be

independent of the consumption of commodities in which the consumer has an

endowment. This is equivalent to the distance function being separable, or

capable of being expressed as

D(i, U) =f(il, x2 U, 0( 3, U)), (6.9)

where l are the commodities in which there is an endowment and i 3 are the

goods on which taxes are uniform." It also follows that the normal or indirect

expenditure function is separable in the corresponding prices [Gorman (1976)].

This separability of the expenditure function is referred to as implicit separability

and differs from the separability of the direct and indirect utility functions. l 6

Indeed, they are the same only if the utility function is homogeneous in i 3 as well

[Deaton (1981a)], and it is easy to construct counter-examples for the case where

preferences are just weakly separable [Auerbach (1979a)].

In the special case where the consumer's only endowment is in the numeraire

commodity, good zero (presumably leisure), the sufficient (and nov necessary, as

well) condition for uniform taxation of commodities is implicit separability from

leisure. It is also possible in this case to say more about which goods will be taxed

more heavily if weak separability but not homogenity is satisfied. We begin by

'
5
Because D( ) is homogeneous of degree 1 in i, f must be homogeneous of degree 1 in xi, x2

and , and p homogeneous of degree 1 in x3.

16(Weak) separability of the direct utility function, for example, would allow the utility function
U(x) to be written f(xl, x 2 ,(X33 )), i.e., the marginal rate of substitution between elements of x3 is
independent of the levels of x and x2 .
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rewriting (6.8) as

aln(a/a) (6.10)
i - 0 =v'X ]o ° (6.10)

where v'= v/(xoaOo/aO).

By the convexity of D(.), v' has the opposite sign of v and hence is negative.

Since aj/a i = pj/pi = U/Ui,

dln(U/Ui) dln(ai/ai) aln(aj/ai) aln(a/ai) dU11

d do a +o au d (6.11)

[Deaton (1981a)]. Thus, when utility is separable into goods and leisure, (6.10)

becomes

i - = - v' 8n(a /a') dU (6.12)au dio

so that taxes will be higher on those goods that are necessities, if these are defined
by those whose valuation by the consumer declines relatively with an increase in
real income. This is particularly important if we use empirical demand estimates

based on restricted functional forms to estimate optimal taxes. For example, the
linear expenditure system

i(, poo)=Ci+ · 'b J ' (6.13)

often used in empirical work, comes from the Stone-Geary utility function

U(x) = (i i - ai)bi, (6.14)

which is strongly separable, but not homogeneous unless the terms a i equal zero

(in which case it is simply Cobb-Douglas).
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6.2. Distributional objectives

Once we allow for the presence of several individuals with different tastes or

income, distributional considerations become an issue. l7 As stressed in Section 3,

these considerations must be represented by the specification of an explicit social

welfare function based on individual utilities. This cannot normally be achieved

by the direct choice of distributional weights on individual income unless the

weights are allowed to change with prices in a complicated fashion. There are two

problems we consider in this subsection. First, when and how are the previously

derived optimal tax rules influenced by equity considerations? Second, if we

choose leisure as numeraire and admit lump sum taxes that cannot vary across

individuals, when will uniform commodity taxes be optimal?

We begin by specifying a social welfare function of the form

W= W(U ,...,UH), (6.15)

which, maximized subject to the usual revenue constraint under the assumption of

zero profits in the private sector, yields the following N first-order conditions for

optimal commodity taxes t= (t, ... , tN):

W h a' + xi = o, i =1,...N, (6.16)
h [j h api

where W = aW/aU, h = dUh/dyh and x i = -hX
h
i. Defining ah

, as before, to

be the social marginal utility of individual h's income,

h = W/Xh + dR (6.17)
dy ,

we may express the conditions (6.16) as

Y_ t( is, i=, ..... N, (6.18)

where Sij = hS
h

j and

ai = ( i (Ii)ah (6.19)

is the average value of a, weighted by individual consumption shares of good i.

17Indeed, even if all individuals are identical, the optimal tax system need not dictate identical

treatment. This is discussed in Section 7.
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This neat formulation [due to Diamond (1975)] shows that the "equal propor-

tional reduction" rule is amended to call for a greater proportional reduction in

the purchase of commodities for which &j is small. The implication of this result is

more clearly seen if we note [following Feldstein (1972)] that

cov( X ),ah + ah (6.20)

so that &i exceeds the unweighted mean of cth if and only if purchases of

commodity i are positively correlated with a over individuals. Normally, this

would define a necessary good, whose budget shares fall with income and hence

rise with a. Note, however, that (6.18) applies to proportional reductions in

purchases of different commodities, and does not offer an explicit solution for

individual tax rates, unless we assume aggregate commodity demands to be

independent (Sj = 0 for i -j). This yields

O = ei.( i - (6.21)
O Eii \ - tji a

which says that the normal inverse elasticity rule is changed by the addition of a

second term expressing distributional concerns. Note that as marginal excess

burden, and hence the size of /i relative to &, increases, efficiency considerations

come to dominate these optimal tax rules [Feldstein (1972)].

The addition of the possibility of lump sum taxation increases the generality of

the problem without much additional complexity. If individuals have one source

of income, then the combination of N commodity taxes and a lump sum tax may

be thought of as a linear income tax plus N - 1 additional commodity taxes. The

ability to use lump sum taxation simply adds a constant tax term T to each

consumer's indirect utility function and a term HT to the revenue constraint.

Differentiating the expanded Lagrangian with respect to T, we obtain the ad-

ditional first-order condition

Whh-~ + 
E t j Z o x h

h h ]-EW~h+ [t. '-H = 0 (6.22)

to be added to the N conditions in (6.16). This new condition simplifies to

= a yah = a. (6.23)
Hh

A lanr J. Auerbach108



Ch. 2: Excess Burden and Optimal Taxation

thus, (6.18) becomes

Etsjj = _ X, i = 1 .. , N. (6.24)

Now, there should be reductions in commodity purchases only to the extent that

the good in question is consumed relatively more by people with low values of a;

purchases of some goods will increase. With equal distributional weights, ah, each

of these reductions would be zero, and hence pure lump sum taxation would be

optimal.

An interesting question to ask here is under what conditions proportional taxes

8 = (t 1/p, ... , tN/pN) will be equal? In other words, since such uniform taxes are

equivalent to a single, proportional tax on the numeraire, labor, when is a linear

income tax optimal? A sufficient condition [Deaton (1979b)] is that each individ-

ual h have a utility function weakly separable into goods and leisure, with the

subfunction in goods possessing linear Engel curves with common slopes across

individuals. The intuition behind this result is that the restriction on goods is that

preferences obey the Gorman polar form required for exact aggregation of

commodity demands. If we can perform such aggregation, then we cannot use

differential taxation to distinguish among individuals for purposes of redistribu-

tion: a linear income tax exhausts our capacity in this regard.

Note the similarity of this result to that of the case of non-linear income

taxation [Atkinson and Stiglitz (1976)], where weak separability alone is sufficient

for the optimality of income taxation. There is a clear relationship here between

the relaxation of the restriction on the linearity of taxes, on the one hand, and

that of the linearity of preferences, on the other.

Empirical studies of optimal taxation are not very common, perhaps because

the information needed concerning various cross-substitution terms is difficult to

obtain without a restriction on preferences that prejudges the result. Two studies,

by Atkinson and Stiglitz (1972) and Deaton (1977), utilize the linear expenditure

system, which calls for higher taxes on necessities in the single-consumer case (as

discussed above) and, in the multi-consumer case with lump sum taxes available,

calls for no differential commodity taxes at all, since the Gorman conditions are

satisfied. Nevertheless, these calculations are still instructive. Deaton, for exam-

ple, calculates the optimal taxes on commodities under the assumption that labor

is fixed and there are no lump sum taxes. Obviously, with fixed labor supply,

uniform taxes on commodities are non-distortionary, but may have undesirable

distributional effects. For a demand system estimated for the U.K., he calculated

optimal tax rates for eight groups of commodities under various assumptions

about the degree of inequality in the social welfare function. Perhaps the most
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interesting result obtained was that optimal tax rates do not behave monotoni-

cally with respect to the degree of inequality aversion implicit in the social welfare
function.

A recent application of the optimal tax results in the context of developing

countries (India) may be found in Heady and Mitra (1982). Still another ap-

proach has been to infer from an existing indirect tax structure what the

government's preferences would have to be for the structure to be optimal

[Christiansen and Jansen (1978) for Norway, Ahmad and Stern (1981) for India].

7. Further topics in optimal taxation

There are a number of particular problems involving taxation generally to which

optimal tax theory has been applied. This section presents some of these.

7.1. Public goods provision

The classic conditions for efficiency in the provision of public goods were derived

by Samuelson (1954). Aside from the standard requirement that, for private

(rival) goods, each consumer's marginal rate of substitution between two goods

should equal the social marginal rate of transformation, there was the new

condition that, between a private and a public good, the marginal rate of

transformation should equal the sum of individual marginal rates of substitution.

This is because every consumer partakes of each additional unit of the public

good.

Pigou (1947) argued that in considering the benefits of a new public project, the

government should recognize that its undertaking may require the introduction of

additional deadweight loss through the tax system. The implication that this

increases the social cost of public goods has been addressed by a number of

authors, including Diamond and Mirrlees (1971), Stiglitz and Dasgupta (1971)

and Atkinson and Stern (1974).

Even to examine the question of public goods, we must allow for the presence

of several individuals. Since we are not directly interested in distributional issues

here, we assume all H individuals to be identical in all respects. If we let G be a

public good on which all government revenue is spent and which all consume,

then each individual's indirect utility function becomes

V(p;G)=maxU(x;G) subject to p x=O, (7.1)

with aV/aG= au/aGIx=.c(p;G) The production function is f(x;G)=O. The
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government maximizes the welfare of the representative individual by maximizing

the sum of individual utilities, since all individuals are the same. This gives rise to

the Lagrangian

L = HV(p; G) -f (x; G), (7.2)

with first-order conditions with respect to each price (except that of the untaxed

numeraire)

-Hhxh Ih-L fj , N = ° = 1, . . ., (7.3)
japi

where and are defined in the usual way. As in Section 5.3, we use the fact

that p xh = O for each individual h to obtain

hXi+p[Ytj +x =0, = i=, .. _,.N, (7.4)

where

X, = EX = Hh
h

As before, this may be rewritten as

St= - ), (75)

where S is the aggregate Slutsky matrix and a is the social marginal utility of

each individual's income.

The first-order condition with respect to the choice of public good G is

H L- a LE i EA G ]=O, (7.6)

which yields (since X - dU/dxoh , qji o f, q = 1 and p. xh = 0)

E dUh/dG = _ dR(77)

h dUh/dxo \o dG '

where R is the revenue collected (equal to the public goods purchased, in
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equilibrium). This result says that the appropriate social cost of the public good G

in terms of the numeraire, x, to which the sum of marginal rates of substitution

should be set equal, differs from the marginal rate of transformation fG/fo for

two reasons. First, if public goods are complementary to taxed goods, increasing

G may reduce excess burden by increasing consumption of taxed goods, making

dR/dG > 0 [Diamond and Mirrlees (1971)]. The other term /i/X, equals the ratio

of the marginal disutility of raising a dollar of revenue divided by the marginal

utility of income, and exceeds one to the extent that an increase in revenue

increases excess burden. This corresponds to the point raised by Pigou. However,

it need not be the case that 1t/A exceeds one. Again, there is an income effect at

work.

This possibility is demonstrated (following Atkinson and Stern) by multiplying

both sides of (7.5) by the vector t to obtain

t'St=-(-'tL)R, (7.8)

which, by the negative semi-definiteness of S, implies that > a for positive

revenue. But a > A [see equation (5.5)] only if dR/dy is positive. If taxed goods

are, on average (weighted by tax rates) inferior, dR/dy < 0 and X > a. Hence, 

may actually exceed g, meaning that raising an additional dollar to pay for public

goods may actually lessen excess burden by causing a shift toward the consump-

tion of taxed goods.

7.2. Externalities

Referring again to Pigou, we know that the appropriate response by the govern-

ment (under conditions of perfect information) to an externality is the imposition

of a tax that causes producers of the externality to internalize the additional social

cost (or benefit) of their action. Suppose, however, that all commodities, including

the one possessing the externality, are subject to distortionary taxation. How is

the Pigouvian prescription affected? Following Sandmo (1975), we assume identi-

cal individuals, fixed producer prices and let the externality be a symmetric

consumption externality related to total consumption of good N. Thus, individual

utility for the representative individual h is U(xh;xN), where XN = Hx h . The

partial derivative of U with respect to x, may be positive or negative. Assuming

for convenience that each individual takes xN as given (as will be approximately

true for H large), we may express the corresponding indirect utility function as

V(p;XN), parallel to the public good example, with av/axN= aU/axNIxc(p:x).
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Maximizing the sum of utilities with respect to p subject to the need to raise

revenue R through distortionary taxes yields the N first-order conditions

xHoxu aX + F t j
X + H ax ap + j '+taj =0, i=1 ... ,N, (7.9)

or

- xi-+ I Xi + 0, i=1 a... N, (7.10)

where

ti = t*, i = .. N-1,

= t* - / i= N.
aXN

Equation (7.10) is the standard optimal tax result, but it applies to the vector t*

rather than t. The difference between them implies that the optimal tax on good

N equals that dictated by the standard formula plus the externality imposed by

additional consumption of the good: the Pigouvian tax. Thus, the optimal tax and

Pigouvian taxes are separable, in a sense; we may imagine choosing the two

independently. However, this independence is only present analytically, since the

actual level of the externality, and hence the Pigouvian tax, depends on the actual

equilibrium and hence the optimal tax rates; the same is true in the other

direction.

7.3. Pre-existing distortions

If the government faces pre-existing distortions (of which the preceding example

of externalities is a specific kind), it may wish to alter its choice of optimal taxes.

Following Green (1961), let us assume that lump sum taxes are available, but

certain prices are distorted and cannot be influenced directly. This could be the

result of non-competitive behavior, but we shall assume it to be due to some tax

that must be maintained, perhaps for political purposes. Assuming that the

representative individual's only lump sum income is from the government, we

have the problem

maxV(p,-T) subjectto (p-q) x+T=R,
p*,T
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where p* is the subset of p that may be adjusted. Note that unless at least two

prices are fixed, equiproportional, non-distortionary taxation is possible.

Differentiating the Lagrangian corresponding to (7.11) with respect to pi and T
yields

which may be written as

Es i It- )x i, pi p* (7.13a)
J

= a, (7.13b)

for defined as above. These conditions are quite familiar, and yield the

requirement that

/Sjjtj = , Vp, ep*. (7.14)

This does not result in uniform taxes unless at most one tax is fixed (in which case

the zero degree homogeneity of S allows us to choose any level of proportional

taxes). In particular, suppose all taxes but t are fixed, and t = t = t3 - = t = 0.
Then there is one condition, corresponding to the choice of t. Using com-

pensated elasticities Eij Sii(p/xi), we may express this as

0 = -82E12/lq, (7.15)

where 0i = t/pi is the proportional tax on good i. Since e < 0, this calls for a tax

on good 1 (assuming 2 > 0) if el2 > 0, and a subsidy if el2 < O. If the distorted
good is a substitute to good 1, a tax on good 1 will shift consumption into good 2,
lessening the original distortion. Taxing a complement, however, would worsen

the distortion. (Compare butter and margarine vs. left shoes and right shoes.)
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In the wider case in which there are several pre-existing distortions and a single

free instrument, t1, the condition is

01 = - Y Oiel/ell, (7.16)
j I 1

so that the complement-substitute rule now applies to the tax-weighted commod-

ity average. More generally, when several instruments can be set, the results are

more complicated.

Several other authors have considered particular restrictions on commodity

taxation and profits taxation [for example, Dasgupta and Stiglitz (1972) and

Mirrlees (1972)] and the effect of such restrictions on the desirability of produc-

tion efficiency. Auerbach (1979b) considers the particular production distortion of

differential capital income taxation, obtaining a uniform taxation result about

separability of factors in production that closely parallels those on the consump-

tion side already discussed in Section 6.

7.4. Taxation and risk

There are many interesting questions that concern the interaction between taxes

and risk-bearing. A particular one that fits into the current discussion is the

optimal taxation of risky assets. This problem was first examined by Stiglitz

(1972) and extended by Auerbach (1981). The basic insight is that the optimal tax

results already derived can be applied directly to the case of risky assets by

imagining the commodities being taxed to be Arrow-Debreu state-contingent

ones. The differences that arise come from the fact that we normally make

different assumptions about the structure of utility functions and the complete-

ness of markets when we deal with risk.

The basic model we consider, following Stiglitz (1972), is a two-period model in

which the representative individual may consume a certain good (leisure) out of

some endowment, and may purchase one of two linearly independent assets

yielding returns in two states at date 1. Because the two assets span the states of

nature, the consumer may purchase any combination of state-contingent com-

modities at date 1, and there is a well-defined implicit price for each. A corollary

of this is that there is a unique pair of tax rates on commodities in the two states

corresponding to each tax regime that applies to the assets themselves. This is

helpful, because though our optimal tax results apply to the former, actual tax

rules normally apply to the latter. In the more general case without asset

spanning, the optimal tax problem becomes more complicated, just as it would if

individual commodities in a riskless world could not be purchased independently.

Stiglitz (1972) obtained his main result concerning the relative taxation of a risky
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and a riskless asset from a direct consideration of the effects of taxation on asset

demands. It is, perhaps, easier to see the connection with previous results, and the

effects of particular assumptions, if we begin with the state-contingent commod-

ities themselves [following Auerbach (1981)].

Letting the good consumed in period 0 be good zero, and the other two

commodities be labelled 1 and 2, and taking good 0 to be numeraire, we have the

basic optimal tax rule (5.21), which we write here for convenience

01 E12 + E21 + 20
(7.17)

02 el2 + 21 + lo 

This result can be simplified if we adopt the axioms necessary for the consumer to

engage in expected utility maximization. In this case, the consumer's objective

function becomes

U(XO1 Xo , X2 ) = T1 Ul(xO, x 1) + 72U
2(XO, x2 ), (7.18)

where U1(.)= U2(-), 7ri is the possibility of state i occurring, and elO and e20

may be expressed as

eio= M _ U2X X dln(U,/ i=1,2, j= 2,1, (7.19)

where M is a positive constant and U, and Ui are first and second derivatives of

utility. The second term in brackets in (7.19) is familiar from Section 6, and

equals zero if preferences are weakly separable between periods. If this is so (in

which case, utility is also strongly separable, since it is already assumed separable

between states), then the tax on good 1 should be higher than that on good 2 if

and only if -(U22x/U 1) > -(U222X 2/U22), but these are just the Arrow (1965)-

Pratt (1964) measures of relative risk-aversion in the two states. Intuitively, as an

individual becomes more risk-averse, his behavior becomes less responsive to

differences in rates of return. Thus, a tax is less distortionary.

That taxes should be equal when relative risk aversion is constant is not

suprising, even without knowledge of the basic optimal tax results. It is for this

class of preferences that the basic results of Samuelson (1969) and Merton (1969)

concerning the separation of portfolio and savings decision apply. If we cannot

influence the amount of savings, and hence leisure consumed, by inducing

portfolio shifts, then such a relative distortion has no benefit.

To convert these results to the taxes on the two assets themselves, which we

label A and B, we use the fact [see Auerbach (1981)] that

sgn(OA - B) = sgn(rArB - rArB)sgn( 1l - 02),
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where r,' is the return in state i of asset j. Assuming one asset, which we take to
be asset A without loss of generality, is risk-free, then the tax should be greater
(smaller) on the risky asset B if relative risk-aversion is higher (lower) in the state
with the higher (lower) return. In other words, the risky asset should face a higher
or lower tax than the safe asset according to whether relative risk-aversion is
increasing or decreasing [Stiglitz (1972)]. More generally, if both assets are risky,
then one can apply any standard notion of increasing risk [Rothschild and Stiglitz
(1970)] to argue that if asset B is riskier than asset A, its return will be more
dispersed and hence (rlr,2 - rA2r,) will be positive. This will yield a similar result
for taxation of the riskier asset.

It is important to recognize that these results assume complete, competitive
markets. While a common assumption without risk, it is less acceptable when the
commodities concerned are state-contingent. (The same critique also applies to
intertemporal problems with date-indexed goods.) In particular, we are implicitly
assuming that the government cannot increase the diversification of risk by
collecting risky taxes and pooling them. In a real world context where many
assets are not traded, this may be a highly questionable restriction to impose.

A second issue of taxation and risk concerns the question of whether the
government can increase the welfare of the representative individual by inducing
risk through the tax system. Normally, risk averse individuals are made worse off
by being forced to bear risk. However, the optimal taxation equilibrium is a

distorted one, and the famous dictum of Lipsey and Lancaster (1956-57) applies
here: once one condition for a Pareto optimum is violated, there is no reason to
expect that the violation of others will necessarily worsen matters.

There are two general strands in the literature that deal with the use of induced
risk as a policy tool. Weiss (1976) and Stiglitz (1982) show that a random tax
system, or one in which there is tax evasion with a probability of detection, may
be superior to a certain tax system because, under specified conditions with
respect to individual preferences, such risk may lessen the labor supply distortion
of the income tax. [Also see Sandmo (1981) on the subject of tax evasion.]

A second issue relates to the case of several individuals, and arises from the
possibility that in the presence of indirect taxation, the utility possibility frontier
may be non-convex. Even with identical individuals, then, we might wish to tax
the consumption of the same good by different individuals at different rates
[Atkinson and Stiglitz (1976,1980), Stiglitz (1982), Balcer and Sadka (1982)]. This
is depicted in Figure 7.1. Suppose two individuals, 1 and 2, have identical
preferences and consume goods and leisure. If we seek to maximize (U + U2 ) by
choosing individual-specific excise taxes on consumption, the first-order condition
will be zero with equal taxes at U = U2 = UE, by the symmetry of the problem.
But this may represent a local minimum, as shown. Social welfare may be
improved by choosing either point A or point B. This represents an unequal
treatment of equal individuals and may violate proscriptions of such horizontal
inequity. However, suppose the tax system were randomized so that point A were
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Figure 7.1. Optimal taxation and non-convexities.

chosen half the time, and point. B the other half. This would give the same

expected utility to each individual. Moreover, it would yield the same value of the

social welfare function, defined on individual expected utilities, as before at either

A or B,

EU + EU2 = [UL + UH] + [U + UL] = UH + UL. (7.21)

Thus, randomization may be desirable.

8. Tax reform

All of the optimal tax problems analyzed thus far share in common the fact that

global optima are sought. There are a number of new issues arising from a

consideration of tax reform, rather than tax design.

One problem of tax reform derives from the existence of an initial allocation.

Though a new tax system may be more efficient and more equitable than the

existing one, the transition from old to new may cause a redistribution of
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resources to occur than in itself is undesirable. For example, it has often been

suggested in the U.S. that the tax subsidy for state and municipal bonds be

removed. If this were done unexpectedly, it would cause a capital loss for the

holders of such bonds, but not for other, otherwise identical individuals. Such

treatment may be thought of as a violation of horizontal equity [Feldstein (1976)]

which may be explicitly accounted for in an expanded social welfare function

[King (1983a)]. This problem undoubtedly is one of the reasons why tax reform is

so difficult to achieve.

A second general problem of tax reform, which shall be the main focus of this

section, is that the direction in which to move from the current system is not

always evident. Even if all distortions can be reduced somewhat, this may not

increase economic efficiency. The basic difficulty is that we can only be sure that

movement in the direction of a global optimum will improve matters if we are

sufficiently close to that optimum initially. A related problem is whether one can

increase economic efficiency in a piecemeal fashion, by removing distortions one

at a time. In general, such a scheme for tax reform may decrease welfare along the

transition path to a global optimum. Restrictions on preferences and production

sufficient to prevent this are extremely restrictive [Boadway and Harris (1977)].

8.1. Moving to lump sum taxation

Lump sum taxes are non-distortionary, but it need not follow that partially

reducing distortions and replacing them with lump sum taxes will improve

efficiency. One case in which it will is when the distortionary tax rates are set at

each point of the transition at the optimal tax rates for the revenue being

collected by non-lump sum taxes. That is, if a certain amount of revenue, R, is

collected initially by the distortionary taxes, and a lump sum tax T is introduced,

the new taxes should be those optimal for collecting R - T. As T increases, this

sequence of optimal tax rates insures a monotonic increase in utility. This result is

due to Atkinson and Stern (1974), and demonstrated as follows. Consider the

optimal tax problem

maxV(p,-T) subjectto (p-q)x + T R, (8.1)
T,p

where T is the lump sum tax faced by the individual. Differentiating the

corresponding Lagrangian with respect to T yields the effect of an increase in T

on utility, given that p is chosen optimally,

dT= -- X +/ ty + = ), (- a8.2)
dT 8)ay
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where X, a and /t are defined in the usual way to be the marginal utility of

income, the social marginal utility of income and the Lagrange multiplier on the

revenue constraint. However, we know from expression (7.8) that > a, so utility
must increase as T does: when the tax vector t is chosen optimally, there is always

a positive marginal excess burden to revenue collection.

Unfortunately, this is not a very realistic assumption to make in the current

context. The taxes we may wish to reform may cause unnecessarily large distor-

tions, and we may be restricted to a proportional reduction formula, or some

other constraint on how they are to be lowered.

Consider the case of an arbitrary change in the levels of excise taxes t and lump

sum taxes T for the case of a single individual and fixed producer prices. [This

latter assumption can be relaxed; see Dixit (1975).] We have [following Atkinson

and Stiglitz (1980)]

av av
dU=_ i dti- dT= -A(x dt + dT), (8.3a)

and

dR = d(t x + T) = x dt + t dx + dT= 0, (8.3b)

which yields

dU= XAt- dx. (8.4)

Utility is increased by the tax change if consumption changes to increase revenue

from the existing taxes, thereby reducing the associated excess burden.

From the Slutsky equation, we have

dx= adt- dT= Sdt- (x'dt + dT), (8.5)

which, combined with (8.3b) and (8.4), yields

dU- . t'Sdt. (8.6)
1 -td ax/ay

This holds for any change in t and T, and can be useful in analyzing particular

kinds of tax reforms. For example, suppose all distortions are reduced propor-

tionally, i.e., dt = -bt. Then because S is negative semi-definite, dU> 0 if and

only if (1 - t ax/ay) > 0 [Dixit (1975)]. This condition says that a dollar increase

in income causes the consumer to pay less than a dollar in additional excise taxes.
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Since p = q + t, it is equivalent to the requirement that q x increase with y: as

the consumer spends more, the social cost of the goods purchased also increases.

If this condition is violated, then it is possible that multiple equilibria exist, and

the tax reduction may move the economy away from the undistorted optimum

[Foster and Sonnenschein (1970)].

This may be demonstrated graphically [following Hatta (1977)] for the simple

case in which there are only two goods. Suppose that a certain revenue R

(measured in units of commodity 1) must be raised, and that the consumer has an

endowment x1. The possible equilibria lie along the social production constraint

M in Figure 8.1. Superimposed on this constraint are a series of indifference

curves, the highest feasible one passing through point A, the undistorted opti-

mum. Normally, we would expect that as we travel along M from point A toward

either axis, decreasing the feasible utility level, the marginal rate of substitution

between x and x2 changes monotonically. (This is true, of course, for move-

ments along an indifference curve and, hence, for local movements away from A

along M, where there is no first-order income effect.) If this is the case, then a

M

l-R xl xI

Figure 8.1. Prices and utility.
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revenue-preserving reduction in the divergence between the relative price of x2

and its social cost, in terms of x, must increase utility, for it will induce a
movement along M toward point A. However, there may be cases in which there

is no such monotonicity, and a given slope may occur at an odd number of
different points on M, not just one. In this case, reductions in the price distortion

may actually move the consumer away from point A.

That this possibility is equivalent to the condition derived from (8.6) is

demonstrated graphically in Figure 8.2, where an increase in lump sum income

above causes the consumer to shift from point B to point C, inside the

production constraint M. Since the indifference curve slopes at B and C are

the same, the slope at D must be flatter than at B. Thus, a steepening of the

consumer's budget line resulting from a reduction in the price distortion will

cause a movement away from B, along M, toward the xl axis rather than toward

D and A, thereby lowering the consumer's utility.

A particular application of this result is that when equilibrium is unique, a

consumption tax is superior to a wage tax in the presence of pure rents, since the

A

\
\

,I-R x] xl

Figure 8.2. Multiple equilibria with taxes.
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former tax is equivalent to the latter in conjunction with a lump sum rent tax
[Helpman and Sadka (1982)].

Another result that follows from (8.6) is for the case where the tax distortion is
zero for one good (arbitrarily, good zero) and equiproportional for other goods.
That is, in our previous notation, it= op. Since pS = 0, (8.6) may be rewritten as

dU=- SO -di, (8.7)
1 - t dx/dy

where S = (S01 , S02, ... , SON). A sufficient condition for this to be positive
(assuming dR/dy < 1) is that taxes be decreased on substitutes for good zero
(Soi > 0) and increased on complements [Dixit (1975)].

8.2. Reform without lump sum taxation

This problem is harder, because there is no obvious "first-best" looming in the

distance to guide our movement. General characterization of the direction in

which taxes should be changed is a difficult problem, and while progress has been
made [Guesnerie (1977), Diewert (1978)], there is little we can say of a concrete

nature without further assumptions.

One approach that sidesteps this problem is to characterize observable changes
in equilibrium that will result if welfare is improved. Following Pazner and
Sadka (1981), we can use revealed preference theory to evaluate a balanced

budget change in distortionary taxes. Let to = p - q be the initial set of taxes
(with producer prices fixed) and t =p, - q be the prospective change. If Pl, x

> p. xo (where x0 and x are the purchases in the two situations), then x is
preferred by the consumer. Hence, utility has increased. However, since d(t x) =

0, q x = q xo, so that t ·x1 > t · x0 , or t · Ax > 0. [Note the similarity of this
discrete condition to (8.4).] Likewise, if t o · Ax < 0, the original situation is
preferred. Unfortunately, there is an indeterminate range in which neither of
these conditions is satisfied.

If we assume producer prices to be fixed (here this restriction is necessary) and
that all goods but the numeraire are taxed uniformly, then we can characterize a
utility increasing tax change. The three-good case was analyzed by Corlett and
Hague (1953-54), with a generalization provided by Dixit (1975), whose analysis
we follow. Note that (8.4) still is valid in determining whether a tax change
increases utility. However, since lump sum taxes are unavailable, t x = 0. Using
(8.5), for dT= 0, we have

0 = d(t -x) = x dt + t. dx = xt dt + t' dt = (x' t dt, (8.8)
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where A = 1 - t ax/ay. For the case where t = 0 and i= p, we use the

homogeneity of S to rewrite this as

I - s) dt =0, (8.9)

which, using the definition of compensated elasticities ij = Sij( p,/x), may be

written

~xi (1- He ) dti = 0

From (8.4), we have (for dT= 0)

dU= -Xx dt. (8.10)

If we assume that

Xi( 0E i) = dR1- °=dt

is positive, and make the related assumption that A is positive, then [comparing

(8.9) and (8.10)], in changing two taxes, we should decrease the one for which

xti(1 - ~-eo) (8.11)

Xi

is smaller, or EjO is larger - increase the tax on the relative complement. This

extends in an obvious way if we choose pairs of taxes successively.
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