
The theory of Hawking radiation in laboratory analogues

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys. B: At. Mol. Opt. Phys. 45 163001

(http://iopscience.iop.org/0953-4075/45/16/163001)

Download details:

IP Address: 193.204.40.97

The article was downloaded on 11/03/2013 at 17:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/45/16
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 163001 (42pp) doi:10.1088/0953-4075/45/16/163001

TUTORIAL

The theory of Hawking radiation in
laboratory analogues

Scott J Robertson
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Abstract

Hawking radiation, despite being known to theoretical physics for nearly 40 years, remains

elusive and undetected. It also suffers, in its original context of gravitational black holes, from

practical and conceptual difficulties. Of particular note is the trans-Planckian problem, which

is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to

gain better theoretical understanding and, it is hoped, experimental verification of Hawking

radiation, much study is being devoted to laboratory systems which use moving media to

model the spacetime geometry of black holes, and which, by analogy, are also thought to emit

Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the

wave behaviour at the horizon at the cost of a more complicated theoretical framework. This

tutorial serves as an introduction to Hawking radiation and its analogues, developing the

moving medium analogy for black holes and demonstrating how dispersion can be

incorporated into this generalized framework.

(Some figures may appear in colour only in the online journal)

1. Introduction

Black holes—so-called because of the apparent impossibility

of escaping from them—are not entirely black. That was the

intriguing claim made by Hawking [1, 2] nearly 40 years ago.

Examining the behaviour of quantum fields in the vicinity

of a black hole, he showed that, far from being emission-

free, it should emit a steady flux of thermal radiation, with a

temperature proportional to κ , the gravitational field strength

at the event horizon

kBT = �κ

2πc
= �c3

8πGM
. (1)

With this remarkable result, Hawking completed a

thermodynamic treatment of black holes that had begun with

Bekenstein [3, 4] and has since been continued by many others,

e.g. [5–10]. This field brings together the normally disparate

areas of gravity, quantum theory and thermodynamics; a

glance at the various fundamental constants appearing in

equation (1) makes this fusion clear. Thirst for understanding

of the underlying connections between these mighty realms of

physics provides ample motivation for the study of what has

come to be known as Hawking radiation.

A prerequisite for any such study must be the

acknowledgement that Hawking radiation is not without its

own problems, both practical and conceptual. On the practical

side, the predicted temperature—at least in the gravitational

context in which it was first derived—is virtually untestable. A

solar mass black hole would, according to equation (1), have a

temperature of about 10−6 K—six orders of magnitude smaller

than the temperature of the cosmic microwave background

(CMB). Any radiation from the black hole would be drowned

out by the CMB. Therefore, experimental verification of black

hole radiation would seem to require an extremely light black

hole, orders of magnitude lighter than the Sun. Such ‘micro’

black holes may have formed early in the life of the universe

[11], or they may be formed today in the high-energy collisions

at the Large Hadron Collider [12, 13]. Such tiny black holes

would, according to equation (1), have a very high temperature

and quickly evaporate in a burst of radiation; however, if they

do exist, they have so far escaped detection.
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Conceptually, there is the trans-Planckian problem

[14, 15], which has to do with the validity of the derivation of

Hawking radiation. Let us briefly explain the problem here; it

is discussed mathematically in section 3.3. In most derivations,

the spacetime is assumed to collapse, as in a star collapsing

to form a black hole [1, 2, 15]. Modes of the quantum

vacuum are incident from infinity, propagating through the

collapsing spacetime and out to infinity again, experiencing a

gravitational redshift as they climb out of the ever-deepening

gravitational well. The steady thermal flux seen at late times

can be traced back to those vacuum modes which just managed

to escape the event horizon, slowed and redshifted to greater

and greater degrees. Thus, any low-frequency mode seen in the

late-time thermal spectrum can be traced back to an incident

vacuum mode of ever-increasing frequency; indeed, to an

exponentially increasing frequency! The frequencies of these

incident modes very quickly exceed the Planck scale [15],

widely believed to be a fundamental quantum limit. We cannot

justify the use of quantum field theory at such scales—yet it

appears that Hawking radiation is dependent on the existence

of these initial trans-Planckian frequencies in order to generate

the final low frequencies at which the radiation should be

observed [14]. Whatever is the correct physics, can we be sure

that it will preserve Hawking radiation?

These difficulties can be tackled by appealing to artificial

event horizons, or physical systems possessing horizons

analogous to those of gravitational black holes [16–18]. This

idea was first proposed by Unruh [19], who found that

perturbations of a stationary background fluid flow behave

just as a scalar field in Lorentzian spacetime [19, 20]. In

particular, if the flow velocity crosses the speed of sound,

the surface where it does so is entirely analogous to a black

hole event horizon, and on quantizing the perturbation field,

one predicts analogue Hawking radiation in such a system.

Of course, this model is subject to the same trans-Planckian

problem as the gravitational one. In reality, however, the trans-

Planckian problem is avoided by the ubiquitous phenomenon

of dispersion [14]. That is, the behaviour of waves changes at

different scales by mechanisms which are better understood

than quantum gravity. For example, the discreteness of atoms

or molecules places a fundamental limit on the wavelength

of sound waves. It was later shown that, even after taking

high-frequency dispersion into account, Hawking radiation

is still predicted, with the same temperature as Hawking’s

dispersionless model1 [21, 22]. The conclusion is that the trans-

Planckian problem is a mathematical artefact, while Hawking

radiation exists quite independently of the physics at the high-

energy scale. This discovery has prompted a great deal of

interest in a range of black hole analogue systems: in Bose–

Einstein condensates (BECs) [23–27], ultracold fermions

[28], superfluid helium [29–31], water [32], electromagnetism

[33, 34] and in optics [35–37]. (See section 12.2 for an

overview of current research.) These black hole analogies

might not teach us about quantum gravity directly, though they

can demonstrate the ways in which the Hawking spectrum

might change in response to new physics at the Planck

1 Assuming dispersion and the ‘surface gravity’ are not too strong, as we

shall see in the later sections.

scale. Perhaps more importantly, they offer a chance to study

Hawking radiation as a general phenomenon related not so

much to gravitation as to the restless nature of the quantum

vacuum; any insight into the origin of this vacuum radiation

[38–40] is to be welcomed.

This tutorial aims to give an introduction to the theory of

Hawking radiation in analogue systems. Given the wide variety

of possible analogue systems, the tutorial aims to be as general

as possible. However, analogue systems will obey different

wave equations with a wide variety of dispersion relations.

The framework is here laid mainly within the context of

acoustic waves in fluids, in the spirit of Unruh’s original insight

[19, 21]. This point of view has the advantage of simplicity

in the intuitive nature of the system, its general relativistic

form (see section 2) and its straightforward generalization to

dispersive media (see section 7).

The tutorial falls naturally into two distinct parts.

Part I is concerned with the analogy between the black hole

spacetime, as generally understood in the gravitational context,

and the spacetime corresponding to a moving medium. The

latter point of view is more general, leading to the wealth

of analogous systems briefly mentioned above. We then go

on to derive Hawking radiation in this generalized spacetime,

paying close attention to the important steps and ingredients

in the derivation. In part II we generalize the theory further

by allowing the medium to be dispersive, and so of greater

applicability to experimentally realizable systems. Hawking

radiation is re-derived, but only important differences from

the previous derivation are highlighted. Since there is no exact

analytic expression for the Hawking spectrum in the presence

of dispersion, we consider numerical and analytical techniques

for its calculation. Finally, we examine the results of these

calculations for a simple case.

Part I. Dispersionless model

2. The black hole spacetime as a moving medium

2.1. The Schwarzschild metric

General relativity identifies gravity with the curvature of

spacetime, described by the spacetime metric ds2 [41]. It

has a unique spherically symmetric vacuum metric, the

Schwarzschild metric, which in coordinates (tS, r, θ, φ) takes

the form

ds2 =
(

1 − rS

r

)
c2 dt2

S −
(

1 − rS

r

)−1

dr2 − r2 d�2, (2)

where d�2 = dθ2 + sin2 θ dφ2 is the angular line element,

tS is the Schwarzschild time coordinate and rS = 2GM/c2

is the Schwarzschild radius. This describes, for example,

the spacetime exterior to a star or planet with a relatively

low rotation rate. As rS/r → 0, the Schwarzschild metric

approaches the flat Minkowski metric, so the coordinates

(tS, r, θ, φ) correspond to the usual spherical coordinates

of flat spacetime for an observer at infinity. However,

equation (2) contains two singularities at r = 0 and r = rS.

Since the Schwarzschild metric is valid only in vacuum, these

singularities are relevant only when the entirety of the mass

2
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is confined to a radius smaller than rS, in which case it will

inevitably collapse to a single point of infinite density at r = 0.

Such objects are called black holes. The point r = 0 is a

genuine singularity of Schwarzschild spacetime [41], and we

shall not be concerned with it here. It is the surface r = rS—the

event horizon—that is of interest to us.

Let us briefly review the effects of the event horizon by

examining light trajectories, or null curves, with ds2 = 0. For

simplicity, we shall consider only radial trajectories, so we

also set d�2 = 0. This leaves us with a differential equation

for the radial null curves:

dtS

dr
= ±1

c

(
1 − rS

r

)−1

. (3)

Far from the Schwarzschild radius, where r ≫ rS, |dtS/dr| →
1/c, so that light behaves just as it does in flat spacetime.

However, as we approach the Schwarzschild radius, |dtS/dr|
diverges in such a way that light takes longer and longer to

travel any distance, and, if travelling towards the event horizon,

can never reach it in a finite time tS. As far as the Schwarzschild

time tS is concerned, the event horizon is infinitely far away.

2.2. The Painlevé–Gullstrand–Lemaı̂tre metric

Despite this peculiar behaviour, the event horizon is not a

genuine singularity of Schwarzschild spacetime [41]; it simply

appears as such in the coordinates (tS, r), in terms of which

the two regions separated by the event horizon are infinitely

far apart. This problem can be addressed by following the

footsteps of Painlevé [42], Gullstrand [43] and Lemaı̂tre [44],

defining a new time

t = tS + 2

√
rSr

c
+ rS

c
ln

(√
r/rS − 1√
r/rS + 1

)
, (4)

which, when substituted in equation (2), yields the transformed

metric

ds2 = c2 dt2 −
(

dr +
√

rS

r
c dt

)2

− r2 d�2. (5)

In the coordinates (t, r, θ, φ), the metric clearly has no

singularity at r = rS. At constant t, the spatial metric is

precisely that of Minkowski space, and the distance to the

event horizon is always finite. Note that, while the definition

of t, equation (4), is applicable only when r > rS, the metric

of equation (5) is easily extendable to all values of r greater

than zero. The new coordinate t has opened up a previously

inaccessible region of the spacetime. Keeping t fixed while

decreasing r, we see from equation (4) that, as we approach the

Schwarzschild radius, we must have tS → ∞ to compensate

for the divergence of the logarithm. Thus, with respect to

our original coordinates, the transformation to the coordinates

(t, r) is accompanied by an extension of the spacetime into

the infinite future. Such an extension was anticipated by our

discussion of light trajectories: since an ingoing light ray

approaches the horizon at an infinitely slower rate (with respect

to tS), crossing the horizon requires tS → ∞.

Let us take a moment to interpret the metric (5). Again,

we shall consider only radial trajectories, setting d�2 = 0.

The key point to note is that, if dr/dt = −c
√

rS/r, the metric

reduces to ds2 = c2dt2. Since this condition clearly maximizes

ds2, these trajectories are geodesics and t measures proper time

along them. It is as though space consists of a (Galilean) fluid

[45, 46], flowing inwards with velocity −c
√

rS/r to converge

on the point r = 0. The geodesics just defined are those which

are stationary with respect to this fluid. They define a locally

inertial frame which we shall call the co-moving frame, and in

this frame—i.e. with respect to the fluid—the speed of light

is c. At the Schwarzschild radius, the fluid flows inwards with

speed c; anything that falls beneath this radius, no matter its

velocity with respect to the spacetime fluid, will inexorably be

dragged towards the centre at r = 0. This view is reinforced

by looking at the radial null curves in the coordinates (t, r).

Setting ds2 = 0 and d�2 = 0, we find two possible trajectories

for light:

dt

dr
= 1

c

(
1 −

√
rS

r

)−1

and
dt

dr
= −1

c

(
1 +

√
rS

r

)−1

.

(6)

The forms of these trajectories near the point r = rS are shown

in figure 1. The second possibility represents rays propagating

with the fluid; the total velocity is −c−c
√

rS/r, the sum of the

light’s velocity and the fluid’s velocity. It is perfectly regular

at the horizon, and tilts over as it propagates, travelling faster

and faster as it moves to ever smaller radii. The first possibility

represents rays propagating against the fluid, having a total

velocity of c − c
√

rS/r. This is not regular at the horizon,

nor should it be; there, the competing velocities of the fluid

and the light exactly cancel, giving a total velocity of zero.

Rays at higher radii will have a positive total velocity, and will

eventually escape to infinity; rays at smaller radii will have a

negative total velocity, unable to overcome the fluid flow, and

will propagate inwards to r = 0.

2.3. A general metric for moving media

This analogy with a moving medium forms the basis of

artificial black holes and event horizon analogies. We may

simply replace −c
√

rS/r in equation (5) with the more

general velocity profile V (x) to obtain, in (1+1)-dimensional

spacetime, the metric

ds2 = c2 dt2 − (dx − V (x) dt)2, (7)

where now c is to be interpreted as the velocity with respect

to the medium in question (not necessarily the speed of light).

The co-moving frame, then, is the frame in which this medium

is at rest, and in which the wave speed is exactly c. By contrast,

the frame with coordinates x and t shall henceforth be called

the lab frame. We shall always assume the medium to be left-

moving in the lab frame, so that V < 0.

From now on, we shall consider the general metric (7),

which need not be gravitational in origin. It may, for example,

be applied to a system so far removed from astrophysics as a

river flowing towards a waterfall [46], so that the flow speed

increases in the direction of flow, as illustrated in figure 2.

Imagine this river is populated by fish who can swim only

up to a maximum speed c with respect to the water. Then the

above metric suffices to describe the trajectories of fish in this

river. Fish who are far from the waterfall, where the current

3
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uR

const.u
L

const.

v const.

r

t

Figure 1. Radial wave trajectories near a black hole horizon: spacetime diagram of light trajectories in the metric of equation (5), where the
thick centre line represents the event horizon r = rS and, in this near-horizon region, the flow velocity profile is approximately linear:
V (r) ≈ −c + α(r − rS). The dotted lines show trajectories of co-propagating waves (where the coordinate v, defined in the second of
equations (13), is constant), and these obey the second of equations (6); these experience nothing unusual at the horizon, so that a
wavepacket on the v-branch can pass through the horizon completely unhindered. In contrast, the solid lines show the trajectories of
counter-propagating waves (where the coordinate u, from the first of equations (13), is constant), and these obey the first of equations (6); as
these are propagated further back in time, they come to a standstill at the horizon. The u-branch is thus split into two pieces: uR and uL

(defined by equation (18)), its restrictions to the right- and left-hand regions, respectively. Both are right-moving with respect to the
background fluid flow, but only the uR-modes are able to propagate to the right in the lab frame, whereas the uL-modes are dragged to the
left. Since the uL and uR geodesics bunch together at the horizon, any wavepacket traced back in time will become arbitrarily thin, with
arbitrarily short wavelength; this is the trans-Planckian problem.

is low, are free to swim around as they please, experiencing

no significant resistance in either direction. However, as the

current increases, there may be a point at which |V | = c. As the

fish approach this point, they will find it increasingly difficult

to swim back upstream; passing this point, motion upstream

is impossible, for the current is so strong that the fish, no

matter how hard or in which direction they swim with respect

to the water, are doomed to be swept over the waterfall. The

point where |V | = c is the event horizon, and the trajectories

of fish swimming at exactly the speed c are analogous to the

trajectories of light near a black hole horizon2.

2.4. White holes

Now consider a slightly different scenario portrayed in figure 3.

Here, water is flowing from a waterfall, so that its flow is

2 Slightly more realistically, it is the trajectories of waves in the water—sound

waves [19, 20, 45] or even surface waves [47–49]—which respect the black

hole analogy. It is most common in the literature to make reference to sound

waves, and for this reason the flow velocity is usually classified as subsonic

(|V | < c) or supersonic (|V | > c). These terms are adopted in this tutorial.

initially very fast and slows down as it travels. There is also a

point here at which |V | = c, but it behaves in a qualitatively

different way from that in figure 2. Fish far from the waterfall,

where the current is low, may come and go as they please; but

as they travel upstream, they will find it increasingly difficult

to continue, and must come to a complete standstill exactly

at the horizon. Before the fish could not escape from the

region beyond the horizon, whereas now they find that they

cannot enter it. This is a white hole spacetime. In more precise

terms, the supersonic flow (see footnote 2) leads away from

the horizon in a black hole spacetime, but towards it in a white

hole spacetime. Equivalently, we may think of the white hole

as the time-reversed black hole: in the spacetime metric (7),

we substitute V → −V to transform between them. This one-

to-one correspondence between black and white holes persists

in the presence of dispersion (see, e.g., appendix D of [50]).

The white hole is of limited use in astrophysics. It is

encoded in Schwarzschild spacetime, from which it is derived

by taking the negative square roots in equations (4)- and (5),

but it extends the spacetime into the infinite past. Therefore,

4
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Figure 2. Black hole horizon in a river: at the ‘Point of no return’, the flow speed of the water is exactly equal to the maximum speed of the
fish. Any fish that travel further downstream than this point will be dragged inexorably towards the waterfall. (Illustration by Yan
Nascimbene from [114]. Reproduced with permission.)

Figure 3. White hole horizon in a river: as in figure 2, the event horizon is the point at which the flow speed is exactly equal to the maximum
speed of the fish. Here, however, the flow speed decreases in the direction of flow, so that the fish may swim arbitrarily close to the event
horizon, but may never cross it. (Illustration by Peter Hoey from [115]. Reproduced with permission from AAAS.)

its validity requires that the Schwarzschild metric is valid

for tS → −∞, which is seldom the case, as black holes are

believed to form from gravitational collapse. However, this is

specific to the Schwarzschild case, and there is no fundamental

restriction on the existence of white holes in the more general

case of moving media. Indeed, many experimental setups

achieve sub- or supersonic flow only over a limited region,

so that a black hole–white hole pair is formed. White holes

have thus found relevance in the field of analogue Hawking

radiation.

One point of particular interest and controversy is the

stability or otherwise of spacetimes containing white holes.

While black holes are always found to be stable [51, 52],

white holes were found in [51] to be intrinsically unstable,

5
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and, conversely, to be stable in [53]. A systematic numerical

study in [52] found that the stability or otherwise of white holes

depends crucially on the boundary conditions imposed, though

the nature of the physically appropriate boundary conditions

remains for now a moot point (see also section 5.2.4 of [18] for

a concise description of this problem and the issues involved).

Another spacetime showing signs of instability is the black

hole–white hole pair. Periodic geometries including such a

pair are found to induce narrow instability ‘fingers’ in the

parameter space [23, 24, 54]. Better understood, however, is

the dynamical instability of the black hole–white hole pair in

a non-periodic configuration, in which the inner region acts as

a resonant cavity, the so-called black hole laser [55–58].

For simplicity, in the following, we shall restrict our

attention to black hole configurations, but white holes can

be treated in an analogous fashion (see [59] for an analysis

and comparison of black holes and white holes).

2.5. Dispersion

There is one caveat to the generalized metric (7) for moving

media, but it is a serious one. Assuming for simplicity a

massless field, then c, a constant parameter, is the speed

of waves with respect to the medium irrespective of their

frequency or wavevector. The medium thus described is

dispersionless: the wave speed is absolutely fixed. In some

ways, this is a good thing: the wave equation is simpler; the

general solution is more tractable; the positions of any horizons

are defined absolutely. But, as we shall soon see, it is precisely

the absence of dispersion3 that leads to the trans-Planckian

problem4. So, while the generalized metric (7) may free us

from the specific case of a gravitational black hole, it does

not rid us of this fundamental conceptual issue. In the case of

gravity, quantum theory is thought likely to modify things near

the Planck scale, introducing high-frequency dispersive effects

into general relativity; but a quantum theory of gravity is as

yet unknown. In real media that may be used in experiments,

however, dispersive behaviour is generally well understood,

so that it may be possible to incorporate it into the theory

of Hawking radiation. We examine how this can be done in

part II.

3. The wave equation and its solutions

3.1. Deriving the wave equation

Having now generalized the metric of a Schwarzschild black

hole to that of a moving medium, let us study the behaviour

of fields in a (1 + 1)-dimensional spacetime described by the

metric (7). For simplicity, we shall assume a massless scalar

field; in the context of a real fluid, for example, such a field

3 More precisely, it is absence of high-frequency dispersion that is

problematic. Thus massive fields, though they are dispersive at low frequencies

and would allow us to retain the equivalence between medium and Lorentzian

spacetime, do not resolve the trans-Planckian issue. In any case, they would

restrict us to media with a very specific dispersion, whereas realistic media

yield complicated dispersion relations and inevitably break the medium-

spacetime equivalence.
4 Dispersive media are also problematic if the asymptotic velocity vanishes;

see ‘Conceptual issues’ of section 12.2 and [60, section VI].

arises from small perturbations in the background flow (see

[19] for a detailed derivation). From the outset, we shall treat

the field as complex; for, though we later (in section 4.3)

constrain it to be real, its decomposition into complex-valued

modes is fundamental to the quantization of the field and,

ultimately, to the Hawking process itself.

Let us begin with the principle of least action: the field

φ (t, x) varies from one configuration to another in such a way

that the action is an extremum (usually a minimum). The action

is the integral

S =
∫ ∫

dx dt L(φ, φ⋆, ∂tφ, ∂tφ
⋆, ∂xφ, ∂xφ

⋆), (8)

so the physics of the model is completely contained in the

Lagrangian density, L. An extremum of the action is found by

infinitesimally varying the fields φ and φ⋆ and their derivatives,

and then setting the resulting variation in S to zero. This yields

the Euler–Lagrange equation

∂L

∂φ⋆
− ∂

∂t

(
∂L

∂ (∂tφ⋆)

)
− ∂

∂x

(
∂L

∂ (∂xφ⋆)

)
= 0. (9)

The Lagrangian density for a massless scalar field is [62]

L = 1
2

√
−ggμν∂μφ⋆∂νφ, (10)

which is simply the covariant form of the corresponding

Lagrangian density in flat space; gμν is the metric tensor, g

is its determinant and gμν , with raised indices, is its inverse.

From the metric (7), we find that the Lagrangian density is

L = 1

2c
(|(∂t + V∂x)φ|2 − c2|∂xφ|2), (11)

and plugging this into the Euler–Lagrange equation (9) yields

the wave equation

(∂t + ∂xV ) (∂t + V∂x) φ − c2∂2
x φ = 0. (12)

The partial derivatives act on everything to their right,

including factors of V .

3.2. General solution: the u- and v-branches

A general solution to the wave equation (12) is easily found.

We define new variables u and v as follows:

u = t −
∫ x dx′

c + V (x′)
, v = t +

∫ x dx′

c − V (x′)
. (13)

On substitution in the metric (7), we find that the metric in the

coordinates (u, v) takes the form

ds2 = (c2 − V 2(x)) du dv, (14)

which in turn, via the Lagrangian (10) and the Euler–Lagrange

equation (9), leads to the wave equation

∂u∂vφ = 0. (15)

So, in the absence of horizons, φ is simply a sum of two

arbitrary functions, one a function of u only, and the other a

function of v only:

φ = φu (u) + φv (v)

= φu

(
t −
∫ x dx′

c + V (x′)

)
+ φv

(
t +
∫ x dx′

c − V (x′)

)
.

(16)

6
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In the co-moving frame, φu is right-moving (counter-

propagating—recall we take V < 0) while φv is left-moving

(co-propagating). The fact that the two functional forms

maintain their shapes is a consequence of the absence of

dispersion: all wave components have the same velocity, c,

with respect to the fluid, and so does the waveform as a

whole. The only ambiguity is in the direction of travel; thus

the solution splits into a right-moving and a left-moving part.

Note that the metric (14) is related to the metric of a

stationary medium (in which V is identically zero) simply

by multiplication by a coordinate-dependent prefactor. This

is a conformal transformation, and its usefulness stems from

the invariance of the Lagrangian (10)—and consequently of

the wave equation (15)—under such a transformation. This

observation corroborates a well-known theorem that all curved

two-dimensional spaces are conformally flat (i.e. related to flat

space via a conformal transformation), see, e.g., [61].

3.3. Event horizon

In the vicinity of a horizon where V = −c, inspection

of equations (13) shows that u diverges as the horizon is

approached. So the range u ∈ (−∞,∞) applies only to one

side of the horizon, and the coordinate pair (u, v) does not

cover the entire spacetime. To include the region on the other

side of the horizon requires the introduction of an additional u-

coordinate, and, consequently, an extra function in the general

solution (16).

Let us suppose that the horizon is situated at the origin,

x = 0, and, moreover, that the derivative ofV is non-zero there.

Then we may approximate the flow velocity to first order in x

as follows:

V (x) ≈ −c + αx, (17)

where α > 0 for a black hole horizon. (A white hole horizon

would have α < 0.)

Equation (16) states that counter-propagating waves are

described by the arbitrary function φu (u), where u is given by

u = t −
∫ x dx′

c + V (x′)
≈ t − 1

α
log
(α

c
|x|
)

, (18)

the second equality holding in the vicinity of the horizon.

It is evident from equation (18) that a horizon is located at

x = 0, for the space is divided into two separate regions,

with x = 0 marking the boundary between them. To see this,

imagine first that we have a wavepacket centred at a certain

value of u, and that this is located, at a certain time, at a

positive value of x; such wavepackets are illustrated in figure 1.

If t increases, then log (α |x| /c) /α must increase by exactly

the same amount, and so |x| increases and the wavepacket

moves to the right. Similarly, if we trace the wavepacket back

in time by decreasing t, log (α |x| /c) /α must also decrease

by the same amount, and x decreases; the wavepacket has

come from the left. But the logarithm diverges to −∞ at the

origin; this means that, no matter how far back in time we

look, log (α |x| /c) /α can be decreased by a corresponding

amount without x ever becoming negative. The wavepacket

must have originated arbitrarily close to the event horizon,

moving very slowly forwards at first, and then picking up

speed the further it travels. The longer the horizon has existed,

the closer to it the wavepacket must have been at the moment

of formation; furthermore, the thinner it must have been, since

the lines of constant u bunch together ever closer as they

approach the horizon. As we trace it back into the asymptotic

past, a given wavepacket at a given position must have arisen

from a wavepacket arbitrarily close to the horizon, of arbitrary

thinness and composed of arbitrarily short wavelengths. This

is precisely the trans-Planckian problem.

Exactly the same analysis holds in the region to the left of

the horizon, as also shown in figure 1.

We shall always take V to be constant in time, so

that, mathematically at least, any horizons must have existed

since the infinite past (though this is a subtle issue, and we

shall return to it in sections 5.1 and 6.2). In this case, all

wavepackets, when traced backwards in time, are found to

have originated arbitrarily close to the horizon and can never

have been in the region on the opposite side. Since a complete

description of the field must apply throughout the entire space,

we conclude that there must be two distinct u-coordinates, each

localized to one side of the event horizon. Let us denote them

uR and uL. In definition (13), these are distinguished by the

lower bounds of the integral over x, that for uR being in the

right-hand region and that for uL in the left-hand region. Then

the coordinates uR and uL both range from −∞ to +∞, but

cover only their respective halves of the spacetime, as seen

in figure 1. We thus see that the existence of a horizon—or,

equivalently here, of one subsonic and one supersonic region—

results in three independent solutions of the wave equation (uR,

uL and v) rather than the usual two (u and v). uR and uL are both

of u-character since both describe waves travelling to the right

in the co-moving frame of the fluid. The difference between

them is in the lab frame: uL applying in the supersonic region

where the fluid flow is faster than the wave speed, the uL-waves

are seen to be dragged to the left in the lab frame, whereas,

since uR applies in the subsonic region where the fluid flow is

less than the wave speed, the uR-waves still manage to move

to the right in the lab frame, albeit at a reduced speed.

The requirement of two u-coordinates in addition to

a single v-coordinate to completely describe the spacetime

answers an immediate objection that might be raised

against the possibility of Hawking radiation in (1 + 1)-

dimensional spacetime, namely the conformal flatness of

all two-dimensional spacetimes, mentioned previously in

section 3.2. At first sight, this seems to suggest that all

two-dimensional spacetimes are conformally equivalent, thus

precluding the occurrence of Hawking radiation in some of

them (those with horizons) given its absence in others (without

horizons). But conformal flatness does not imply conformal

equivalence if there exist non-equivalent spacetimes which are

flat nonetheless. This is precisely the case here; whereas the

horizonless spacetime is conformally equivalent to the two-

dimensional plane, the existence of the horizon splits the

spacetime into two regions, each of which is conformally

equivalent to the two-dimensional plane, these planes being

‘stitched together’ at the horizon [61]. Therefore, the flat

equivalents of spacetimes with and without horizons are

topologically distinct; they are not conformally equivalent to

7
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each other, and the absence of Hawking radiation in one does

not imply its absence in the other.

4. Field modes and quantization

4.1. Stationary modes and the dispersion relation

The Lagrangian density (11) is invariant under time translation;

that is, performing a small shift in the time coordinate,

t → t+�t, leaves L unaffected. This implies [63] the existence

of stationary modes of the form

φ(t, x) = e−iωtφω(x). (19)

On quantization, these correspond to energy eigenstates or

quasiparticles [62]. Equation (16) indicates that, in the absence

of an event horizon, the spatial part of the solution takes the

form

φω(x) = Cu exp

(
iω

∫ x dx′

c + V (x′)

)

+Cv exp

(
−iω

∫ x dx′

c − V (x′)

)

= Cu φu
ω(x) + Cv φv

ω(x), (20)

whereas, accounting for the considerations of section 3.3, in

the presence of an event horizon (at x = xH) we have instead

φω(x) = CuR
exp

(
iω

∫ x

xR

dx′

c + V (x′)

)
θ (x − xH )

+CuL
exp

(
iω

∫ x

xL

dx′

c + V (x′)

)
θ (xH − x)

+Cv exp

(
−iω

∫ x dx′

c − V (x′)

)

= CuR
φuR

ω (x) θ (x − xH ) + CuL
φuL

ω (x) θ (xH − x)

+Cv φv
ω(x), (21)

where Heaviside step functions (θ (x) = 0 for x < 0 and

1 for x > 0) have been included to clarify the restricted

domains of φuR
ω and φuL

ω . Like the general solution (16), the

general stationary mode for a given frequency splits into

two independent parts, one counter-propagating and one co-

propagating5, which we henceforth refer to as u- and v-modes,

respectively; and, in the presence of a horizon, the u-branch

splits further into modes localized to either the subsonic or

supersonic region.

Defining the local wavevector k(x) such that φu/v
ω (x) =

exp
(
i
∫ x

dx′ ku/v
ω (x′)

)
, we see that

ku
ω(x) = ω

c + V (x)
and kv

ω(x) = − ω

c − V (x)
, (22)

relations summarized by the single equation

(ω − V k)2 = c2k2. (23)

This formula is very intuitive once we recognize that the lab

frequency ω is related to the co-moving frequency ωcm via

5 Being stationary modes, the wave envelope does not move at all. A way of

thinking about the wave velocity is to consider a wavepacket, strongly peaked

at the given values of ω and k. Then the wavepackets corresponding to the

u- and v-modes will travel in opposite directions with respect to the fluid.

Wavepackets are included in figure 1.

the Doppler formula6: ω = ωcm + V k. Equation (23), then, is

simply ω2
cm = c2k2—the dispersion relation in the co-moving

frame. Comparing with equations (22), we see that

ωcm = ω − V k =
{

ck for u-modes

−ck for v-modes
. (24)

The function ±ck will be referred to as the dispersion profile

or curve. In this dispersionless case, it is simply proportional

to k, but general dispersion profiles are more complicated, and

will be considered in part II.

Equation (24)—which states that the co-moving

frequency must both satisfy the dispersion relation in the co-

moving frame and be related to the lab frequency via the

Doppler formula—can be solved graphically from one of two

possible viewpoints.

• Co-moving frame. The dispersion profile in the rest frame

of the fluid is plotted alongside the co-moving frequency,

which is given by the straight line ω − V k. The points

of intersection occur at the possible wavevector solutions.

In this picture, variation of the velocity V does not alter

the dispersion profile, but the slope of the Doppler curve,

whose y-intercept is equal to ω and is therefore to be kept

constant. An illustration, with V varying between sub- and

supersonic values, is given in figure 4.

• Lab frame. The lab frequency ω, which is constant and

appears as a straight horizontal line, is plotted alongside

V k ± ck, the dispersion profile as viewed from the lab

frame in which the fluid is not at rest. Again, the points of

intersection give the possible wavevector solutions. In this

picture, variation of V alters the dispersion curve, causing

it to tilt on a dispersion diagram. The equivalent of figure 4

as viewed from the lab frame is shown in figure 5.

4.2. Scalar product

The Lagrangian L is also invariant under phase rotation:

φ → φ eiα , where α is a real constant. For any two solutions φ1

and φ2 of the wave equation (12), this symmetry in the phase

implies [63] conservation of a scalar quantity—the scalar

product [62]—defined as

(φ1, φ2) = i

∫ +∞

−∞
dx{φ⋆

1(∂t + V∂x)φ2 − φ2(∂t + V∂x)φ
⋆
1}

= i

∫ +∞

−∞
dx{φ⋆

1π2 − φ2π
⋆
1 }, (25)

where the canonical momentum is

π = ∂L

∂ (∂tφ⋆)
= (∂t + V∂x) φ. (26)

The definition (25) of the scalar product directly implies the

following relation between complex conjugate solutions:

(φ⋆
1, φ

⋆
2 ) = −(φ1, φ2)

⋆. (27)

The scalar product of a solution with itself is called the

norm. Note that this norm is not positive definite: if φ solves

6 The ‘spacetime fluid’ itself is Galilean with respect to the lab frame—the

spatial coordinate is transformed according to dx′ = dx − V dt in equation

(7)—which is why the Doppler formula appears in the Galilean form. This is

in contrast to relativistic motion occurring within the fluid [46].

8
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Figure 4. Dispersion profile in the co-moving frame: in the rest frame of the medium, the co-moving frequency obeys the simple relation
ω2

cm = c2k2. This splits into four sectors: the u- and v-branches are determined by the velocity in the co-moving frame, ωcm/k = ±c (see
equation (24)), and correspond to the diagonal lines ck and −ck, respectively; the positive- and negative-norm branches are determined by
the sign of the co-moving frequency itself (see equation (29)), and therefore correspond to |ck| (the thicker line on the upper-half of the plot)
and −|ck| (on the lower-half of the plot), respectively. The co-moving frequency is related to the conserved lab-frame frequency via the
Doppler formula ωcm = ω − V k, plotted here as dashed lines for the asymptotic velocities VR and VL and as dotted lines for the intervening
velocities. The possible wavevector solutions occur at the intersections of the two curves, so that their evolution with changing velocity (i.e.
with changing slope of the line ω − V k) can be traced. Critical behaviour occurs as the velocity passes through −c, at which point the line
ω −V k is parallel to the u-branch dispersion curve: it crosses the u-branch on the positive-norm side when V > −c, but on the negative-norm
side when V < −c. As V → −c, the wavevector on either the positive- or negative-norm side diverges—this is the trans-Planckian problem.

the wave equation (12) and has positive norm, then the

complex-conjugate solution φ⋆—which also solves the real

wave equation (12)—must, according to equation (27), have

negative norm.

The scalar product (25) only makes sense for a complex

field, vanishing when φ is real. However, even when the total

field is real, it makes sense to decompose it into complex

components, and these will evolve in such a way that their

scalar products are conserved.

4.3. Field decomposition: the k-representation

Quantization of the field requires expressing it as a sum over

eigenstates, which are then quantized individually. For now,

let us assume that V is constant in x; then L is invariant under

spatial translations and k is also a conserved quantity [63]. We

may then work with the states of constant k, which correspond

to momentum eigenstates, and for which Fourier analysis

assures completeness on the entire real line. This might seem

a trivial case, but it will turn out to be very instructive for the

generalization to inhomogeneous velocity profiles.

4.3.1. Orthonormal basis. The canonical momentum

operator (∂t + V∂x), defined in equation (26), is the derivative

with respect to time in the co-moving frame: when acting on

a stationary mode, it multiplies it by −i ωcm = ∓i c k, where

the minus (plus) sign corresponds to u- (v-)modes. With V

being constant, the stationary modes are simply plane waves

exp(ikx − iωt), whose scalar products (see equation (25)) are

(eik1x−iωu(k1)t, eik2x−iωu(k2)t ) = 4π c k1 δ(k1 − k2),

(eik1x−iωv (k1 )t, eik2x−iωv (k2)t ) = −4π c k1 δ(k1 − k2), (28)

(eik1x−iωu(k1)t, eik2x−iωv (k2)t ) = 0.

(Since V is constant, there is no event horizon and hence

no splitting of the u-branch into uR and uL.) That is,

the plane waves are mutually orthogonal, and, utilizing

equations (24), their norms are 4π ωcm δ (k1 − k2). Although

we can renormalize these modes using an appropriate

prefactor, the occurrence of one mode and one complex-

conjugate mode in definition (25) of the scalar product ensures

that we can never change the sign of the norm. Therefore,

the sign of the norm is equal to the sign of the co-moving

9
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Figure 5. Dispersion profile in the lab frame: here is plotted the same information as in figure 4, but from the point of view of the lab frame.
The conserved lab-frame frequency ω appears as a horizontal line. On the other hand, the dispersion profile of the medium in the lab frame
is given by V k ± |ck|, where the plus and minus signs refer to the positive- and negative-norm branches, respectively. The lab frame
dispersion could also be written V k ± ck, where this time the plus and minus signs refer to the u- and v-branches, respectively. As the flow
velocity V is varied, the dispersion profile tilts, and the possible wavevector solutions—where the dispersion profile is equal to ω—vary
accordingly. Again, we observe critical behaviour when V = −c, for at this point the u-branch of the dispersion lies exactly along the
horizontal k-axis, and is therefore parallel to the horizontal line at ω. For V > −c, it is the positive-norm u-branch which crosses ω, while
for V < −c it is the negative-norm u-branch which does so. In contrast, the v-branch—which for V = −c is shown as a solid line within the
continuum of V -dependent v-branches—experiences nothing of importance at V = −c.

frequency, and the dispersion relation (23) leads also to the

classification

ωcm = ω − V k =
{
|ck| for positive−norm modes

−|ck| for negative−norm modes.
(29)

Combining classifications (24) and (29), we see that positive-
norm modes are those which

• if k > 0, are u-modes,

• if k < 0, are v-modes,

while for negative-norm modes, this correspondence is

reversed. (In figures 4 and 5, the splitting of the dispersion
profile into the u- and v-branches, and into the positive- and
negative-norm branches, is labelled explicitly.) Thus positive-
norm modes correspond to the intuitive notion that the sign of k

determines the direction of travel (with respect to the medium),
and the negative-norm modes, through complex conjugation,
correspond to precisely the opposite.

The orthonormal k-mode basis, then, is the set of modes

φu
k (x, t)= 1√

4π |ck|
exp(ikx − iωu(k)t)≡ φu

k (x) e−iωu(k)t,

φv
k (x, t)= 1√

4π |ck|
exp(ikx − iωv(k)t)≡ φv

k (x) e−iωv (k)t,

(30)

normalized to ± δ(k − k′) where the sign is determined as

above, and where ωu/v(k) = (V ± c)k.

4.3.2. Field decomposition. According to Fourier analysis,

the set of all real wavevectors form a complete set in position

space. The separate u- and v-branches found here are needed

to describe the full time-dependence of the field, the wave

equation (12) being second order in time. So the general

solution of the wave equation can be written in the form

φ(x, t)

=
∫ +∞

−∞
dk[au(k)φu

k (x) e−iωu(k)t + av(k)φv
k (x) e−iωv (k)t], (31)

where au(k) and av(k) are complex-valued functions of k. It

is useful to separate the positive- and negative-norm modes in

the integral as follows:

φ(x, t)=
∫ 0

−∞
dk[av(k)φv

k (x) e−iωv (k)t + av⋆(k)φv⋆
k (x) eiωv (k)t]

+
∫ ∞

0

dk[au(k)φu
k (x) e−iωu(k)t + au⋆(k)φu⋆

k (x) eiωu(k)t],

(32)

10
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where, for simplicity, the coefficients of complex-conjugate

modes have themselves been written as complex conjugates

so that the total field is real. The first term in each of the

integrands, written without a ⋆, is a positive-norm mode; its

complex conjugate, written with a ⋆, has negative norm. If the

total field φ is known, then the orthonormality properties of

the modes allow extraction of the coefficients using the scalar

product

au(k) =
(
φu

k , φ
)
, au⋆(k) = −

(
φu⋆

k , φ
)
,

av(k) =
(
φv

k , φ
)
, av⋆(k) = −

(
φv⋆

k , φ
)
. (33)

4.3.3. Quantization. In the form (32), the field is readily

quantized via the usual methods of quantum field theory

(QFT) [62]. We promote the real-valued field variable φ to

the Hermitian operator φ̂, the coefficients au/v(k) to operators

â
u/v

k
and their complex conjugates [au/v(k)]⋆ to the Hermitian

conjugate operators [â
u/v

k
]†:

φ̂(x, t) =
∫ 0

−∞
dk
[
âv

kφ
v
k (x) e−iωv (k)t + â

v†
k

φv⋆
k (x) eiωv (k)t

]

+
∫ ∞

0

dk
[
âu

kφ
u
k (x) e−iωu(k)t + â

u†
k

φu⋆
k (x) eiωu(k)t

]
.

(34)

Similarly, using definition (26), the canonical momentum

operator is

π̂ (x, t) =
∫ 0

−∞
dk
[
âv

kπ
v
k (x) e−iωv (k)t + â

v†
k

πv⋆
k (x) eiωv (k)t

]

+
∫ ∞

0

dk
[
âu

kπ
u
k (x) e−iωu(k)t + â

u†
k

πu⋆
k (x) eiωu(k)t

]
.

(35)

Relations (33) may be similarly quantized, yielding

expressions for the mode operators in terms of the full field

operators:

âu
k = i

∫ +∞

−∞
dx
{
φu⋆

k (x) eiωu(k)t π̂ (x, t) − πu⋆
k (x) eiωu(k)t φ̂(x, t)

}
,

â
u†
k

= −i

∫ +∞

−∞
dx
{
φu

k (x) e−iωu(k)t π̂ (x, t)

−πu
k (x) e−iωu(k)t φ̂(x, t)

}
, (36)

with analogous relations for the v-mode operators. The

quantization procedure is completed by imposing the

canonical commutation relations7

[φ̂(x, t), π̂ (x′, t)] = iδ(x − x′),

[φ̂(x, t), φ̂(x′, t)] = [π̂ (x, t), π̂ (x′, t)] = 0.
(37)

Finally, from these it can be shown that the mode operators

satisfy the Bose commutation relations
[
âu

k, â
u†
k′
]

=
[
âv

k , â
v†
k′
]

= δ(k − k′), (38)

with all other commutators being zero. Thus we see

that â
u/v

k
and â

u/v†
k

—the quantum amplitude operators

multiplying modes of positive and negative norm—are bosonic

7 We work in natural units where � = 1.

annihilation and creation operators, respectively, for the u- or

v-mode with wavevector k.

This last point is of paramount importance and worth

emphasizing: positive- and negative-norm modes correspond

to bosonic annihilation and creation operators, respectively8.

Note that, although the notation was chosen with foresight,

we did not make any mathematical assumptions about the

mode operators. Their bosonic property (38) follows from

the norms of the modes they multiply and the imposition of

the canonical commutation relations (37). The correspondence

between norm and bosonic quality represents a generalization

to moving media of QFT in flat space. There, it is standard

to separate the complex-conjugate positive- and negative-

frequency modes, finding as here that the corresponding mode

operators obey the Bose commutation relations (38). What

we have just shown is that it is the sign of the norm which

determines these mode operators, and this happens to be the

same as the sign of the frequency in the co-moving frame—

not the sign of the frequency in the lab frame. Worded this

way, this point seems obvious, since for the constant-velocity

profile we could have transformed into the co-moving frame,

in which case the co-moving and lab frequencies would have

coincided and flat-space QFT would have been applicable.

Ultimately, however, it is the norm of the modes that enters the

derivation of equations (38), and this will continue to be true

for inhomogeneous profiles, where the co-moving frequency

is no longer so well defined and the norm emerges as the true

fundamental quantity.

The quantization procedure above is admittedly rather

abstract. An analogous procedure, from a physically grounded

viewpoint, is performed in condensed matter theory using the

Bogoliubov theory of dilute Bose gases; see, for example, [64].

4.4. Field decomposition: the ω-representation

Plane waves (30) with constant k are valid when V is a

constant—even if it is not constant everywhere. They are

especially useful in the constant-velocity asymptotic regions,

where they correspond to quasiparticles that can be measured

at infinity. An exact solution for a stationary inhomogeneous

velocity profile will be expressible as a sum over plane

waves—of equal lab frequency ω—in the asymptotic regions.

This can be interpreted as a mixing or coupling between the

various plane waves.

Therefore, it is much more useful to consider ω as the

integration variable when summing the modes [59], since this

groups together all plane waves that can be mixed together

by an inhomogeneous flow. First, we transform from the k-

representation to the ω-representation when V is constant; we

then consider the generalization to inhomogeneous velocity

profiles.

8 Had we considered a complex rather than a real field, the field operator φ̂

would not be Hermitian and the annihilation and creation operators appearing

in its decomposition would not be Hermitian conjugates of each other. They

would then correspond to different particles, i.e. particles and antiparticles.

Here, with a Hermitian field operator, we might say that we are considering

particles which are their own antiparticles.
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4.4.1. Homogeneous flow. For reasons that will become clear,

let us begin with the k-representation that does not separate

positive- and negative-norm modes:

φ̂(x, t) =
∫ +∞

−∞
dk
[
âv

kφ
v
k (x) e−iωv (k)t + âu

kφ
u
k (x) e−iωu(k)t

]
,

(39)

where, consistently with equations (31) and (32), we have

φu
−k(x) = φu⋆

k (x) and âu
−k = â

u†
k

, and similar identities for the

v-modes. Recall from section 4.3 that the u-modes with k > 0

and the v-modes with k < 0 have positive norm.

We wish to express the field operator (39) in the equivalent

form

φ̂(x, t) =
∫ +∞

−∞
dω
[
âv

ωφv
ω(x) e−iωt + âu

ωφu
ω(x) e−iωt

]
. (40)

This requires a redefining of the modes and their corresponding

operators. Firstly, we note that, in order for the quantization

procedure to carry over exactly, the ω-representation of the

modes and operators should be normalized with respect to ω:
(
φu

ω, φu
ω′
)

= δ(ω − ω′),
[
âu

ω, â
u†
ω′
]

= δ(ω − ω′), (41)

and similarly for the v-modes. Now, the Dirac δ function

δ
(
ω − ω′) = |dk/dω| δ

(
k − k′), while the differential dω =

|dω/dk| dk. So, if the modes and operators in the k- and ω-

representations are related via [59]

φu
ω =

√∣∣∣∣
dku

dω

∣∣∣∣φku(ω), φv
ω =

√∣∣∣∣
dkv

dω

∣∣∣∣φkv (ω), (42)

âu
ω =

√∣∣∣∣
dku

dω

∣∣∣∣âku(ω), âv
ω =

√∣∣∣∣
dkv

dω

∣∣∣∣âkv (ω), (43)

we find that the normalization conditions (41) are satisfied

and that the integrand of the ω-representation of the field (40)

transforms exactly into the integrand of the k-representation

(39), since the factors of |dω/dk| cancel. So the orthonormal

basis in the ω-representation is the set of modes

φu
ω(x, t) = 1√

4π |c ku (ω) vg (ku(ω)) |
exp (iku(ω)x − iωt)

≡ φu
ω(x) e−iωt ,

φv
ω(x, t) = 1√

4π |c kv (ω) vg (kv(ω)) |
exp (ikv(ω)x − iωt)

≡ φv
ω(x) e−iωt , (44)

normalized to ± δ
(
ω − ω′) according to the sign of the norm.

We have defined vg(k) = dω/dk, which equals ω/k in the

absence of dispersion, so that k(ω) vg(k(ω)) appearing in

equations (44) is simply equal to ω. (In the dispersive case, vg

is the group velocity; see section 7.)

As before, we would like to separate the ω-modes of the

field operator (40) into positive- and negative-norm modes, i.e.

into those terms corresponding to annihilation and creation of

quasiparticles. We have already seen in section 4.3 that the sign

of the norm is simply related to the wavevector k—but there

is a non-trivial aspect in its relation to frequency. This can be

clearly seen in the dispersion diagrams of figures 4 and 5. For

ω > 0, the solution on the v-branch always has positive norm;

the u-mode, on the other hand, has positive norm when the flow

is subsonic, and negative norm when the flow is supersonic.

Restricting our attention to the u-part of the field, we have

φ̂u(x, t)

=

⎧
⎪⎪⎨
⎪⎪⎩

∫ ∞

0

dω
[
âu

ωφu
ω(x) e−iωt + âu†

ω φu⋆
ω (x) eiωt

]
for |V | < c

∫ ∞

0

dω
[
âu

−ωφu
−ω(x) eiωt + â

u†
−ωφu⋆

−ω(x) e−iωt
]

for |V | > c,

(45)

where, as before, the first terms of the integrands are the

positive-norm modes and their complex conjugates have

negative norm. We emphasize the crucial fact that, comparing

subsonic with supersonic flow, u-modes of equal lab frequency

have opposite norm.

4.4.2. Inhomogeneous flow. There is nothing particularly

significant about the sign of the frequency when the flow is

truly homogeneous, for we could easily shift between subsonic

and supersonic flow via a simple change of the reference frame.

There is no gain in transforming to the ω-representation, for k

itself is a conserved quantity, and mode mixing cannot occur.

For an inhomogeneous flow, however, the significance is

profound. There is a preferred reference frame in which the

flow profile is time-independent, and in which ω is conserved.

It is in this frame that the ω-representation is useful, in

which the linking of modes with equal frequency has physical

meaning. And if, in this frame, the asymptotic flow velocities

are one subsonic and the other supersonic—if, in other words,

an event horizon is present—then, through the switching of

norm induced by this transition, positive-norm modes on one

side can couple to negative-norm modes on the other.

We know the form of the u-modes from section 4.1, and

we have seen in section 3.3 that we must include two distinct

modes, one corresponding to each side of the event horizon.

Taking account of the norm switching as V varies between sub-

and supersonic values, the spatially distinct positive-norm u-

modes can, for ω > 0, be written as

φu
ω,R(x, t) = θ (x)

1√
4πc ω

exp (−iωuR) ,

φu
−ω,L(x, t) = θ (−x)

1√
4πc ω

exp (iωuL) , (46)

where uR and uL are the u-variables defined on the right-

and left-hand sides (i.e. the subsonic and supersonic regions),

respectively. Since those of the same frequency can mix,

we can form linear combinations of one of the modes in

equations (46) with the complex conjugate of the other. To

normalize such a linear combination, we simply employ the

linearity of the scalar product:
(
αφu

ω1,R
+ βφu⋆

−ω1,L
, αφu

ω2,R
+ βφu⋆

−ω2,L

)

= α⋆α
(
φu

ω1,R
, φu

ω2,R

)
+ α⋆β

(
φu

ω1,R
, φu⋆

−ω2,L

)

+β⋆α
(
φu⋆

−ω1,L
, φu

ω2,R

)
+ β⋆β

(
φu⋆

−ω1,L
, φu⋆

−ω2,L

)

=
(
|α|2 − |β|2

)
δ (ω1 − ω2) .

So, if |α|2 − |β|2 = 1, the linear combination αφu
ω,R + βφu⋆

−ω,L

is normalized with positive norm; it is also automatically

12
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orthogonal to any such combination involving the modes φu
−ω,L

and φu⋆
ω,R, or modes of a different frequency, since the individual

modes are orthogonal amongst themselves. Therefore, any set

of modes

φu
ω,1 = αω,1φ

u
ω,R + βω,1φ

u⋆
−ω,L,

φu
ω,2 = αω,2φ

u
−ω,L + βω,2φ

u⋆
ω,R,

(47)

where

|αω, j|2 − |βω, j|2 = 1, (48)

form a complete set of orthonormal, positive-norm u-modes.

The various possibilities correspond to different ways of

characterizing the quasiparticles, and they are made possible

by the horizon’s splitting of the u-branch into two independent

parts.

5. Hawking radiation

5.1. In- and out-modes

Despite the limitless possibilities that the freedom in the

choice of u-modes allows, very few of them are useful. We

should deal only with ‘natural’ sets of modes that correspond

to possible measurements. Consider the simplest example:

αω, j = 1, βω, j = 0, which is simply the set of localized

modes given in equations (46). These correspond to single

outgoing wavepackets. A quasiparticle travelling to the right

with frequency ω is precisely an excitation of the mode φu
ω,R;

similarly, a quasiparticle travelling to the left with frequency

−ω is an excitation of φu
−ω,L. They differ in this respect from all

other linear combinations, which correspond to two outgoing

wavepackets rather than just one. In light of this property, the

set of modes φu
ω,R and φu

−ω,L are termed out-modes: those which

correspond to a single outgoing wave in the asymptotic future.

The v-modes φv
ω also have this property, and are therefore the

out-modes of the v-branch.

Complementing the out-modes are the in-modes, those

corresponding to a single ingoing wave in the asymptotic past.

The v-modes φv
ω have this property, and therefore, on the v-

branch, the in-modes are equal to the out-modes; this is a

consequence of the regular behaviour of the v-coordinate at

the horizon. In contrast, as we saw in section 3.3, the u-modes,

in both the subsonic and supersonic regions, drift away from

the horizon. How, then, can we possibly form an ingoing u-

mode? One possible answer (see section 6.2 for another) is

that, in the asymptotic past, we are able to form ingoing waves

if the event horizon is not present there. That is, we may

assume that the horizon has not been forever present, but was

formed at some instant in the past, before which the flow was

sub- or supersonic everywhere . In this initial, horizonless

spacetime, the u-modes are well behaved and are precisely

the in-modes we are looking for9. There being no horizon at

this initial stage, there is no divergence of the wavevector at

any point, so that—although it will vary from point to point

if V is inhomogeneous—the sign of the wavevector can never

9 The u-modes of the horizonless spacetime would also be out-modes if this

spacetime was not to form an event horizon; but, since the out-modes are by

nature defined with respect to the asymptotic future, the true out-modes are

those corresponding to the presence of the horizon.

change. Positive-norm in-modes are thus composed entirely of

positive wavevectors, and similarly the negative-norm modes

of negative wavevectors.

We are here interested only in the long-time, stationary

state brought about by the final presence of the horizon and not

in any transient effects reliant on the details of its formation.

It is convenient to refer only to the final spacetime with

horizon present, and so, to find the form of the in-modes

that must be used, they must first be propagated from the

initial spacetime to the final one. Since the precise evolution

is unimportant, we may consider simply an instantaneous

change of the velocity profile. Immediately after this change,

the spatial form of the in-modes is precisely as in the initial

horizonless spacetime—but they will no longer be stationary.

We may, however, form linear combinations of them to find

stationary in-modes appropriate to the final spacetime, so

long as we form such combinations only from modes of the

same norm; the reason for this is made clear in section 5.2.

As already noted, this requires that positive-norm modes be

formed only from positive wavevectors. This implies in turn

that the positive-norm modes, if analytically continued onto

the complex x-plane, must be analytic in the upper half of

this plane [7, 15, 22]. Recalling from equation (18) that, in

the vicinity of the horizon, the coordinates uR and uL go

as log ((α/c)|x|) /α, traversing the horizon x = 0 on the

upper-half x-plane analytically connects these two coordinates

with the addition of an imaginary part: uR → uL + iπ/α

and uL → uR − iπ/α. Applying these continuations to

equations (46), we find that the u-modes on either side

of the horizon also analytically connect to each other, but,

upon exponentiation, the relative imaginary component of

the coordinates translates into a relative amplitude between

the right- and left-hand u-modes. This relative amplitude

determines the α and β coefficients of equations (47), and

after normalizing according to equation (48), we find that the

stationary positive-norm in-modes of the u-branch are, for

ω > 0,

φ
u,in
ω,R = 1√

2 sinh
(

πω
α

)
(
e

πω
2α φ

u,out
ω,R + e− πω

2α φ
u,out⋆
−ω,L

)
,

φ
u,in
−ω,L = 1√

2 sinh
(

πω
α

)
(
e

πω
2α φ

u,out
−ω,L + e− πω

2α φ
u,out⋆
ω,R

)
, (49)

where φ
u,out
ω,R and φ

u,out
−ω,L are simply the localized modes

of equations (46) with their out-mode character made

explicit. The negative-norm in-modes are simply the complex

conjugates φ
u,in⋆
ω,R and φ

u,in⋆
−ω,L.

Despite the mathematical elegance of this derivation of

the stationary in-modes, it is physically obscure. It is therefore

of value to consider briefly the evolution of wavepackets, as is

usually done in more direct physical treatments of the problem

[1, 2, 15]—the stationary modes of equations (49) may then

be thought of as linear combinations of wavepackets. Those

wavepackets located far from the horizon at the time of its

formation are essentially unaffected by its appearance, except

for a possible change of direction due to the transition between

subsonic and supersonic flows. This accounts for the regularity

of the in-modes away from the horizon. For those wavepackets

13
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located near the horizon at the time of its formation, there

will be a marked shift in velocity and a marked change in

its wavevector as it slowly moves away from the horizon, so

that the in-modes exhibit the divergence in the wavevector at

the horizon characteristic of the u-modes. The wavepackets

we have so far considered evolve into outgoing wavepackets

on one side of the horizon, and therefore behave just as

the out-modes do. The crucial difference, then, for the in-

modes is that there are wavepackets which actually cross the

horizon at the time of its formation. Such wavepackets will

then evolve as two ‘disconnected’ pieces—but they are not

quite disconnected, because in the past they were analytically

connected to each other. This is the origin of the analytic

continuation between the right- and left-hand sides across the

horizon, which is characteristic of the in-modes. Given the

logarithmic divergence of the phase at the horizon, this analytic

continuation can only be of the form (49) or their complex

conjugates, depending on whether analyticity is imposed on

the upper or lower half-planes. Straightforward algebra then

shows that these two possibilities correspond to the positive-

and negative-norm modes, respectively.

In-modes and out-modes form two distinct and natural

sets of orthonormal u-modes, and we are free to decompose

the u-part of the field operator in terms of either. Together with

the v-modes, they form a complete set of orthonormal modes

that solve the wave equation (12). Therefore, the total field

operator may be written as

φ̂ (t, x) =
∫ ∞

0

dω
{
âu,in

ω,Rφ
u,in
ω,R (t, x) + âu,in

−ω,Lφ
u,in
−ω,L (t, x)

+ âv
ωφv

ω (t, x) + h.c.
}

=
∫ ∞

0

dω
{
âu,out

ω,R φ
u,out
ω,R (t, x) + âu,out

−ω,Lφ
u,out
−ω,L (t, x)

+ âv
ωφv

ω (t, x) + h.c.
}

(50)

where h.c. stands for Hermitian conjugate, containing the

negative-norm modes and creation operators. Substituting the

transformations (49) into expressions (50) for the total field

operator, we find the corresponding transformation between

the mode operators:

âu,out
ω,R = 1√

2 sinh
(

πω
α

)
(
e

πω
2α âu,in

ω,R + e− πω
2α â

u,in†
−ω,L

)
,

âu,out
−ω,L = 1√

2 sinh
(

πω
α

)
(
e

πω
2α âu,in

−ω,L + e− πω
2α â

u,in†
ω,R

)
. (51)

It stands to reason that, since the modes of the in- or out-bases

are formed from both positive- and negative-norm modes of

the other, so the mode operators of one basis should combine

both annihilation and creation operators of the other.

5.2. Spontaneous creation

Inequivalence of incoming and outgoing modes is not an

exotic phenomenon in and of itself. Any scattering process

exhibits this kind of behaviour: an incoming wavepacket or

particle is deflected, often into several other wavepackets of

particles, each of which can be considered a single outgoing

mode. Normally, however, this is a process of conversion: the

incoming particles are converted into outgoing particles, such

that the sum of the rates of outgoing particles—all contributing

with the same sign—is equal to the rate of ingoing particles.

Decrease the rate of incoming particles to zero, and the rate of

outgoing particles will likewise vanish. We might say that all

these particles have the same sign of norm.

The difference here is that the converted particles have

different signs of norm, leading to the normalization condition

|α|2 − |β|2 = 1. Since the norm is always conserved, a

part-conversion of the incoming modes into negative-norm

modes must result in an increase in the amount of positive-

norm modes. This process is, at least in part, an amplification

[65, 66]. For oppositely normed particles, equal numbers

of both must be added to the system to keep the overall

norm constant. Moreover, at the quantum level, an amplifier

adds particles to the system even when there are no incident

particles [67].

Mathematically, the vacuum state is that in which no

modes are excited: it is the absence of quasiparticles. Since

one cannot annihilate an excitation from the vacuum state, it

must vanish when acted on by any annihilation operator. The

vacuum is thus defined as the eigenstate of all annihilation

operators with eigenvalue zero [62]:

â |0〉 = 0 ∀ â. (52)

Clearly, this depends on the particular set of annihilation

operators, and hence on the particular basis of modes [68];

in particular, we can define both an in-vacuum and an

out-vacuum, according to whether the vacuum state has

a zero eigenvalue for all in-annihilation operators of out-

annihilation operators. That said, if a mode transformation

only mixes modes of the same norm, then the corresponding

transformation between the mode operators will expand

annihilation operators only in terms of other annihilation

operators, and the state with zero eigenvalue for one set of

these operators will also have zero eigenvalue with respect

to the other: their vacuum states are identical. This is

why, when forming the stationary final-state in-modes in

section 5.1, we could only combine modes of equal norm:

this ensures that the in-vacuum state defined by the late-time

in-modes is exactly the same as that defined by the initial

in-modes. Similarly, if positive-norm in-modes were found

to scatter only into positive-norm out-modes, then the vacua

defined by the in- and out-modes would be identical, and the

absence of incoming particles would lead to the absence of

outgoing particles.

On the other hand, if scattering into opposite-norm modes,

and hence mixing of annihilation and creation operators, takes

place—as it clearly does in equations (49) and (51)—then the

in-vacuum is not equal to the out-vacuum and the absence of

incoming particles must lead to some presence of outgoing

particles [68]! This is the mysterious effect of spontaneous

creation, which is purely quantum mechanical in origin10.

10 An analogous kind of creation takes place in the Unruh effect [6], where

the vacuum seen by an inertial observer is found to differ from the vacuum

seen by an accelerating observer, leading to the detection of a thermal bath by

the latter.
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5.3. Radiation from an event horizon

We may demonstrate this particle creation explicitly using

equation (51). Imposing the in-vacuum, the expectation value

of right-moving outgoing quasiparticles is found to be
〈
nu,out

ω,R

〉
= 〈0in| â

u,out†
ω,R âu,out

ω′,R |0in〉

= 〈0in|
1√

2 sinh
(

πω
α

)
(
e

πω
2α â

u,in†
ω,R + e− πω

2α âu,in
ω,L

)

× 1√
2 sinh

(
πω′

α

)
(

e
πω′
2α âu,in

ω′,R + e− πω′
2α â

u,in†
ω′,L

)
|0in〉

= 1√
4 sinh

(
πω
α

)
sinh

(
πω′

α

)e− π(ω+ω′)
2α 〈0in| âu,in

ω,L â
u,in†
ω′,L |0in〉

= 1√
4 sinh

(
πω
α

)
sinh

(
πω′

α

)

× e− π(ω+ω′ )
2α 〈0in|âu,in†

ω′,L âu,in
ω,L + δ(ω − ω′)|0in〉

= 1

2 sinh
(

πω
α

)e− πω
α δ(ω − ω′)

= 1

e
2πω
α − 1

δ(ω − ω′). (53)

Remarkably, the spectrum of quasiparticles emitted is

precisely a bosonic thermal distribution with temperature

α/(2π); replacing fundamental constants,

kBT = �α

2π
. (54)

The appearance of the δ function shows that equation (53)

represents a density rather than a number. This is because the

orthonormal modes form a continuous spectrum, and are not

normalized to unity but to a delta function—see equations

(41). An argument in [60] overcomes this problem by turning

to wavepackets and shows that the spectral flux density—

the number of quasiparticles emitted per unit time per unit

(angular) frequency interval—is obtained by dividing the

calculated expectation value by 2π :

∂2N

∂t ∂ω
= 1

2π

1

e
2πω
α − 1

. (55)

Due to the symmetry of the transformation (51), the

expectation value of left-moving outgoing quasiparticles is

exactly equal to the thermal spectrum of (53). There is a

deeper significance to this than just symmetry, however. The

transformation of the in- and out-operators allows us to write

the in-vacuum explicitly in terms of the out-vacuum. Using the

Fock basis, in which the annihilation and creation operators

behave in the standard way [62],

âω |n〉ω =
√

n |n − 1〉ω , â†
ω |n〉ω =

√
n + 1 |n + 1〉ω , (56)

the in-vacuum state is given by

|0in〉 = Z− 1
2

∏

ω

∞∑

n=0

1

n!

(
e− πω

a â
u,out†
ω,R â

u,out†
ω,L

)n |0out〉

= Z− 1
2

∏

ω

∞∑

n=0

e− nπω
a |n〉u,out

ω,R |n〉u,out
ω,L , (57)

where Z is a normalizing prefactor defined such that

〈0in |0in〉 = 1. (This can be checked simply by acting on

equation (57) with an arbitrary in-annihilation operator, and

utilizing the transformation (51), to show that it vanishes.) The

fact that the out-creation operators appear only in R–L pairs

shows that the radiation, though it looks thermal on the right

and left sides separately, is strongly correlated between the two

sides. Quasiparticles are emitted in pairs, one in the subsonic

and the other in the supersonic region, and a measurement of

the number of quasiparticles in any state on one side of the

horizon infers that there are equally many quasiparticles in

the corresponding state on the other side. The left and right

systems, separated by the horizon, are maximally entangled

[69]. This entanglement induces correlations between the left

and right partners, which may prove invaluable in the eventual

experimental detection of Hawking radiation [70–72, 53]; see

also section 12.2. Most recently, the entropy associated with

the entangled partners has been investigated in [73, 74]—

somewhat closing the circle of analogue systems by harking

back to Bekenstein’s insight into gravitational black holes, but

using the emitted radiation as a measure of entropy rather than

the event horizon area.

6. Discussion

6.1. Summary

Beginning with the generalized form of the black hole

spacetime (7), we found the wave equation (12) for a massless

scalar field, with the exact solution (16) in terms of co- and

counter-propagating components. The counter-propagating

components were found to separate at the event horizon into

two distinct spatial parts. Stationary (single-frequency) modes

were derived, satisfying the dispersion relation (23) which

combines the co-moving dispersion relation with the Doppler

effect. Another conserved quantity is the scalar product (25),

which gives rise to positive- and negative-norm stationary

modes related by complex conjugation. First assuming a

homogeneous flow, the total field was written as a sum over

the normalized stationary modes, and upon quantization it was

found that positive- and negative-norm modes—corresponding

to positive and negative co-moving frequenies—are multiplied

by bosonic annihilation and creation operators, respectively.

Crucially, the relation between co-moving frequency and lab

frequency changes sign between subsonic and supersonic

flows, and while it is the former that determines the norm,

it is the latter that is conserved. This leads, in the case of

inhomogeneous flow with an event horizon, to the possibility

of positive- and negative-norm mixing across the horizon.

The bases of incoming and outgoing modes are generally

different in any physical system, but the mixing of positive-

and negative-norm modes leads naturally to a mixing of

annihilation and creation operators (see equation (51)), and

hence to the inequality of the in- and out-vacuum states which

are defined by their respective annihilation operators (see

equation (52)). So quasiparticles are spontaneously emitted,

and are found to conform to the thermal spectrum (53), with

temperature (54) proportional to the velocity gradient at the
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event horizon. Moreover, the quasiparticles emitted on each

side of the horizon are maximally entangled and emitted

precisely in pairs.

The derivation has been kept quite general, in that it

applies to any spacetime which can be described by the metric

(7). Of course, this includes gravitational black holes: using

V (r) = −c
√

rS/r, the velocity profile of the Schwarzschild

black hole (see equation (5)), we find that at the Schwarzschild

radius V ′ (rS) = c/ (2rS) = c3/ (4GM), and plugging

into equation (54), we have kBT = �c3/ (8πGM)—exactly

Hawking’s original formula, equation (1).

6.2. Conceptual issues

We identified the vacuum state as the in-vacuum which

contains no ingoing quasiparticles; the ingoing quasiparticle

states, in turn, were identified as the late-time equivalents of

those corresponding to an initial horizonless spacetime. This

inevitably raises an intriguing question: how is the vacuum

state of an eternal horizon—with no horizonless spacetime

in the asymptotic past—to be defined? There would seem to

be no reason to use the modes (49) to define the vacuum

state, since there can be no u-in-modes in such a spacetime.

However, the crucial property of the modes (49) is not so much

their ‘ingoing’ character, but their analyticity in the complex

x-plane. One can be led to the same vacuum state by a simple

and intuitive argument: that the state appears as vacuum to co-

moving observers crossing the horizon [38]. This leads again

to the requirement of analyticity across the horizon and hence

to the ‘in’-modes (49)—a property selected, as remarked in

section 5.1, by the ingoing criterion in virtue of their analyticity

in the horizonless asymptotic past. If the vacuum is defined

differently, the modes used to define it would not be analytic

at the horizon, and a free-falling observer would observe an

infinite flux of particles precisely at the horizon [38]. It thus

appears that the state which gives rise to Hawking radiation is

the only physically sensible one, and quite independent of the

collapse phase.

In either the collapsing or eternal spacetime, then,

Hawking radiation seems to be intimately connected with

the existence of wavepackets of the quantum field smoothly

connecting the two regions which, in classical general

relativity, are disconnected by the event horizon. The horizon

breaks these wavepackets into two pieces, which propagate

out into their respective regions11. Those pieces furthest

from the horizon propagate outwards first, while those

nearer the horizon escape later. As time progresses, then,

the Hawking particles originate from wavepackets of ever-

increasing wavevector, ever-increasing thinness and take an

ever-increasing time to propagate out from the horizon. In

the dispersionless model, there exists an infinite reservoir of

these trans-Planckian modes, so that the Hawking radiation

can continue indefinitely (subject to eventual evaporation

of the horizon, not accounted for here). It is a remarkably

counter-intuitive feature of the dispersionless model that the

11 This is often interpreted as the creation of a particle–antiparticle pair via a

quantum fluctuation, these then being separated by the horizon and unable to

recombine [2, 38].

late-time steady-state Hawking radiation originates from an

infinity of modes ‘captured’ at a single point of space (and

time, if collapse is included), and then gradually released and

redshifted so as to produce a steady thermal spectrum.

The analytic continuation giving rise to the ‘in’-modes

(49) is exact, even though it is derived from linearization of V

at the horizon (performed in section 3.3 to find the logarithmic

phase). This linearization is easily justified: as discussed in

section 3.3, any wavepacket can be traced back in time to

arbitrary thinness and arbitrary closeness to the horizon. The

modes are thus well defined arbitrarily close to the horizon, and

the region over which analytic continuation onto the complex

x-plane is imposed can be made arbitrarily small. Therefore,

it does not matter how small is the region over which the

linearization of the velocity profile is valid, so long as it is

valid over some small region. Consequently, the Hawking

temperature can depend only on the first derivative, α, of V

precisely at the horizon.

This picture breaks down entirely as soon as dispersion

is introduced. If the wave speed is allowed to vary with the

wavelength, then the event horizon is not so well defined

as a single point and linearization of V at the horizon is

not generally justified, so that we cannot hone in on a

single parameter which uniquely determines the Hawking

temperature. More drastically, a change of wave speed at

some scale will tune wavepackets out of the grip of the

horizon once they reach that scale. It is no longer true that

any outgoing wavepacket must originate from one captured

by the creation of the horizon; instead, all wavepackets, when

traced back in time, will blueshift to the dispersive scale and

then propagate away from the horizon, originating from a fixed

finite wavevector at spatial infinity! Thus is the trans-Planckian

problem resolved by dispersion, but can such different wave

propagation yield similar effects to the trans-Planckian model?

After all, given that a trans-sonic flow of dispersionless fluid

can switch the sign of the norm by causing the wavevector

to diverge at the horizon (see figures 4 and 5), it is far from

obvious that a similar kind of norm switching will still be

possible in a dispersive fluid, and we might reasonably doubt

the existence of Hawking radiation in dispersive systems at

all.

Part II. Dispersive model

7. The dispersive wave equation

Aiming to generalize the dispersion relation of waves in the

medium, we are, due to the considerations of section 2.5,

forced to abandon the spacetime metric as a starting point. We

begin instead with the Lagrangian density, in which dispersion

is modelled by the appearance of higher order derivatives

[21, 60]:

L = 1
2
|(∂t + V∂x) φ|2 − 1

2
|c (−i∂x) ∂xφ|2 . (58)

The only difference from equation (11) is the replacement

of the constant c with the function c(k); as a function of an

operator, we consider it as a Taylor series in that operator.
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The application of the principle of least action to
equation (58) leads to the generalized Euler–Lagrange
equation:

∂L

∂φ⋆
− ∂

∂t

(
∂L

∂(∂tφ⋆)

)
− ∂

∂x

(
∂L

∂(∂xφ⋆)

)
+ ∂2

∂x2

(
∂L

∂
(
∂2

x φ⋆
)
)

− ∂3

∂x3

(
∂L

∂
(
∂3

x φ⋆
)
)

+ · · · = 0. (59)

Substituting L from equation (58), we find the wave
equation [21]

(∂t + ∂xV ) (∂t + V∂x) φ − c2 (−i∂x) ∂2
x φ = 0. (60)

In the geometrical optics approximation, the velocity profile
V (x) varies negligibly over a wavelength of the field φ, so that
the ‘local wavevector’ k(x) exists and is determined by the
local value of V , analogous to equations (22). This leads to a
dispersion relation between ω, k and V : neglecting derivatives
of V and k, we find

(ω − V k)2 = c2 (k) k2. (61)

This is the generalization to dispersive media of equation (23).
c (k) is the phase velocity ωcm/k in the co-moving frame,
which describes the propagation of the phase kx −ωcmt; in the
lab frame, the phase velocity is rather ω/k. The group velocity

is the derivative dωcm/dk = ±d(c(k)k)/dk in the co-moving
frame, or dω/dk = V ±d(c(k)k)/dk in the lab frame; this gives
the velocity of the envelope of a wavepacket strongly peaked at
the wavevector k. In the absence of dispersion, the phase and
group velocities are identical. Typically, there exists a low-
wavevector regime where the phase and group velocities can
be approximated as a constant, so that c (k) → c0 as k → 0.
For higher values of k, the dispersion can take two basic forms:
superluminal and subluminal12. These are defined according
to whether the magnitude of c (k) becomes higher or lower
than c0 as k increases.

As in section 4.1, there are two equivalent pictures for
determining the possible solutions of the dispersion relation:
from the point of view of the co-moving frame, they are the
points of intersection of the dispersion profile ±|c(k)k| with
the co-moving frequency ωcm = ω − V k, or from the point of
view of the lab frame, they are the points of intersection of the
frequency ω with the lab frame dispersion profile V k±|c(k)k|.
Also as before, there are two branches of the dispersion, and
two ways to define them as follows:

• The u- and v-branches. The sign of the phase velocity in
the co-moving frame defines the counter-propagating u-
branch (ωcm = ω − V k = c(k)k) and the co-propagating
v-branch (ωcm = ω − V k = −c(k)k).

• The positive- and negative-norm branches. The sign of
the frequency in the co-moving frame defines the positive-
norm branch (ωcm = ω −V k = |c(k)k|) and the negative-
norm branch (ωcm = ω − V k = −|c(k)k|).
The definitions of the positive- and negative-norm

branches carry over because, like its dispersionless counterpart
(11), the Lagrangian density (58) remains invariant under
phase rotations. Therefore, the scalar product of equation (25)
is conserved even for dispersive media.

12 Although these terms emphasize the Schwarzschild analogy, they have

become standard terms to describe the dispersion in any context, much like

the labels ‘subsonic’ and ‘supersonic’ to describe any type of flow.

8. Field decomposition with dispersion

For a homogenous velocity profile, the wavevector k is

a conserved quantity, and the analysis of section 4.3—

the definition of the orthonormal basis of k-modes, the

decomposition of the field in this basis and the quantization of

the field—carries over exactly, the only difference being the

more complicated functional form of the frequency ω(k).

Frequency being the conserved quantity for a general

inhomogeneous velocity profile, we wish rather to express

the field operator in the form of an integral over ω:

φ̂(x, t) =
∫ ∞

0

dω
[
φ̂ω(x) e−iωt + φ̂†

ω(x) eiωt
]
, (62)

where φ̂ω(x) are the complete mode operators in the ω-

representation, combining all solutions of the same frequency.

The transformation to the ω-representation performed in

section 4.4 was written for a general dispersion relation

ω(k), and therefore also carries over to the dispersive

case. Dispersion complicates the transformation only through

the introduction of additional counter-propagating solutions,

which are easily found with the aid of dispersion diagrams. For

simplicity, we shall restrict ourselves to subluminal dispersion

and examine its effects on the resulting transformation.

Superluminal dispersion behaves analogously; see [59] for

a detailed derivation of the transformation for both types of

dispersion13. Realistic dispersion relations may be complicated

enough to introduce even more solutions than are indicated

here14, but careful attention to the dispersion diagrams should

make the required modes clear.

8.1. Homogeneous flow

We learned from the dispersionless model that the set of plane-

wave solutions to the dispersion relation depends crucially on

the flow velocity—in particular, on whether it is subsonic or

supersonic. Anticipating similar behaviour in the dispersive

case, let us examine these two cases separately.

Supersonic flow. Suppose that the flow velocity is faster

than c0, the low-wavevector limit of the phase velocity.

The wavevector solutions of the dispersion are illustrated

graphically in figure 6. It is clear that, for all positive lab-

frame frequencies ω > 0, there exist only two wavevector

solutions: a co-propagating v-mode with positive norm and

a counter-propagating u-mode with negative norm. This is

exactly what was found for the same (supersonic) flow in

the dispersionless model (see figures 4 and 5), the only

difference here being a different functional dependence of

the wavevectors on frequency. The transformation to the ω-

representation thus proceeds exactly as in section 4.4, and the

mode operators for ω > 0 are simply

φ̂ω(x) = âv
ωφv

ω(x) + â
u†
−ωφu⋆

−ω(x), (63)

13 Most of the analyses occurring in the literature (e.g., [70, 50, 76, 85, 77])

use superluminal dispersion—mainly because they are geared towards BECs,

whose excitations follow a superluminal dispersion relation.
14 For instance, in the first paper [14] to consider dispersive analogue systems,

liquid helium is considered as an example, with a dispersion profile that

includes a roton dip.
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Figure 6. Subluminal dispersion with supersonic flow: here are plotted subluminal dispersion diagrams from the points of view of both the
co-moving frame (upper panel) and the lab frame (lower panel). Positive- and negative-norm branches are shown as thick and thin curves,
respectively, just as in figures 4 and 5. The velocity is assumed to be supersonic: Vsup < −c0, where c0 is the low-wavevector limit of the
phase velocity, and therefore equal to the slope of the dispersion profile in the co-moving frame at k = 0. The line ω − Vsupk, then, has a
greater slope than the dispersion profile at k = 0, and since the slope of the dispersion profile decreases with increasing k, the two curves
never cross for positive k. Viewed from the lab frame, the slope of the dispersion profile Vsupk + c(k)k is negative at k = 0 because of the
supersonic flow, and the gradual decrease of c(k) causes it to become more negative with increasing k, so that it can never equal ω for
positive k. There are thus no solutions on the positive-norm u-branch, and only the negative-norm u-wave and positive-norm v-wave remain.

where the mode on the u-branch has been written as a

Hermitian conjugate on account of its negative norm. For ω <

0, the mode operators are simply the Hermitian conjugates of

those in equation (63): φ̂−ω(x) = φ̂†
ω(x).

Subsonic flow. Now consider a flow velocity slower than

c0. The solutions are illustrated graphically in figure 7.

Here we observe behaviour significantly different from the

dispersionless case. Firstly, let us note that, for all positive

lab-frame frequencies ω > 0, there exist a positive-norm v-

mode and a negative-norm u-mode, both being continuously

connected to their counterparts in supersonic flow asV is varied

from one value to the other. In the dispersionless model, the

negative-norm u-mode experiences a diverging wavevector as

the flow crosses from supersonic to subsonic (see figures 4

and 5), becoming a positive-norm u-mode in the latter type of

flow. Dispersion has completely removed this divergence, and

consequently the negative-norm u-mode remains.

However, we see from figure 7 that removal of the

wavevector divergence does not quite prohibit the emergence

of a positive-norm u-mode. More precisely, it is prohibited

at high frequencies, above some threshold value ωmax which

depends on the value of the velocity (and vanishes in the

limit where V becomes supersonic, so that the two cases are

continuously connected). For frequencies below ωmax, there

comes into existence a pair of additional counter-propagating

modes with positive norm. For convenience, let us label these

u1 and u2, where |ku1| < |ku2|; the negative-norm u-mode,

since it exists for all frequencies and velocities, will continue to

be labelled simply u. The u1- and u2-waves can be considered

as forming additional branches of solutions, of finite measure,

which exist only at low frequencies and which vanish entirely

when V becomes supersonic. Note that, while the u1-, u2-

and u-branches are all counter-propagating (i.e. they are right-

moving in the co-moving frame), they are distinguished by

their behaviour in the lab frame:

• u1 and u2 are distinct from u in that they have oppositely

signed lab-frame phase velocities ω/k and

• u1 is distinct from u2 in that they have oppositely signed

lab-frame group velocities dω/dk.

The first property regarding the phase velocity also applies

to the dispersionless case, since it distinguishes the uR- and uL-

modes that exist on opposite sides of the horizon: it enables

the mixing of waves of opposite norm. The second property,

regarding the group velocity, is a purely dispersive effect: it

will be found to regularize the behaviour at the horizon.
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Figure 7. Subluminal dispersion with subsonic flow: here are plotted subluminal dispersion diagrams from the points of view of both the
co-moving frame (upper panel) and the lab frame (lower panel). Positive- and negative-norm branches are shown as thick and thin curves,
respectively, just as in figures 4–6. The velocity is assumed to be subsonic: Vsub > −c0, where c0 is the low-wavevector limit of the phase
velocity. As viewed from the co-moving frame, the slope of the line ω − Vsubk is therefore less than that of the dispersion profile at k = 0;
but, since c(k) decreases with increasing k, the two curves become parallel at some point, and if ω is equal to ωmax, then the line ωmax −Vsubk
is actually tangent to the dispersion profile. As viewed from the lab frame, the dispersion profile V k + c(k)k has positive slope at k = 0, but
the slope decreases so that it eventually turns round; at this maximum point, it is equal to ωmax. If ω < ωmax, the two curves cross twice for
positive k, giving rise to the u1- and u2-branches. The u-branch, then, does not extend to k = 0, but only to the point at which the (complex
conjugate of the) u2-branch ends. On the other hand, if ω > ωmax, only the u- and v-waves exist.

With these considerations, the mode operators can be

written as

φ̂ω(x) =

⎧
⎨
⎩

âv
ωφv

ω(x) + âu1
ω φu1

ω (x) + âu2
ω φu2

ω (x) + â
u†
−ωφu⋆

−ω(x)

for 0 < ω < ωmax

âv
ωφv

ω(x) + â
u†
−ωφu⋆

−ω(x) for ω > ωmax.

(64)

Let us emphasize that the mode operators (64) for subsonic

flow connect continuously to the mode operators (63) for

supersonic flow, since ωmax → 0 when V becomes supersonic.

8.2. Inhomogeneous flow: mode mixing

As remarked in section 4.4, an inhomogeneous, asymptotically

constant flow can be viewed as mixing or coupling the

asymptotic plane waves to each other. Physically, this concept

of mode mixing is perhaps better understood by considering

the motion of a wavepacket, strongly peaked at a certain

value of k. (Figures 11 and 12 include results of numerical

wavepacket propagation, alongside spacetime diagrams, to

help make the scattering concept more concrete.) In a region of

constant V , the wavepacket will propagate in accordance with

its group velocity, vg = dω/dk. A wavepacket incident on the

inhomogeneous region will, after a complicated interaction,

scatter into some combination of resultant wavepackets, with

frequency ω equal to that of the original wavepacket and

wavevectors k corresponding to the possible solutions of the

dispersion relation. To use the terminology introduced in

section 5.1, there are two possible types of scattering modes:

the out-mode, which contains a single outgoing wavevector

in the asymptotic future (illustrated in figure 11) and the

in-mode, which contains a single ingoing wavevector in the

asymptotic past (illustrated in figure 12). Throughout the

scattering process, the total norm is always conserved; but, as

discussed in section 5.2, some of the waves involved may carry

opposite signs of norm, leading to a degree of amplification.

Dispersive effects result in a richer variety of possible

scattering processes, due to the appearance of additional

plane wave solutions and hence more possibilities for mode

coupling. Since the additional solutions exist only below theV -

dependent critical frequency ωmax, the scattering possibilities

are themselves frequency- and velocity-dependent. The

asymptotic flow velocities are generally different, yielding

different critical frequencies for the left- and right-hand

asymptotic regions. For definiteness, we denote these ωmax,1

and ωmax,2, where ωmax,1 � ωmax,2, and where one or both of

the critical frequencies may be zero. These divide the spectrum
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Figure 8. Dispersion with inhomogeneous V (supersonic to supersonic). Here are plotted subluminal dispersion diagrams from the points of
view of both the co-moving frame (upper panel) and the lab frame (lower panel). Positive- and negative-norm branches are shown as thick
and thin curves, respectively, just as in figures 4–7. The velocity is assumed to vary between two supersonic values, Vsup,1 and Vsup,2. The
entire spectrum is in the ‘high’ frequency regime, where only the u- and v-waves—indicated by circles—exist. These vary smoothly with
varying V , having well-defined values at all points in space; they do not experience a horizon. They do have opposite norm, however, so that
they can still couple to form Hawking pairs.

into (at most) three regimes, in which quite different scattering

behaviour is observed. Figures 8, 9 and 10 show dispersion

diagrams—with varying V to account for the inhomogeneous

profile—for the various arrangements of the frequency regimes

described below. Also note that V is assumed to be monotonic,

so that only a single horizon (if any) exists.

8.2.1. ω > ωmax,2: suppression of Hawking radiation. This

regime always exists for high enough frequencies, and in the

case where the flow is everywhere supersonic so that both

ωmax,1 and ωmax,2 vanish, it encompasses the entire spectrum;

this situation is illustrated in figure 8.

In both asymptotic regions, the solutions of the dispersion

are arranged similarly to figure 6. There exist only one positive-

norm v-wave and one negative-norm u-wave. These vary

continuously on their respective branches, being perfectly

well behaved at any horizon which might be present. This

is quite different from the dispersionless case, where the u-

wave experiences divergence of its wavevector and a switch

in its norm as the horizon are crossed. It appears there is

no channel for Hawking radiation. It is not quite non-zero,

though, since u–v mixing can occur, and since these have

opposite norm they can form a Hawking pair15. An interesting

15 This is not true for superluminal dispersion, where the u- and v-waves both

have positive norm [59].

aspect of this pair is that, as can be seen in the dispersion

diagram of figure 6, their group velocities are both negative,

and both partners are emitted into the left-hand region. This

is not the usual Hawking channel, though, and the strength

of the u–v coupling is negligible for a slowly varying velocity

profile [40]. This high-frequency regime therefore corresponds

to strong suppression of the Hawking radiation.

Each of the u- and v-waves can form an ingoing or an

outgoing wave. In either the in- or out-basis, then, there are

two independent modes in this regime.

8.2.2. ωmax,1 < ω < ωmax,2: the group-velocity horizon.

ωmax,2 must be strictly non-zero for this regime to exist, so that

at least one of the asymptotic velocities must be subsonic. If

the other is supersonic, ωmax,1 vanishes and this regime extends

down to zero frequency, a situation described by figure 9. On

the other hand, if the flow is everywhere subsonic, ωmax,1 is

also non-zero, and this regime exists in a (possibly narrow)

frequency window, as in figure 10.

In the asymptotic region corresponding to ωmax,2, there are

four wavevector solutions, while in the other asymptotic region

there are only two. The two common solutions are the u- and

v-waves; the extra solutions in one of the regions are u1 and u2.

Following the evolution of the dispersion diagram as V varies

between the asymptotic velocities is particularly instructive;

see figure 9. It is seen that the additional solutions u1 and u2
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Figure 9. Dispersion with inhomogeneous V (subsonic to supersonic). Here are plotted subluminal dispersion diagrams from the points of
view of both the co-moving frame (upper panel) and the lab frame (lower panel). Positive- and negative-norm branches are shown as thick
and thin curves, respectively, just as in figures 4–8. The velocity is assumed to vary between a subsonic value Vsub > −c0 and a supersonic
value Vsup < −c0. Therefore, of the critical frequencies, only ωmax,2 is non-zero, and is labelled here simply as ωmax. If ω > ωmax, then the
situation is analogous to that described by figure 8. If ω < ωmax, then we are in the mid-frequency regime where a group-velocity horizon
exists. There, the u1- and u2-waves—indicated by inverted and upright triangles, respectively, in accordance with their lower and higher
wavevectors—exist in the subsonic region, but they cannot exist in the supersonic region. Note their oppositely directed group
velocities—this is indicated by the slope of the dispersion profile relative to that of the line ω—V k in the co-moving frame, or simply by the
slope of the dispersion curve itself in the lab frame. If we track their evolution with varying V , we see that they vary towards each other,
until, when V = Vgvh (indicated by a solid line among the continuum of curves), the straight line is tangent to the dispersion curve and the
u1- and u2-wavevectors merge at the point indicated by a star. This point corresponds to the group-velocity horizon: as V varies further, the
u1- and u2-waves cease to exist as real, propagating waves. Instead, they cross into each other, reversing their group velocity and moving
back in the direction from which they originally came. They are thus not independent solutions, but degenerate into a single solution which
‘bounces’ off the group-velocity horizon (see figure 11). This positive-norm solution, as well as the positive-norm v-wave, can couple with
the negative-norm u-wave to form Hawking pairs.

vary towards each other, and, at some velocity Vgvh, merge into
a single wavevector; as V is varied further, they cease to exist.
Mathematically, the u1- and u2-wavevectors cease to be real,
but continue to exist as complex conjugates (as is most clearly
seen in the complex k-plane diagram of figure 14); that is,
they become exponential waves—one exponentially damped,
the other exponentially divergent—in the opposite asymptotic
regime. Only the evanescent (exponentially damped) wave is
allowed on physical grounds. Thus we are led to the conclusion
that the u1- and u2-waves do not form two, but rather just one

additional solution, for they must be combined in just the right
combination to cancel the exponentially divergent wave [59].
We shall label this single additional solution u12.

The physical interpretation of this behaviour is again
made clearer by considering the evolution of wavepackets.
In particular, we pay attention to their group velocities,
vg = dω/dk = V k ± |c(k)k|, which is given pictorially by the
slope of the lab-frame dispersion profile. As already noted, the
u1- and u2-waves have oppositely directed lab-frame group

velocities: u1 is right-moving in the lab frame, while u2 is
left-moving. As the magnitude of V increases, the u1- and u2-
wavevectors vary in such a way that the magnitudes of their
group velocities decrease, until, precisely at the merging point,
the group velocity vanishes. So a wavepacket on either the u1-
or u2-branch, when sent towards the inhomogeneous region,
will experience a shift in its wavevector such that it slows
down to a standstill at the point where the velocity is Vgvh. It
does not stay there, however, as numerical simulations show
(see [21] and figure 11). Instead, its wavevector continues to
evolve, crossing from one of these branches to the other, and its
group velocity changes sign. (This is why they degenerate into
a single branch: waves of one type evolve in time onto those of
the other.) So the wavepacket continues to shift in wavevector,
but moves back in the direction from which it came. The
turning point where V = Vgvh is a group-velocity horizon, a
dispersive analogue of the event horizon beyond which the
wavepacket cannot propagate. It differs in that it does not
cause the phase singularities of the dispersionless model, and
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asymptotic velocities. If ω > ωmax,2, then only the u- and v-waves exist, so that the situation is analogous to that of figure 8. If
ωmax,1 < ω < ωmax,2, then the u1- and u2-waves only exist in one of the asymptotic regions, and the situation is similar to that described in
figure 9. If ω < ωmax,1, then the u1- and u2-waves exist in both asymptotic regions, varying smoothly as V is varied. They do not degenerate
into a single solution, so that there are four independent solutions in total. The u1-, u2- and v-waves all have positive norm, and can couple
with the negative-norm u-wave to form Hawking pairs.

hence does not give rise to the trans-Planckian problem. But

it differs also in that its position is frequency-dependent, so

that it is impossible to speak unambiguously of ‘the horizon’.

That said, in the limit ω → 0 where the group velocity

approaches c0, the group-velocity horizon also approaches a

limiting point: the point where V = −c0. This low-frequency

limiting horizon is the closest equivalent to the event horizon

of the dispersionless model, since it ensures the existence of a

horizon for all (counter-propagating) wavevectors in a spectral

region around k = 0.

Unfortunately, the simple geometrical picture just

described does not capture the details of the full wave equation;

in particular, it fails to capture the crucial coupling between

the positive-norm u12- and the negative-norm u-branches.

Hawking radiation can thus occur in u-u12 pairs (as well as in

u-v pairs). Whether the emitted quasiparticle has wavevector

ku1 or ku2 depends on which of these is the outgoing wave,

which in turn depends on whether the velocity profile describes

a black- or white-hole configuration:

• Black hole. In this case, since V < 0, we must have

VR > VL, and the u1- and u2-waves exist in the right-

hand asymptotic region but not in the left. Then u1, with

low wavevector, is the outgoing wave. The u-wave is

always left-moving, and is thus emitted into the left-hand

region. The Hawking partners are thus emitted in opposite

directions from the group-velocity horizon, exactly as in

the case of a gravitational black hole.

• White hole. In this case, VR < VL, so the u1- and u2-waves

exist in the left-hand region but not in the right. So it is u2,

with high wavevector, which is outgoing. Moreover, it is

emitted into the left-hand region along with the u-wave:

the Hawking partners are emitted in the same direction!

As earlier remarked, we restrict our attention mainly

to black holes, but the white hole is included here for

completeness, since its behaviour in this respect is so different.

Using super- rather than subluminal dispersion, however, does

not yield drastically different results, merely switching the

group velocities of the waves and hence the directions in which

the quasiparticles are emitted [59].

8.2.3. 0 < ω < ωmax,1: horizonless Hawking radiation.

If both asymptotic regions are subsonic (so that no low-

frequency limiting horizon exists), then the critical frequencies

are ordered as follows: ωmax,2 > ωmax,1 > 0. The smaller
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Figure 11. u1-out-mode in black hole configuration. Here is illustrated the u1-out-mode in the presence of a black hole horizon with
subluminal dispersion. The left panel shows a spacetime diagram of the trajectories of the various wavepackets, which are labelled with the
same symbols used in the dispersion diagram of figure 9, on which the evolution can be traced. Included as an inset is a close-up of the
group-velocity horizon region, where the incoming u2-wave crosses onto the u1-branch at the point marked by a star, ‘bouncing’ off the
group-velocity horizon. Note that the simple geometric picture provided by the dispersion diagram cannot describe coupling into the u- and
v-branches. (The trajectories of the u- and v-waves are almost equal near the group-velocity horizon, making them difficult to distinguish.)
In the right panel are shown the results of numerical wavepacket propagation at three representative times: the asymptotic past, the
interaction with the near-horizon region, and the asymptotic future. This was calculated by specifying the outgoing u1-wave and propagating
it backwards in time. (For these calculations the dimensionless velocity and dispersion profiles of section 11.1 were used: C2(K) = 1 − K2

and U (X ) = (UR + UL)/2 + (UR − UL)/2 tanh(aX ), with UR = −0.5, UL = −1.5 and a = 1.) While the outgoing u1-wave has positive
norm, the u-wave is the only ingoing wave with negative norm; so, according to section 9.2, the norm of the u-wave relative to the u1-wave
gives the creation rate of the outgoing u1-wave.

critical frequency ωmax,1 is strictly non-zero, and a third, low-

frequency regime is available: 0 < ω < ωmax,1. It is shown in

figure 10.

The u1- and u2-waves exist in both asymptotic regions

[85]. Following their variation with V , their wavevectors never

reach the merging point; they experience no group-velocity

horizon, and wavepackets in either of the two modes can

propagate from one spatial infinity to the other.

However, as we noted previously, the negative-norm u-

wave exists regardless of the existence of the additional

solutions. There is no need, as in the dispersionless case, to

make a transition between subsonic and supersonic flow in

order to have two solutions of opposite norm—they already

exist at a single value of V . So they can couple with each other

to produce Hawking radiation, even in the complete absence

of a group-velocity horizon [85]!

Another novel aspect of this regime is that, there being

no group-velocity horizon, u1 and u2 do not degenerate

into a single solution but remain as two completely separate

solutions. They exist in both asymptotic regions, and so each

of them can form an incoming wave or an outgoing wave.

So each of them can couple to the negative-norm u-waves.

There are thus three channels for the radiation, corresponding

to the three distinct Hawking pairs u–v, u–u1 and u–u2, each of

which will be created according to its own spectrum. One of the

latter two spectra will be a low-frequency continuation of that

in the group-velocity horizon regime (ωmax,1 < ω < ωmax,2),

while the other exists only for ω < ωmax,1 and must vanish

outside this region. Generally, then, there are three Hawking

spectra: the two ωmax values mark the cut-off frequencies of

those involving only the counter-propagating waves, whereas

the u–v pair has no cut-off.

8.2.4. Form of the modes. Taking the above considerations

into account, the mode operators differ in the various frequency

regimes by the total number of independent solutions they

contain:

φ̂ω(x)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

âv
ωφv

ω(x) + âu1
ω φu1

ω (x) + âu2
ω φu2

ω (x)

+ â
u†
−ωφu⋆

−ω(x) 0 < ω < ωmax,1

âv
ωφv

ω(x) + âu12
ω φu12

ω (x)

+ â
u†
−ωφu⋆

−ω(x) ωmax,1 < ω < ωmax,2

âv
ωφv

ω(x) + â
u†
−ωφu⋆

−ω(x) ω > ωmax,2,

(65)

where we recall that ωmax,1 or both ωmax,1 and ωmax,2 may

vanish, depending on the nature of the asymptotic velocities.

Note that the modes can be interpreted either as in-modes or

out-modes, which exist in one-to-one correspondence.

9. Hawking radiation in dispersive media

9.1. Transforming between the in- and out-bases

The ω-representation of the stationary modes given in

equation (65) can be expressed as a dot product between a
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Figure 12. u-in-mode in horizonless configuration. Here is plotted the u-in-mode in the absence of a group-velocity horizon with subluminal
dispersion. The flow is entirely subsonic, and the frequency is in the low-frequency (horizonless) regime ω < ωmax,1, so that the u1- and
u2-waves exist everywhere. The situation is thus similar to that described in figure 10, although the simple geometric picture provided by
wavevector evolution on the dispersion diagram cannot account for coupling between the various waves. The left panel shows a spacetime
diagram of the trajectories of the various wavepackets, which are labelled with the same symbols used for the various wavevector solutions
in figure 10. The right panel shows the results of numerical wavepacket propagation at three representative times: the asymptotic past, the
interaction with the inhomogeneity in V , and the future. Note that the u2- and u-waves have almost the same group velocity, so that they lie
on top of each other in the future and are difficult to distinguish. (For these calculations the dimensionless velocity and dispersion profiles of
section 11.1 were used: C2(K) = 1 − K2 and U (X ) = (UR + UL)/2 + (UR − UL)/2 tanh(aX ), with UR = −0.4, UL = −0.8 and a = 1.)
The u-wave is the only one with negative norm; therefore, according to section 9.2, the norms of the outgoing u1-, u2- and v-waves relative
to that of the ingoing u-wave give their respective creation rates.

vector of operators and a vector of modes:

φ̂ω(x) = (· · · âν,in
ω · · ·)

⎛
⎜⎜⎝

...

φν,in
ω

...

⎞
⎟⎟⎠

= (· · · âμ,out
ω · · ·)

⎛
⎜⎜⎝

...

φμ,out
ω

...

⎞
⎟⎟⎠ , (66)

where we have explicitly shown both the in- and out-mode
representations. The generic modes and operators φμ

ω and âμ
ω

stand for all the possible branches for any single value of
ω, including any complex-conjugate modes and Hermitian-
conjugate operators that may appear. (Recall that φμ

ω = φ
μ⋆
−ω

and âμ
ω = â

μ†
−ω; these definitions take care of the negative-norm

modes.) Since both the in- and out-modes form a complete set,
they are related via a linear transformation:⎛

⎜⎜⎝

...

φμ,out
ω

...

⎞
⎟⎟⎠ = S

⎛
⎜⎜⎝

...

φν,in
ω

...

⎞
⎟⎟⎠ . (67)

Plugging this into equation (66), we find a corresponding
transformation for the operators:⎛

⎜⎜⎝

...

âν,in
ω

...

⎞
⎟⎟⎠ = S

T

⎛
⎜⎜⎝

...

âμ,out
ω

...

⎞
⎟⎟⎠ , (68)

where ST is the transpose of S.

S is simply the scattering matrix which describes how the

outgoing modes scatter into ingoing modes when propagated

backwards in time into the infinite past. Since the scalar

product is bilinear and the in-modes are themselves orthogonal

to each other, these coefficients can be written as a scalar

product: Sμν = (φν
ω, φμ

ω ). This also means that the inverse

matrix—which describes the in-modes as linear combinations

of out-modes—is easily obtained through use of the property

(φ2, φ1) = (φ1, φ2)
⋆. In particular, the magnitudes of their

elements are identical: |Sμν | = |S−1
νμ |. In words, the absolute

value of the amplitude of the ν-in-mode when the μ-out-

mode is scattered backwards in time is equal to the absolute

value of the amplitude of the μ-out-mode when the ν-in-mode

is scattered forwards in time. This identity can be useful

when calculating the radiation spectra, as we shall see in

section 11.

If some of the modes scatter into modes with oppositely

signed norm, then, when their amplitudes are substituted in

equation (68), this will result in a mixing of annihilation and

creation operators between the in- and out-bases.

9.2. Spontaneous creation

As in section 5.2, we assume that the field is in the in-

vacuum |0in〉—that is, that there are no incoming particles, and

the quantum state is annihilated by all in-mode annihilation

operators. From equation (68), the expectation value of
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outgoing particles in a particular mode μ is

〈0in|
(
âμ,out

ω1

)†
âμ,out

ω2
|0in〉

= 〈0in|
{
∑

ν

S
⋆
νμ

(
âν,in

ω1

)†
}{
∑

ν

Sνμ âν,in
ω2

}
|0in〉 . (69)

The subsequent algebra is entirely analogous to that in the

derivation of equation (53). As there, the sum of operators

that left-multiplies the in-vacuum state may be reduced to its

creation operator terms, while the other is simply the Hermitian

conjugate of this. Using the fact that the operators of different

states commute, we simply have

〈0in|
(
âμ,out

ω1

)†
âμ,out

ω2
|0in〉 =

∑

νn

∣∣Sνnμ

∣∣2 δ (ω1 − ω2) , (70)

where νn denotes all states of oppositely signed norm to the

state μ. As before (see section 5.2), the occurrence of the δ

function shows that this is a number density. The spectral flux

density—that is, the number of particles emitted per unit time

per unit (angular) frequency interval—is obtained on division

by 2π [60]:

∂2N

∂ω ∂t
= 1

2π

∑

νn

|Sνnμ|2. (71)

Recalling the definition of S in equation (67), the spectral flux

density of particles in the mode μ is proportional to

• the sum of the squared amplitudes of the opposite-

norm in-modes into which the μ-out-mode scatters when

propagated backwards in time; or

• the sum of the squared amplitudes of the μ-out-mode

over all opposite-norm in-modes when they are scattered

forwards in time.

Equations (70) and (71) are the generalizations to

dispersive media of equations (53) and (55). There are three

important differences to note. Firstly, due to the inability to

factorize the dispersive wave equation (60) into u- and v-parts

as in equation (15), it is now possible for u- and v-waves to

couple to each other. This coupling is negligible in the limit of

a slowly varying velocity profile [40], but in general it should

be taken into account (see [71, 76] and [50] for predicted

u–v coupling in BECs). Secondly, pairs created in dispersive

media are not necessarily localized to opposite sides of the

horizon. In the usual black hole case, it is certainly true, for

the created u1- and u-waves have opposite group velocities.

But for a white hole [53], or in the horizonless case where

the u1- and u2-waves exist in either asymptotic region [85],

it is possible to create a u–u2 pair, with the same sign of the

group velocity and hence emitted into the same asymptotic

region16. Finally, unlike the dispersionless case, the scattering

amplitudes in equation (71) are generally unknown, and must

be found either approximately or numerically.

16 Studying the emission from a white hole in BEC, in [53] it was found that

interference between the correlated u- and u2-quasiparticles leads to a very

pronounced ‘checkerboard’ pattern in the density–density correlations.

10. Calculation methods

The dispersive framework just developed does not lead to an

exact analytical derivation of the Hawking spectrum, as in

equation (53). There are no exact solutions akin to (16), valid

for arbitrary velocity profiles. The main exact solutions we do

have are the plane waves (44) whenever V is constant; finding

how these are coupled by inhomogeneities in V requires either

numerical or approximate methods.

There are two arbitrary functions in the wave

equation (60): the velocity profile V (x) and the dispersion

profile c(k). These are defined in the dual spaces of x and

k; therefore, we should be mindful that, depending on their

functional forms, it might be more convenient to work in one

space than the other. If one of these functions appears in the

wave equation as a finite polynomial, for example, then it

will form an exact finite-order differential equation in the dual

space. Since V (x) is taken to be asymptotically constant, only

c(k) can be described as such, leading to an exact differential

equation in x-space which can be solved numerically.

On the other hand, if V (x) is monotonic, then the

appearance of multiple solutions means that the position of

a given wavevector is better defined than the wavevector at a

given position. Moreover, the group-velocity horizon is also

better defined in terms of positions of wavevectors, which vary

quite smoothly in contrast to the abrupt transition from real to

complex wavevectors that the horizon engenders in x-space.

From an analytical point of view, then, the problem is better

suited to the k-space representation.

10.1. Numerical method: differential equation in x-space

We shall first consider the intuitive method of solving the wave

equation in position space through numerical integration, thus

yielding exact solutions. This method is also used in [60, 59,

75, 50, 77].

Assuming a stationary solution φω(x) e−iωt , the wave

equation (60) is transformed into its time-independent form

(−iω + ∂xV ) (−iω + V∂x) φω − c2 (−i∂x) ∂2
x φ = 0. (72)

This is a linear ordinary differential equation. If the phase

velocity c2(k) forms a finite polynomial in k, then the

differential equation is of finite degree and may be integrated

numerically provided appropriate boundary conditions are

specified. Different boundary conditions lead to the various

solutions associated with a given frequency.

As always, V is taken to be asymptotically constant. In

the asymptotic regions, then, the normalized plane waves (44)

are particular solutions, and the general solution is a linear

combination of these:

φω(x) =
∑

μ

cμφμ
ω (x), (73)

where μ is a generic label for the various plane-wave solutions,

and the cμ are arbitrary complex constants. Some of the φμ
ω

may have negative norm, and can always be written as the

complex conjugate φ
μ⋆
−ω to emphasize this. Others may have

complex wavevectors, and since the dispersion relation is real,

these always occur in complex-conjugate pairs. Only that
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Figure 13. Integration of stationary solution. In one asymptotic
region, the solution is chosen to be a particular plane wave.
Equation (72) is then integrated through to the other asymptotic
region, where the solution is a linear combination of plane waves
(73). This is done for all possible plane wave solutions in the
initial region. Thus we find the transfer matrix T appearing in
equations (74) and (75).

wavevector decreasing towards infinity is physically allowed,

so only it can appear with non-zero coefficient in the general

solution (73). Note that, since complex wavevectors do not

correspond to propagating waves, their ‘norm’ is physically

meaningless (it is actually zero [51]), and their amplitudes do

not enter into equations of norm conservation.

The general solution (73) applies in each of the asymptotic

regions separately, with modes and coefficients particular to

their own region. The left- and right-hand solutions are not

independent, but linearly related through the linear differential

equation (72). We may think of the set of plane-wave solutions

in one region as a basis of solutions, and the velocity profile as a

linear operator, transforming between the left- and right-bases.

This is entirely analogous to the linear transformation between

the in- and out-bases, equation (67), except that the spatial

form of the left- and right-modes makes them better suited

to solution by numerical integration. Specifying boundary

conditions appropriate to a single plane wave in one asymptotic

region, equation (72) can be numerically integrated through to

the other region, and its solution there fitted to the sum of plane

waves (73); this is illustrated pictorially in figure 13. Working

through all possible initial plane waves, the transformation

matrix—a transfer matrix, linking two regions in space—is

built up column by column. This yields the matrix T such that
⎛
⎜⎜⎝

...

φμ,left
ω

...

⎞
⎟⎟⎠ = T

⎛
⎜⎜⎝

...

φ
ν,right
ω

...

⎞
⎟⎟⎠ , (74)

while for the coefficients we have⎛
⎜⎜⎝

...

cν,right

...

⎞
⎟⎟⎠ = T

T

⎛
⎜⎜⎝

...

cμ,left

...

⎞
⎟⎟⎠ , (75)

where T T is the transpose of T .

Any in- or out-mode can be solved for in terms of its

scattering coefficients using equation (75). We simply set to

zero all those coefficients corresponding to ingoing or outgoing

plane waves other than the one we are considering, as well

as the coefficients of any exponentially diverging solutions17.

There remains the coefficient of the single incoming or

outgoing wave, which is set to unity to normalize the complete

mode. Plugging these constraints into equation (75) yields

the scattering coefficients of the mode. The norm of each

individual scattered wavevector is simply the squared modulus

of its scattering coefficient, with the inclusion of a minus sign

for those with negative norm. Conservation of norm implies

that the sum of the norms of the scattered waves should equal

unity, the norm of the single ingoing or outgoing wave; this is

very useful as a numerical check.

10.2. Analytic method: the step-discontinuous limit

While numerical integration as just described can be applied

to an arbitrary velocity profile, there exist two limiting regimes

in which instructive approximation methods can be applied.

These regimes relate to the steepness of the velocity profile

in relation to the fundamental length scale determined by the

dispersion. If the velocity changes over a distance much longer

than this dispersive length scale, then the system is in the

slowly varying regime of geometrical optics; an analytical

method applicable to this regime is described in detail in

section 10.3. On the other hand, if the velocity changes over a

distance significantly shorter than the dispersive length scale,

then the waves of the system are unable to resolve the details of

the change, so that shortening the transition region even further

will have no significant effect. In this regime, the system is well

approximated by a velocity profile with a step discontinuity18.

This type of profile is studied in [75, 76, 53, 86].

The step-discontinuous velocity profile is exactly solved

by a sum (73) of plane waves (and non-divergent evanescent

waves) in each of its constant-velocity regions, and these

solutions must be matched appropriately at each discontinuity.

The matching conditions are determined by the differential

equation (72): as the discontinuous limit is approached by

an ever-steepening profile, equation (72) must be satisfied

throughout the steepening process. So long as the system is

dispersive so that equation (72) contains spatial derivatives

of order greater than 2, this limit is well defined. Suppose

for definiteness that the differential equation is of order 2n,

the phase velocity being described by the order (2n − 2)

polynomial:

c2(k) =
n−1∑

j=0

C jk
2 j. (76)

17 If the divergence of a complex wavevector is too strong, it may swamp

the numerics and make the calculated solution unreliable [59]. The solution

can be tested by checking whether the norm is conserved, and whether the

solution is significantly affected by increasing the accuracy and precision of

the numerical integration.
18 A detailed study in [86] shows that the relevant dispersive scale to be used in

such a comparison is actually the cut-off frequency ωmax, and not—as might

be expected—the wavevector at which the dispersion profile deviates from the

dispersionless model.
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Then the stationary field φ and its first 2n−2 spatial derivatives

are continuous everywhere, while at a point of discontinuity

where V changes abruptly from V − to V +, the (2n − 1)st

derivative of φ has the discontinuity

(
∂2n−1

x φ
)+ −

(
∂2n−1

x φ
)− = (−1)n

Cn−1

[iωφ − (V + + V −)∂xφ]

× (V + − V −). (77)

Since φ and ∂xφ are assumed continuous everywhere, there

is no ambiguity in their values at the point of discontinuity.

These conditions—the continuity of φ through ∂2n−2
x φ and

the discontinuity condition (77) for ∂2n−1
x φ—provide 2n

independent relations between the 2n unknown amplitudes

of the ingoing or outgoing waves (relative to the amplitude of

the single outgoing or ingoing wave, typically set to unity).

This is then a solvable linear system. Since there is no need

to perform numerical integration or to build up the transfer

matrix T by considering one asymptotic plane wave at a time,

the solution can be found much faster than that in the general

case of section 10.1.

Condition (77) is particular to the system obeying wave

equation (60), though other systems will admit analogous

discontinuity conditions19. What is noteworthy is that, in the

presence of dispersion, this infinite-steepness limit exists and

can be calculated, for the reason outlined above: dispersion

introduces a fundamental length scale beneath which the

details of the velocity transition cannot be resolved. The

Hawking flux must therefore approach a finite limit in

the limit of infinite steepness. This is in stark contrast to the

dispersionless case, where the Hawking temperature is simply

proportional to the steepness at the horizon, and would thus

diverge in the discontinuous limit. From a physical viewpoint,

the absence of dispersion allows infinite resolution, so that

a decrease of the length of the transition region will always

be ‘visible’ to the waves of the system, and will therefore

affect the Hawking flux. This is yet another rewording of

the trans-Planckian problem, and the existence of the infinite-

steepness limit is another manifestation of the regularization

of this problem brought about by dispersion.

10.3. Analytical method: the slowly varying limit

The earliest analytical descriptions of Hawking radiation in

dispersive media [22, 78] tackle the problem in k-space,

where horizons are better defined and transform back to x-

space via the saddle-point approximation. The solution in

k-space is approximated by linearizing the velocity profile

in the vicinity of the horizon. This is a severe limitation of

the method, for even if the geometrical optics approximation

holds, it is not necessarily true that higher order derivatives

at the horizon are negligible. Other treatments also rely on

linearization at the horizon [79, 80], or on a specific form

for V [40].

Here, an alternative theory is presented (as also in

[87, 81]). Inspired by earlier treatments, it is developed

19 Reference [76] gives a similar such condition in a one-dimensional BEC,

while [87] works out condition (77) in detail and gives a similar derivation for

nonlinear light interaction in optical fibres.

mainly in k-space, and uses the saddle-point approximation

to transform back to x-space. But V is not linearized; it is

completely general, except that it is assumed to be slowly

varying in such a way that a WKB-type approximation is

justified.

10.3.1. Solution in k-space. We take the Fourier transform of

equation (72) by making the substitutions φ → φ̃, x → i∂k and

∂x → ik. Rearranging slightly, we find that the wave equation

in k-space takes the form[(ω

k
− V (i∂k)

)2

− c2(k)

]
(kφ̃) = 0. (78)

The velocity profile can be characterized by a scale, and

we indicate this by including a parameter ǫ in its argument:

V (i∂k) → V (iǫ∂k); this is later included in the definition of V

by formally setting ǫ = 1. The purpose of ǫ is as a measure of

the steepness of V , so that a ‘slowly varying’ velocity profile

can be defined as that remaining in the limit of small ǫ.20

We make the ansatz kφ̃ = exp (ϕ̃), where ϕ̃ may be Laurent-

expanded in powers of ǫ: ϕ̃ = ǫ−1(ϕ̃0 + ǫϕ̃1 + ǫ2ϕ̃2 + · · ·).
Plugging this ansatz into the left-hand side of equation (78)

yields a Taylor series in ǫ:
[(

ω

k
− V (iǫ∂k)

)2

− c2(k)

]
(kφ̃)

=
[[(

ω

k
− V (i∂kϕ̃0)

)2

− c2(k)

]

+ ǫ

[
∂kϕ̃1 + 1

2
∂k ln(V ′(i∂kϕ̃0)c(k))

]
+ · · ·

]
(kφ̃).

Equation (78) is solved by setting the coefficient of each

power of ǫ to zero, yielding an infinite sequence of coupled

equations for the coefficients ϕ̃ j. We implement the slowly

varying approximation for V by truncating the Taylor series

at the first power of ǫ. This leaves only the two lowest order

equations:
(ω

k
− V (i∂kϕ̃0)

)2

− c2(k) = 0, (79)

∂kϕ̃1 + 1

2
∂k ln(V ′(i∂kϕ̃0)c(k)) = 0. (80)

Equation (79) is precisely the dispersion relation (61). The

argument of V is the position x, but imposing equation (79)

selects a particular position for each value of k: that position

at which k is a solution of the dispersion relation for the local

value of V . Let us denote this wavevector-dependent position

by χ(k), and note its distinctness from the position variable x.

Explicitly, χ(k) is defined such that
(ω

k
− V (χ(k))

)2

− c2(k) = 0, (81)

or, inverting this relation,

χ(k) = V −1
(ω

k
− c(k)

)
. (82)

20 In a mathematical sense, ǫ plays here a role analogous to that played

by � in the WKB approximation in quantum mechanics. Just as the

WKB approximation works well in the semi-classical limit, the present

approximation works well in the geometrical optics limit; both cases refer

to a ‘slowly varying’ background.
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Note that we have chosen the sign of the square root of c2(k) to

correspond with the counter-propagating u-modes; changing

this sign gives another, independent, function corresponding

to the v-modes, but we shall not consider this here21.

Equation (79) is solved by setting i∂kϕ̃0 equal to χ(k), or,

integrating,

ϕ̃0 = −i

∫ k

χ(k′) dk′ + C0, (83)

where the lower limit of integration is omitted as it can be

incorporated into the constant of integration C0.

The second of our sequence of equations, equation (80),

may now be solved by substituting χ(k) for i∂kϕ̃0, and it is

easily seen that

ϕ̃1 = − 1
2

ln(V ′(χ(k))c(k)) + C1. (84)

Plugging the solutions for ϕ̃0 and ϕ̃1 into the original ansatz,

we find the approximate k-space solution

φ̃ (k) ≈ �0

k
√

V ′(χ(k)) c(k)
exp

(
−i

∫ k

χ(k′) dk′
)

, (85)

where the constants of integration C0 and C1 are incorporated

into the overall prefactor �0.

The economical value of the k-space representation is

demonstrated by equation (85). In the x-space representation,

the number of independent solutions can (depending on

the dispersion relation) be arbitrarily large, whereas in

k-space we have found only two independent solutions,

corresponding to the counter- and co-propagating modes;

neglecting the latter, the solution is uniquely determined

up to an unimportant multiplicative prefactor. The question

inevitably arises: How can these dramatically different

dimensionalities be reconciled, when the two representations

ostensibly describe one and the same system? The answer

is that, in Fourier transforming back to x-space, the k-space

solution (85) can yield different x-space solutions depending

on the integration contour taken in the complex k-plane [22].

Just as the precise linear combination of x-space solutions is

selected by appropriate boundary conditions, so the integration

contour in k-space is also selected by appropriate boundary

conditions; but the latter—especially in the presence of a

horizon—is much easier to identify.

10.3.2. Transforming to x-space: Saddle-point approximation.

Inverse Fourier transforming equation (85) to find the x-space

solution,

φ (x) =
∫ +∞

−∞
φ̃ (k) eikx dk

≈
∫ +∞

−∞

�0

k
√

V ′(χ(k)) c(k)
exp

(
ixk − i

∫ k

χ(k′) dk′
)

dk

=
∫ +∞

−∞
A(k) exp (iθ (k)) dk , (86)

21 The independence of the position functions corresponding to the u- and v-

modes shows that, to this level of approximation, these modes are decoupled

from each other. So, while we could perform the following analysis for v-

modes, we would not predict any scattering from u- into v-modes or vice

versa. This corroborates the fact that the u–v coupling becomes negligible in

the slowly varying regime [40].

where we have defined

A(k) = �0

k
√

V ′(χ(k))c(k)
, θ (k) = xk −

∫ k

χ(k′) dk′. (87)

Its integrand taking the form of an amplitude multiplied by a
phase factor, the integral in equation (86) seems to lend itself
well to the saddle-point approximation. This observation is
corroborated by noting that, keeping the scale parameter ǫ, it
would appear only as a factor of 1/ǫ multiplying the phase
θ (k) (with x rescaled by ǫ so that ǫx remains constant). So, in
the limit of small ǫ—the limit in which our approximation for
φ̃(k) is valid—the saddle-point approximation also becomes a
valid means of evaluating the inverse Fourier transform in the
asymptotic regions.

The saddle points of the phase θ (k) are simply those
points in the complex k-plane at which the derivative ∂kθ (k)

vanishes. From the second of equations (87), we see that such
points occur where x − χ(k) = 0; recalling the definition of
χ(k) in equations (81) and (82), this condition simply inverts
the relationship between position and wavevector so that, for
a given x, the saddle points lie at those values of k which are
solutions of the dispersion relation for the local value of V . As
x is varied from one asymptotic region to the other, the saddle
points trace out all values of k which solve the dispersion
relation (81) for real x; in particular, they vary continuously
between wavevector solutions in the left-hand region and those
in the right, at which extremes χ(k) is singular. We shall denote
the various wavevector solutions by κμ(x), so as not to confuse
them with the wavevector variable k.

Consider the example of figure 14, which shows the
imaginary part of χ(k) for the example velocity and
dispersion profiles specified later in section 11.1. The locus
of saddle points (equivalently, of wavevector solutions) for
real x is shown as blue dashed lines. This forms two
disconnected structures. On the right, with real positive
k, are the positive-norm solutions, intersected by complex-
conjugate wavevector solutions. This crossbow-like structure
is symptomatic of the presence of a group-velocity horizon: at
the point of intersection, where the group velocity vanishes,
two real wavevector solutions merge and form complex-
conjugate wavevector solutions beyond the horizon. The real
wavevectors on either side of the group-velocity-horizon point
are precisely the u1- and u2-branches. On the left, with real
negative k, lies the u-branch, which does not experience a
horizon and therefore exists throughout the real space, in
agreement with section 8.1.

The saddle-point approximation treats the integral of an
amplitude times a phase factor—as in equation (86)—as a
sum of contributions from the saddle points of the phase. In
the vicinity of a saddle point, the phase is Taylor-expanded to
second order:

θ (k) ≈ θ (κμ(x)) + 1
2
∂2

k θ (κμ(x)) (k − κμ(x))
2

. (88)

Substituting back into the integrand of equation (86), and
assuming that the amplitude varies slowly enough so that it
can be replaced by the constant value A(κμ(x)), the integrand
takes the simple Gaussian form:

A(k) exp (iθ (k)) ≈ A(κμ(x)) exp (iθ (κμ(x)))

× exp
(

i 1
2
∂2

k θ (κμ(x)) (k − κμ(x))
2
)

. (89)
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Figure 14. Phase integral in momentum space. Using the dispersion and velocity profiles of section 11.1 (plotted in figure 15), here the
colour shading shows the imaginary part of the position χ(k)—the darkest shade represents −π/2a, the lightest +π/2a—where the
wavenumber k is taken as a complex variable. The dashed blue curves show where χ(k) is real, and split into two disconnected regions: the
cross-bow shape on the right contains (on the real axis) the positive-norm u1- and u2-branches, as well as the complex conjugate
wavevectors they connect to beyond the group-velocity horizon; the line on the left contains the negative-norm u-wavevectors. The
extremities of these curves correspond to the solutions in the asymptotic constant-velocity regions; those on the left are shown in black,
those on the right in red (lighter shade in the print version), and the arrows show the directions of steepest descent through these saddle
points. When solving the wave equation, the boundary condition is that, beyond the horizon, only the exponentially decreasing solution is
allowed; therefore, for large negative x, the integration contour must be able to pass through the saddle point near kdec

L in its direction of
steepest descent—this contour is shown in black, and does not contain any contribution from the other left-hand (colour black) saddle
points. As x varies continuously into the right-hand asymptotic constant-velocity region, this contour is continuously deformable to the red
(lighter shade in the print version) one, which is able to pass through all three of the right-hand (colour red (lighter shade in the print
version)) saddle points in their directions of steepest descent. The relative phases between the various plane waves are given by the integral
of χ(k) between their corresponding wavevectors, along the path selected by the integration contour. When comparing the positive and
negative norm components, this integral traverses a branch cut of χ(k) and hence contains an imaginary part, which can be isolated from the
real part by taking the closed contour integral around the entire branch cut. This gives their relative amplitudes—and the Hawking
temperature—as described by equations (95) and (96).

Upon integration, this is easily evaluated; but before we

can do so, we must check that the resulting integral is

convergent. It will only be so if the integration contour can

be deformed to pass through the saddle point in its direction

of steepest descent, i.e. the direction in which the exponent

i 1
2
∂2

k θ (κμ(x)) (k − κμ(x))2 is negative. In this direction, the

integrand is indeed a convergent Gaussian function, at least in

the vicinity of the saddle point, and, so long as the magnitude

of the phase increases fast enough (equivalently, so long as ǫ

is small enough, or the velocity profile is sufficiently slowly

varying), the Gaussian function converges to zero quickly so

that only the behaviour in the vicinity of the saddle point is

important in the evaluation of the integral. (Retrospectively,

this justifies replacing the amplitude A(k) with its value

A(κμ(x)) at the saddle point.) Then the integral over this

relatively small region can be treated as an integral over the

entire real line, the differences far from the saddle point having

no significant effect. So a single saddle point, for which the
contour can be deformed to lie along the direction of steepest
descent, contributes approximately

A(κμ(x)) exp (iθ (κμ(x)))

×
∫ +∞

−∞
exp

(
i
1

2
∂2

k θ (κμ(x)) (k − κμ(x))
2

)
dk

= A(κμ(x)) exp (iθ (κμ(x)))

√
2π

i∂2
k
θ (κμ(x))

(90)

to the integral of equation (86). If the integration contour passes
through several such saddle points, these contributions are
added together.

From the definition of χ(k) in equations (81) and (82),
and after some algebraic manipulation, the second derivative
of the phase is given by

∂2
k θ (κμ(x)) = −∂kχ(κμ(x)) = vg(x, κ

μ(x))

κμ(x)V ′(x)
. (91)
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Here, vg(x, k) = V (x) + ∂k(c(k)k) is the group velocity

of the wavevector k at the position x. Applying directly to

equation (86), substituting the saddle-point contributions (90)

and replacing the amplitudes and phases of equations (87), we

find

φ (x) ≈
∑

μ

A(κμ(x))

√
2π

i ∂2
k
θ (κμ(x))

exp (i θ (κμ(x)))

= �0

√
2π
∑

μ

e±i π
4

1√
|c(κμ(x)) κμ(x) vg(x, κμ(x))|

× exp

(
i x κμ(x) − i

∫ κμ(x)

χ(k′) dk′
)

→ �0

π√
2

∑

μ

φμ
ω (x)

× exp

(
−i

∫ κμ(±∞)

χ(k′) dk′ ± i
π

4

)
. (92)

In the last line, the solution has been restricted to the

asymptotic constant-velocity regions, x → ±∞. There, the

solutions κμ become independent of x, and are equal to

the wavevector solutions for the given asymptotic flow

velocities. The various plane wave solutions and their k-

dependent amplitudes are found to be, up to a constant

prefactor, the ω-normalized plane waves of equation (44).

So the solution in the asymptotic regions is, as one would

expect, just a linear combination of these various plane wave

solutions. What is remarkable about equation (92), though, is

that the relative coefficients of these plane wave solutions are

not arbitrary: they are determined by the phase integral of χ(k),

which in turn encodes the effect of the full velocity profile on

the scattering between the different wavevector solutions. The

real part of this integral gives the relative phases between the

plane waves, and, since χ(k) can be analytically continued into

the complex k-plane, the integral can also contain an imaginary

part, yielding their relative amplitudes. The only ambiguity is

in the path taken in the complex plane between the various

wavevectors, or, more specifically, its topology with respect

to the singularities and branch cuts of χ(k). This is exactly as

noted previously: in the k-space representation, the selection of

a potentially large number of coefficients of x-space solutions

is replaced by the selection of a single contour in the complex

k-plane.

10.3.3. Selection of the contour. As previously stated, the

integration contour is selected so as to satisfy appropriate

boundary conditions. These boundary conditions relate to the

‘in’ or ‘out’ nature of the mode we are aiming for, for this

determines that certain plane waves—those in- or outgoing

waves which do not correspond to the single in- or outgoing

wave of the mode—must have zero amplitude. We must

therefore single out the particular mode that relates to Hawking

radiation. Neglecting the v-branch, the outgoing waves are

u1 and u, so the radiation is produced in u1–u pairs and the

relevant modes are the u1-out and u-out-modes. Of these, the

former is the easiest to calculate, for in the presence of a group-

velocity horizon and for both subluminal and superluminal

dispersions, it has a purely evanescent character in one of the

asymptotic regions. (This mode is illustrated by a spacetime

diagram and a wavepacket simulation in figure 11.) The u1-

out-mode thus contains only an exponentially damped solution

beyond the horizon. This is the boundary condition which

selects the required integration contour.

Let us return to figure 14. Firstly, we note that, to ensure

convergence, the integrand of equation (86) must tend to zero at

the limits of the integral. This restricts the possible directions in

which the integration contour can tend to infinity. The simplest

(though by no means the only) way in which this condition can

be satisfied is to have the contour tend from −∞, where the

imaginary part of χ(k) is positive, to +∞, where the imaginary

part of χ(k) is negative. In figure 14, we see then that there is a

tendency of the contour to lie on the lower half of the complex

k-plane.

Now consider the boundary condition of pure exponential

damping. The wavevectors of interest are those in the

asymptotic regions, which lie at the extremities of the locus

of saddle points shown as blue dashed lines. These have been

colour coded, with red representing the wavevector solutions

in the right-hand subsonic region, and black representing the

wavevector solutions in the left-hand supersonic region. It is in

the left-hand region, beyond the horizon, that the evanescent

modes exist. There, the exponentially damped solution has

negative imaginary part: it is that complex wavevector lying on

the lower-half complex plane, at the lower end of the crossbow.

Also shown in figure 14 are the directions of steepest descent

through the extreme saddle points22. For the exponentially

damped wavevector, this direction is almost horizontal. The

contour, then, is that from −∞ to +∞ which lies entirely on

the lower-half plane. It is shown in black in figure 14.

The specification of the contour determines the complete

solution in x-space through insertion into equation (92),

because the contour can be continuously deformed so long as

its topology with respect to the singularities and branch cuts

of χ(k) is not changed. That is, we may move the contour in

the complex k-plane, but so long as we do not cross any of the

branch cuts where χ(k) is discontinuous (where light shading

meets dark shading in figure 14), the result of equations (86)

and (92) do not change. The final check, then, on whether

the selected contour is the correct one is to see whether

it can be deformed so as to pass through the other (colour

black) saddle points in their directions of steepest descent. It

cannot; therefore, only the exponentially damped wavevector

contributes to the solution in the left-hand supersonic region,

and the selected contour is indeed that which corresponds to

the u1-out-mode.

10.3.4. Extracting the Hawking temperature. Recalling

equation (70), the Hawking flux is determined by the squared

amplitude of the oppositely normed ingoing wave relative to

that of the outgoing wave. For the u1-out-mode, as shown

in figure 11, the scattering process takes place entirely in the

right-hand subsonic region. So, having selected the integration

contour using boundary conditions at x → −∞, we now

22 The directions of steepest descent are actually calculated in the limit as

x → ±∞, for the extreme points themselves are singular and the directions

of steepest descent are ill-defined precisely at those points.
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consider the solution at x → +∞. The saddle points now

lie at the wavevector solutions u, u1 and u2 coloured red

in figure 14. Which of these wavevectors contribute to the

solution is determined by whether the integration contour

can be deformed to pass through these saddle points in their

directions of steepest descent; it is easily seen that it can

be deformed to pass through all three of them. The x-space

solution in this region is therefore a sum of the three plane

waves, one outgoing (u1) and two ingoing (u2 and u), with

relative amplitudes given by equation (92). Denoting the

amplitudes of the ingoing waves u2 and u as αω and βω,

respectively, and assuming that the overall mode is normalized

so that the outgoing u1-wave has unit norm, we have, by norm

conservation,

|αω|2 − |βω|2 = 1. (93)

The Hawking flux is determined by the amplitude βω of the

u-wave, the negative norm ingoing component. Defining the

frequency-dependent temperature T (ω) in accordance with

the form of the Planck spectrum of equation (53),

|βω|2 = 1

e�ω/kBT (ω) − 1
, (94)

and utilizing equation (93), we have
∣∣∣∣
αω

βω

∣∣∣∣
2

= exp

(
�ω

kBT (ω)

)
. (95)

Now, |αω/βω|—the amplitude of the u2-wave relative to the u-

wave—is, according to equation (92), given by the imaginary

part23 of the phase integral of χ(k) from ku
R to ku2

R along

a path consistent with the integration contour selected in

section 10.3.3 24. In figure 14, such a path lies in the lower-half

complex k-plane, an important detail in that it determines how

the central branch cut is to be circumvented.

Although the result could be left formulated in this way,

it is made more elegant by noting that the imaginary part of

the phase integral can be isolated by closing the contour in the

upper-half complex plane. Being an analytic continuation of

an essentially real-valued quantity, the wavevector-dependent

position χ(k) must obey the relation χ(k⋆) = χ ⋆(k). So,

if we were to choose the contour to lie on the upper-half

plane—equivalently, transforming the integration variable k

to its complex conjugate k⋆—this would simply result in the

complex conjugate of the original integral. But, on closing

the contour in this fashion, we subtract this value from the

original integral, so that the real part is cancelled out while

the imaginary part is doubled. Since the phase integral appears

as an exponent in equation (92), this closed phase integral

23 The real part of the integral gives their relative phase, which is unimportant

in calculating the flux.
24 Note that the integral taken between ku1

R and ku2
R is purely real, so that,

according to this prediction, the incoming u2-mode and the outgoing u1-

mode have equal amplitudes, and the exponentiated imaginary part of the

integral taken between the positive- and negative-k branches can equally

well be interpreted as |αω/βω| or as simply |βω|. This is a defect of the

approach, and we observe that of these two possibilities, the phase integral

should give |αω/βω|, since this relates the two high-magnitude wavevectors

where the amplitude A(k) (defined in equations (87)) is better behaved. Other

approaches combining WKB techniques in momentum and position space are

able to resolve this issue—see [78, 82] and [83].

gives precisely the squared relative amplitude |αω/βω|2, and

by comparison with equation (95) we have

�ω

kBT (ω)
=
∣∣∣∣
∮

χ(k) dk

∣∣∣∣ , (96)

where the closed integration contour is taken around the central

branch cut, as shown by the black curve in figure 14.

Equation (96) is a generalization of the dispersionless

result (54), which, as we now show (see also [81]), it

reproduces. The phase integral of equation (96), instead of

an integral of position over wavevector, may also be written

as an integral of wavevector over position by integration

by parts:
∮

χ(k) dk = −
∮

κ(x) dx. While in the general

dispersive case the branch points and the integration contour

take complicated forms in position space (see, e.g., [51, 84] for

a position-space analysis of Bogoliubov modes in BEC), the

dispersionless case is very simple there because it has only one

singular point: the event horizon itself, where the wavevector

diverges. This is easily seen by examining the closed form

of the position-dependent wavevector (recall equation (22)):

κu(x) = ω/(V (x) + c), which is analytic in the complex x-

plane except at the point where V (x) = −c, where it has a

simple pole. The closed contour integral is equal to 2π times

the residue of this pole; writing V (x) = −c + αx + · · ·, it is

seen that the residue is ω/α. Then we have

�ω

kBT
=
∣∣∣∣
∮

κu(x) dx

∣∣∣∣ =
∣∣∣∣
∮

ω

αx
dx

∣∣∣∣ =
2πω

α
, (97)

from which we retrieve equation (54).

Equation (97) also holds in the low-frequency limit of

the dispersive model, for then the central branch cut closes in

closer to the origin, and since the dispersion profile is assumed

to approach c(k) = c0 in this limit, we can then treat the phase

integral as if the system were dispersionless. So, as ω → 0,

equation (96) reproduces precisely the dispersionless result

(54), where the horizon is understood as the low-frequency

limiting horizon where V (x) = −c0. This can be taken as

a measure of the applicability of equation (96): if the low-

frequency temperature T (ω = 0) is equal to that predicted

by the dispersionless model, then the phase integral of

equation (96) can be used to find the temperature for higher

frequencies. We shall examine a model in section 11 in

which this is found to be the case, and we shall see how

the applicability of equation (96) is related to the criterion of

a ‘slowly varying’ velocity profile.

11. Application to a simple model

Apart from restricting ourselves to dispersion relations of the

subluminal type, the dispersive framework of previous sections

has been kept fairly general, and we have noted only the main

differences occurring when superluminal dispersion is used.

In this section, let us turn to a specific example, providing a

quantitative account of, but mainly to get a feeling for the

qualitative nature of the expected Hawking radiation. The

velocity and dispersion profiles used are kept as simple as

possible, so that the qualitative properties discovered may still

be expected to apply quite generally.

31



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 163001 Tutorial

0 kd

0

c0kd

k

c k k

2 α

VR

VL

x

V x

(a)
(b)

Figure 15. Specifying dispersion and velocity profiles. (a) The solid line plots c(k)k, with c(k) as in equation (98). The dotted line plots the
corresponding dispersionless curve, c0k. (b) The velocity profile, given by equation (99), is monotonic and approaches asymptotically
constant values. The parameter α is inversely related to the length of the transition region.

11.1. Specifying the model

11.1.1. Dispersion profile. The dispersionless case

corresponds to a wavelength-independent phase velocity:

c2(k) = c2
0. Since dispersive effects arise through the

occurrence of higher order derivatives in the wave equation—

and bearing in mind that c2(−k) = c2(k) for an isotropic

medium—the simplest deviation from the dispersionless

model is through the inclusion of a quadratic term

in c2(k) 25:

c2 (k) = c2
0

(
1 − k2

k2
d

)
. (98)

This dispersion relation is illustrated in figure 15(a). Note

that it reduces to the dispersionless form when k2/k2
d ≪ 1.

The parameter kd , then, indicates how large k must be before

dispersive effects begin to be felt.

In line with the framework we have so far considered,

we have chosen the dispersion relation (98) to be subluminal:

the phase velocity of short wavelengths drops below the long-

wavelength limit c0. It is also possible to include the dispersive

term with a plus sign, in which case the dispersion would

be superluminal. Indeed, a quadratic superluminal dispersion

relation—exactly of the type (98) with the sign switched—

is obeyed by the excitations of BECs [51], and has been

numerically studied quite extensively in [59, 50, 85, 86]. We

shall find that the results obtained from subluminal dispersion

are qualitatively very similar.

25 Dispersion relation (98)—also used in [60]—has a strict cut-off wavevector

kd , at which the free-fall frequency vanishes. This differs from the subluminal

dispersion relations shown in figures 6–10, where a limiting free-fall frequency

is approached at high k, similar to the dispersion considered in [21]. So long

as the flow velocity does not become too small – as will be the case here –

there is no significant difference in the behaviour of these two forms, since the

wavevector remains well within the cut-off. For low asymptotic velocity, the

wavevector may reach kd , at which point this dispersion relation breaks down

[60]. However, even the flat dispersion relation becomes problematic in the

low-velocity limit; see ‘Conceptual issues’ of section 12.2, and [60, section

VI].

11.1.2. Velocity profile. Endeavouring to keep the physical

system as simple as possible, we shall use a velocity profile that

varies monotonically between two asymptotic values; such a

profile shall then be invertible, and can be used in the WKB-

type analysis of section 10.3. We choose

V (x) = 1
2
(VR + VL) + 1

2
(VR − VL) tanh (αx) . (99)

This is illustrated in figure 15(b). VR and VL are the asymptotic

values of V (x) as x tends to +∞ (the right-hand region)

or −∞ (the left-hand region), respectively. The parameter

α characterizes the steepness of the velocity profile, but

this also depends on the difference VR − VL; a more direct

interpretation of α is that it governs the length of the region

of transition between VL and VR, which is of order 2/α as

shown in figure 15(b). As α → ∞, the velocity approaches

the discontinuous step profile

Vα→∞(x) = VL θ (−x) + VR θ (x), (100)

where θ (x) is the Heaviside step function, equal to zero for

x < 0 and unity for x > 0. In this limiting case, the treatment

described in section 10.2 may be applied.

We restrict our attention to a left-moving and accelerating

flow, i.e. VL < VR < 0. Therefore, if a horizon is present, it

corresponds to a black hole horizon. White hole spectra are

studied in [59].

11.1.3. Normalizing the wave equation. With the dispersion

and velocity profiles given by equations (98) and (99), the wave

equation (60) contains five parameters: c0 and kd from the

dispersion profile, and VL, VR and α from the velocity profile.

However, two of these correspond to the scaling of space and

time; in redefining the variables to make them dimensionless,

we can reduce the number of independent parameters to 3.

Let us proceed by defining a dimensionless velocity,

which is the flow velocity divided by the low-wavevector

phase velocity: U ≡ V/c0 and also by defining a dimensionless

distance, which is the ‘phase’ of a wave with wavevector kd :

X ≡ kdx. Then a natural unit of time is 1/c0kd , and we define
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the dimensionless time T ≡ c0kdt. Dimensionless wavevectors

and frequencies are defined accordingly: K ≡ k/kd and

� ≡ ω/c0kd . With these definitions, phases, which are

anyway dimensionless quantities, are unchanged: kx = KX

and ωt = �T . In terms of the dimensionless variables, the

wave equation (60) becomes

(∂T + ∂XU ) (∂T + U∂X ) φ − C2 (−i∂X ) ∂2
Xφ = 0, (101)

where the rescaled dispersion relation is

C2 (K) = 1 − K2. (102)

and the rescaled velocity profile is

U (x) = 1
2
(UR + UL) + 1

2
(UR − UL) tanh (aX ) . (103)

The wave equation now contains only three parameters, and

these relate only to the velocity profile U (X ):

• UR ≡ VR/c0 and UL ≡ VL/c0, the asymptotic values of the

flow velocity relative to the low-wavevector wave speed,

and

• a ≡ α/kd , a parameter that combines steepness of the

flow velocity profile with the wavevector characterizing

dispersion. Since the length of the region over which

V changes is of the order of 2/α, we see that 1/a is

approximately the phase difference of the wavevector

kd across this transition region. So, if a is small, this

transition region is many cycles of kd wide, whereas,

if a is large, V varies quickly over only a few cycles

of kd . The geometrical optics and step function limits

of sections 10.3 and 10.2 correspond to the limits of

small and large a, respectively; the transition between

these regimes will be discussed in section 11.2.3 (see

also [86, 87]).

Although in principle the values of these parameters can

be set arbitrarily, there will typically be practical limits. This

is particularly relevant for the steepness parameter a, since the

same dispersive effects which regulate the singular nature of

the horizon will also tend to smooth out the sharpness of the

velocity transition. In BEC, for example, they are regulated by

the so-called healing length, which determines both the scale

of short distance dispersion and the minimum length of the

transition region.Thus a = 1 then represents a value which

would be difficult to exceed in practice26.

The difference in the asymptotic velocities can, in some

contexts, also be limited. Nonlinear optics provides a good

example: a light pulse induces an effective velocity difference

of the order of the change in refractive index, typically no

more than 10−3 [88, 87]. There would seem to be no generally

applicable limits to the velocity values, however.

11.1.4. Required modes. Before we can use the S-matrix

of section 9 to calculate the quasiparticle creation rates,

we must first select the appropriate modes whose scattering

amplitudes encode their values. For the case of a black hole

velocity profile with group-velocity horizon, we have actually

already found such a mode in section 10.3.3, since it is the

26 In principle, however, arbitrarily high steepness can be achieved by suitably

combining an external potential with a spatially varying interaction constant

[71, 76, 53].

boundary conditions appropriate to the desired mode which
there determine the integration contour in momentum space.
This was the u1-out-mode—illustrated in figure 11—which
happened to have a single exponentially damped solution in
the left-hand supersonic region. Now, whereas the analytical
approximation of section 10.3 treats u- and v-modes as
decoupled, this is not true in general, and through numerical
integration the coupling is included automatically. We should
thus also account for the v-mode. As can be seen in figure 11,
the ingoing v-wave appears in the right-hand subsonic region
along with all the other propagating waves. So it remains true
that the full u1-out-mode is exactly equal to the left-mode
which is purely a damped exponential in the left-hand region27,
and it may be found by straightforward integration, without
any subsequent linear transformation. Since the u-wave is the
only one with opposite norm to u1, the creation rate of the
u1–u pair is (as found in section 9.2) given by the relative
squared amplitude of the ingoing u-wave compared to that of
the outgoing u1-wave.

There is another possible creation channel for this setup:
the u- and v-waves have opposite norm, so u–v pairs can be
created. Their creation rate is given by the relative squared
amplitude of the ingoing u-wave to that of the outgoing
v-wave in the v-out-mode. However, since the v-wave is
always left-moving, the outgoing v-wave is in the left-hand
supersonic region, where the evanescent waves also exist.
There can be a problem with numerical stability when we try
to isolate the left-hand v-wave, since numerical integration in
the left-hand region—no matter what the initial conditions—
will tend to lead to exponential growth [60, 59]. That said, in
the limiting step function profile there is no such problem in
calculating the v-out-mode, since this involves only matching
at a single point and no numerical integration.

Finally, consider the case when there is no group-velocity
horizon. Then all three of the waves u1, u2 and v can be
outgoing, so all three of them can be created by pairing with
the u-wave. As we have just been considering, their creation
rates could be calculated by calculating each of their out-
modes and singling out the relative squared amplitude of the
ingoing u-wave. However, recall from section 9 that this is
equivalent to summing their relative squared amplitudes over
all in-modes of negative norm. This latter approach is the
most economical because there is only one such in-mode,
corresponding to the u-wave. It is shown in figure 12, where
it can be seen that it contains only the u- and u1-waves in
the right-hand region, and no u1-wave in the left-hand region.
Two integrations are required to calculate it: we find first the
u1-right and u-right modes, determine the amplitudes of their
left-hand components, and then form the linear combination
which exactly cancels the u1-wave in the left-hand region.
From the resulting mode, the creation rates are the squared
amplitudes of the outgoing u1-, u2- and v-waves relative to
that of the ingoing u-wave.

11.1.5. Predictions. Before turning to numerical results, let
us first extract the analytical predictions of the techniques of
sections 10.2 and 10.3.
27 This is not true for superluminal dispersion, where the ingoing v-wave

appears in the same region as the evanescent wave [59].
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In the high-steepness limit where the velocity profile

approaches that of equation (100), we simply need to solve

a linear system involving derivatives of the plane waves, and

hence powers of K for each possible wavevector solution. Since

the dispersion (�−UK)2 = C2(K)K2 is of fourth order, there

will be four such solutions and the linear system is 4 × 4. The

resulting expressions are unwieldy; but, in the low-frequency

limit where the Planck spectrum becomes the simple pole

T/� 28, the expression for the u–u1 Hawking spectrum also

approaches this form, and the low-frequency temperature can

be read off. After some straightforward but tedious algebra,

we find

T
high a

�→0 =
(
1 − U2

R

)1/2 (1 + UR) (−1 − UL) (−UR − UL)

(1 − UR) (1 − UL) (UR − UL)
.

(104)

This result was first stated in [75]. A more detailed derivation

can be found in appendix A of [87].

In the low-steepness limit whereV can be treated as slowly

varying, the temperature at any frequency should be well

approximated by the phase integral of equation (96). Moreover,

this phase integral takes a very simple analytic form when the

velocity profile is of the hyperbolic tangent form (99), as was

used to plot figure 14: at the branch cuts, the imaginary part

of χ(k) jumps between −π/2a and +π/2a, while the central

branch cut around which the integral is taken lies exactly on

the real axis. We can deform the contour to lie exactly along the

branch cut, in which case it becomes simply the real integral

of a constant. After some trivial rearrangement, equation (96)

then gives (in units where � = kB = 1)

T low a (�) = a

π

�

Ku1
R − Ku

L

, (105)

where Ku1
R and Ku

L are the (normalized) u1- and u-wavevectors

calculated in the right- and left-hand regions, respectively. It is

easily shown (see section 4.6 of [87]) that, in the low-frequency

limit, this becomes

T low a
�→0 = a

π

(1 + UR) (−1 − UL)

(UR − UL)
, (106)

which, as can be checked by evaluating the derivative of V at

the horizon, is exactly Hawking’s prediction, equation (54).

As observed at the end of section 10.3, equation (96) always

yields this result in the low-frequency limit.

11.2. Calculated spectra

The richness of the dispersive spectra is perhaps best

appreciated by fixing one of the asymptotic velocities and

varying the other through U = −1. This allows us to examine

spectra from the various frequency regimes described in

section 8.2 and the manner in which they vary between these

regimes.

28 The normalized frequency-dependent temperature is defined by analogy

with equation (53) such that the relative squared amplitude of the

corresponding mode is given by the expression for the Planck spectrum:

|β�|2 = (exp(�/T (�)) − 1)−1.

11.2.1. Varying UL: the subsonic side. In figure 16, the

parameter a is fixed at 0.1, UR is fixed at −0.5 and UL is

varied from −0.51 to −1.5; figure 17, on the other hand,

shows spectra for the same values of UL and UR but in the

discontinuous limit a → ∞. (We call this the ‘subsonic side’

because the central value of the velocity is greater than −1.)

When UL is close to UR, the spectral region that experiences a

group-velocity horizon (i.e. ωmax,1 < ω < ωmax,2) is narrow,

and most of the spectrum is in the horizonless (ω < ωmax,1)

regime. As UL drifts away from UR, ωmax,1 decreases so the

spectral region experiencing a group-velocity horizon widens

at the expense of the horizonless regime; the group-velocity

horizon regime encompasses the entire spectrum when UL

reaches −1 and ωmax,1 vanishes. As UL varies further, we are

in a true ‘black hole’ regime, where a low-frequency limiting

horizon (V = −c0) exists.

In figures 16 and 17, the solid lines plot the frequency-

dependent temperature of the u1-wave, while the dashed lines

do so for the u2-wave, which is only emitted where there is no

group-velocity horizon (i.e. where � < �max,1). The dotted

lines of figure 17 plot the temperature of the v-wave, which is

difficult to calculate for finite a = 0.1 and, where it is possible,

is found to be vanishingly small.

A list of the noteworthy features of the spectra follows.

For the u1-waves:

• The u1 spectra show a general increase in temperature as

UL is decreased (i.e. as the left-hand flow is made faster).

Since the derivative of the velocity profile increases in this

direction, this is to be expected. As the limit of infinite

steepness, the discontinuous limit shows temperatures

higher by about an order of magnitude compared with

the finite value a = 0.1.

• The low-frequency temperature of the u1 spectra increases

in the same fashion, but it is finite only when the low-

frequency limiting horizon exists (i.e. when UL < −1).

On the other hand, when the flow is everywhere subsonic,

the low-frequency temperature vanishes. This is the main

effect of the presence or otherwise of the horizon; in

particular, the spectrum at higher frequencies varies quite

smoothly over UL = −1.

• The spectra typically show significant dependence of

temperature on frequency, and are therefore far from

Planckian. Interestingly, the most Planckian spectrum (i.e.

that with the flattest temperature curve) occurs for UL =
−1.5, where the velocity profile is symmetric around

the horizon UL = −1. Indeed, the more asymmetric the

velocity profile, the greater the deviations from the Planck

spectrum seem to be.

• In the low-steepness regime and when UL > −1 (so

that U is everywhere subsonic), the u1 spectra vary

smoothly between the horizonless and group-velocity

horizon regimes (i.e. at ωmax,1). In the discontinuous limit,

however, the transition between these regimes at ωmax,1 is

more pronounced.

• There is a cut-off in the u1 spectra at ωmax,2, at which point

the outgoing u1-waves cease to exist. In the low-steepness

regime, this cut-off is very sharp; in the discontinuous

limit, it becomes more rounded, the fall-off beginning at
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Figure 16. Temperature-varying UL (low-a regime). The (normalized) Hawking temperature, for the dispersion profile (102) and the
velocity profile (103), is shown as a function of frequency for various values of UL, while UR is fixed at −0.5 and a is fixed at 0.1. The solid
curves correspond to the numerically calculated spectra of the u1-wave, while the thin dashed curves show the spectra for the u2-wave, with
a maximum frequency (indicated by vertical dotted lines) that vanishes when |UL| � 1. The thick dashed curves show the analytic prediction
of equation (105), derived from the phase-integral method described in section 10.3; this is applied only when a group-velocity horizon is
present, and so only for the u1-wave spectra. The agreement is seen to be very good for a = 0.1 and for UL � −0.7. (It is not so good for
UL = −0.51, where the group-velocity horizon exists only over a very narrow frequency range.)

lower frequencies. Since the u1-waves are emitted into the
right-hand region, their cut-off frequency depends only on
UR, and since this is held fixed all u1 spectra are seen to
vanish at the same frequency.

For the u2-waves:

• At a fixed frequency, the u2 spectra also show increasing
temperature with decreasing UL, and temperatures higher
by about an order of magnitude in the discontinuous
limit. Since the u2 spectra exist only when there is no
low-frequency limiting horizon, their temperature always
vanishes in the low-frequency limit.

• The u2 spectra experience a cut-off at ωmax,1, at which
point the outgoing u2-wave ceases to exist and a group-
velocity horizon comes into existence.

For the v-waves:

• The v spectra, shown only in the discontinuous case,
generally have lower temperatures than the u1- and u2-
waves (for equal frequency andUL). Following the general
trend, their temperature increases with decreasing UL,
though only significantly so when UL is close to UR.
Their low-frequency temperature always vanishes, in
accordance with the fact that the v-waves never experience
a horizon.

• Since the u- and v-waves exist even when the u1- and u2-
waves do not, the v-spectra do not experience any cut-off.

11.2.2. Varying UR: the supersonic side. Consider now the

case where UL is fixed at a supersonic value and UR is varied

through −1. (The central velocity will always be less than

−1; hence we call this the ‘supersonic side’.) Since the

u1- and u2-waves do not exist when the flow velocity is

supersonic, there can be no mixing and hence no radiation

when UR < −1, and the spectrum is expected to vanish in

this limit. Moreover, as UR decreases (i.e. the flow in the

right-hand region becomes faster), the cut-off frequency of the

u1-waves decreases. Therefore, the spectrum should become

narrower with decreasing UR, approaching zero width in the

limit UR → −1 where the u1-waves cease to exist.

In figure 18, a is fixed at 0.1, UL is fixed at −1.5 and

UR is varied from −0.5 to −0.9; in figure 19, UL and UR

take the same values while the spectra are calculated in the

discontinuous limit a → ∞. There is always a point at which

U = −1, so there is no outgoing u2-wave and only the u1 and

v spectra are non-zero.

These spectra behave exactly as predicted: they both

become narrower and experience an overall decrease in

temperature as UR is decreased. Note that, as before, the

discontinuous limit shows temperatures about an order of

magnitude greater than for a = 0.1, and that the spectra

become very rounded so that the fall-off takes hold at lower

frequencies than it does for a = 0.1.
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Figure 17. Temperature-varying UL (discontinuous limit). The (normalized) Hawking temperature, for the dispersion (102), in a
step-discontinuous flow is shown as a function of frequency for various values of UL, with UR fixed at −0.5. The solid curves correspond to
the u1-wave, the dashed curves to the u2-wave (coupling into which only occurs in the purely subsonic regime where |UL| < 1), and we have
also included dotted lines showing the temperature of the v-wave, which is easily calculated in the step-discontinuous limit. (The highest
v-curve corresponds to UL = −1.5 and the lowest to UL = −0.51, with monotonic variation in between.) The most significant difference
with respect to the low-steepness regime of figure 16 is in the temperature values, which are here (for u1 and u2) an order of magnitude
greater. The shapes of the spectra are essentially the same as in figure 16, except that the fall-off on the approach to �max,2 begins to take
hold at lower frequencies, and the connection between the regimes in which a group-velocity horizon does and does not exist is a more
clearly visible feature in the spectra of the u1-wave. The v-wave spectra do not go to zero at �max because the u–v coupling (between
positive and negative norms) exists even above this value; this can be seen in figures 6 and 9.

In the discontinuous limit (figure 19), we also include

the spectra of the v-waves. As noted previously, these have

generally lower temperatures than the u1-waves, with zero

temperature in the low-frequency limit, and do not experience

a cut-off.

11.2.3. Varying a: the low- and high-steepness regimes.

Finally, let us examine the transition between the low- and

high-steepness regimes by continuously varying a. Rather than

considering the evolution of a whole spectrum, let us consider

the evolution of the low-frequency temperature in the limit

� → 0. As evidenced in figures 16 and 17, for this to be

finite requires the existence of a low-frequency horizon where

U = −1, and so UL < −1 and UR > −1.

Figure 20 plots the low-frequency temperature against

a/a0, where a0 is the value of a at which the low-steepness

prediction, equation (106), is exactly equal to the high-

steepness prediction, equation (104):

a0 = π
(
1 − U2

R

)1/2 (−UR − UL)

(1 − UR) (1 − UL)
. (107)

The high- and low-steepness predictions are also shown in

Fig. (20), and by construction they meet at a/a0 = 1. It

can been seen that a/a0 provides a very good indicator

for the regimes of low steepness (where the low-frequency

temperature obeys Hawking’s formula and the spectrum as a

whole obeys equation (96)) and of high steepness (where the

step-function approximation of section 10.2 is valid).

11.2.4. Comparison with superluminal dispersion. It is

instructive to compare these observations with what is reported

in the literature for superluminal dispersion29. The most

relevant paper is [85], since it also considers highly asymmetric

profiles and includes the regime of all-supersonic flow with

no low-frequency limiting horizon (although it considers fixed

velocity differenceUR−UL and a change of the central velocity,

so the actual temperature values are not directly comparable).

The resulting u1 spectra are qualitatively very similar to those

of figure 16: when a low-frequency limiting horizon where

U = −1 is present, the spectra approach finite temperatures

in the low-frequency limit � → 0, and all spectra show a

29 The reader is reminded that subluminal and superluminal dispersions for

the wave equation (60) are studied and compared in [59]. Also, section IV E of

[83] details an approximate symmetry between subluminal and superluminal

dispersion, helping to explain many of the observations made here.
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Figure 18. Temperature-varying UR (low-a regime). The (normalized) Hawking temperature, for the dispersion profile (102) and velocity
profile (103), is shown for various values of UR while UL is fixed at −1.5 and a is fixed at 0.1. Since UL < −1, there is no ‘horizonless’
regime and hence no emission of u2-waves. The solid curves show the numerically calculated u1-wave spectra, while the dashed curves
correspond to the analytical prediction of equation (105). The maximum frequency (shown as dotted vertical lines) decreases with UR,
eventually vanishing in the limit UR → −1.

cut-off at some maximum frequency. An important difference

due to the reversed behaviour of the u-modes for sub- and

superluminal dispersion with respect to sub- and supersonic

flow (see section 8) is in the reversed behaviour with respect

to asymmetry towards the sub- and supersonic sides.

• When the velocity profile is asymmetric and towards the

supersonic side, the spectrum shows strong enhancement

towards the high-frequency end. This is analogous to what

we have found for subluminal dispersion in figure 16 for

velocity profiles asymmetric towards the subsonic side.

• When the velocity profile is asymmetric and towards the

subsonic side, the spectrum narrows and is suppressed at

higher frequencies, just as we have seen in figure 18 for

velocity profiles asymmetric towards the supersonic side.

Reference [85] does not calculate temperatures for the

case of no group-velocity horizon, but it does find non-

vanishing spectra for the case of an entirely supersonic flow

in the mid-frequency regime where a group-velocity horizon

exists, just as we did in figure 16 for the case of an entirely

subsonic flow.

The v spectra are not calculated in [85]. However, we can

predict that these will behave very differently in the cases of

subluminal and superluminal dispersion.

• For subluminal dispersion, the v-wave has opposite norm

to the u-wave; so, it can form a Hawking pair with the

u-wave in the same way that the u1- and u2-waves can,

and since there is no cut-off frequency for the v-modes,

this v spectrum exists in principle for all frequencies.

• For superluminal dispersion, the v-wave has opposite

norm to the u1- and u2-waves; it thus forms Hawking pairs

with these in the same way as the u-wave, and since the

u1- and u2-waves have cut-off frequencies above which

they no longer exist, so these v spectra will vanish at these

cut-off frequencies.

The transition between the low- and high-steepness

regimes was recently studied in detail in [86] in the context

of BECs. A smooth transition between the two regimes is

also observed there. It is found that, to determine in which

regime the system lies, one should compare the steepness of

the transition (the ‘surface gravity’ κ) with ωmax, the cut-off

frequency of the spectrum. This suggests that ωmax/κ is simply

related to a/a0, the normalized steepness used to plot figure 20.

Work on this particular aspect is still ongoing, however.

12. Discussion

12.1. Summary

Generalizing the Lagrangian (10) derived from the spacetime

metric to the Lagrangian (58) exhibiting dispersion, we find a

wave equation (60) and a dispersion relation (61) analogous to

the dispersionless model but with a k-dependent phase velocity

c(k), which we take to approach c0 as k → 0 and which
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Figure 19. Temperature-varying UR (discontinuous limit). The (normalized) Hawking temperature, for the dispersion profile (102) and a
step-discontinuous flow, is shown as a function of frequency for various values of UR while UL is fixed at −1.5. Solid lines show spectra for
the u1-wave, and dotted lines for the v-wave; since UL < −1, there is no ‘horizonless’ regime and no emission of u2-waves. Vertical dotted
lines show the maximum frequencies at which the u1–u coupling ceases and the spectrum vanishes; since the u-v coupling can occur at all
frequencies, the v-wave spectra do not experience such a cut-off. As in the case of varying UL (see figures 16 and 17), we find in comparison
with the low-steepness regime of figure 18 that the temperatures are greater by an order of magnitude and the fall-off is more noticeable at
lower frequencies.

might be superluminal or subluminal at higher wavevectors.

The scalar product (25) is also applicable with dispersion, and

on writing the total field as an integral over stationary modes

and quantizing, it is still true that positive- and negative-norm

modes are multiplied by bosonic annihilation and creation

operators, respectively. However, the switch in the norm of

the counter-propagating mode in the dispersionless model

is replaced by a different kind of behaviour. There is no

divergence of k anywhere, so there is a counter-propagating

wave which exists for all values of V , never changing the

sign of its norm. However, for either subsonic or supersonic

flow (depending on the type of dispersion), there comes into

existence a pair of counter-propagating waves of opposite

norm to the already existing one. This allows opposite-norm

pairing as before, though—thanks to shifting and reflection at a

group-velocity horizon—without trans-Planckian frequencies

in the past (though see ‘Conceptual issues’ of section 12.2

for a caveat). More surprisingly, it also allows opposite-norm

pairing in the complete absence of a group-velocity horizon,

and since this can occur in two possible pairings, there are two

types of Hawking spectra in such a situation. The spectra can

be calculated numerically by solving for the appropriate out-

or in-modes via numerical integration; or, when the steepness

is sufficiently large, by solving a linear system with matching

conditions at a discontinuity; or, when there is a group-velocity

horizon and the velocity gradient is not too great, by a phase

integral in k-space. Assuming a simple model of fluid flow and

dispersion, we have found such Hawking spectra, confirming

their theoretical existence and that they agree with the phase-

integral formula in the appropriate regime.

12.2. Overview of current research

The field of analogue Hawking radiation has recently

experienced its own inflationary period, the number of

interested groups and proposed experimental setups having

increased dramatically. Here I offer a brief overview of the

current efforts and challenges in this field. For a review and

complete historical overview of the general field of analogue

gravity, see [18].

Analogue systems. The earliest system to be considered for

analogue Hawking radiation was superfluid helium [14, 29],

being the main experimentally accessible liquid in which

quantum effects are important30. Once dilute gas BECs became

experimentally accessible, their use as analogue systems was

soon realized [23, 24]; their theoretical simplicity [84] and

30 Superfluid helium-3 provides an entire array of cosmological analogies

[89, 90], in which analogues of the field theories familiar to us appear as

low-frequency limits of more fundamental theories.
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Figure 20. Low-frequency temperature—varying a. Here is shown the (normalized) low-frequency temperature with increasing steepness a,
for various values of UL while UR is fixed at −0.5. The parameter a is normalized with respect to its value at which the linear Hawking
prediction is exactly equal to the temperature in a step-discontinuous flow; they are equal at the dotted line, and the value of a in relation to
this gives a good indication of the point of transition between the two regimes. Dashed lines correspond to the linear Hawking prediction for
low a and the limiting step-function temperature for high a.

the relative ease with which they can be controlled under
laboratory conditions have made them the most widely studied
of all the analogue systems. That said, due to flow instabilities
induced by supersonic flow, it is not so easy to actually create
a black hole configuration in superfluid systems, and it was
only recently that this was finally achieved in BEC [91].

A change of reference frame can give rise to a black
hole analogue in a stationary medium, so long as there is an
effective ‘velocity profile’ which is moving with respect to the
medium. This was first considered in the context of solitons
in superfluid helium [29], and has also been considered for
solitons in BECs [92]. It forms the basis of the analogue
model in nonlinear optics: a strong pulse of light induces
an effective change in the refractive index of the material,
and this perturbed index travels through the medium with the
pulse [88, 93–95]. In the co-moving frame of the pulse, the
effective index is stationary while the material is moving—
exactly the type of situation studied in this tutorial, with the
labels ‘co-moving’ and ‘lab’ switched. This can give rise to
a group-velocity horizon, and the resultant shift between the
u1- and u2-waves has been measured in optical fibres [88].
Advantages of these systems are the high effective velocity—
which Doppler shifts the emitted photons into the UV range,
making them easier to detect—and the self-steepening effect,
which can form optical shocks with very high steepness
[88, 87]. Their main disadvantage is the smallness of the
effective velocity change induced by the pulse [87, 94]. Given
the complicated dispersion relations of optical media, the

details of the Hawking process in these systems exhibit a rich

phenomenology, as recently studied in [95].

Although they are far from the quantum regime with no

prospect of emitting detectable Hawking radiation, analogue

black holes have been formed by trans-sonic flows of water

[47–49], and the scattering behaviour of incident waves has

been observed. In particular, the stimulated Hawking effect—

the classical scattering between positive- and negative-norm

waves—can and has been observed in this system [47, 49].

We have taken only a glimpse at the wealth of proposed

analogue systems, which also includes ions moving on a

ring [96, 97], ‘photon fluids’ in microcavities [98] and in an

analogue Laval nozzle [99], and ‘fluids’ of exciton–polaritons

[100, 101].

Detection of Hawking radiation. Creating an analogue

system is one thing; detecting Hawking radiation is quite

another, and has so far proved elusive. The predicted Hawking

temperature of the setup realized in [91] is of the order

of nanokelvin—of the same order, but still somewhat less,

than the temperature of the condensate itself. The Hawking

spectrum will then be practically indistinguishable from the

thermal background. This problem is reinforced when losses

are taken into account [102, 103], with quasiparticles induced

by losses typically overwhelming the Hawking quasiparticles

[103].

A promising proposal to overcome this thermal swamping

is to exploit the entanglement between the Hawking partners,
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which leads to correlations between them. These correlations

have been studied extensively in BECs [70–72, 53], where

they show up as clear patterns in density–density correlations.

Remarkably, the correlation signatures remain strong even

after the imposition of a finite condensate temperature higher

than the Hawking temperature.

Another technique to increase the visibility of the

Hawking spectrum is to make it highly non-thermal by

inducing sharp resonance peaks. This requires a several-

horizon setup so that interference between them occurs. If

the asymptotic regions are one subsonic and one supersonic—

as studied in the BEC context in [104]—then the system is

(usually) dynamically stable, so that the direct observation

of spontaneous Hawking radiation is possible, with its

non-thermal character making it easier to distinguish from

actual thermal radiation. The black hole laser (previously

mentioned in section 2.4)—of experimental relevance since

many practical setups include a black hole–white hole pair—

also yields strong resonant peaks at well-defined frequencies

[55–58]; however, this radiation is strongly coherent and

essentially classical in nature, forming from a runaway

amplification process of stimulated emission (as in a laser)

that drowns out any spontaneous component of the radiation.

A signal claimed to represent Hawking radiation has been

measured emitted from laser filaments in bulk nonlinear media,

at a wavelength conforming to theoretical predictions [105].

The interpretation of the signal, however, is controversial,

with claims that the results are not consistent with Hawking

radiation and that they are signs of another kind of creation

process related to the non-stationarity of the background

[106, 107].

Theoretical methods. Similar to the theoretical results

presented in section 11, there are a number of works which

investigate Hawking radiation by mode analysis in order to

infer the spectrum for given dispersion and velocity profiles;

the authors of [60, 75] provide the earliest examples. Recent

avenues of investigation include: comparison of black and

white hole radiation for sub- and superluminal dispersion

[59], spectrum and density–density correlations from a step

discontinuity in BEC [76], the influence of asymmetric

velocity profiles [85], the dependence of the spectrum on

multiple length scales [77], the transition between the low-

and high-steepness regimes [86] and mode analyses of black

hole lasers [57, 58].

In a manner similar to that of section 10.3, there are

several works which attempt purely analytic derivations of the

Hawking spectrum in dispersive system. The earliest examples

are [22, 75], which recover the Hawking result to leading

order. This was subsequently generalized: to general preferred

reference frames [79]; to high-frequency corrections [80]; to

more general dispersion relations [82]; to correlation functions

[83]; and, as presented in section 10.3, to more general velocity

profiles [81]. The latter approach was also considered in

[87] for the ‘horizonless’ case, where χ(k) has two central

branch cuts in the complex k-plane rather than just one as in

figure 14; there are signs that this case does obey some kind of

generalized phase-integral method, possibly involving linear

combinations of various contours.

Analytical methods are almost always approximate to

some degree, while mode analyses focus on stationary states

(unless unstable modes are included, as for black hole lasers).

In order to both check our analytical results and gain insight

into the time dependence of the system, ab initio simulations

are invaluable. These have been used in the context of BECs,

in the evaluation of the density–density correlation pattern

[71, 53] and on the dynamics of the periodic configuration

with a black hole–white hole pair [54]; the growth of an

oscillating ‘checkerboard’ pattern in the white hole case [53]

is an interesting example of an unexpected feature revealed by

simulations.

Conceptual issues. It was recognized early [39, 60] that, in

the case of a Schwarzschild black hole (or indeed any velocity

profile with vanishing asymptotic velocity), dispersion does

not quite solve the trans-Planckian problem. Although it

regularizes the wavevector divergence at the horizon by the

shifting of high-wavevector ingoing waves to low-wavevector

outgoing waves, tracing the ingoing waves back in time to

spatial infinity sends them to arbitrarily high wavevectors

[39, 60]. So the position of the divergence has been shifted

to infinity, but the divergence still exists in principle. A

very closely related point is that of conservation of the lab

frequency when V → 0 at spatial infinity, since then the

lab and co-moving frames coincide in the asymptotic region.

Thus, conservation of the lab frequency is equivalent there to

conservation of co-moving frequency; and, since the sign of the

co-moving frequency gives the sign of the norm (see equation

(29)), it follows there can be no conversion between positive-

and negative-norm waves and hence no particle creation

[39, 60]. An interesting approach to this problem is to consider

a discretized space whose points are freely falling, so that the

spacetime is not strictly stationary and the lab frequency not

necessarily conserved [108, 109].

12.3. Final comments

Despite some tantalizing experimental results—the realization

of an analogue black hole in BEC [91], the detection of a

signal from laser pulse filaments in nonlinear optical media

[105] and the observation of the classical stimulated Hawking

effect for surface water waves [47, 49]—Hawking radiation

remains stubbornly in the realms of theory. But the idea of

its experimental realization is flourishing. Its concepts are

constantly being applied to newer analogue systems. The goal

is no longer a deeper understanding of gravity—and perhaps,

given the surprising emergence of the ‘horizonless’ regime,

not so much about general black or white holes either. Instead,

we are aiming to paint a picture of the quantum vacuum—of

the content of nothing, of physics at its most fundamental31.

For example: the heuristic picture of particle–antiparticle pairs

31 From this perspective, we can take encouragement from recent experiments

on the related phenomenon of the dynamical Casimir effect (DCE), which

predicts particle creation from the vacuum due to time-varying boundary

conditions rather than a spatially varying metric. Analogue systems in

superconducting circuits of variable electrical length have been shown, both

in theory [110, 111] and experiment [112, 113], to produce analogue DCE

radiation.
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arising from vacuum fluctuations and being torn apart by

the event horizon might seem to give some insight into the

gravitational black hole. But how is this picture to be reconciled

with analogue white hole radiation, or the ‘horizonless’ regime

emerging from dispersion, where Hawking partners can be

emitted in the same direction? Has our insight or our theory

failed—and if so, what should replace it? For now, the vacuum

and its contents might remain out of sight—but I hope I, and

the many others in this field, can offer a tantalizing glimpse

beyond the horizon!
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