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Developments in the theory of Ostwald ripening since the classic work of I. M. 
Lifshitz and V. V. Slyozov (LS) are reviewed and directions for future work are 

suggested. Recent theoretical work on the role of a finite volume fraction of 

coarsening phase on the ripening behavior of two-phase systems is reformulated 

in terms of a consistent set of notation through which each of the theories can 

be compared and contrasted. Although more theoretical work is necessary, these 

theories are in general agreement on the efTects of a finite volume fraction of 

coarsening phase on the coarsening behavior of two-phase systems. New work 

on transient Ostwald ripening is presented which illustrates the broad range of 

behavior which is possible in this regime. The conditions responsible for the 

presence of the asymptotic state first discovered by LS, as well as the manner in 

which this state is approached, are also discussed. The role of elastic fields 

during Ostwald ripening in solid-solid mixtures is reviewed, and it is shown that 

these fields can play a dominant role in determining the coarsening behavior of 

a solid-solid system. 

KEY WORDS: Ostwald ripening; phase transformations; competitive growth; 

I diffusion. 

I 

I 1. INTRODUCTION I 
In general, any first-order phase transformation process results in a two- 

/ phase mixture composed of a dispersed second phase in a matrix. However, I 
1 as a result of the large surface area present, the mixture is not initially in 

i 
thermodynamic equilibrium. The total energy of the two-phase system can be 

decreased via an increase in the size scale of the second phase and thus a 

i decrease in total interfacial area. Such a process is termed Ostwald ripening 

or coarsening. Since the excess energy associated with the total surface area 
is usually small, such surface energy driven morphological changes typically 

manifest themselves as the last stage of a first-order phase transformation 
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coalescence, which introduce new particles of a given size class, are 

negligible. 
The flux of particles in size space is controlled by the function R(R). 

This function embodies much of the physics of the ripening problem, and 

thus must be carefully constructed. In the LS theory, R(R)  was determined 

by examining the growth or dissolution of an isolated spherical domain into 

a supersaturated medium. At large supersaturations, such a Stefan problem 

is dimcult to solve, and it is now well known that growing and dissolving 

spheres obey different kinetic laws."' However, during Ostwald ripening the 

supersaturation of the matrix, 8,(1) < 1. Therefore, the quasistationary 

approximation may be employed, i.e., the diffusion field in the matrix is 

governed by h: 

along with the boundary conditions, 

lim B(r) = 8, 
r-m 

Eq. , (7 )  is the dimensionless form of the linearized Gibbs-Thomson equation, 

assuming the ideal solution, for the solute concentration in the matrix at the 

surface of a spherical liquid particle. As will be discussed below, if the 

particle or matrix is solid, Eq. (7) cannot be used. By requiring flux -onser- 

vation at the matrix-particle interface and that the particle is pur. .elute, 

Eq. (6) with Eqs. (7) and (8) yields 

A result of the quasistationary approximation is that this kinetic equation is 
valid for both growing and dissolving particles. Readily evident from Eq. (9) 

is its mean field nature. This is a result of employing Eq. (8) as a boundary 

condition, i.e., a particle grows or shrinks only in relation to  a mean field 
concentration set at infinity. 

The final element of the LS theory is mass conservation. Mass o r  solute 

conservation must be explicitly added to the theory because Eq. (9) is based 

on a solution to  Laplace's equation, which does not conserve solule. 

Assuming that there are no sources of solute external to the system, solute 

conservation demands that the total solute content of the alloy be divided 
between the particle and matrix, viz. 

where 0, is the bulk alloy composition and (I = 4n/(3Vmc,). The previously 

unknown parameter 8, can be determined from Eq. (lo),  and thus 8, 

couples mass conservation into the kinetic equation. 

Equations ( 5 ) ,  (Y), and (10) may be rewritten as a nonlinear integrodif- 

I ferential equation for the time kinetics and morphology of the ripening 
I process. Rather than solve these equations for all times, LS found an 
I 

asymptotic solution valid as  I-, co. The procedure which they employed, 
and variants of which have appeared since, constitutes rather technical 

asymptotic analysis. Since a more detailed description of this procedure has 

been given e l~ewhere ,"~)  only the highlights will be given below. 

The central idea is to reformulate the problem in terms of a double- 

scaled variable p = R/E where, depending on the approach, I? is either the 

critical radius R, = I/B,, (the particle with R = 0 )  or the maximum particle 
size in the system."" Using the reformulated kinetic equation in conjunc~ion 

with the solutc conservaLion constraint, LS showed that as I -, m, ~ h c  

following must be true: K( t )  = 3 ~ , 2 d ,  -r const, R, -. E, and f, -+ Bola, where 

I R= f,/J;,. Since the rate constant K is a constant at long times, a solution of 

the continuity equation of the form g(p) h(t) is possible, which results in an 

ordinary differential equation for the particle size distribution function. 
I 

i 
Moreover, the constraint that f, = Bola yields the unique value of K = 419. 

An interesting variant of this approach has recently been which 

employs the scaling ansatz that a s  t -, a, p = R t r X .  and f = where x 
and y are fixed by the solute conservation constraint along with the 

continuity and kinetic equations. 

Through the above asymptotic analysis Lifshitz-Slyozov were able to 

make the following predictions concerning the behavior of two-phase 
mixtures undergoing Ostwald ripening in the long-time limit: 

(1) The following temporal power laws are obeyed: 

where y t  = 8,/(a (iiZp'g(p) dp) and 1 = 0 is defined a s  the beginning of coar- 

sening in the long-time regime. 

(2) The asymptotic state of the system is independent of the initial 
conditions. Furthermore, the particle radius w j b u t i o n  is self-similar under 

the scaling of the average particle s i z m  

(3) This time-independent distribution function g(p)  is calculable and 
is shown in Fig. 1. 
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process. However, there are clearly exceptions to such a generalization, such 

as the coarsening of secondary dendrite arms during the growth of a dendrite 

into an undercooled liquid and void growth in irradiated materials. The 

driving force for the ripening process is the well-known curvature dependence 

of the chemical potential which, assuming isotropic surface energy, is"' 

where K is the mean interfacial curvature and p, is the chemical potential of 

an atom at a flat interface, V ,  is the p o l a r  volume and y is the surface 
energy. From Eq. (1) it is clear that atoms will flow from regions of high to 

low curvature. This results in the disappearance of surfaces possessing high 

curvature and an increase in the size scale of dispersed second phase, which 

is consistent with the necessary decrease in total energy of the two-phase 

system. 

Surprisingly, the above qualitative explanation of the Ostwald ripening 

process seems to be all that existed for some 50 years following Ostwald's 

original discovery of the phenomena.'2." Early attempts by G r e e n w o ~ d ' ~ '  

and ~ s i m o v ' "  to construct a quantitative theory of the ripening process did 

not meet with success since both theories are based upon an unrealistic 

solution for the diffusion field in the matrix. 

A major advance in the theory of Ostwald ripening was made in a 

paper by Lifshitz and S l y o ~ o v ' ~ '  and followed by a related paper by Wagner 
(LSW)."' In contrast to previous theories, Lifshitz and Slyozov (LS) 

developed a method for treating an ensemble of coarsening particles, and 

were able to make quantitative predictions on the long-time behavior of coar- 

sening systems without recourse to a numerical solution of the relevant 

equations. The LS paper stimulated much interest soon after it was published 

and it has become the seminal paper to which all subsequent theoretical 
work on Ostwald ripening has been compared. There has also been a recent 

resurgence in interest in the coarsening problem. I hope to illustrate the 
fundamental importance of the LS paper by critically examining some of 

these recent developments and enumerating some of the still unanswered 

questions. 

In order to place the modern work in perspective, a brief review of :he 

Lifshitz-Slyozov and related papers will be given. Following this, a review of 

recent work will be given which deals with: the effects of a finite volume 

fraction of coarsening phase on the ripening process. transient Ostwald 

ripening and the influence of elastic fields on the coarsening behavior of two- 

phase mixtures. Finally, directions for future research will be outlined. 

Dimensionless variables will be employed for the remainder of this 

paper. An appropriate characteristic length for a system which exchanges 

mass during coarsening, through which all quantities of length will be scaled, 

is the capillary length 1, defined as 

where R, is the gas constant and T is temperature. A dimensionless time 

may also be defined as 

where t* is dimensional time, D is the diffusion coefficient, and c, is the 

solute concentration in the matrix at a flat interface. Finally a dimensionless 

concentration B will be defined as 

Other dimensionless lengths, times, and field variables can be defined for 

systems which exchange heat during coarsening 181. 

2. CLASSIC THEORY OF COARSENING 

In this review of the LS approach, particular attention will be paid to 

the assumptions upon which the theory is based. A number of preliminary 

assumptions must be made before continuing: ( I )  the coarsening second 

phase is spherical with radius R, (2) the particles are fixed in space, and ( 3 )  
both the particles and the matrix are fluids. We shall now proceed to derive 

the three equations upon which the LS approach is based. 

The morphology of a dispersed spherical second phase will be charac- 

terized in terms of particle radius distribution, f(R, I), where f is defined as 

the number of particles per unit volume at time t  in a size class R to R t dR. 

Representing a particle radius distribution in terms of a continuous function 

f(R, r) implies that there exists sufficient numbers of particles in the system 

for such a continuum approach to be valid. This assumption is not overly 

restrictive, since the particle densities in most coarsening systems are on the 

order of 10' to loB4 particles/cml. From the definition o f f  it is clear that 

N(1) = f,, where N ( t )  is the number of particles per unit volume, and f, = 

(p Rnf(R, r) dR. Thus, the flux of particles passing through a size class R to 

R + dR is f .  R,  where R = dR/dr. Therefore, the time rate of change off is 

given by a continuity equation of the form 

where J is a production term in particle size space. In the LS treatment, J is 

set to zero, implying that processes such as  nucleation and particle 
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di f fe ren t  results. While the methodology used to  arrive at the microscopic , 
e q u a t i o n s  vary, the following illuminates the basic assumptions of the 

microscopic  formulation. The coarsening phase is again assume.* to be 
I 

spher ical  and fixed in space. The emission or absorption of si e from I 
I g r o w i n g  or dissolving particles is modeled by placing point sources or sinks 

of s o l u t e  at the center of each particle. Therefore, the diffusion field within 1 
the  m a t r i x  obeys, 

N 

V 1 8  = +4n \' Bi6(r - r,) (1 1) I 

i =  l 

where the sourcejsink strengths B,  are unknowns and d(r - r,) is the Dirac 6 
function. The solution of Eq. (I 1) is I 

where r locates a field point and r, locates a particle center. The unknown 

constants B, and 8, are determined, as in the LS treatment, by requiring 

interfacial equilibrium and solute conservation. Specifically, in order to avoid 

applying the Gibbs-Thomson equation pointwise along the particle-matrix 

interface, it is assumed that the particles will remain spherical and Eq. (7)  is 

applied to  the surface averaged concentration of a particle. This interfacial 

boundary condition along with the solute conservation constraint yields the 

following set of boundary conditions: 

$1 8 ,  

where Ri ,=(r i - r j / .  Using Gauss' law and Eq. (I  I )  one can show that 

8, = R:R,. Using this result, and the previous observation that as r + a, 

8, -+ 0 yields a reformulated version of Eq. (14). 
I 

i 

Eqs. (13) and (15) constitute a set of N +  I equations for the N + l 
unknowns of Eq. (12). The boundary condition, Eq. (15), while being a 

natural outgrowth of the mass conservation constraint, is essential for I 

guaranteeing the convergence of the summation appearing in Eqs. (12) and I 

(13) as  N - ,  w. Similar equations have been studied in the theory of 

diffusional limited  reaction^,'^^' and void growth in irradiated  material^.'^" 
Wiens and Cahn"" appear to be the first to use such equations to describe 

coarsening. 
The objective of each of the averaging procedures employed by BW. 

VG, TK, and MR is to determine the statistically averaged growth rate R or 

a statistically averaged source/sink strength B(R) = R'R of a given particle 

at a specified ( using Eqs. (13) and (14). Once this is known the continuity 

equation along with the solute conservation constraint are employed to 

determine the kinetics and morphology of the coarsening mixture. An 

overview of each of these statistical averaging procedures is given below. A 
Tokuyama and K a w a ~ a k i ' ~ "  statistically average Eq. (13) through a 

scaling expansion technique originally developed by Mori and 

coworkers.'2p-"' The scaling approach performs spatial and temporal coarse 

graining over length and temporal scales characteristic to the ripening 

problem. An advantage of their approach is that in the thermodynamic limit, 

i.e., N -. w and V-+ co, NjV+ const, it is possible to explicitly evaluate the 

magnitude of the fluctuations of f(R, 1). TK define three characteristic lenglh 

and time scales for a first-order phase transformation process: one charac- 

teristic of a nucleation stage, a second pertaining to an intermediate growth 

stage where ( = ( ( I ) ,  and a third characteristic of a late or ripening stage 

where $ is constant. A discussion of the intermediate stage will be given 

later. They find for (34)''' < 1, in the late stage regime, 

where p = RIR, M, = I F p y ( ~ ,  t ) d ~ j I r  f(R, t)dR and C is a complex 

function of p and Mn.(j2' Their expression for B(p) becomes time 

independent as t -, co since f(R, f )  -, g(p) h(t).  As a result, scale-invariant 

distributions exist in the long-time limit. The first two terms in Eq. (16) are 

simply the LSW kinetic equation in the limit t -, co and thus as ( -, 0 their 

theory also reproduces the LSW results. The third term is a drift term in 

particle size space which is independent of the diffusional interactions 

between particles. The fourth term is a soft collision term resulting from the 

diffusion interactions between particles on distances of order (3()'12/R. They 

also show that the fluctuations in f(R, t )  which result from diffusional 

interactions are consistent with the solute conservation constraint and that 

they are small, but observable, if the dimensionality of the system is greater 

than zero. In the initial TK paper, they use Eq. 16 along with the continuity 

equation and conclude that the scaled time-independent distributions are a 

function of ( and that the rate constant K is independent of(. However, in a 

later paper Tokuyama, Enomoto, and Kawasakio2' reexamine these 
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Fig. 1. Time-independent scaled particle radius distributions versus p = RIR; where 

.f; g(p )  dp= I. The distributions due to BW, MR. GV, and TK are all Tor (= 0.1, and the 

LSW distribution is for b = 0. 

Perhaps the most intriguing prediction was the universal, self-similar nature 

of the coarsening process at long times. This universal behavior is a direct 

result of the influence of the solute conservation constraint on long-time 

solution of the continuity and kinetic equations. It is this universal self- 

similar nature which held out the promise of describing the Ostwald ripening 

process in a wide variety of two-phase mixtures. Furthermore, while some of 

the above temporal laws were deduced by earlier  worker^,'^' the LS theory 

gave the constants of proportionality necessary for careful comparisons 

between theory and experiment. 

Soon after the publication of the LSW papers, many experimentalists 

rushed to test the veracity of the theory. Experiments have confirmed the 

prediction of self-similar coarsening behavior at long times; however, r 
I 

virtually none of the reported distributions are of the form predicted by 

LSW. The reported distributions are generally broader and more symmetric 4 '  
than the LSW  prediction^."'^'^' While the temporal power law for R has I 

been confirmed in a truely convincing fashion in only a limited number of I 

cases,"4' no experiment has heen capable of measuring the preexponential 

factor in any of the above equations owing to a lack of knowledge of the 

relevant materials parameters. Furthermore, there also appears to be a 

volume fraction dependence of the rate constant K, although the 

experimental results are not completely c o n ~ i n c i n ~ . " ~ * ~ ~ '  

3. MODERN COARSENING THEORY 

It was realized early that a major problem with the LSW approach was 

the mean field nature of the kinetic equation, Eq. (9). Such a mean field 

approximation assumes that a particle's coarsening rate is independent of its 

surroundings, i.e., a particle with nearest neighbors which are larger than 

itself will coarsen at exactly the same rate as if it were surrounded by 

particles that were of a smaller radius. LS assumed that their deterministic 

rate equation would be valid at an unspecified low volume fraction of coar- 

sening phase, 4. This flaw in the LS approach was almost immediately 

recognized, and advanced as the cause for the apparent disagreement 

between the theoretically predicted and experimentally measured particle size 

distributions.("' More recently, a direct experimental measurement of 

individual particle coarsening rates was undertaken."" This work clearly 

showed that at volume fractions a s  low as 3% individual particle coarsening 

rates were in fact not a smooth function of particle radius as predicted by 

Eq. (9), but varied according to  a particle's local environment. The 

surprising strength of these diffusional interactions between particles stems 

from the long range Coulombic nature of the diffusion field surrounding a 

particle. As a result, particle interactions occur at distances of many particle 

diameters and restrict the validity of the LS theory to  the unrealistic limit of 

zero volume fraction of coarsening phase. 

In order to remove the zero volume fraction assumption of the LSW 

theory, one needs to determine the statistically averaged diffusional 
interaction of a particle of a given size class with its surroundings. Many of 

the attempts to  determine the statistically averaged growth rate of a particle 

either do  not not account for the long-range nature of the diffusion field 

surrounding the particle,'43'7.'9) and/or employed and hoc assumptions in an  

attempt to account for the diffusional interactions between particles."'20' 

Recently, Brailsford and Wynblatt (BW),"" Voorhees and Glicksman 

(VG),"322' Glicksman and Voorhees (GV),03' Marqusee and Ross (MR),'24' 

and Tokuyama and Kawasaki (TK),'IS) have proposed more realistic models 

of the coarsening process at finite-volume fractions of coarsening phase. 

Interestingly, each of these groups used identical microscopic equations 

with which the statistical averaging is performed, yet arrive at quantitatively 



Voorhees 
242 I 

The Theory of Ostwald Ripening 
243 

a > R, and allowing solute production in the surrounding medium. However, 

BW d o  not employ a fully self-consistent approach and instead use a simple 

interpolation formula for mathematical simplicity, which yields the following 

rate equation in the long-time limit, 

where p = R/Z, (= K/R, and q is a function of ( and various moments of 

g ( p ) .  Again, B(p) is time independent, since i? and R, have the same time 

kinetics as t + m. Also, the BW theory reduces to the LSW limit since as 

4-0 ,  9'0. Performing a similat asymptotic analysis as Lifst i and 

Slyozov, E q  (18) yields the results shown in Figs. I and 2. 
Voorhees and Gl ick~man";~~ '  employ Eqs. (13) and (15) along with 

computer simulation techniques to perform the statistical averaging. Large 

numbers of particles, -lo2, are placed at random locations in a basis, and 

then the basis is translated via cubic lattice translation vectors to fill all 

space. The periodic nature of the particle arrangement allows Eq. (1 3) to be 

reformulated into two rapidly and absolutely convergent summations using 

lattice summation techniques originally developed by Ewald.'"' At finite ), 
the coarsening particles interact diffusionally, which results in fluctuations in 
individual particle coarsening rates as shown in Fig. 4. Note that the fluc- 

tuations are smaller for the small particles in the dispersion indicating that, 

as expected from Eq. (13) in the limit R, -+ 0, small particles ir?teract weakly 

with their immediate neighbors. Averaging these fluctuations over a given 

size class yields the discrete B ,  values shown in Fig. 3. Using the physical 

insight obtained from the simulations, GV"" constructed a simple effective 

medium which reproduces the B(p) and rate constant data derived from the 

simulations over 0.05 6 )  6 0.5. The GV effective medium approach involves 

placing a representative particle inside an averaging sphere of radks a, 

where a _= I / # " ~  for p Gp, and a = R/)'I3 for p Zp, ,  where p = R/R and 
p,=RJR. Assuming interfacial equilibrium, and that the concentration at 

the surface of the averaging sphere is a functional of g(p), yields the 

following kinetic equation: 

B @ )  = (a'p - ])(I + a'# "'p) S(p, - p) 

where a' is a functional of the moments of g(p) and S(x) is a ster ~nction 

defined as 0 for x < 0 and 1 for x > 0. Clearly as ) -+ 0 the LSW result is 

recaptured and B(p) is time independent, since a' is only a function of). The 
GV kinetic equation at (4 = 0.1 is shown in Fig. 3. Asymptotic analysis of the 

scaled continuity equation and mass conservation constraint yields the 

results shown in F~gs. 1 and 2. 

Fig. 4. Discrete R ( p )  data at 4 = 0.1 derived from the simulations of VC. The scatter in the 

valuc o i  B ;  Tor a given particle sice is a result or diffusional interactions or "suit collisions" 

between particles which occur at finite 6. 

All of the theories are in general agreement on the following points: 

( I )  the temporal power laws originally reported by LS are not a function of 

(; however, the amplitude of the power laws is 4 dependent; (2) scaled time 

invariant distribution functions exist at finite 4 in the long-time limit; (3) as 4 
increases, the time invariant distributions become broader and more 

symmetric than the LSW distribution; (4) the rate constant rises rapidly at 

low 4 and is followed by a slower increase with 4; (5) the predictions for 

KI() of GV and MR are almost identical up to - 0.1, as shown in Fig. 2; 

and (6) the B @ )  functions of MK and GV are quite similar and in agreement 

with the VG simulation data, all three descriptions showing increased 

diffusional interactions with increasing 4 which result in an increase in the 

absolute value of the statistically averaged coarsening rate of a particle in a 

given size class. Note that the mathematical similarity between the B(p) 

functions predicted by BW and MR is deceiving, since the values of the 

numerically determined parameters in each theory will be different. 



equations and find that both K and g(p) are functions of (. The time- 

independent scaled distribution function found by setting C = 0 is shown in 
Fig. 1. 

Marqusee and R o ~ s ' ' ~ '  determine the statistically averaged kinetic 

equation via a multiple scattering approach.'"-"' The basic idea is to write 

the microscopic equations, Eqs. (13) and (12), in the form of a multiple 

scattering series and average the resulting equations, assuming particle 

positions are independent. By summing the most divergent terms in the 

scattering series they arrive at an expression for the statistically averaged 
kinetic equation. They conclude that ,in the long-time limit, 

where p =R/R.  a,  and No, are the amplitudes of the temporal power laws 

for B,(t) and N(t), respectively, in the long-time limit and a, = K1I3. The rate 

constants N, and a,  are determined by employing the time-independent 

continuity equation valid in the long-time limit and mass conservation. As 

with TK, and 4 + 0, a ,  = I / a l  and the LSW distribution and time kinetics 

are recaptured. Also, B(p)  is time independent at all volume fractions. 

Furthermore, for 6 < 0.01 a perturbation treatment predicts that K ( ) )  - 
K ( 0 )  - 4"'. Numerical evaluation of a , ,  a , ,  and N, yields the particle size 

distribution shown in Fig. 1 along with K ( ( )  shown in Fig. 2. The MR 
kinetic equation, at  4 = 0.1, is also shown in Fig. 3. 

+ 
Fig. 2. The rate constant K O )  relative to K ( 0 )  versus the volume fraction 4. 

The Theory of Ostwald Ripening 

Fig. 3. The sink strength B@)=R'R versus p at ( =  0.1. The data points shown are the 

discrete simulation results of VG which were co~l~puted by averaging the B,  data shown in 

Fig. 4. The smooth GV curve was determined using their effective medium approach. For 

comparison. the LS kinetic equation is B(p)  = p  - 1. The nonlinearity of the B ( p )  data 

indicates that diffusional interactions between particles results in an increase in the absolute 

value of the statistically averaged coarsening rate of a particle. 

Brailsford and ~ y n b l a t t " "  employ chemical rate theory to determine 

the statistically averaged growth rate of a particle. Despite the seemingly ad 

hoc nature of the chemical rate theory, this model cannot be discounted 

outright. For example, Brailsford has shown'27' that in the limit of a 

monodispersion, i.e., diffusion to a random array of absorbing sinks, a 

statistical average of equations similar to Eq. (13) agree with the predictions 

of the BW effective medium approach. Also the specific predictions of the 

I variation of a particle sink strength with derived using the BW effective 

medium .approach in the monodisperse limit are quite similar to those 

reported for diffusion-controlled  reaction^."^' There are also marked 

similarities between the MR and BW approaches. The basic idea of the 

I homogeneous rate theory is that a statistically average sense, the emission of 

solute from all the particles in the dispersion can be represented by a 

homogeneous production rate in the same medium. The emission rate and 

sink strength of a particle can be determined self-consistently by placing a 

! representative particle of a given size class inside a sphere of radius a where 
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r = 0 is nor the  beginning of self-similar coarsening). If the matrix concen- 

tration 8, is  represented by C(l)/E, Eqs. (20), (21), and (22) yield 

em@) = -3afo[C - 11 

K(0) = A  lC/2 - 1 l/VoP2) 

N ( o ) = & = o  
(23 1 

f ( 0 ) = 4 d 1 3 ( - 4 J / P '  

where r= t he  total interfacial area!= 4nf2. The time-dependent parameter C 
i s  a measure o f  the degree of matrix supersaturation relative to the average 

particle size and,  in general, C(fj>, I: and C - t  I as r -+ m. As a result, 8, < 0 

and since = -dm,  4 > 0 for all assumed initial supersaturations. This 
implies that the matrix concentration will always initially decrease with time 

and $ will always initially increase. However, if <> 2, f ,  and R >  0, 
indicating that on average the particles are growing into a super-s:icurated 

medium. However, r must be less than zero since an Ostwald .lening 
process is a surface-energy-driven morphological change.,As a result, (' < 4/3 

in the coarsening regime. Interestingly, if I ,< < < 413, l?< 0, and thus is 

constrained to decrease initially and, furthermore l? and R ,  are of opposite 

sjgris. Contrast these results with a self-similar coarsening process where 

I?> 0 and R= R,.  Clearly, the entire time evolution of such a distribution 

requires a more complete solution of the integrodifferential equation. 

Nevertheless, the above analysis illustrates the richness of the equations and 

the unexpected results which are possible. 

By far the most complete study of ripening in the fully time-dependent 

regime was undertaken by V e n ~ l . " ~ )  Venzl solved the time-dependent 

nonlinear integrodifferential equation in the limit of / = 0. Using a relatively 
restricted set of initial conditions. Venzl showed that the LSW distribution 

was indeed a unique attractor state for the nonlinear dynamical system. The 

presence of this attractor state appears to be a direct result of the solute 

conservation requirement, as asserted by LS. His results also show that the 

path by which these particle radius distributions took to the asymptotic state 

is not fully constrained at all times, but depends on the initial conditions. 

The path dependence of a distribution's approach to  the scale-invariant 

regime has important ramifications if the materials parameters of the system 

of interest dictates a slow coarsening rate, for then the morphology of the 

two-phase dispersion cannot be predicted for any experimentally accessible 

times without knowledge of the initial state. Such systems have been studied 

by Vedula and H e ~ k e l " ~ )  and Watanabe and Masuda.14" Venzl also showed 

that distributions which are narrower than the time-invariant form tended to, 

at first, become broader than this distribution. Furthermore, it is clear from 

his results that it is possible to have R h  K when the scaled particle size 

distribution function is not time invariant. Therefore, it would be difficult to 

determine e_xperimentally if self-similar coarsening has occurred by only 

measuring R(1). 

Other less complete theoretical studies of transient coarsening tend to 

corroborate Venzl's conclusions. MR,"" using a scaling ansatz originally 

suggested by Binder,'"' also show that the approach to the asymptotic state 
is not fullv constrained. show that there is an intermediate stage 

during a first-order phase transformation process where (6 = $ ( I ) .  In this 

regime the particle radius distribution is not time independent but does obey 

a scaling relationship. and more importantly R is proportional t o  1"'. Recent 

experiments have also reported R is proportional to I"' when / = 

although the results are not completely convincing due to  experimental error. 

VG performed computer simulations in the transient regime and also report 

in agreement with the above: ( I )  a nonconstrained approach of the particle 

radius distribution to the asymptotic state, (2) that distributions which are 

much broader than the scaled time-independent distribution evolve slowly 

toward this distribution, (3) particle size distributions which are initially 

narrower than the scaled time-independent distribution tend to at first 

become broader than the tivle-independent shape, and (4) it is possible for R 
to  decrease initially when N = 0. 

In summary, the LSW distribution does appear to be a unique attractor 

state for the nonlinear integrodifferential equation describing the time 

evolution of a particle radius distribution. Consistent with LS, the solute 

conservation constraint plays a central role in the presence of this attractor 

state. It is also possible that many of the reports of particle size distributions 

which have longer tails for R > than those predicted theoretically are a 

result of the extremely long time required for a very broad scaled particle 

radius distribution to become the time invariant. 

5. THE EFFECTS OF ELASTIC FIELDS DURING OSTWALD RIPENING 

It has long been recognized that elastic fields can be important in first- 

order phase transformations in solid-solid ~ ~ s t e m s . ' ~ " . ' ~ '  In fact. the 

classic Gibbs-Thomson equation is not valid in solid-solid systems due to: 

the presence of a crystalline lattice, the ability of solids to withstand 

nondilatational stresses, and the possibility of interfacial stresses which are 
different than the interfacial energy. As a result, one must question the 

validity of applying the LS theory, or any of the more recent finite 

coarsening theories, to solid-solid systems. Experimental examples of the 

importance of elastic fields during coarsening abound; for example, 
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However, disagreements exist between each of these theories: 

(1) The disagreement between the K(() predictions of BW and those 

of both GV and MR most likely stems from BW's use of an ad hoc linear 

interpolation formula. It would be interesting to see what would be the 

predictions of a fully self-consistent chemical rate theory. 

(2) The theory of GV disagrees with MR for ( < lo- '  since MR 

predict that K(4) - K(0) - #'", and the GV effective medium approach 

predicts that K ( ( )  - K(0) - However, since simulations were not 

performed at these low volume fractions, and the GV effective medium 

approach is valid only insofar as k reproduces the simulation results, such a 

disagreement is not serious. Despite this, it would be interesting if 

simulations could be performed at %cry low q)  in order to settle the apparent 

disagreement. 

(3) TK claim that the small difference between the rate constants 
predicted by TK and MR'"' results from the MR B @ )  function violating the 

conservation of mass constraint. However, it is not clear why this should be 

so, since the unknown parameters in the MR B(p) function are specifically 

chosen to conserve mass. 

I 
(4) The disagreement between the K ( 4 )  prediction of GV, and MR at  

4 2 0.12 results from a breakdown in the assumptions employed by MR; i.e., 

MR assume that there are no spatial correlations between particles. The 

simulations performed by VG indicate that spatial correlations begin to 

occur at ( - 0.1. Therefore, extension of the M R  theory above - 0.1 is 
probably unwarranted. A 

(5) TK insist that to order (3#)'12 soft collision terms must be present 
in the B(p) function. As seen in Fig. 4, VG's simulations also suggest that 

these collision processes must be present and play an important role in the 

coarsening process. Such collision processes were ignored in the MR 

treatment. 

(6) The similarity between the MR and GV B(p) predictions is a little 
misleading, as evidenced by the dissimilarity in the predictions of the time- 

invariant distribution functions. This dissimilarity is a result of the different 

functionality of B@) at ( = 0.1. 

Although the aforementioned theories are by far the most realistic 

theories of Ostwald ripening yet developed, they are only in qualitative 
agreement on the role of finite volume fractions on the coarsening behavior 

, 

of two-phase systems. Unfortunately, a crucial experiment has not been 1 
performed at low ( in order to compare to the theories. Work at higher $ is 

in qualitative agreement with the aforementioned theoretical predictions, i.e., 
i 
I 

time-independent distribution functions which are broader and more i 

symmetric than the LS form(l4' and a rate constant which is relatively insen- 
' 

sitive to changes in ) above approximately 0.1.'38' Surprisingly, to the best 

of my knowledge a coarsening experiment has never been done using a 

system for which all the relevant materials parameters were known a priori. 
Such an approach would permit a direct measurement of K((). Clearly more 
experimental and theoretical work is necessary in order to settle the subtle 

disagreements now existing between the various Ostwald ripening theories. 

4. TRANSIENT OSTWALD RIPENING 

There has been very little study of the behavior of coarsening systems in 

the transient or  short-time regime. This is particularly unfortunate because 

LS's prediction that the asymptotic long-time solution is unique and 

independent of the initial conditions, i.e., that the nonlinear integrodifferential 

equation has a unique attractor state a t  long times, is one of the most 

intriguing aspects of the theory. It is also of fundamental importance in 

applying coarsening theory to experiments, for it is very possible that in 

many systems it is impossible to reach the long-time limit in any experi- 

mentally accessible times. + J 
Solving the fully time-dependent coarsening problem is a formidable 

task. However, some insight into the nature of transient coarsening can be 

obtained by examining the time dependence of various moments of f(R, t). 

Assuming, for simplicity, the LSW kinetic equation, Eq.(9), and 

transforming the integral of Eq. (5) (with J =  0 )  by integrating by parts 

yields an expression for the time rate of change of the nth moment off as 

fn = lim (J. R )  R" + @,nS,_, - nf,-, 
R -0 

assuming f+ 0 as R -I a. Differentiating the solute conservation constraint 

with respect to  time, using the continuity equation, and integrating by parts 

yields the time rate of change of the matrix concentration as 

To  determine the time rate of change of the f, and O m ,  it is necessary to 

choose an initial distribution. We shall assume a relatively simple particle 

size distribution of the form 

where the constants A and p are chosen to satisfy the solute conservation 

constraint and specify an initial average particle size (note that in this case 
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elasticity and diffusion problem. Both must be solved simultaneously since a highly correlated spatial distribution? Is the appearance of time- 

both the elastic and diffusion fields are functions of particle size and independent scaled particle radius distributions inherently linked to the 

separation, and are coupled through t h e r m ~ d y n a m i c s . ' ~ ~ . ' ~ '  assumption of a random distribution of particles? Does a nonrandom spatial 
distribution of particles strongly influence a system's approach to the long 

time attractor state? 

6. CONCLUSIONS (3)  In any two-phase mixture one phase of which is a solid, the 

Although the original LS paper represented a considerable advance in surface energy will be anisotropic to some degree. At finite (6, what effect 

the theory of Ostwald ripening, it was not capable of describing coarsening does surface energy anisotropy have on both individual particle coarsening 

in realistic two-phase mixtures. Much of the recent work reviewed herein has rates, and the stochastic aspect of the ripening problem? Does the surface 

brought us closer to  that goal,+ut there remain many important unanswered .-, energy anisotropy by itself introduce a spatial d i r e~ t iona l i t~  into the ripening 

questions: 
problem? 

(1) Extensions of the thgories to yet higher (6 may prove difticult. (4) What particle size distribution results from a nucleation and 

~ l t h o u g h  this has been done using computer simulations, which enable one growth process? How does this distribution influence the coarsening system's 

to  avoid the spatial correlation problems algorithmically, i t  is not clear approach to the asymptotic state? 

whether the diffusion solution upon which all these theories are based is ; (5) What role does elasticity play in the coarsening process? Unfor- 

valid at higher volume fractions. For example, preliminary workuR' on a 
simple two~particle model similar to that employed by Samson and 
~ ~ ~ t ~ h ' ~ "  and ~ ~ l d s t ~ i n , " "  with boundary conditions appropriate to  the 

Ostwald ripening problem, shows that a s  the two particles of different radius 

approach each other, diffusional interactions introduce nonzero components 

in the spherical harmonics of the particle shapes, thus violating the 
assumption of sphericity and fixed spatial locations of the particles. 
Furthermore, as the particles approach each other the two-p icle model 

predicts that the coarsening rate of both particles diverges, whereas the point 
source Eq. (I I), does not. It is possible that these diITiculties 

disappear following the statistical averaging performed in the simulations,"" 

but this has not been proved. Nevertheless, the simulations constitute the 
most accurate predictions of the behavior of ripening systems at high volume 

I tunately, there is no theory which treats the linked stochastic elasticity and 

diffusion problem which enables prediction of both the kinetics and particle 

size distributions during ripening. What causes precipitate alignment in 

solid-solid systems? What are the conditions under which stable 

monodisperse ensembles of precipitates exist? 

(6) Second phase domains with both positive and negative curvatures 
are quite common in nature, e.g., solid dendrites which grow from a super- 

cooled melt. How do  these structures coarsen under conditions of diffusional 

mass transfer? Do scale-invariant distributions of curvature exist in such 

t o ~ o l o g i c a l l ~  complex structures? Can the evolution of curvature which is 

initially both positive and negative be described by temporal power laws? 
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precipitates have been shown to line up in raftlike structures and change 

shape during ripening.'"' Very recent progress illuminating the role of 

elasticity during Ostwald ripening has been made. In fact, it now appears 

possible that the coupled stochastic elastic and diffusion problem can be 

treated self-consistently to yield a realistic theory of Ostwald ripening in 

solids. 

Solid precipitates in a soIid matrix differ from liquid precipitates in a 

liquid matrix in many ways all of which have a great impact on the ripening 

behavior of the two-phase mixture. In particular, the lattice parameters of the 

precipitate and the matrix are usually different and in certain cases the lattice 

planes of the precipitate and the matrix are continuous across the matrix- 

-particle interface. A result of suchha coherent interface is that long-range 

elastic fields are generated in both the precipitate and matrix phases. In 

addition, the differences in atomic radii of the solute and solvent atoms also 

introduce elastic stress fields. The importance of these elastic fields is that 

they couple to the composition field and thus influence the coarsening 

behavior of precipitates. An example of the effects of both precipitate and 

compositionally generated stress fields is shown in Fig. 5. The equilibrium 

composition fields shown are a result of both the elastic interactions between 

the two coherent precipitates with different elastic constants than the matrix. 

and the nonuniform composition f i e ~ d . ' ~ "  Since the system is at equilibrium 

this nonuniform composition field does not engender mass flow. This also 

demonstrates that the effective materials parameter approach of LS,'" which 

cannot account for such an effect, is invalid. Clearly, one cannot blindly 

apply theories developed for fluid-fluid mixtures to solid two-phase mixtures. 

Much o f  the theoretical work to date on the role of elasticity during 

Ostwald ripening has dealt only with the energetics of the coarsening 

p r o ~ e s s . ' ~ ~ * ~ ~ ~ ~ "  Th  e most realistic of these models is one due to  ~ o h n s o n ' ~ ~ '  

which is based on a rigorous solution to the elastic problem of two 

elastically interacting coherent misfitting precipitates with different elastic 

constants than the matrix. Johnson showed that for certain combinations of 

materials parameters, particle sizes, and particle separations a small 

precipitate will grow at the expense of a larger precipitate and result in a 

stable monodispersion. This result can be qualitatively understood as 

follows. If the precipitates are softer than the matrix, as E ~ h e I b y ' ~ ~ '  

originally proved, the elastic interaction energy is negative. Since the total 

elastic interaction energy is proportional to  V ,  + V , ,  where V ,  is the volume 

o f  precipitate one and V ,  is the volume of precipitate two and the total 

surface energy is proportional to v:" + Vi i3 ,  the negative elastic interaction 

energy can stabilize the precipitates against coarsening (with the constraint 

that V ,  + V ,  = const). Such a result is clearly contrary to standard 

capiIlarity controlled ripening theory, and reflects the important role stress 
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can play during the coarsening process in solid-solid systems. Unfortunately, 

the above approach, being based upon energetics, cannot provide any insight 

into the kinetics of the ripening process in systems where stress is important. 

Clearly, elastic fields can radically change the entire late stage phase 

transformation process. A more realistic treatment of coarsening in 

solid-solid systems involves the solution of a challenging coupled stochastic 

I 1 

Fig. 5 .  Dimensionless isoconcentrates surrounding IWO elastically interacting coherent 

mislitting precipitates. In systems where the mislit is pusitive, the precipitates are harder than 

the matrix, and the atomic volume of the solute is greater than that o f  the solvent, solute 

enhancement, relative to the bulk cnmposition, is denoted by the solid lines and solute 

depletion is denoted by the dashed lines. The magnitude of the change in solute concentration 

near the precipitates can be -100% in certain systems. The cantours are at equal normalized 

concentration intervals o f  5.8 X 10 '."" 
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On Galvanomagnetic Size Effects in Metals 

V. G. Peschanskii' 

Receiued February 9, 1984 

The importance of  open electron trajectories formed by specular reflections of 

charge carriers by the sample boundary to the metal electric conductivities in 

the strong magnetic field H is analyzed. It is shown that the electric conduc- 

tivity of the near-surface layer o,,,, is rather sensitive to the state of the 

conductor surface. The electron-hole Umklapp processes during the surface 

scattering o f  charge carriers do  not change the depcndence o,,,,,(H), while 

skipping from the closed Fermi surface section to the open one is able to afTect 

o,,,. essentially only in bulk samples. T h e  method is proposed to restore the 

indicntrix of co~lduction electron scattering by the sample boundary ihrough an 

experimental investigation of the Sondheimer effect and the static skin efTeci. 

- 

KEY WORDS: Static skin effecl; Umklapp surface ~ ~ a l t e r i n g ;  indicatrix of 
conduction electron scattering: open electron trajectories: high magnetic licld. 

The theory of galvanomagnetic phenomena in metals developed by I. M. 
Lifshitz and his co- worker^",^' for an arbitrary energy-momentum 

relationship for charge carriers lays the groundwork for investigations of the 

topology of the electron energy spectrum. The sensitivity of galvanomagnetic 

characteristics of metals to the Fermi surface (FS) topology is accounted for 

by the fundamental difference between the dynamics of free electrons and 

that of conduction electrons belonging to open FS sections whose drift does 

not coincide with the direction of the magnetic field H. The presence of a 

thin layer of such sections essentially changes the electric conductivity of a 

metallic sample in high magnetic fields when the trajectory curvature radius 

r of an electron is much smaller than its mean free path I .  As the thickness of 

the open orbit layer related to the Fermi momentum exceeds the (r/I)' value, 
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