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ABSTRACT

An alternative definition of regular equilibria is introduced and shown
to have the same properties as those definitions already known from
the literature. The system of equations used to define regular equilibria
induces a globally differentiable structure on the space of mixed strate-
gies. Interpreting this structure as a vector field, called the Nash field,
allows for a reproduction of a number of classical results from a dif-
ferentiable viewpoint. Moreover, approximations of the Nash field can
be used to suitably define indices of connected components of equilibria
and to identify equilibrium components which are robust against small
payoff perturbations.

ZUSAMMENFASSUNG

Zuerst wird eine alternative Definition reguldrer Nash-Gleichgewichte
eingefithrt und gezeigt, daf diese Definition dieselben Eigenschaften
besitzt wie die bereits aus der Literatur bekannten Definitionen. Das
Gleichungssystem, das zur Definition reguldrer Gleichgewichte herange-
zogen wird, induziert dann eine global differenzierbare Struktur auf dem
Raum gemischter Strategien. Wenn man diese Struktur als Vektorfeld
auffaft, kann man eine Reihe klassischer Resultate aus differenzierbarer
Sicht beweisen. Dartiberhinaus kann man Approximationen an dieses
Vektorfeld benutzen, um Indizes fiir zusammenhéngende Komponenten
von Nash-Gleichgewichten zu definieren. Mit Hilfe dieser Indizes lassen
sich Gleichgewichtskomponenten identifizieren die robust sind, in dem
Sinne daf ahnliche Spiele Gleichgewichte nahe der Komponente haben.
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Abstract. An alternative definition of regular equilibria is introduced
and shown to have the same properties as those definitions already
known from the literature. The system of equations used to define reg-
ular equilibria induces a globally differentiable structure on the space
of mixed strategies. Interpreting this structure as a vector field, called
the Nash field, allows for a reproduction of a number of classical results
from a differentiable viewpoint. Moreover, approximations of the Nash
field can be used to suitably define indices of connected components
of equilibria and to identify equilibrium components which are robust
against small payoff perturbations.

1. INTRODUCTION

From one point of view the material to be presented is simply a some-
what deviant approach to the theory of finite normal form games. From
another it is a discussion of Nash refinements and robustness properties
of Nash equilibria. Nash refinements were often motivated by initiat-
ing examples in which common sense could identify what went wrong
with particular equilibria. This is not the approach taken here (that is:
examples come at the end rather than at the beginning). Rather this
paper is concerned with formal properties of a particular structure on
the space of mixed strategies which will be viewed as a representation
of the interaction in a normal form game. The discussion of various
implied refinement notions is a byproduct. Still it is a very informative
byproduct and may help to gain a more unified understanding of Nash
refinements.

The ”intuitive” approach to refinements which attempts to rule out
undesirable properties discovered in examples, of course, has its mer-
its. It is particularily transparent, because it often derives from exten-
sive form considerations. As a consequence the most popular - at least
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earlier drafts by Erwin Amann, Dieter Balkenborg, Wolfgang Leininger, Eric van
Damme, Fernando Vega-Redondo, Karl Vogelsberger, Jorgen Weibull, and an anony-
mus referee are gratefully acknowledged. All comments are welcome. All errors and
shortcomings are mine.



within the economics profession - refinement concepts are in fact ex-
tensive form concepts, e.g. subgame perfection [Selten, 1965, 1975] or
sequential equilibrium [Kreps and Wilson, 1982]. This is despite the
view expressed by von Neumann and Morgenstern [1972, e.g. p.85]
that the normal form and the extensive form are essentially equivalent
and despite the fact that the normal form is mathematically somewhat
more handy. It is even despite the strongly supported view, expressed by
Kohlberg and Mertens {1986, p.1010], that the set of "strategically
stable” equilibria should depend only on the reduced normal form of the
game.

A preference for extensive form analysis may derive from the feeling
that normal form analysis seemed to be unable to capture the essence
of backward induction. With respect to this problem it is known, how-
ever, that a proper equilibrium [Myerson, 1978] of the normal form
is sequential in any tree with that normal form [van Damme, 1984;
Kohlberg and Mertens, 1986, p.1009]. Last, but not least, recent
results obtained by Mailath, Samuelson, and Swinkels [1990] show
that the normal form can even reproduce extensive-form-type reasoning
and a notion like ”"subgame perfect in any extensive form with this par-
ticular normal form” can be given precise meaning. This is one of the
reasons, why it seems worthwile to attempt a mathematical description
of the structure of interaction within the complete normal form game as
additional information to the predictions of the Nash equilibrium.

The reader may wonder what is meant by the vague phrase ”struc-
ture of interaction in the whole game” and whether there is not already
such a thing, induced by the best-reply correspondences, such that there
remains nothing to be studied. In fact, the correspondence, manufac-
tured from individual best-reply correspondences by taking the product,
induces a structure on the space of mixed strategies which may well
be viewed as a representation of interactions in the complete game [a
programme carried through by Kalai and Samet, 1984, and Balken-
borg, 1991, and extended to perturbations of the best-reply structure
by Hillas, 1990]. But best-reply correspondences drop some informa-
tion: Since they assign the maximizers, they drop the information on the
ordering of the remaining pure strategies. Moreover, the structure in-
duced by best-reply correspondences is not a very smooth one. Would it
not be nicer to have a structure which contains even more information
than the one induced by best-reply correspondences but is, moreover,
differentiable? The latter is what the present paper is devoted to.

The present paper will start with a somewhat "naive” consideration
of necessary conditions for a Nash equilibrium which will result in a
system of equations that can be used to give an alternative definition

”
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of regular equilibria. This modified definition has the same properties
as those already known for the standard definitions. But beyond these
the system of equations induces a globally differentiable structure on
the space of mixed strategy combinations. One way to think about
this structure is to interpret it as a vector field and call it the ”Nash
field”. Each equilibrium of a given game then corresponds to a zero
of this vector fleld. Machinery from Differential Topology can now be
used to study the Nash field. Well known results can be reproved in
a different way. But, moreover, by approximations of the Nash field
one can identify connected components of equilibria which are robust
against slight payoff disturbances. Since the latter exercise only requires
knowledge of the Nash field, but does not require the computation of
payoff perturbations, it is an instance of what a differential approach is
designed to do: To extract global information from local properties. In
effect the tool to identify such robust equilibrium components (”essential
components”) is even of a somewhat independent interest. It consists
of an assignement of indices to components such that the indices add
up to the Euler characteristic of the space of mixed strategies across
components. An equilibrium component with non-zero index can be
shown to satisfy a number of desirable properties. On the other hand
there are Stable Sets [Kohlberg and Mertens, 1986] which do not get
assigned a non-zero index (see Section 4).

The appeal of the Nash field, however, also derives from its potential
interpretation. The system of equations defining the Nash field is pre-
cisely the replicator dynamics for asymmetric games [as introduced for
symmetric games by Taylor and Jonker, 1978]. Thus it does reflect
the interaction of players in the whole normal form game, though possi-
bly the interaction of large populations of "boundedly rational” players
who revise their strategy choices in an evolutionary way. On the other
hand the inertia of strategy choices by evolution has its advantages: It
preserves the information on the ordering of all strategies, rather than
concentrating on the best response (as the best-reply correspondences
would do).

This suggests that there is an intimate relationship between self-
enforcement properties of Nash equilibria and stability properties of the
evolution described by the replicator dynamics, viz. the Nash field. In
fact in a companion paper [Ritzberger and Weibull, forthcoming] it is
shown that the range against which a given equilibrium is self-enforcing
is indeed reflected in the qualitative behavior of the evolutionary dy-
namics around the equilibrium. '

For the context of human players the evolutionary interpretation of the
Nash field, of course, would have to specify some kind of learning process
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[cf. Canning, 1987, 1989; Eichberger, Haller, and Milne, 1990;
Kandori, Mailath, and Rob, 1991]. Thisis, however, not the purpose
of the present inquiry. Still it is worth to conjecture that for many simple
learning models stability properties of the induced dynamics, as far as
they are not governed by stochastic elements, will most likely be guided
by the properties of the Nash field.

For the present purposes, however, the Nash field can be thought of
as a purely formal object - one way to represent a game. The paper
is organized as follows: Section 2 introduces notation and the modified
definition of regular equilibria plus their properties. Section 3 studies
the Nash field, reproves the well known result on existence of equilibria
and oddness in the case of regularity and shows how to define indices of
equilibrium components and how to exploit these indices. Section 4 is
an illustrative chapter in that it shows how the Nash field can quickly
inform the analyst on which equilibrium is risk dominant in the sense
of Harsanyi and Selten [1988]. This section also contains examples
illustrating applications of index theory. Section 5 summarizes.

2. REGULAR EQUILIBRIA

2.1 Notation. A finite n-person normal form game is a 2n-tuple I' =
(S1,...,S0,u1,... ,Un), where S; is a finite non-empty set, referred to
as the set of pure strategies of player : € N = {1,...,n}. Denoting
S = [lien Si» the set of all pure strategy combinations, each u; is a
mapping u; : S — R, for each 1 € N, and is called player i’s payoff
function. A typical element of the space of pure strategies will be written
s = (81,...,8n) € S. The cardinality of player i’s pure strategy set S;
is denoted by K; = |S;| and the cardinality of S is denoted by K =
[1;cn Ki. For most of what follows it will be convenient to index player
’s pure strategies by k € {1,...,K;}, such that s¥ € S; denotes the
k’th pure strategy of player i € A'. The set of mized strategies of player
¢ € N is the set of probability distributions on S;. The probability
which player ¢ assigns to his k-th pure strategy s* will be denoted by
o% = o(sF) and the space of all mixed strategies of player 7 € N will be
denoted by ¥;. Since by deciding upon (K; — 1) probabilities assigned
to his pure strategies, player ¢ already has decided on the probability of
the remaining pure strategy (because the probabilities have to add up
to unity), the space X; can taken to be (K; — 1)-dimensional, i.e.
K;-1
Ti={oi:Sio Ry | Y oF <1}
k=1

The set of mixed strategy combinations, I, is the product ¥ = []; . Z:-
A completely mized strategy for player ¢ € A is a probability vector o; €
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intX; = {o; 1 S; = R4 Zﬁ_’_;l 0¥ < 1} and a completely mixed strat-
egy combination is a mixed strategy combination ¢ = (01,...,0,) €
int & = [[;cpr tnt Zi. The strategy combination resulting from o € T,
when o; is replaced by d, is denoted by (o—;, 6;) = (04,..., 0i_1, 6i,
Tit1,-+., 0n) € L. A pure strategy of player : € N is identified with the
degenerate probability distribution which assigns 1 to the pure strategy
selected and zero to all other pure strategies. When in o € X player i’s
strategy o; € ¥; is replaced by such a degenerate distribution assigning
all the weight to pure strategy s; € S;, a shorthand notation frequently
used will be (0_;,s;) €  \ int £ = JT. For a given g; € ¥; the subset
of pure strategies to which o; assigns positive probability is called the
support of ¢;, denoted

supp(o;) = {.sfc €S| af = ai(sf) > 0}.

Analogously, supp(c) = [[;car supp(oi).

The space of all mixed strategy combinations ¥ is a compact and
convex polyhedron in ®M with dimension M = > ien Ki —n. Since
players in a non-cooperative game decide independently on their mixed
strategies, the joint probability that the pure strategy combination s =
(s’f‘,. ,8Eny e S ki€ {1,...,K;},Vi € N, will be played, given that
player 1 € AV chooses o; € I, is given by

o(s) =o(sh,... ,sk) = H ok,

iEN

The ezpected payoff to player i € N, given that o € ¥ is played, is

Ui(o) = Y ui(s)a(s),

SES

i.e. is a multilinear function U; : ¥ — R.

Since S; is a finite set for each : € A, the payoff functions u; : § — R
can only take finitely many values. Collecting these values u;(s),s € S,
in a K-dimensional vector for each ¢ € AN and collecting these vec-
tors u; = (ui(s))ses in a nK-dimensional vector u = (u;);ex makes
it possible to identify T, for fixed player set and fixed pure strategy
sets, with a point u € R*X. Writing G(S1,...,Sy,) for the set of all
normal form games with pure strategy sets (S1,...,Sn), there is, conse-
quently, a one-to-one correspondence between R"X and G(Si,... , S,).
The notation for a game I' € G(Sy,...,S,) with payoff vector u =
(ui)ien = ((wi(8))ses)ien € R™X will frequently read T’ = I'(u). Within
G(S1,...,Sy) there is, therefore, a natural way to measure distances
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between games by measuring the euclidean distance between their pay-
off vectors in R"X. Accordingly, the measure of a subset of games in
G(S1,...,5n)is determined by the Lebesgue-measure of the correspond-
ing subset of payoff vectors in "%, If it is necessary to stress the de-
pendence of some mapping b on the payoff vector u € R*K, subscripts
u will be used, i.e. b will be written as b,.

For a fixed game I' € G(S4,...,S,) define the set of best replies of
player i € NV against a stategy combination ¢ € T as the correspondence
BR; : ¥ — %¥; defined by

BR;(c) = arg max Ui(o-i,6:).

Where this is necessary, the set of pure best replies of player i € N
against ¢ € ¥ will be written as BR;(¢). Let the correspondece BR =
[Licx BR:.

A Nash equilibrium (or, an equilibrium) of a game I" € G(Sy,...,S5,)
is a strategy combination o € ¥ such that 0 € BR(¢). Such an equilib-
rium always exists for any game I' € G(S1,...,S,) [Nash, 1951]. The
set of equilibria of a game I" will be denoted by E(T'). The set E(T") can
also be viewed as a correspondence mapping G(S1,...,S,) into Z.

A strict equilibrium is a ¢ € E(T") which satisfies BR(¢) = {¢} [Har-
sanyi, 1973]. A quasi-strict equilibrium is a ¢ € E(I') which satis-
fies BR(0) = supp(c) [Harsanyi, 1973; the terminology is from van
Damme, 1987].

2.2 Regular Equilibria. In this subsection a modified definition of
regular equilibrium is introduced and it is shown that a regular equilib-
rium possesses all robustness properties one can reasonably hope for. In
particular, the present definition of regularity has the same implication
as the definition introduced in van Damme [1987, chp. 2.5]. Moreover,
in the example by which van Damme motivates his own deviation from
Harsanyi’s original definition [van Damme, 1987, Fig.2.5.1, p.39], the
present definition selects the same equilibrium as van Damme’s definition
and does not rule out both equilibria, as Harsanyi’s [1973] definition
would do.!

At an equilibrium o € E(T') each o; € £; must maximize the expected
payoff U;(o) for each i € M subject to the constraint that o; € ;. Since
Ui(o) is linear in o; € &; this boils down to a problem of constrained,

n fact I believe that the present definition of regular equilibria is equivalent to van
Damme’s, but I have not yet succeeded in proving this claim.
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non-negative linear programming:

K;-1 Ki-1
max [ Y ofUi(os, s¥)+ (1 - > B, sE)
(I AL B k=1

Ve=1,...,K;—1.

7 = ?

K;—-1
s.t. Zaf—lgo, ok >0
k=1

By linearity the Kuhn-Tucker complementary-slackness conditions are
necessary and sufficient, such that the optimum &; € ¥; can - after
eliminating the Lagrange multiplier - be characterized by

1) Ui(o—i, s¥) S Ui(o—i,d3), Vs¥ € 8,
o Ui(o—i, sF) = Ui(0-i,6:)] =0, Yk =1,... ,K; — 1.

At an equilibrium, however, ¢; = o; must hold, such that the second
part of (1) reads

(2) of[Ui(o=i, sF) - Ui(o)) =0, VE=1,...  K; -1,

for all 7 € M. This already is the modification to be introduced: While
van Damme’s definition uses pure strategy combinations jointly with the
mix of the other players Uj(o_;, si), si € supp(0;), and Harsanyi’s defi-
nition uses an equal mix across all pure strategies (the so-called centroid-
strategy) U;(o—_i, (1/K;,..., 1/K;)), as the reference point, instead of
Ui(o) in (2), the present definition of regularity uses for each player
(a) a mixed strategy space reduced by one dimension and

(b) the equilibrium itself as the reference point. _
Formally, let the function b : ¥ — R be defined by

(3) ¥ (o) = o [Ui(o-s, s5) = Ui(0)], VE=1,... ,Ki =1, Vi € N.

The way it is defined, b is a polynomial function and, therefore, infinitely
often continuously differentiable on a neighbourhood of & C ®M. (The
definition by van Damme, by comparison, has to switch to another pure
strategy combination as the reference point, when two equilibria with
disjoint supports are studied. This induces "kinks” of the corresponding
mapping at indifference surfaces off the equilibrium.) Let D,b(¢) denote
the Jacobian matrix of the mapping b at a point & € E(T) and denote
- by |D,b(7)| its determinant [the definition to follow was first introduced
by Ritzberger and Vogelsberger, 1990].



Definition: An equilibrium & € E(T) is said to be regular, if and only if
|Dsb(3)| # 0.

The steps to follow are intended to evaluate the properties of regular
equilibria. Since these turn out to be the same as those of standard
definitions, most proofs are gathered in the Appendix and the text only
contains the statements [for the parallel results see: van Damme, 1987,
chp.2.5.].

LEMMA 1. If§; ¢ supp(oi) and b(o) = 0, then [Ui(0-;,5;) —Ui(c)] € R

is an eigenvalue of the Jacobian matrix D,b(c).
(PROOF: see Appendix)
COROLLARY 1. Every regular equilibrium is quasi-strict.

ProoF: If o € E(T') is not quasi-strict, then for some : € N there exists
sk ¢ supp(o;) such that U;(o—;, s¥) — Ui(o) = 0 which implies that
|D,b(c)| =0. 1

COROLLARY 2. Every strict equilibrium is regular.

PROOF: Since every strict equilibrium is in pure strategies, for each
i € N there are (K; — 1) pure strategies not used at ¢ € E(T") which give
the (K; — 1) corresponding eigenvalues [U;(o—;, s¥) — Ui(o)] < 0,sF ¢
supp(o;). This determines ) ;.\, K; —n = M real and negative eigen-
values which are all eigenvalues of D,b(¢c), such that |D,b(c)| # 0. §

The latter result can be sharpened to a rather obvious conclusion:

COROLLARY 3. A pure strategy equilibrium is regular, if and only if it
is strict.

Proor: Corollary 2 covers the if part. Since at a pure strategy equilib-
rium all eigenvalues are known and regularity of the equilibrium implies
that there is no zero eigenvalue, one must have [U;(o—;, s¥) — Ui(a)] <
0, Vs¥ ¢ supp(o;), Vi e N. 1

The next step is to show that regular equilibria are strongly stable in
the sense of Kojima, Okada, and Shindoh [1985].

THEOREM 1. Let T € G(S1,...,Sn) and assume that & € E(T') is a
regular equilibrium. Let @ € R™¥ denote the payoff vector of I. Then
there exists a neighbourhood U of @ in R"¥ and a neighourhood V of &
in RM | such that

@) |[E(T(u))NV|=1, VYuelU, and

(ii) the mapping 0 : U — V, defined by {o(u)} = E(T'(v)) NV, is

continuous.



(PROOF: see Appendix)

An equilibrium ¢ € E(T') is said to be isolated, if and only if there
exists a neigbourhood V of ¢ in R, such that E(TY) NV = {¢}. An
equilibrium o € E(T') is said to be essential, if and only if every game
I in a neighbourhood of I’ (in ®"¥) has an equilibrium ¢’ € E(I") in
a neighbourhood of ¢ € E(I') [Wu Wen-Tsiin and Jiang Jia-He,
1962].

COROLLARY 4. Every regular equilibrium is essential and isolated.

COROLLARY 5. Every regular equilibrium is strictly perfect [Okada,
1981] and proper [Myerson, 1978].

PRrROOF: The first part follows from Theorem 2.4.3 in van Damme
[1987, p.34], where it is proved that every essential equilibrium is strictly
perfect. Theorems 2.4.7 and 2.3.8 in van Damme [1987, p.36 and p.32]
ensure that every strongly stable equilibrium is strictly proper and every
strictly proper equilibrium is proper. J

Except for the rather obvious Corollary 3 all these results are known
from van Damme [1987, chp.2.5]. The only reason, these results are
listed here, is to show that the present definition does not change the
properties of regular equilibria. The methods of proofs use eigenvalues
of the Jacobian matrix, rather than the more straightforward methods
of van Damme, because this is a natural approach in the present setting.
~ An equilibrium of a game T' is called near strict [Fudenberg, Kreps,
--and Levine, 1988, p.357] in the normal form, if there exists a sequence
of games converging to I' for which this equilibrium is a strict equilib-
rium.

COROLLARY 6. Every pure strategy equilibrium is near strict in the
normal form.

PROOF: At a pure strategy equilibrium & € E(T)
[U,'(O-'_,', si)—Ui(d)] £0, Vs; ¢ supp(Gi), Vi € N.

Since these eigenvalues of D,b(5) (by Lemma 1) are linear in u € "%
the required sequence {T'"™}5°_, , I'* — T', can be constructed in such a
way that all payoffs to a player ¢ € N to his pure strategy s; ¢ supp(5;),
for which equality holds (instead of a strict inequality), are disturbed
downwards. J

Corollary 6 is merely a restatement of Proposition 1 in Fudenberg,
Kreps, and Levine [1988]. In the present context, however, this result

9



emerges from the particularily transparent behavior of the vector field b
around pure strategy combinations (which are always zeros of b).

Finally another well known result [van Damme, 1987, chp.2.6; Har-
sanyi, 1973; Wilson, 1971} is stated.

THEOREM 2. For almost all games " € G(Sy,...,S,) all equilibria are
regular.

(PROOF: see Appendix)

The phrase "almost all” in Theorem 2 refers to G(Si,...,S5,), i.e.
to R"K (that is: to a dense open subset of ®*¥). On the other hand,
nearly any non-trivial extensive form will impose certain indifference
relations upon the corresponding normal form and will, thereby, give
rise to a degenerate normal form game in G(S1,...,5,). In fact a
given extensive form specifies a linear subspace of G(S1,...,5), as
can be seen from writing the ties emerging from strategy combinations
that lead to the same terminal nodes as a system of linear equations in
u € R There is no guarantee whatsoever that in such a subspace
(corresponding to a given tree) games without regular equilibria will
not cover a (relatively) open subset. On the other hand most of the
refinement literature is motivated by extensive form arguments. From
this point of view, therefore, the statement of Theorem 2 should be
interpreted with due care.

3. THE NasH FIELD

An advantage of the system of equations defined by (3) is that it
induces a globally differentiable structure on a neighbourhood of the
polyhedron £. This structure contains, in my view, valuable information
about the underlying game I'. One particularily attractive way to view
the structure induced by b on ¥ is to think of it as a vector field on X.
If it is appropriate to stress the interpretation of the mapping b defined
in (3) as a vector field on ¥, the notation b will be used. The vector

field I_;(or b , if the dependence on the payoff vector u € RE is to be
stressed) will be called the Nash field .

The reason to assign such a prominent name to b is that it indeed cap-
tures the spirit of the Nash equilibrium as a solution concept. Suppose
that for some reason the players consider to play an arbitrary strategy
combination ¢ € X. If now one of the players 1 € A considers to deviate
from ¢ € X, her coordinates of 5, denoted Ei(a) = (b¥(o),... ,bf("_l(a)),
tell her one direction in which she could unilaterally change her mix in
order to improve her expected payoff. This can be seen from the follow-
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ing direct calculation:

K;-1
Ui(o—i,0i + bi(0)) = Ui(o) + Z [Ui(o—i, sH*+
K;-1
+(1= Y oD)Ui(o—i,sf) = [Ui(0))? =
k=1

= Ui(o) + Var(Ui(o—-i,si) | 0;) > Ui(o), Vi EN.

If no such direction g,-(a) exists, along which the player under consid-
eration can unilaterally improve, for any player, then ¢ € £ must be a
zero of the vector field b.

Very vaguely speaking, b could be viewed as the direction in which
players with only bounded rationality, who change their mix only in very
small steps (i.e. in a differentiable manner), but still try to improve uni-
laterally (i.e. assuming that other players stay with their present mix),
would take the ”state” of the game. In fact the differential equation
do = b(a) dt is precisely the (deterministic and continuous) replicator
dynamics for asymmetric games [as introduced for symmetric contests
by Taylor and Jonker, 1978].

. Samuelson and Zhang [1990, Theorem 3] show that any evolution-
ary selection dynamics which is regular and aggregate monotonic is the
replicator dynamics up to a player-specific (positive) scale factor. This
motivates why the Nash field can be viewed as a representation of inter-
action in the whole normal form game. But the analogy carries further.
In a companion paper [Ritzberger and Weibull, forthcoming] the
relation between the replicator dynamics, viz. the Nash field, and self-
enforcement properties of equilibria is explored in more detail. It turns
out that for arbitrary n-person finite normal form games
(1) pure strategies which do not survive iterated elimination of strictly
dominated strategies are eliminated by the dynamics in the long run;
(1) a rest point of the replicator dynamics is locally asymptotically stable
[Hirsch and Smale, 1974, p.186], if and only ifit is a strict equilibrium
[this result was first proved by Ritzberger and Vogelsberger, 1990];
(14i) every robust equilibrium [Okada, 1983] is weakly stable [i.e. for ev-
ery neighbourhood there exists another one, contained in the first, such
that any trajectory starting in the second neighbourhood will forever
remain in the first, cf. Hirsch and Smale, 1974, p.185];

(iv) a rest point of the replicator dynamics which is not a Nash equilib-
rium cannot even be weakly stable.
Result (%) can be rephrased as saying that the property of a Nash equi-

-
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librium to be unambiguously self-enforcing with respect to a neighbour-
hood (i.e. strictness) is equivalent to local asymptotic stability of the
replicator dynamics. Result (711) says that any Nash equilibrium which
is self-enforcing with respect to a neighbourhood, though not necessarily
unambiguously so, (i.e. robust) is weakly stable. These results illustrate
the intimate relation between maximizing behavior and evolutionary se-
lection and justify the interest in the Nash field.

For the present purposes, however, only very basic properties of the
Nash field are relevant. To be able to interpret b as a vector field b on
¥, it is necessary to show that b indeed maps into the tangent space of
¥ which, because of the simple structure of , is just RM™. But beyond
this trivial step a much stronger result is available: Let o(¢, 6°%), t €
R., 0° € T, be a solution to the system of differential equations do =
b(c) dt, with (0, °) = ¢°. In the following Lemma it is shown that no
solution o(¢, 0°) ever leaves the boundary face of & in which it starts.
In other words, ¥ and each of its boundary faces (the boundary of X

will be denoted 0¥ ) are invariant under the operation of b.

LEMMA 2. If 0° € &, then o(t, 0%) € £, Vt € R, and, moreover, if
0% € 8%, then o(t, 0°) € O, Vit € R,. Finally, no trajectory ever
leaves the boundary face in which it starts.

ProoOF: It suffices to demonstrate the second part of the statement, be-
cause, if the latter is true, by continuity no solution path can ever leave
3, once it starts in ©. With the understanding that (0, ¢°) = & € 9%
abbreviate o(t, 5) = o(t), V¢t € Ry . Since b(c) is continuously differ-
entiable the differential equation has a unique solution o(t, &) = o(¢)
which satifies the initial condition ¢(0) = & [Hirsch and Smale, 1974,
pp.-162]. By uniqueness of the solution satisfying the initial condition it
is possible to write o¥(¢) as

ok(t) =5* exp{ / Ui(o—i(r), sF)dr}x

K;—-1 t
— ) ex (o_i(1), sE)dr
<{a > o (| Uitostr), sfar}+

Ki—1

+ hz::l o} exp{/ot Ui(o-i(7), Sf’)dT}}—l

If now & € O, then there exists somei € M and s¥ € S;, such that either
(i) 8% = 0, or (ii) ¥ = 1. In case (i) 3% = 0 implies by the above solution
oF(t) = 0, V¢ € R4, and in case (ii) 6F =1 = & =0, Vh # &,
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implies o(t) = 0, V¢t € R4, Vh # k, such that oF(t) = 1 for all
t € §R+. |

REMARK. The reason why it is possible to solve explicitly for one com-
ponent of(t) in the preceeding proof is that in each component one
obtains a Riccati-equation for which explicit solutions are known.

Lemma 2 implies that the restriction of the Nash field to some bound-
ary face of ¥ is precisely the Nash field of the reduced game obtained
by deleting all strategies which are not used in this boundary face. On
the one hand this is a nice ”slicing” property of the Nash field. On the
other hand this property is responsible for the emergence of ”artificial”
zeros of the Nash field on the boundary of ¥ which are not Nash equi-
libria. In particular every pure strategy combination will be a zero of
the Nash field. As a consequence not all zeros of the Nash field are Nash
equilibria. The next result shows, how easy it is to distinguish between
zeros of the Nash field which are equilibria and those which are not.

LEMMA 3. & € E(T) <= &%) = 0 and U;(6_;, ;) < Ui(5), Vs; ¢
supp(5;), Vi € N.

PROOF: If & € E(T'), then clearly from (1) and (2) one must have b(5) =
0 and Ui(6_;, si) < Ui(G), Vs; & supp(d;), Vi € N. If the latter is
true, then (_;(5-) = 0 implies U;(6—;, si) = Ui(7), Vs; € supp(5;), such
that U;(G_;, ;) < Ui(6), V3; ¢ supp(d;), Vi € N, is sufficient for
&€ ET). §

. To check whether a zero of b is an equilibrium it, therefore, suffices to
check the eigenvalues of the Jacobian matrix corresponding to unused
pure strategies. Indeed, therefore, the property of a zero of the Nash field
to form an equilibrium boils down to a simple eigenvalue condition on
the Jacobian matrix DJf(&). In this sense the problem of determining
Nash equilibria reduces to a problem of solving a system of equations
and checking the solutions.

Lemmas 2 and 3 suggest that the analysis can be made more transpar-
ent by slightly perturbing the Nash field such that the perturbed vector
field points inwards at the boundary. To do so some extra definitions
are required. Let B° denote the set of all smooth vector fields that point
inward at the boundary of &,

B*={8:Z— R |eC® of =0 = Bf(c) >0,

0'1k=1 e ﬂf(J)(O,szl,...,Ki—].,
K;-1 K;-1

dool=1= > pHo)<0,VieN}.
h=1 h=1
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A mapping F: & x Ry — RM is called an interior approzimation of the
Nash field Z;, if and only if

(i) F(a, 0) = b(0),

(i) fa: & — RM defined by fa(o) = F(o, \) satisfies f\ € B°, for any
fixed A > 0, and

(v11) F is continuously differentiable on (a neighbourhood of) ¥ x ;.
An interior approximation F is called regular, if there exists some A > 0
such that fx(o) = F(o, A) has only finitely many zeros on T all of which
are isolated points for any fixed A € (0, X).

Since clearly such interior approximations always exist, a new method
of proof for another well known result is obtained. [Hofbauer and
Sigmund, 1988, pp.166, use a similar but more special method of proof
for similar replicator equations.] Only the last part, (iii), of Theorem
3 may be not so widely known. It has recently been arrived at, via an
alternative method, by Gul, Pearce, and Stacchetti [1990].

THEOREM 3. (i) Every game I’ € G(S1,...,S5,) has at least one Nash
equilibrium. If all Nash equilibria of T' are regular (as they are for almost
all games), then (ii) their number is finite and odd and (iii), if ' has
m > 1 pure Nash equilibria, then it has at least m — 1 mixed Nash
equilibria.

PROOF: (i) Consider some interior approximation F: ¥ x R, — RM of
the Nash field 5. By definition fy: & — RM, defined by fa(c) = F(a, )),
points inward at the boundary 0% of X, for all A > 0, since f) € B°. An
application of Brouwer’s Fixed Point Theorem to the solution curves
of do = fa(o)dt, A > 0, for some fixed ¢t > 0 shows that the vector
field f) must have a zero in int X. Let such a zero of f) be denoted by
o(A) € int L. Any sequence {o(A)}rjo must have a cluster point in %,
because ¥ is compact.

The crucial step is to show that any such cluster point & € ¥ must be
a Nash equilibrium: Consider any s¥ ¢ supp(;). From f) € B°,V ) > 0,
it follows that &F = 0 implies F¥(&, 0)/8X > 0. Since F is continuously
differentiable on ¥ x R, there exists a neighbourhood O of (&, 0) in
RM x R such that OFF(a, \)/OX > 0, V(o, \) € ON(Z x R4). Since
& is a cluster point of the sequence {o(A)}a}0, for every neighbourhood
UCON (X xRy) of (7, 0) there exists A > 0 such that (o(A), A) € U.
By Taylor expansion at A = 0 one has

k g
0= £ (o) = i) + ZZEE2 Dy g0, ),

for every A > 0 sufficiently small, such that (c(A), \) € ON(Z x ;)
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implies

dFk(a()), 6) 6

Ui(o-i(A), s7) = Uilo (V) = ——53 ak(N)

<0.

By continuity the weak inequality
Ui(6-i, sf) = Ui(8) <0

obtains as A | 0 for all s¥ ¢ supp(&;). Since a cluster point & must
also satisfy l-;(&) = 0, it follows from Lemma 3 that ¢ € E(T). (I
s¥ = sKi ¢ supp(5;), then the same argument with EhK;II f/’\’,i(a()\))
1nstead of f/\ (o(A) yields U;(5) — Ui(5—, sf(") > 0.) This completes
the first part.

(ii) Define the smooth functions 7s: int & — R, 75 € C=(int T), for

any 6 € (0, [T;en K7 ), by

K;—-1 K;—-1

s =({la- 3 1T -

1EN k=1

The gradients of these functions are given by

Ors(o) _ (1 =3yl o — ob)(ms(0) +6)
Oof oF(1- T oh)

b

forall k= 1,..., K; =1, Vi € N, If‘v’iEN VeE=1,...,K; —1,
one would have of = I—Zﬁ; Yot then oF I—Eha = 1/K;,
Vk‘=1,...,K,-—1,Vi€./\f,suchthat

ms(o) = [[ KEi¥ - 6>0 = o ¢ n;%(0).
1EN

Thus Vo € 75 '(0) there exists i € A and some k € {1,..., K;—1} such
that of # 1— Z,{;’;l o®. Consequently 0 € R is a regular value of 75 for
all 6 € (0, [[;epr K7 5). It follows that II; = {0 € int = | ms(c) > 0} is
an M-dimensional manifold with boundary, and the boundary is 75 '(0)
[Milnor, 1965, p.12; Guillemin and Pollack, 1974, p.62]. Finally, it
is easy to see that as 6 | 0 the compact manifold ITs converges to & and
OIls converges to OX.

Define on II;, for any § € (0, []; K,-_K"), the vector field p: IIs — RM
by p¥(o) = 0¥ K; —1,Vk =1,..., K; — 1, Vi € N. The vector field
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p has only a single zero on Ils, namely the combination in the interior
ok =1/K;, k=1,..., K; —1,Vi € N. At the boundary, 75(c) = 0,
the vector field p points outward, because

d7T5 -
IET) b SIS Tt K- =
s 1EN k=1 i h
Kl 1
=5y (K} - Y —-—=——]<0,
D O s Y

using the differential equation do = p{o) dt. According to the Poincaré-
Hopf Theorem for manifolds with boundary [Milnor, 1965, p.35] the
sum of indices at the zeros of pis equal to the Euler characteristic, x(ILs),
of Ils. Theindex of (1/Kj,..., 1/K:)EiT ) ien is +1 [see Milnor, 1965,
p.37], such that (Is is eﬁ'ectxvely contractible to a point and) the Euler
characteristic x(Ils) is +1, for all § € (0, [;car K7EN,

If all equilibria are regular, then there are only finitely many, because
¥ is compact. Let the equilibria be denoted by ¢!,..., 0?. By the
implicit function theorem each equilibrium ¢? € E(T'), ¢ = 1,..., Q, is
continuously approximated by a unique family {c%(\)}r>o of zeros of
the vector fields fx derived from the interior approximation F. Since
the determinant (of the Jacobian matrices) is a continuous function,
there exists some A > 0 such that |D,fa(c?(A\)| # 0, Vg =1,..., Q,
VA € [0, A). It is easy to see that there must be some A\, € (0, \)
such that {o'(X,),..., 09(Xo)} = f'(0): Otherwise there would be
a sequence {G(A)}rj0, 6(A) € f51(0), but 6(A) ¢ {o*(N),..., a%(N)},
with a cluster point ¢° € ¥ which must be a Nash equilibrium (by the
argument in (i)), but must satisfy |D,b(c°)| = 0. But 0° € E(T) and
lD,g(a°)| = 0 would contradict the hypothesis that all equilibria are
regular.

Now choose § > 0 sufficiently small such that f/\"ol(O) C int IIs and the
vector field fy, points inward at OII;. This is always possible, because
II5 converges to ¥ as § | 0 and f,, points inward at 0X. The set f/\_o1 (0)
must coincide with the set of zeros of the vector field — f», which points
outward at the boundary of II5 by construction. Applying the Poincaré-
Hopf Theorem for manifolds with boundary [Milnor, 1965, p.35] to
the restriction of —fy, to IIs, the indices of zeros of —f), must sum
to +1 = x(IIs). Since the indices are the signs of | — Dg fi,(c?(X0))|,
qg=1,..., Q, and therefore only take values in {—1, +1}, the number
of zeros, (), must be odd.

Since the index of a zero of —f, does not change as A | 0 by regu-
larity, the regular equilibria inherit the indices of their continuous ap-
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proximations and their number, @), must also be odd. Briefly, the above
argument shows that, if all equilibria are regular, then their indices
sign| — D,b(c?)| must sum to +1, the Euler characteristic of T, [The
above argument in fact can be viewed as a variation of Theorem 1 in
Dierker, 1972,

(iii) Finally observe that, if & € E(T) is a pure equilibrium, then
by Lemma 1 and the fact that the determinant is the product of the
eigenvalues its index must be +1, because | — D,b(5)] > 0. Since the
indices sum to +1 over E(T"), if I has m > 1 pure equilibria, then there
must be at least m — 1 equilibria with index —1. And equilibria with
index —1 must be mixed. |

Incidentally the method of proof for Theorem 3, which uses interior
approximations of the Nash field, turns out to be of more general use.
Note that one step in the proof shows that all cluster points (for A |
0) of zeros of any interior approximation of the Nash field form Nash
equilibria. Thus interior approximations eliminate the artificial zeros
of b which are not Nash equilibria. In particular the consideration of -
regular interior approximations can make the behavior of the Nash field
very transparent.

Recall from Kohlberg and Mertens {1986, Proposition 1] that the
set of Nash equilibria for all games consists of finitely many connected
components, at least one of which is such that all close games have an
equilibrium close to the component. Using regular interior approxima-
tions index theory like in Theorem 3 can be extended to define indices
for connected components C C E(T).

“For some regular interior approximation F' of the Nash field define
the family of mappings fy: & — RM by fi(c) = F(o, A). Thus fo(o) =
b(c), f» € B°,¥A >0, and 3X > 0 such that £ 1(0) consists of finitely
many isolated points, YA € (0, A). For any given regular interior ap-
proximation F' of the Nash field and fixed A € (0, A) let, for 5 € f5(0),
the index of & be denoted by ind(s). Note that, if € f;'(0) is a
regular zero, then ind(&) = sign| — D, fa(G)|.

For a connected component C, C C E(T'), denote by U¢ a neighbour-
hood of C which is sufficiently small such that all the U/c’s are pairwise
disjoint across components. For each component C C E(T') define the
indez of C with respect to the regular interior approximation F, denoted
I(C, F), by

IC, F)=limyp Y  ind(@).
Fefy (0)nUc

The definition of I(C, F) has two consequences. First, if all equilib-
ria of ' are regular, then the index of each equilibrium & € E(T')
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is simply given by sign| — D,b(¢)| and, therefore, coincides with the
straightforward definition of an index, by the implicit function theo-
rem. Second, because for each fy, with A > 0 sufficiently small, there
exists some § > 0 such that f;'(0) is contained in the interior of
IIs = {¢ € intY | ms(c) > 0} (because II; converges to ¥ as é | 0
and f) € B°, VA > 0, as in the proof of Theorem 3, (ii)), and f) points
inward at OIls, the sum of indices I(C, F) across components of equi-
libria equals +1, the Euler characteristic of ¥, by the Poincaré-Hopf
Theorem. Note that by convention fy'(0)NlUc =8, VA € (0, A) im-
plies that I(C, F') = 0. The strength of the above definition of an index
derives from the fact that the index only depends on I resp. b, but not
on the particular interior approximation chosen to calculate it.

LEMMA 4. (i) If G is a regular interior approximations of the Nash
field and C C E(T') is a connected component of Nash equilibria, then
I(C, G) is well defined. (#) If F is some alternative regular interior
approximation, then I(C, F) = I(C, G).

PROOF: (i) Any vector field gx, A € (0, A), with isolated zeros can
be replaced by a nondegenerate vector fleld g with |D,ga(7)| # O,
V& € §y'(0), without altering the index sums within arbitrary small
neighbourhoods of & € g;1(0) and leaving the vector field gy outside
slightly larger neighbourhoods unaltered [Milnor, 1965, p.40]. Choos-
ing these neighbourhoods sufficiently small (such that they are all con-
tained in the union of the neighbourhoods Uc across components) the
regular interior approximation G can be replaced by the regular inte-
rior approximation G defined by G(o, A\) = §a(o). From the implicit
function theorem it follows that the limit in the definition of I(C, G) is
well defined. By construction I(C, G) = I(C, G) for every connected
component C' C E(T').

(ii) Choose now A* > 0 such that both f5'(0) and ¢5'(0) consist of
finitely many isolated points for all A € (0, A*). Let U denote the union
of all neighbourhoods of equilibrium components other than C such that
closure(Up) N closure(Uc) = 0. By Urysohn’s Lemma there exists a
smooth real-valued function ¢ on (a neighbourhood of) ¥ such that
#(c) =0, Vo € closure(Ug N X), and ¢(o) =1, Vo € closure(Uc N I),
and 0 < ¢(0) < 1,Vo € . Define H: & x Ry — RM by

H(o, A) = 8(0) fa(o) +[1 — ¢(0)l galo) ,
and let hy(c) = H(o, A).
Clearly H is an interior approximation of the Nash field, because

H(o,0) = b(c), hx € B°, VA > 0, and H is continuously differentiable
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on X xR, . It remains to show that H isa regular interior approximation:
If for all A € (0, A*) there exists some A € (0, ) such that

R31(0) NintT \ [closure(p N T) U closure(Uc NT)] # 0,
then there exists a sequence {(\, ¢!)}&,, with
(A, o'y € (0, A*) x [intE \ (closure(Ug N ¥) Uclosure(Ue N L)),

such that A — .o 0 and ha(ch)=0,Vi=1,2,.... By compactness
there exists a cluster point 6° € ¥\ [(Up N T) U (U N T)] which must
be a zero of the Nash field, g(a") = 0. By the same argument as in
the proof of Theorem 3, (i), it can be shown that such a cluster point
o? must satisfy ¢° € E(T'). But E(T') C (Up UUc) N X, such that a
contradiction is obtained. Consequently, there exists some A € (0, A*)
such that .
hN0) CUsUUC)NE, VAe(0,N).

Since on (Up UlUc) N I the vector field hy equals either fy (on Uc) or
gx (on Ug), it has only finitely many isolated zeros and is, therefore,
regular.

Let z be the index sum over g N T, i.e.

z=limye ), nd(@)=lmy, Y ind@).

F€hT(0)NUp 5eg; ' (0)NUp

Since hy € B°, VA > 0, there exists some § > 0 such that h;l(()) -
int IIs. Applying the Poincaré-Hopf Theorem for manifolds with bound-
ary to the restriction —hy: IIs — RM yields for all A € (0, A) that

Z ind(d) = z + Z ind(c) =1 =
a€h;(0) Feh; M (0)NUc
= I(C,H)=1-2=1I(C, F).

On the other hand
Y ind@)=z+ Y. ind(e)=1

5€95(0) F€gy (0)NUC

yields I(C, G) =1—-2z=I(C, F). 1
The Lemma implies that the index assigned to a connected component
C C E(T') isindependent of the particular regular interior approximation
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chosen to calculate it. One can, therefore, drop the argument referring
to the approximation and call it the indez of the component C, denoted
Ind(C). The index Ind(C) depends only on the particular game I €
G(S1,..., Sp) under consideration and does not require the computation
of payoff perturbations.

The whole point of the exercise is to show that Ind(C) is an ap-
propriate generalization of the notion of regularity in the sense that it
allows to extract global properties (in the space of normal form games)
of equilibrium components from purely local information. The power
of regularity rests with Theorem 1. The Theorem to follow provides a
set-valued analogue to the essentiality of regular equilibrium points. In
analogy to the notion of an essential equilibrium point, call a connected
component C C E(T') an essential component, if for all ¢ > 0 there is
some § > 0 such that every game I' which satisfies ||T', ['|| < § has a
Nash equilibrium within (Hausdorff-) distance ¢ from C. The "local”
information summarized in Ind(C) turns out to provide the "global”
information on C C E(T') required to identify essential components.

THEOREM 4. Let C C E(I') be a connected component of Nash equi-
libria. If Ind(C) # 0, then C' is an essential component.

PROOF: The claim is trivially true for M = 1, because then the game
is a 1-person game with two pure strategies. Thus from now on assume
M > 1. Let B,(C) = {0 € ®M | infs¢c||G, o|| < €} be an open &-
neighbourhood of the connected component C C E(T), for any ¢ > 0,
and let B2(C) = B.(C)N . The payoff vector of the game I" under
consideration will be denoted & € R"%, T' = I'(4).

If C C E(T) is not essential, then there exists ¢ € ®"¥ \ {@} such
that for all a € (0, 1]

E(T(at+ (1 —-a)z))NB(C) =10,

for all ¢ > 0 sufficiently small. Denote by R = {u € R"¥ | u =
att+(1—-a)i, a € [0, 1)} the relevant space of games (more generally R
can be any one-dimensional set diffeomorphic to a half-open interval). As
a one-dimensional manifold with boundary R is oriented along increasing
a€[0,1).

Now choose a smooth map G: Rx L xRy — RM such that Fy(o, \) =
G(u, o, A) for fixed u € R is an interior approximation of the Nash field
b, for the game I'(u), i.e. Fy(o, 0) = Eu(a), fux = Fu(., ) € B°,
YA > 0, and F, is continuously differentiable on £ x R,. Define the
family of mappings Gx: R x intS — RM_ for all A > 0, by Ga(u, o) =
G(u, o, A). For M > 1 the mapping G can be chosen such that there
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exists some A > 0 such that for all A € (0, X) the origin 0 € RM is a
regular value both for G and for faz A = G(@, ., A\) = GA|0(R x int%)
by the Transversality Theorem [Hirsch, 1976, p.74].

Since for each A € (0, A) the mapping G is one from an (M + 1)-
dimensional manifold with boundary to the M-dimensional euclidian
space RM and since0 € RM is a regular value for both G and f; » =
GAlO(R x intE) = Ga|{a} x intL, the generalized preimage theorem
[Guillemin and Pollack, 1974, p.60] implies that G5'(0) is a smooth
one-dimensional manifold with boundary 8{G5'(0)} = G;*(0) N {@} x
intd.

Define the set G;1(0) as the set of all pairs (u, 0) € R x £ such that
I_;u(a) = 0 and for all neighbourhoods O of (u, ¢) in R x T there exists
A" > 0 such that O N G;'(0) # 0, VA € (0, X']. This ”limit” set is the
graph of the correspondence ¥: R — X defined by

Y(u)={c€eZ | (u,0)eG;0)}.

Claim 1: The next step is to show that ¥(u) C E(T'(u)), Vu € R:
Consider some ¢ ¢ E(T'(u)), gu(c?) = 0, with b, the Nash field for INE)
By Lemma 3 there exists some ¢ € A" and some s¥ ¢ supp(5;) such that
Ui(6—;, s¥) — U;(3) > 0. By continuity there exists a neighbourhood U
of 7 in ®M and a neighbourhood V of u in R such that bﬁ,’i(a) > 0,
V(u', o) € V x (UNintZ). Since G is smooth, there exists a neighbour-
hood O CV x (UNintZ) of (u, ) in R x £ such that G¥(u', o, A) > 0,
V{u', o) € O, and for all A > 0 sufficiently small. Thus G'(0)NO = @,
for all A > 0 sufficiently small, such that & ¢ ¥(u). This establishes
Claim 1 that ¥(u) C E(I'(u)), Vu € R.

As a consequence the set G 1(0) is contained in the graph of the Nash
equilibrium correspondence over R, i.e.

G, (0) CGr(E)={(v,0) ERXXT | o€ E(P(u))}.

If C C E(T'(a)) is not essential, then for all u € int R = R\ {ii} one
must, therefore, have that G;1(0) N {u} x B2(C) = @, for all ¢ > 0
sufficiently small, viz.

3e>0: G;Y(0)N(int R x B2(C)) =8, Ve € (0, &).

There are two possibilities: Either G;1(0) N {a} x B2(C) = @, in which
case the interior approximation to b; has no zero close to C' such that
Ind(C) =0, or G;1(0) N {©} x B2(C) # 0. Since in the first case there

remains nothing to be shown, assume the second case.
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Recall that for any A € (0, A) the set G;'(0) consists of finitely
many closed or half-open intervals, and circles [by the classification of
1-manifolds: Milnor, 1965, p.55; Guillemin and Pollack, 1974, p.64].
Since by construction 0 € ®M is a regular value for G, it is also a regu-
lar value for G, such that the preimage of 0 € M under the restriction
of G to R x int¥ x R4 4 is a 2-dimensional manifold. As a consequence
a property demonstrated for some A’ € (0, ) will also hold true for all
A € (0, A"). The property which is of relevance here is the following:

Claim 2: For any A € (0, A) sufficiently small the set G{' N R x
B2(C), € > 0 sufficiently small, consists of finitely many closed intervals
"arcs”) and circles (the latter disjoint from {u} x B2(C)) such that all
boundary points of the arcs are contained in {@} x B2(C). In particular,
G51(0) N R x B2(C) does not contain any half-open intervals.

Suppose this is not true. Then it is possible to find an arc or a
half-open interval in G3'(0) which starts in {@} x B2(C), but leaves
R x B2(C) at some point. Since G7!(0) is a 2-manifold, this must also
hold for any smaller A\. But G;(0) Nint R x B2(C) = @ implies that
with decreasing A this particular piece of G '(0) must leave R x B2(C)
above successively "smaller” values of u € R (i.e. closer and closer to @).
Hence G;1(0) N {u} x B2(C) will not be contained in {#} x C. Rather
there will be a connected piece of G, 1(0), contained in {@} x ¥, which
begins in {@#} x C and ends outside of {a} x C. But this contradicts the
hypothesis that C is a full connected component of Nash equilibria (by
Claim 1). The conclusion is that any arc starting in {#} x B2(C) must
also end in this set. This establishes Claim 2.

Determining an orientation for each arc in G;'(0) from the standard
orientations of R x £ and R [see: Milnor, 1965, p.28] shows that a
positively oriented unit vector tangent to an arc will point inward at
one boundary point and outward at the other. Since by construction
fa, » has only regular zeros, the orientations of the boundary points of
arcs coincide with the indices of the corresponding zeros of f; x. Thus
all the zeros of fz A relevant for computing Ind(C) come in pairs of
indices +1 and —1. Summing over all these zeros, consequently, yields

Ind(C) =0. §

Theorem 4 shows that Ind(C) is indeed an appropriate generalization
of what the determinant of the Jacobian at a regular equilibrium pro-
vides as local information. A component C' C E(T') with Ind(C) # 0
is robust against payoff perturbations, despite the fact that payoff per-
turbations need not be considered to calculate Ind(C). As a simple
consequence of Theorem 4 Ind(C) # 0 implies several other desirable
properties.
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PROPOSITION 1. For all gamesT" € G(S4,..., S,), if a connected com-
ponent C' C E(T") satisfies Ind(C') # 0, then (i) C contains a Stable Set
in the sense of Kohlberg and Mertens [1986], and (ii) it contains an
equilibrium which induces a sequential equilibrium [Kreps and Wil-
son, 1982] in any extensive form game with the normal form T'. More-
over, for almost all games in the space of extensive form games (iii) the
(sequential) outcome induced by equilibria in C is constant across C.

ProoF: (i) If Ind(C) # 0, then C is essential. By translating strategy
perturbations into payoff perturbations [as in the proof of Theorem 2.4.3.
in van Damme, 1987, p.34] it can be shown that C satisfies the defining
property (S) of a Stable Set [Kohlberg and Mertens, 1986, p.1027]:

” Property (5): S C E(T) is closed and Ve > 0 there exists §, > 0 such
that for any & € intZ and any § = (&;)ien, 6 € (0, 8,), the perturbed
game where every strategy o; is replaced by (1 — &;)o; + 6;6;, Vi € N,
has an equilibrium &-close to S.”

Consider the collection of closed subsets of C' which satisfy property
(S), ordered by set inclusion. By compactness the intersection of any or-
dered chain in this collection is non-empty and belongs to the collection.
Thus the existence of a minimal element follows from Zorn’s Lemma.
Such a minimal element must be a Stable Set.

(ii) An essential component C always contains a hyperstable set [Kohl-
berg and Mertens, 1986, p.1022] by the same argument as in (i) and,
therefore, a proper equilibrium [Kohlberg and Mertens, 1986, Propo-
sition 3]. A proper equilibrium induces a sequential equilibrium in any
tree with normal form I' [van Damme, 1984; Kohlberg and Mertens,
1986, p.1009].

(iii) Generic extensive form games have only a finite number of equi-
librium outcomes [Kreps and Wilson, 1982, Theorem 2|. The set
of Nash equilibria for all normal form games consists of finitely many
connected components [Kohlberg and Mertens, 1986, Proposition 1].
The space of extensive form games is a linear subspace of the space
of normal form games G(Si,..., S,), as can be seen from writing the
ties, induced between strategy combinations that lead to the same ter-
minal node, as a system of linear equations in u € "X [compare also:
Mailath, Samuelson, and Swinkels, 1990]. As a consequence of these
three facts for generic extensive form games the component C uniquely
identifies a sequential outcome of any extensive form game with normal
form I" (because it contains a proper equilibrium). §

As a consequence of Proposition 1, (i), a component C that satisfies
Ind(C) # 0 also satisfies "Iterated Dominance” and ”Independence of
Non-Best Responses” [Kohlberg and Mertens, 1986, Proposition 6;

23



the terminology is from van Damme, 1990]. Thus to identify a com-
ponent C' C E(I') with Ind(C) # 0 may be as far as one has to go.
In fact it will generically, in the space of extensive form games, suffice
for a normative recommendation, if such a recommendation is on be-
havior along the equilibrium path. Off the equilibrium path still some
seemingly desirable properties may be violated. In particular an essen-
tial component may contain inadmissible equilibria. This certainly is a
drawback, although one may have doubts on the viability of an axiom
requiring players to use only undominated strategies: After all, a given
player’s dominated strategy may only be inferior against a strategy com-
bination of the opponents, where some other player uses a dominated
strategy [cf. Samuelson, 1991]. In an evolutionary context an equilib-
rium which prescribes the use of an inadmissible strategy would simply
be a composition of populations in which certain behavorial options are
not tested against. That is: a behavorial pattern (pure strategy) may
be used, despite being dominated, because it prescribes inferior actions
only in circumstances that never occur, such that it will not be selected
against. Similarily, in naive learning processes some insights may never
be learned, because the circumstances, where they matter, never realise
[this is why many learning models use some kind of exogeneous ran-
domness, cf. Canning, 1987, 1989; Fudenberg and Kreps, 1988, for
extensive form games|. Still it is undebatable that there are further
desirable properties, beyond those already mentioned, which would re-
quire further selection (beyond essential components), yielding smaller
solution sets (probably at the expense of generating more solutions) [cf.
Hillas, 1990; Mertens, 1987, 1989].

But equilibrium refinements are only one aspect of Theorem 4. The
proof of Theorem 4 in fact allows for another insight which concerns the
structure of the Nash equilibrium correspondence [similar results are:
Theorem 1 of Kohlberg and Mertens, 1986; Theorem 3.1. of Blume
and Zame, 1989; and Theorem 1 of Schanuel, Simon, and Zame,
1990].

PROPOSITION 2. The graph of the Nash equilibrium correspondence,
G(E) = {(u,0) € R"E x £ | ¢ € E(T'(u))}, can be arbitrarily closely
approximated by a differentiable manifold of dimension nK.

Proo¥F: To produce a particular interior approximation for all Nash
fields b, consider the mapping G: ¥ x intT x R4y — RM defined by

GF(u, o, X) = b¥(0) + M1 — oF K),
fork=1,..., Ki—1,Vi e N. Let Fy(o, A\) = G(u, 0, \) and fy,, A(0) =
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Fu(o, A), VA > 0. Clearly F, extended to £ x R is an interior approx-
imation of I_;u

Since ™K, intT, and R, are smooth manifolds, so is their product,
such that G is a smooth mapping of manifolds. By definition no zero
of Ga(u, o) = G(u, 0, ) can emerge at the boundary of ¥ as long as
A > 0. Then by Lemma A.2. (in the Appendix) the Jacobian matrix
D(u, s 2G(@, 3, ) is surjective, i.e. has maximal rank (= M), at any
point where G(t, 7, A) = 0. As a consequence 0 € R is a regular value
of G. The Preimage Theorem [Guillemin and Pollack, 1974, p.21]
implies that G™!(0) is a smooth manifold of dimension (K + 1). The
very same argument establishes that for each fixed A > 0 the preimage
of 0 € M under G, is a differentiable manifold of dimension nk.

Like in the proof of Theorem 4 let G;(0) be the set of all (u, o) €
R x T such that I;u(a) = 0 and for all neighbourhoods O of (u, o)
there exists A > 0 such that GT*(0)N O £ §, VA € (0, A]. Duplicating
the argument in the demonstration of Claim 1 in the proof of Theorem
4 yields G;1(0) C G(E).

Now observe that G;!(0) and G(E) agree on a dense open subset
of R"K by Theorem 2 and the implicit function theorem. Since the
differentiable and n K-dimensional manifolds G5'(0) converge pointwise
to at least some part of G(F) (namely to G 1(0)), but by Theorem 1 of
Kohlberg and Mertens [1986] the graph G(E) is itself homeomorphic
to R"¥, each G7!(0) must approximate all of G(E). 1

In the sense of Proposition 2 the consideration of cluster points of zeros
of interior approximations does not really drop any important informa-
tion on the structure of the equilibrium correspondence. Although ¢ (E)
is not a smooth manifold, it is the ”limit” of smooth nK-dimensional
manifolds. Theorem 4 is merely the payoff to understanding this struc-
ture.

REMARK. The particular interior approximations used in the proof of
Proposition 2 are reminiscent from Harsanyi [1973]. Their zeros, for
A > 0, are equivalent to the necessary and sufficient conditions for an
equilibrium of a game, where payoffs are given by the payoffs in I' plus
A times the payoffs from the ”logarithmic game”. In fact the logarith-
mic tracing procedure as introduced by Harsanyi and Selten [1988,
pp.165] is a particular way to produce interior approximations of the

Nash field.

To summarize on how the Nash field can help with equilibrium selec-
tion: If a game has strict equilibria, these seem preferable to any non-
strict ones (the Nash field may even help to compare strict equilibria:
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see Section 4.1.). For games without strict, but with regular equilibria,
the latter seem an arguable choice (note that regular equilibria always
have a non-zero index). For games without regular equilibria the Nash
field can help identifying components which will be robust in the sense
that close games will have equilibria close to the component. The lat-
ter can be achieved by checking the indices of connected components of
equilibria, without having to compute payoff perturbations. And such a
robustness property (”essentiality”) seems to be the least one could ask
from a selection outcome, because the analyst can never be sure to have
picked precicely the correct payoffs. On the other hand, if one is willing
to go as far as requiring that a solution set is contained in a component
with non-zero index, even Stable Sets [in the sense of Kohlberg and
Mertens, 1986] may fail to satisfy this (as an example in Section 4.2.
below will illustrate).

4. APPLICATIONS

4.1. Risk Dominance in 2 x 2 games. In developing a complete
theory of equilibrium selection Harsanyi and Selten [1988] introduce
the concept of Risk Dominance. The intuitive argument for this criterion
works as follows: Suppose all players in a given game are certain that
one of two possible equilibria will be played, but they are uncertain
as to which of the two. In this state of confusion the players enter
a process of expectation formation. Starting from a prior distribution
over the actions of other players each player tries to improve her forecast
of the behavior of her rivals by taking into account what a given vector
of prior distributions over the actions will lead her opponents to do.
Once a player has figured out what the responses of the other players
to the priors will be, she adjusts her estimate and again calculates the
consequences of this new distribution over the other players’ actions.
Where this process ends, the risk dominant equilibrium is located.

For the class of 2 x 2 games with two strict equilibria Harsanyi and
Selten [1988, chp. 3.9] have formalized the notion of Risk Dominance
in three axioms and they have shown that the risk dominant equilibrium
is fully characterized by possessing the larger Nash-product. (For other
games Harsanyi and Selten formalize Risk Dominance by the tracing-
procedure.)

Translating the Nash-product property into terms of the Nash field
gives a nice illustration of the information contained in the Nash field.
First, it is quite commonplace that all 2 x 2 games with two strict equi-
libria are more or less of the type illustrated in Figure 1 below. In Figure
1 the unit square is £, the bold lines are the graphs of the best-reply
correspondences of the two players and the points A, B, and C are the
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three equilibria, two of which (A and B) are strict. The arrows portray
the behavior of the Nash field: A and B are, as strict equilibria, locally
asymptotically stable, while C is a saddle point. This already is suffi-
cient to restrict attention to A and B. It is now tempting to argue that
in Figure 1 knowledge of the Nash field already is sufficient to select
A as the "better” equilibrium, because ”A absorbs a larger part of &
than B does”. But can this be made more precise? The answer is in
the affirmative, if one takes into account the Nash-products of the two
equilibria A and B.

(Insert Figure 1 about here)

Letting A being associated with the pure strategy combination (s1, s1)
and B being associated with the pure strategy combination (s3, s2), the
Nash-products, NP(.), are given by

NP(A) = [ul(s%v 5;) - ul(si 3%)]['“2(3%’ 321)) - UZ(Si’ Sg)]>
NP(B) = [u(s1, 53) = w(s1, s3)[ua(s, s3) —ua(sd, s3)].
Because the determinant is the product of the eigenvalues, Lemma 1 ap-
plied to the above shows that the Nash-products equal the determinants
of the Jacobian matrix of the Nash field at the corresponding equilibria.
But the determinant is just the volume of the image of the unit cube
under the linear mapping D,5(5). In other words: The determinant of
D;b(7) is the coefficient of contraction of (oriented) volume, in the sense
that the volume of any figure is contracted by a factor of —|D,b(5)|. This
makes it precise, what was meant by the somewhat vague phrase "A ab-
sorbs more of ¥ than B does”. For the class of 2 x 2 games with two
strict Nash equilibria it thus turns out that Risk Dominance is equivalent
to the condition that the preferred equilibrium has the larger absolute

value of the determinant of D, () at the equilibrium.

It is worth mentioning that the above logic holds true for all games
with a strict Nash equilibrium: The determinant of D,b(G) at the
strict equilibrium o € E(T") always equals a somewhat generalized Nash-
product,

D@ =T I Wio=s s - V@) =
IEN s; ¢3uUpp(s;) A
=0T I 0E) - Ui, )]
iE€EN s; ¢ Supp(a;)
and always measures the coefficient by which the strict equilibrium lo-

cally "absorbs its neighbourhood” [in a very similar sense as in Kalai
and Samet, 1984].
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4.2. Indices of components. In simple games it is often very easy
to determine which component has a non-zero index. An example of
this is provided by the well-known "beer-quiche” signalling game, due
to Kreps. The set of Nash equilibria for this game consists of two con-
nected components: In the first a strong signal is sent by (both types
of) the incumbent and the entrant retreats upon seeing a strong signal,
while the entrant would fight (with probability > 1/2) upon seeing a
weak signal. In the second component (both types of) the incumbent
send a weak signal in response to which the entrant retreats, while the
entrant fights (with probability > 1/2) if the signal is strong. Kohlberg
and Mertens [1986, pp.1031] show that the second, "unintuitive” com-
ponent does not contain a Stable Set. By Proposition 1 the index of
the second component must, therefore, be zero. Since indices sum to
+1 across components, the first, ”intuitive” component must have a
non-zero index, namely index +1.

Somewhat more interesting is the game of Figure 4 in van Damme
[1989], reproduced as Figure 2 below. This game has two components
of equilibria. The first consists of the strict equilibrium in which player
1 chooses to play the 2 x 3 subgame in which she chooses T, and player
2 responds with L.

(Insert Figure 2 about here)

Since this component is a strict equilibrium, it must have index +1.
As a consequence, the other component in which player 1 chooses her
outside option has index zero. Still van Damme [1989, p.487] shows
that this second component also forms a Stable Set. To require a non-
zero index would thus lead to the selection of the strict equilibrium
which, as van Damme [1989] argues, is the only one in this example
consistent with Forward Induction. The example also illustrates that
there may be equilibrium components which contain a Stable Set, but
still have index zero. It is, however, easy to see that every game has
at least one component with non-zero index (because otherwise indices
would not sum to +1) and, therefore, a Stable Set contained in such a
component. Whether these Stable Sets (which are contained in compo-
nents with non-zero index) are those that are consistent with Forward
Induction remains to be seen.

5. CONCLUSIONS

The present paper has demonstrated that the structure of interaction
of players in a given normal form game at any point in the space of mixed
strategies can be represented by a smooth vector field, called the Nash
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field. This vector field can be exploited in a number of ways. Regular
equilibria can be defined from this smooth structure in a straightforward
way. Second, index theory can be generalized to connected components
~ of equilibria, providing global information on robustness against payoff
perturbations from purely local properties.

Beyond these insights the Nash field provides a convenient way of
representing the type of strategic interaction presumably modelled by
the game. When the Nash field is used to define a system of differential
equations it results in the replicator dynamics for asymmetric games.
It thus provides a natural link between the ”classical” theory of games
played by rational players and evolutionary game theory.

Finally one may at least hope that various refinement concepts have
counterparts in the behavior of the Nash field. This is certainly true
for strict and robust equilibrium points. Section 4.1. has also illustrated
this for Risk Dominance in 2 x 2 games. But the applications of index
theory to the examples in Section 4.2. also illustrate that the Nash field
is capable of sheding doubts even on very strong refinement concepts.

APPENDIX

LEMMA 1. If 3; ¢ supp(0;) and b(c) = 0, then [Ui(o—;, 5;) = Ui(o)] € R
is an eigenvalue of the Jacobian matrix D,b(o).

PRrOOF: First suppose s¥ ¢ supp(o;) is such that k < K;. Since sk ¢
supp(a,) < of =0, all off-diagonal elements in the row of D,b(o)
corresponding to s¥ € §; are zero and the diagonal element is given by

—bk(O‘) Ui(o—i, sF) = Ui(o)

and, therefore, is an eigenvalue of D,b(c). Next suppose s¥ ¢ supp(o;)
is such that k¢ = K;. Then subtract [U;(o—;, s¥) — Ui(o)] from all
diagonal elements of D,b(c) and sum the rows corresponding to s#, h =
1,...,K; — 1. This yields for the columns corresponding to si [ =
1,...,K; -1,

i

Ki—1

> oMU, s = Us(os, sH+

h=1

+ Ui(o—i, s}) — Ui(0) = [Ui(o=s, s55) = Ui(o)] =
Ki—1

= (1= Y oMUi(o-i, s}) = Ui(o—s, 57 =0,
h=1 '
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because s*¢ ¢ supp(o;) <= (1 - ,ii_;l o) = 0. For the columns

corresponding to sg- , J €EN\{i}, I=1,...,K,;—1, this operation yields
K;—1
K.
Z ot Ui(o—ij, st, s5) = Ui(o—ij, s, s;0) = Ui(o—j, i)+
h=1

Ki;-1
K; K
+Uoj, 83 =1 =Y oMUi(o_j, s5) = Ui(o—j, s )~
h=1
. . K.
- Ui(O'._,'j, SIK‘, Sg) + U,'(J_,'j, SZK‘, 8; ] =0,
(0'_,']', 5’,’, 5']) = (01,... yTi-1, 5‘,‘, Titly- 1051, 5']', Tj41y--- ,O'n). It

follows that these K; — 1 rows are linearily dependent and, therefore,
[Ui(o_s, s59) = Ui(0)] € R is an eigenvalue. §

THEOREM 1. Let T' € G(S1,...,S,) and assume that & € E_(f‘) is a
regular equilibrium. Let @ € R™" denote the payoff vector of I'. Then
there exists a neighbourhood U of % in R™¥ and a neighbourhood V of

& in RM | such that

(i) |E(T(u)) N V|=1, Yu €U, and

(ii) the mappingo:U — V, u— o(u), where o(u) is

the unique equilibrium of ' = T'(u) in V, is continuous.
PROOF: Define the mapping b: R** x RM — ®M by
b (u, o) = of[Ui(o—i, sf) = Ui(o)] = by, (),

VE =1,...,Ki—1, Vi € N. Since 7 € E(T') = E(T'(u)), one has
b(a, ) = 0, and since & is regular, |D,b(@, &)| # 0. Then by the
implicit function theorem there exists a neighbourhood Uy of @ in R™¥
and a unique function o:Uy — RM such that o is differentiable on U,

o(@) = &, and b(u, o(u)) =0, Yu € Us.
Choose an open neighbourhood V of & such that

a“l(V)QUo

F>0 = oF>0,VoeV, Vk=1,... ,K; -1,
Ki—1 Ki—1
Z&f’<1=> Zaf‘<1,\7’aev,
h=1 h=1

~ for all ¢ € M. By continuity of o, ¢~!(V) is an open set in Uy, with
% € 0~ 1(V). Define the continuous mapping

Aikio I V) o R, ues (u, o(u) - Ui(o—i(u), s¥) = Ui(a(w)).
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It follows from continuity of ); ; that the set
Wi,k = )\i_,i(—oo, 0) n 0’_1(V)

is open. Consider now the following intersection

u=\ [\ Wi

€N sk gsupp(a:)

As a finite intersection of open sets, U is open and, because u € W
for all (2, k) such that o¥ = 0 (7 is a regular and, therefore, quasi-strict
equilibrium of I = I'(%)), it follows that U/ is an open neighbourhood of
U.

Next it will be shown that for all u € U, o(u) is an equilibrium of I'(u):

Vu € U: of(u) =0 =55 =0= Ui(o_i(uw), s¥) — Ui(a(v)) < 0.

Moreover, b(u, o(u)) = 0 implies that o¥(u) > 0 = Ui(o_i(u), s¥) —
Ui(o(u)) = 0, such that o(u) is an equilibrium of T'(u). J

THEOREM 2. Almost all games I' € G(S1,...,S,) have all equilibria
regular.

PROOF: First "slice” the polyhedron ¥ in the following way: Set Xj; =
wnt 3. Then for each 0 < m < M let X,, be the set of all interiors of
all boundary faces of ¥ with dimension m and denote by ™ a typical
element of ¥,,, ¥™ € ¥,,. Finally, let X3 be the set of all "corners” of
¥ (pure strategy combinations) and again denote by 2% € ¥, a typical
point representing a pure strategy combination. For each 0 < m <
M every ¥™ € ¥, is a differentiable manifold without boundary of
dimension m. Each of the sets %,, is finite.

Next identify G(Si,... ,Sn) with the space of payoff vectors u € K
and let the dependence of the mapping b, defined in (3), on the payoff
vector be expressed by writing b, for it. Let C®(Z, RM) be the set
of all mappings taking ¥ to ®M which are infinitely often continuously
differentiable. Define the mapping

b:RE (2, ®RM) by b(u)=b, .

(The same symbol b is used here as in (3) to avoid extra notation, because
no confusion can arise.) Analogously denote by 5,|X™:X™ — R™ the
mapping b, restricted to the boundary face ™ and define b|Z™: R"K —
C(X™, R™) by setting b|Z™(u) = b,|EZ™. Also let the evaluation map
be?|E™: RPK x ™ — R™ be defined by (u, ) — b,|S™(0). To ensure
that these definitions yield something well defined, the following two
Lemmas are needed:
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LEMMA A.l. For each 0 < m < M and any u € R*K
Image (b°”|Z™) C R™, V™ € &,, .

PROOF: Lemma A.1l is a weak version of Lemma 2 and follows from the
implications 0f =0 => b¥(s)=0andof =1 = b5(0) =0. I

LEMMA A.2. For any 0 < m < M and each ¥™ € %,, the derivative
D(y,»)b°"|Z™ (1, 7) is surjective, i.e. has rank m, at each point (i, &) €

RE x ™ such that b*|Z™(q, &) = 0.

PROOF: Since Dy, »)b*?|E™ = [D,b°"|EZ™, D,b?|Z™] it suffices now to
show that D,b°”|X™(u, &) has rank m. Calculating partial derivatives
yields .
m
S @,3) = (- ahat [] 2ie),
ui(S—i, ) . .
| : JEM\{i}
where 0y = 0, if £ # [, and 6y = 1, if £ = [. The partial deriva-
tives of b¥|Z™ with respect to the payoffs of any other player j #
¢ are zero. Therefore, it suffices to consider D,,b¢*|Z™(u, &), where
u; = [(wi(s—i, $i))s_;es_;]s;es; is player i’s payoff vector. Consider
linear combinations of rows of D, bf’|X™(u, ): Along any column
corresponding to (s_;, s¥) € S the linear combination with weights

ar, I=1,... ,K; — 1, over an arbitrary subset of rows yields
af I #iG-dlawi =65 -3 a5l]=
JEN\{i} I#k
=5:€ H 5’j(8_,‘)[ak ——Zm&f].
JEN\{i} !

If s¥ ¢ supp(5;), then this trivially equals zero. If (s_;, s¥) € supp(5),
an assumption that the rows are linear dependent would imply a; =
a =Y, 5! with o # 0, such that

ak—Zm&f:a(l——Z&f).
l l

But the RHS of this equation can only equal zero, if the summation is
over the entire support of ;. This implies that

rank(Dy; 0" |Z™(a, 7)) = |supp(5i)| — 1.

But by construction ) ;¢ |supp(d;)] — n = dimE™ = m, such that the
Lemma follows. §
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(PROOF OF THEOREM 2 CONTINUED): Picka£™ e X,,, 0< m < M.
The map b°¥|Z™ is infinitely often differentiable and by Lemma A.2 the
0 € R™ is a regular value of 5°”|Z™. Then the parametric transversality
theorem [Hirsch, 1976,p.79] states that the set

Vem = {u € R"%|0 € R™ is a regular value of b|=™}

is dense in R"K.

Next let W be defined as the set of all u € 7% such that the corre-
sponding game I = I'(u) has only quasi- strict equilibria. From Theorem
2 in Harsanyi [1973] it follows that the complement of W in R"X is a
closed set with Lebesgue measure zero. Hence W is dense in %X (Sup-
pose not: Then there exists an open set O contained in the complement
of the closure of W and a compact set @ C ©. But then, since the
measure of Q is non-zero, this must also be true for the measure of ©.
Because O is a subset of the complement of the closure of W it must
be contained in the complement of W - a contradiction to Harsanyi’s
Theorem 2.). Now consider the set of u € "X which have only quasi-
strict equilibria and all regular equilibria in every £™, V0 < m < M.
Each u in this set satifies

ve (1 ) Vam N W =[Vom NW .
0<m<M E™ES,,

The Baire-Theorem [Hirsch, 1976, p.213] implies that (| Vgm N W is
dense in R"K,

Finally, let u € (\Vem N W and & a zero of b,|Z™. By elementary
operations on determinants the following decomposition is obtained

Dbu(@) =[] TI (Wilo-i, s¥) = Ui(3)) IDobul=™(5)],

€N sk¢supp(a:)

if # € £™. Since all equilibria of I'(u) are quasi-strict and the determi-
nant in the above decomposition is non-zero, all equilibria are regular.

This holds for all u in the dense set (\Vem NW. J
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