THE THEORY OF p-SPACES WITH AN APPLICATION TO CONVOLUTION OPERATORS $\left({ }^{1}\right)$

BY
CARL HERZ ${ }^{2}$)

Abstract

The class of p-spaces is defined to consist of those Banach spaces B such that linear transformations between spaces of numerical L_{p}-functions naturally extend with the same bound to B-valued L_{p}-functions. Some properties of p-spaces are derived including norm inequalities which show that 2-spaces and Hilbert spaces are the same and that p-spaces are uniformly convex for $1<p<\infty$. An L_{q}-space is a p-space iff $p \leqq q \leqq 2$ or $p \geqq q \geqq 2$; this leads to the theorem that, for an amenable group, a convolution operator on L_{p} gives a convolution operator on L_{q} with the same or smaller bound. Group representations in p-spaces are examined. Logical elementarity of notions related to p-spaces are discussed.

0 . Introduction. Let R designate the field of real or complex numbers. We denote by \mathscr{B} the category whose objects are complete normed linear spaces over R and whose morphisms are the bounded R-linear transformations of norm $\leqq 1$. Thus $\mathscr{B}(B, C)$ is the unit ball of $\mathrm{HOM}(B, C)$, the latter being the Banach space of all bounded R-linear transformations from B to C. The endofunctor $C \mapsto \operatorname{HOM}(B, C)$ has a left adjoint $A \mapsto A \otimes B$. In more concrete terms, the tensor product may be viewed this way: each element $t \in A \otimes B$ has a representation $t=\sum_{1}^{\infty} a_{n} \otimes b_{n}$ where $\left\{a_{n}\right\} \subset A,\left\{b_{n}\right\} \subset B$ and $\|t\| \leqq \sum\left\|a_{n}\right\|\left\|b_{n}\right\|<\infty$, indeed $\|t\|$ is the infimum of $\sum\left\|a_{n}\right\|\left\|b_{n}\right\|$ taken over all representations. The concrete viewpoint is given only as a heuristic crutch.

Suppose (μ) is a measure space and $1 \leqq p<\infty$. There is an obvious endofunctor $L_{p}(\mu ; \cdot)$ of the category \mathscr{B} and a natural epimorphism

$$
\varepsilon_{p}(\mu): L_{p}(\mu ; R) \otimes \cdot \rightarrow L_{p}(\mu ; \cdot) .
$$

Suppose that (ν) is also a measure space and $\varphi: L_{p}(\mu ; R) \rightarrow L_{p}(\nu ; R)$ is a morphism.

Received by the editors April 8, 1970.
AMS 1969 subject classifications. Primary 2265, 4255, 4725; Secondary 2850.
Key words and phrases. Category of Banach spaces, tensor product, L_{p}-space, p-space, locally compact group, representation, representative function, regular representation on L_{p}, convolution operator, measure space, Bochner integral, negative-definite function, ultraproduct.
${ }^{(1)}$ The applications to harmonic analysis on groups were announced at the Summer Institute of the University of Warwick, 1968.
$\left.{ }^{(2}\right)$ Research for this paper was sponsored by the National Science Foundation, Contract GP 11767, and Army Grant DA-ARO-D-31-124-G866.

Given an object B of \mathscr{B} we may ask whether there exists a commutative diagram

$$
\begin{gathered}
L_{p}(\mu ; B) \xrightarrow{\varphi_{B}} \\
\varepsilon_{p}(\mu, B) \\
L_{p}(\mu ; R) \otimes B \xrightarrow{\varphi} L_{p}(\nu ; B) \\
\overbrace{\varepsilon_{p}(\nu, B)}
\end{gathered}
$$

Since $\varepsilon_{p}(\mu, B)$ is an epimorphism, if the morphism φ_{B} exists it is unique.
Write \mathscr{L}_{p} to designate the full subcategory of \mathscr{B} whose objects are the $L_{p}(\mu, R)$ spaces. We shall say that an object B of \mathscr{B} is a p-space if for each $\varphi \in \mathscr{L}_{p}$ there is a morphism φ_{B} such that the above diagram is commutative. The full subcategory of \mathscr{B} whose objects are p-spaces will be denoted by \mathscr{B}_{p}.

There is an equivalent characterization of p-spaces which is useful in the applications we have in mind. Given a Banach space B, write $B^{\prime}=\mathrm{HOM}(B, R)$ for the conjugate space. Then there is a canonical morphism $B \otimes B^{\prime} \rightarrow R$, called the "trace," which has the effect $b \otimes b^{\prime} \rightarrow\left\langle b, b^{\prime}\right\rangle=$ the value of b^{\prime} at b. ($B \otimes B^{\prime}$ may be viewed as the space of trace-class operators on B.) The trace induces a transformation

$$
(E \otimes B) \otimes\left(F \otimes B^{\prime}\right) \xrightarrow{c_{B}} E \otimes F,
$$

which is natural in E and F, called "tensor contraction," its effect is $(e \otimes b) \otimes\left(f \otimes b^{\prime}\right) \rightarrow\left\langle b, b^{\prime}\right\rangle e \otimes f$. The examples of interest here are $E=L_{p}(\mu ; R)$, $F=L_{p^{\prime}}(\nu ; R)$ where p^{\prime} is the conjugate index to $p: 1 / p+1 / p^{\prime}=1$.

Theorem 0. A Banach space B is a p-space iff for each pair μ, ν of measure spaces there is a commutative diagram

$$
\begin{gathered}
L_{p}(\mu ; B) \otimes L_{p^{\prime}}\left(\nu ; B^{\prime}\right) \xrightarrow{\gamma_{B}} L_{p}(\mu ; R) \otimes L_{p^{\prime}}(\nu ; R) \\
\varepsilon_{p}(\mu, B) \otimes \uparrow \varepsilon_{p^{\prime}}\left(\nu, B^{\prime}\right) \\
{\left[L_{p}(\mu ; R) \otimes B\right] \otimes\left[L_{p^{\prime}}(\nu ; R) \otimes B^{\prime}\right]}
\end{gathered}
$$

where c_{B} is tensor contraction.
Heuristically, the way to picture Theorem 0 is this. Suppose μ is a Radon measure on a locally compact space X and ν is a Radon measure on a locally compact space Y. Let $u: X \rightarrow B$ and $v: Y \rightarrow B^{\prime}$ be continuous functions of compact support. Define $\varphi: X \times Y \rightarrow R$ by $\varphi(x, y)=\langle u(x), v(y)\rangle$ where \langle,$\rangle is the pairing of B$ and B^{\prime}. The condition that B is a p-space is that φ represent an element of $L_{p}(\mu ; R) \otimes L_{p^{\prime}}(\nu ; R)$ where norm satisfies $\|\varphi\| \leqq\|u\|_{p}\|v\|_{p^{\prime}}$.

The fundamental theorem on the Bochner integral [1] is that for all measure spaces μ the transformation

$$
\varepsilon(\mu): L_{1}(\mu ; R) \otimes \cdot \rightarrow L_{1}(\mu ; \cdot)
$$

is a natural isomorphism. Thus $\mathscr{B}=\mathscr{B}_{1}$, and we may restrict our attention to \mathscr{B}_{p}
for $1<p<\infty$. The only other complete characterization available is $\mathscr{B}_{2}=\mathscr{L}_{2}$ $=$ Hilbert spaces. The main analytical result in this paper is

Theorem 1. Suppose $1<p<\infty$ and $1 \leqq q \leqq \infty$. If $p \leqq q \leqq 2$ or $p \geqq q \geqq 2$ then $\mathscr{L}_{q} \subset \mathscr{B}_{p}$. In all other cases the only \mathscr{L}_{q}-spaces which are p-spaces are 0 and R.

The point of insisting on a categorical approach is that the genuine analytic content of Theorem 1 involves only finite-dimensional Banach spaces and rests on a result of Paul Lévy, see §2 below. Indeed, the affirmative part of Theorem 1 for real scalars could be deduced from the special case already given by Marcinkiewicz and Zygmund [7].

We have in mind applications to group representations. Let G designate a locally compact group. A representation ξ of G consists of a complex Banach space $E(\xi)$ and a continuous homomorphism $U_{\xi}: G \rightarrow \mathrm{AUT}_{s} E(\xi)$, the group of automorphisms (isometries) of $E(\xi)$ endowed with the strong operator topology. A morphism $\stackrel{h}{h} \eta$ of representations in a morphism $E(\xi) \xrightarrow{h} E(\eta)$ of Banach spaces such that $U_{\eta}(x) \circ h=h \circ U_{\xi}(x)$ for each $x \in G$. We obtain a category $\operatorname{Rep}(G)$ in which sums, tensor products, etc. are easily defined in the obvious way. Isomorphism classes of representations form too fine a distinction, e.g. there is one isomorphism class of trivial representation for each isomorphism class of Banach spaces. To avoid this difficulty the following procedure is used. Given a representation ξ let $E=E(\xi)$, and let $E^{\prime}=\operatorname{HOM}(E, C)$ be the conjugate Banach space. Then there is a morphism $E \otimes E^{\prime} \xrightarrow{\Pi(\xi)} C_{u}(G)$, the space of bounded uniformly continuous functions on G in the supremum norm, defined by $\Pi(\xi)(e \otimes f)(x)$ $=f\left(U_{\xi}(x) e\right)$. The coimage of $\Pi(\xi)$ is called the space of ξ-representative functions, and it is denoted by $A(\xi)$. Thus $A(\xi)$ is a Banach space whose elements are canonically identified with certain bounded uniformly continuous functions on G; the norm in $A(\xi)$ is the quotient norm from $E \otimes E^{\prime}$. Example. ξ is trivial iff $A(\xi)$ $=$ constant functions.

For the sum of representations it is clear that addition of functions gives an epimorphism $A(\xi)+A(\eta) \rightarrow A(\xi+\eta)$.

Similarly, for the tensor product of representations, multiplication of functions gives a morphism $A(\xi) \otimes A(\eta) \rightarrow A(\xi \otimes \eta)$.

Of particular interest are the regular representations. Let $L_{p}(G ; \cdot)$ designate the functor arising from the left-invariant Haar measure on G. A functor $\lambda_{p}: \operatorname{Rep}(G) \rightarrow \operatorname{Rep}(G)$ is defined by putting $\lambda_{p}(\xi)$ the representation whose representation space is $E\left(\lambda_{p}(\xi)\right)=L_{p}(G ; E(\xi))$ and whose operators are given $x \rightarrow U(x)$ where $U(x) f(y)=U_{\xi}(x) f\left(x^{-1} y\right)$, the element $f \in L_{p}(G ; E(\xi))$ being viewed as a function on G with values in $E(\xi)$. The representation $\lambda_{p}(C)(C$ being the trivial representation on \boldsymbol{C}) is called the left-regular representation on L_{p}. We write $A_{p}=A\left(\lambda_{p}(C)\right)$. (Had we used the right-regular representation we would have gotten the same A_{p}.) There are two important remarks to make about the representation $\lambda_{p}(\xi)$.

Remark I. Given a representation ξ, let ξ^{0} designate the trivial representation with the same representation space. Then there is a natural isomorphism $\lambda_{p}(\xi) \xrightarrow{T(\xi)} \lambda_{p}\left(\xi^{0}\right)$ of representations given by $T(\xi) f(y)=U_{\xi}\left(y^{-1}\right) f(y)$ for $f \in L_{p}(G ; E(\xi))$.

Remark II. Multiplication of functions gives a morphism $A_{p} \otimes A(\xi) \rightarrow A\left(\lambda_{p}(\xi)\right)$.
The relevance of p-spaces in representation theory is a consequence of
Lemma 0. If $B \neq 0$ is a p-space then $A\left(\lambda_{p}(B)\right)=A_{p}$.
Proof. Recall that $A(\xi)$ is in general defined as the coimage of $E(\xi) \otimes E^{\prime}(\xi) \xrightarrow{\Pi(\xi)} C_{u}(G)$. Let $L_{p}(G ; B) \otimes L_{p^{\prime}}(G ; B) \xrightarrow{\gamma_{B}} L_{p}(G: C) \otimes L_{p^{\prime}}(G ; C)$ be the morphism of Theorem 0 . Then

$$
\Pi\left(\lambda_{p}(B)\right)=\Pi\left(\lambda_{p}(C)\right) \circ \gamma_{B}
$$

Since γ_{B} is an extremal epimorphism, taking coimages gives the desired equality. Combining this last result with Remarks I and II gives
Theorem A. If ξ is a representation in a p-space $E(\xi)$, then multiplication of functions gives a morphism $A_{p} \otimes A(\xi) \rightarrow A_{p}$.

Taking $\xi=\lambda_{p}(\boldsymbol{C})$ we get
Corollary. A_{p} is a Banach algebra under pointwise addition and multiplication of functions.

A deeper result which depends on Theorem 1 is
Theorem B. If $p \leqq q \leqq 2$ or $p \geqq q \geqq 2$ then multiplication of functions gives a morphism $A_{p} \otimes A_{q} \rightarrow A_{p}$.

Proof. Take $\xi=\lambda_{q}(\boldsymbol{C})$ in Theorem A.
For amenable groups Theorem B has some powerful implications. One can show that the conjugate Banach space to A_{p} is canonically isomorphic to CONV_{p}, the operators on $L_{p}(G ; C)$ which commute with right-translations. The result is

Theorem C. Let G be an amenable group and suppose $p \leqq q \leqq 2$ or $p \geqq q \geqq 2$. Then identification of functions gives a morphism $A_{q} \rightarrow A_{p}$. Dually there is a morphism $\mathrm{CONV}_{q} \rightarrow \mathrm{CONV}_{p}$, i.e. convolution operators on $L_{p}(G ; C)$ are convolution operators on $L_{q}(G ; C)$ with contraction of norms.

The details of Theorem C will be given elsewhere. One remark is in order. The right-regular representations give the same A_{p}, and one finds that if $f(x)=f\left(x^{-1}\right)$ then $f \mapsto \check{f}$ is an isomorphism of A_{p} with $A_{p^{\prime}}$. For commutative groups $A_{p}=A_{p^{\prime}}$, and Theorem C is an easy deduction from the Riesz Convexity Theorem. On the other hand it is not known whether for any noncommutative group one has $A_{p}=A_{p^{\prime}}$ when $p \neq 2$. Thus the only known proof of Theorem C depends on Theorem 1 above.

1. Preliminaries. We define a measure space (μ) to be a Boolean σ-algebra \mathscr{M}_{μ} together with a countably additive function $\mu: \mathscr{M}_{\mu} \rightarrow[0,+\infty]$ such that for $E \in \mathscr{M}_{\mu}, \mu(E)=\sup \left\{\mu(F): E \supset F \in \mathscr{M}_{\mu}, \mu(F)<\infty\right\}$ and $\mu(E)=0$ iff $E=\varnothing$, the minimum element of \mathscr{M}_{μ}. For $1 \leqq p<\infty$ the functors $L_{p}(\mu ; \cdot)$ on \mathscr{B} are constructed by the following procedure. Put \mathscr{D}_{μ} for the directed set whose objects Δ are finite collections of disjoint elements $D \in \mathscr{M}_{\mu}$ with $0<\mu(D)<\infty$ and whose morphisms are $\Gamma \prec \Delta$ when each element of Γ is a union of elements of Δ. Given a Banach space B put $L_{p}(\mu \Delta ; B)$ for the vector space of functions $f: \Delta \rightarrow B$ with the norm $\|f\|$ $=\left\{\sum_{D \in \Delta}|f(D)|_{B}^{p} \mu(D)\right\}^{1 / p}$. If $\Gamma \prec \Delta$ there is a natural extremal monomorphism $L_{p}(\mu \Gamma ; B) \xrightarrow{i(\Gamma, \Delta)} L_{p}(\mu \Delta ; B)$ defined by $f \mapsto g$ where $g(D)=f(C)$ if $\Delta \ni D \subset C \in \Gamma$ and $g(D)=0$ if $D \in \Delta$ meets no element of Γ. The inductive limit of the direct system of functors $L_{p}(\mu \Delta ; \cdot)$ is, by definition, $L_{p}(\mu ; \cdot)$. The natural "inclusions" $i(\Gamma, \Delta)$ have natural retractions $r(\Delta, \Gamma)$ where $L_{p}(\mu \Delta ; B) \xrightarrow{r(\Delta . \Gamma)} L_{p}(\mu \Gamma ; B)$ is defined by $g \mapsto f$ where $f(C)=\mu(C)^{-1} \sum_{D \subset C} g(D) \mu(D)$. In the limit one has

$$
L_{p}(\mu \Delta ; \cdot) \xrightarrow{i(\Delta)} L_{p}(\mu ; \cdot) \xrightarrow{r(\Delta)} L_{p}(\mu \Delta ; \cdot)
$$

where i is "inclusion," r is "conditional expectation," and $r \circ i=\mathrm{id}$.
The projective limit of $L_{p}(\mu \Delta ; \cdot) \xrightarrow{r(\Delta \Gamma)} L_{p}(\mu \Gamma ; \cdot)$ taken with \mathscr{D}_{μ} as an inverse system yields functors $\bar{L}_{p}(\mu ; \cdot)$. There are natural extremal monomorphisms $L_{p}(\mu ; \cdot) \subset \bar{L}_{p}(\mu ; \cdot)$. Moreover, if $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$ there is a natural identification of $\bar{L}_{p}\left(\mu ; B^{\prime}\right)$ with the conjugate space of $L_{p}(\mu ; B)$; this is a triviality since conjugation takes inductive limits into projective limits. What is not banal are conditions under which $L_{p}(\mu ; B)$ and $\bar{L}_{p}(\mu ; B)$ coincide. If, however, one knows a priori that $L_{p}(\mu ; B)$ is reflexive it is immediate that it coincides with $\bar{L}_{p}(\mu ; B)$ and has $L_{p^{\prime}}\left(\mu ; B^{\prime}\right)$ for conjugate space; fortunately this simple remark is all that is needed here.

The definition of $L_{p}(\mu ; \cdot)$ given above is technically very convenient and sidesteps pathologies. It requires only a little care to convert other definitions into the form used here. For example, suppose X is a locally compact Hausdorff space. Let \mathscr{K} be the collection of compact subsets of X. A Radon measure on X is a function $\mu: \mathscr{K} \rightarrow[0, \infty]$ with the properties: (1) $\mu(\varnothing)=0$; (2) $\mu(K) \leqq \mu(L)$ if $K \subset L$; (3) $\mu(K \cup L)=\mu(K)+\mu(L)$ if $K \cap L=\varnothing$; (4) if $K \subset M$ then for each $\varepsilon>0$ there exists $L \subset M \backslash K$ such that $\mu(M)<\mu(K)+\mu(L)+\varepsilon$. One can then prove that there exists a unique countably-additive set-function, also denoted by μ, defined on the Borel field of X such that $\mu(E)=\sup \{\mu(K): E \supset K \in \mathscr{K}\}$. A measure space (μ) is obtained by taking \mathscr{M}_{μ} to be the Borel sets modulo Borel sets of measure 0 . Let $\tilde{L}_{p}(\mu ; B)$ be defined as the Banach space obtained from the vector space of continuous maps $f: X \rightarrow B$ of compact support endowed with the pseudonorm $\|f\|_{p}=\left\{\int|f|_{B} d \mu\right\}^{1 / p}$. It is very easy to see that one has natural transformations

$$
L_{p}(\mu \Delta ; B) \xrightarrow{\tilde{l}(\Delta)} \tilde{L}_{p}(\mu ; \cdot) \xrightarrow{\tilde{r}(\Delta)} L_{p}(\mu \Delta ; \cdot)
$$

where $\tilde{r}(\Delta)$ is "conditional expectation" and $\tilde{l}(\Delta)$ arises by lifting the elements of Δ to Borel sets in X and approximating the indicator function of a Borel set of finite measure in the L_{p}-norm by continuous functions of compact support. In the limit one has

$$
L_{p}(\mu ; \cdot) \xrightarrow{\tilde{\boldsymbol{i}}} \tilde{L}_{p}(\mu ; \cdot) \xrightarrow{\tilde{r}} \bar{L}_{p}(\mu ; \cdot)
$$

where $\tilde{r} \circ \hat{\imath}$ in the inclusion of L_{p} in \bar{L}_{p}. Since \tilde{r} is obviously a monomorphism, $\tilde{\boldsymbol{z}}$ must be an isomorphism.

The particular convenience here of the given definition of L_{p}-spaces rests on two observations. The natural diagram (in B)
is commutative and the right-hand side is the inductive limit of the left-hand side. The natural diagram

$$
\begin{gathered}
L_{p}(\nu ; B) \xrightarrow{r(\Gamma, B)} \\
\begin{array}{c}
\varepsilon_{p}(\nu, B)
\end{array} \\
L_{p}(\nu ; R) \otimes B \xrightarrow{(\nu \Gamma ; B)} \\
L_{p}(\nu, R) \otimes B \\
L_{p}(\nu \Gamma ; R) \otimes B
\end{gathered}
$$

is commutative, and although the left-hand side is not always the projective limit of the right-hand side (it is if B is a p-space) the image of

$$
L_{p}(\nu ; R) \otimes B \rightarrow \operatorname{proj} \lim \left[L_{p}(\nu \Gamma ; R) \otimes B\right] \rightarrow \operatorname{proj} \lim L_{p}(\nu \Gamma ; B)=\bar{L}_{p}(\nu ; B)
$$

lies in the subspace $L_{p}(\nu ; B)$ of $\bar{L}_{p}(\nu ; B)$. It is easy to verify that any morphism $\varphi: L_{p}(\mu ; R) \rightarrow L_{p}(\nu ; R)$ is sufficiently well approximated by the morphism $r(\Gamma, R) \circ \varphi \circ i(\Delta, R)$ where $\Delta \in \mathscr{D}_{\mu}$ and $\Gamma \in \mathscr{D}_{\nu}$ that if for a given Banach space B and each Γ, Δ there is a morphism $\varphi_{B}(\Gamma, \Delta): L_{p}(\mu \Delta ; B) \rightarrow L_{p}(\nu \Gamma ; B)$ such that

$$
\varphi_{B}(\Gamma, \Delta) \circ \varepsilon_{p}(\mu \Delta ; B)=\varepsilon_{p}(\nu \Gamma ; B) \circ\{[r(\Gamma, R) \circ \varphi \circ i(\Delta, R)] \otimes B\}
$$

then $\varphi_{B}=$ proj $\lim _{\mathscr{D}_{v}}$ ind $\lim _{\mathscr{O}_{\mu}} \varphi_{B}(\Gamma, \Delta)$ has the property that $\varphi_{B} \circ \varepsilon_{p}(\mu ; B)$ $=\varepsilon_{p}(\nu ; B) \circ(\varphi \otimes B)$. The functors $L_{p}(\mu \Delta ; \cdot)$ are naturally isomorphic to $L_{p}(\boldsymbol{m} ; \cdot)$ where m is the cardinality Δ. Thus the test for whether a Banach space B is a p space may be reduced to the consideration of morphisms $\varphi: L_{p}(m ; R) \rightarrow L_{p}(n ; R)$ where m and n range over the natural numbers. A restatement of this fact is

Proposition 0. Given a pair m, n of natural numbers, say for a Banach space B that $B \in \mathscr{B}_{p}(m, n)$ if

$$
\sum_{i=1}^{n}\left|\sum_{j=1}^{m} M_{i j} b_{j}\right|_{B}^{p} \leqq \sum_{k=1}^{m}\left|b_{k}\right|^{p}
$$

for each m-tuple $b_{1}, \ldots, b_{m} \in B$ and each matrix M with m columns and n rows having entries in R such that

$$
\sum_{i=1}^{n}\left|\sum_{j=1}^{m} M_{i j} r_{j}\right|^{p} \leqq \sum_{k=1}^{m}\left|r_{k}\right|^{p}
$$

for all m-tuples $r_{1}, \ldots, r_{m} \in R$. Then the class of p-spaces is characterized by \mathscr{B}_{p} $=\bigcap_{m, n=1}^{\infty} \mathscr{B}_{p}(m, n)$.

Remark. As will be seen in Lemma 1, the elements of $\mathscr{B}_{p}(2,2)$ already have the Clarkson inequalities, in particular $\mathscr{B}_{2}=\mathscr{B}_{2}(2,2)=$ Hilbert spaces. It seems unlikely, however, that $\mathscr{B}_{p}=\mathscr{B}_{p}(m, n)$ for any finite m, n if $p \neq 1,2$.

Many properties of p-spaces can be derived from abstract arguments. In a category with pullbacks and pushouts we say that a monomorphism i is an extremal monomorphism if $i=f \circ g$ and g is an epimorphism imply that g is an isomorphism. If $A \xrightarrow{i} B$ is an extremal monomorphism we say that A is a subobject of B. In the category of Banach spaces, extremal monomorphism = isometry; hence a subspace has the same norm as the ambient space. Dually for extremal epimorphisms and quotients. Let \mathscr{D} be a directed set and \mathscr{B} a complete category; given a functor $F: \mathscr{D} \rightarrow \mathscr{B}$ such that whenever $x, y \in \mathscr{D}$ and $x<y$ the morphism $F(x) \rightarrow F(y)$ is an extremal monomorphism, we say that the inductive limit, ind $\lim _{\mathscr{D}} F$ is a direct union.

If \mathscr{B} is a category with a terminal object and \mathscr{S} is a category with objects a, b, z and morphisms $a \rightarrow b, a \rightarrow z$, then the inductive limit of a functor $F: \mathscr{S} \rightarrow \mathscr{B}$ such that $F(z)=0$ is called a "cokernel." A cokernel is a quotient, and the converse is true in some categories, e.g. Banach spaces. Inductive limits commute with each other; so that to show that an inductive limit has certain properties with respect to $L_{p}(\mu ; \cdot)$ functors it is often sufficient to consider only $L_{p}(\boldsymbol{m} ; \cdot)$ with m a natural number, e.g. $L_{p}(\mu ; \cdot)$ commutes with direct unions and preserves extremal epimorphisms (view these as cokernels). Also $L_{p}(\mu ; \cdot)$ preserves extremal monomorphisms (although tensor products do not in general). The following list gives obvious results.

Proposition 1. A subspace of a p-space is a p-space.
Proposition 2. A direct union of p-spaces is a p-space.
Proposition 3. A quotient of a p-space is a p-space.
Proposition 4. $B \in \mathscr{B}_{p}$ iff $B^{\prime} \in \mathscr{B}_{p^{\prime}}$.
Proposition 5. If B is a p-space so is $L_{p}(\mu ; B)$ for any measure space (μ). If A and B are p-spaces so is $A \oplus_{p} B$, the completion of $A+B$ for the norm $\|(a, b)\|$ $=\left\{|a|_{A}^{p}+|b|_{B}^{p}\right\}^{1 / p}$.

Some remarks.

Remark 1. A Banach space B is a p-space iff each finite-dimensional subspace is a p-space.

Remark 2. The serious problems about p-spaces may be stated in terms of the range $1<p \leqq 2$.

Remark 3. For any pair (μ), (ν) of measure spaces there is a measure space ($\mu \times \nu$) such that $L_{p}\left(\mu ; L_{p}(\nu, R)\right.$), $L_{p}\left(\nu ; L_{p}(\mu ; R)\right)$, and $L_{p}(\mu \times \nu ; R)$ are canonically isomorphic. Thus spaces of the form $L_{p}(\mu ; R)$ together with their subspaces and quotients spaces are the only obvious p-spaces when $1<p<\infty$; no examples of p-spaces are known to me which are not obtained this way.

The next is an example of how abstract methods may be used.
Proof of Theorem $\mathbf{0}$. Since tensor products commute with inductive limits, to prove the existence of the required morphism

$$
\gamma_{B}: L_{p}(\mu ; B) \otimes L_{p^{\prime}}\left(\nu ; B^{\prime}\right) \rightarrow L_{p}(\mu ; R) \otimes L_{p^{\prime}}(\nu ; R)
$$

for arbitrary measure spaces μ, ν it suffices to consider the cases $\mu=\boldsymbol{m}, \nu=\boldsymbol{n}$ where m and n range over the natural numbers. Now suppose B is finite dimensional. If X and Y are finite-dimensional Banach spaces then $X \otimes Y^{\prime}$ and $\operatorname{HOM}(X, Y)$ are conjugate to each other. Thus the existence of

$$
\gamma_{B}: L_{p}(\boldsymbol{m} ; B) \otimes L_{p^{\prime}}\left(\boldsymbol{n} ; B^{\prime}\right) \rightarrow L_{p}(\boldsymbol{m} ; R) \otimes L_{p^{\prime}}(\boldsymbol{n} ; R)
$$

is equivalent to the existence of a conjugate morphism

$$
\delta_{B}: \operatorname{HOM}\left(L_{p}(\boldsymbol{m} ; R), L_{p}(\boldsymbol{n} ; R)\right) \rightarrow \operatorname{HOM}\left(L_{p}(\boldsymbol{m} ; B), L_{p}(\boldsymbol{n} ; B)\right)
$$

where $\varphi_{B}=\delta_{B}(\varphi)$ is exactly the morphism required in the definition of p-space. In view of Proposition 0, we have proved Theorem 0 for finite-dimensional Banach spaces B. Now let B be an arbitrary Banach space and $F \xrightarrow{i} B$ a finite-dimensional subspace; m and n are kept fixed in all that follows. Suppose the required morphism γ_{B} exists. Then we get a morphism

$$
\gamma_{F, B}: L_{p}(\boldsymbol{m} ; F) \otimes L_{p^{\prime}}\left(\boldsymbol{n} ; B^{\prime}\right) \rightarrow L_{p}(\boldsymbol{m} ; R) \otimes L_{p^{\prime}}(\boldsymbol{n} ; R)
$$

given by $\gamma_{F, B}=\gamma_{B} \circ\left(L_{p}(\boldsymbol{m} ; i) \otimes L_{p^{\prime}}\left(\boldsymbol{n} ; \boldsymbol{B}^{\prime}\right)\right)$. Now $\boldsymbol{B}^{\prime} \xrightarrow{i} F^{\prime}$ is an extremal epimorphism; hence so is $L_{p^{\prime}}\left(\boldsymbol{n} ; i^{\prime}\right)$; and therefore $L_{p}(\boldsymbol{m} ; F) \otimes L_{p^{\prime}}\left(\boldsymbol{n} ; i^{\prime}\right)$ is an extremal epimorphism whose kernel is obviously contained in the kernel of $\gamma_{F, B}$. It follows that $\gamma_{F, B}$ must factor through $L_{p}(\boldsymbol{m} ; F) \otimes L_{p^{\prime}}\left(\boldsymbol{n} ; F^{\prime}\right)$; this gives the existence of γ_{F}. Conversely, if γ_{F} exists we may define $\gamma_{F, B}$ by $\gamma_{F, B}=\gamma_{F} \circ\left(L_{p}(\boldsymbol{m} ; E) \otimes L_{p^{\prime}}\left(\boldsymbol{n} ; i^{\prime}\right)\right)$. Assuming that γ_{F} exists for every finite-dimensional subspace F, the morphism $\gamma_{B}=$ ind $\lim _{F} \gamma_{F, B}$ has the required properties.
2. Subspaces of \mathscr{L}_{p}-spaces. To say that a Banach space B is a subspace of an \mathscr{L}_{p}-space is to say that there exists a measure space (μ) and an extremal monomorphism $B \xrightarrow{i} L_{p}(\mu ; R)$. A continuous function ψ defined on a group X is negative-
definite if $\sum \psi\left(x_{i}-x_{j}\right) c_{i} \bar{c}_{j} \leqq 0$ for all finite collections, $x_{1}, \ldots, x_{n} \in X$ and $c_{1}, \ldots, c_{n} \in \boldsymbol{C}$ with $\sum c_{i}=0$.

Theorem 2. A Banach space B is a subspace of an \mathscr{L}_{p}-space, $1 \leqq p \leqq 2$, iff $x \mapsto\|x\|^{p}$ is a negative-definite function on B. (Equivalently $x \mapsto \exp \left(-\|x\|^{p}\right)$ is a positive-definite function on B.)

Corollary 1. If $p \leqq q \leqq 2$ then an \mathscr{L}_{q}-space is a subspace of an \mathscr{L}_{p}-space.
Proof of Corollary 1. A theorem of Bochner [2] states that if ψ is a positivevalued negative-definite function and $0<\alpha \leqq 1$ then ψ^{α} is negative-definite. If B is an \mathscr{L}_{q}-space then $\psi(x)=\|x\|^{q}$ is negative-definite by Theorem 2; hence $x \mapsto\|x\|^{p}$, which is ψ^{α} for $\alpha=p / q$, is negative-definite.

COROLLARY 2. If $p \leqq q \leqq 2$ or $p \geqq q \geqq 2$ then $\mathscr{L}_{q} \subset \mathscr{B}_{p}$.
Proof of Corollary 2. By Propositions 1 and 2 it follows from Corollary 1 for finite-dimensional \mathscr{L}_{q} spaces with $p \leqq q \leqq 2$ that $\mathscr{L}_{q} \subset \mathscr{B}_{p}$ since $\mathscr{L}_{p} \subset \mathscr{B}_{p}$ is already known (and obvious). If $p \geqq q \geqq 2$ then $\mathscr{L}_{q^{\prime}} \subset \mathscr{B}_{p^{\prime}}$ which implies $\mathscr{L}_{q} \subset \mathscr{B}_{p}$.

The necessity of the condition of Theorem 2 is banal. One has only to prove that $x \mapsto\|x\|^{p}$ is negative-definite on $L_{p}(\mu ; R)$ since the condition is obviously hereditary. On the other hand it is clearly preserved by direct unions; so it is sufficient to prove it for $L_{p}(\boldsymbol{m} ; R)$. For $x \in L_{p}(\boldsymbol{m} ; R)$ one has $\|x\|^{p}=\left|x_{1}\right|^{p}+\cdots+\left|x_{m}\right|^{p}$; and the sum of negative-definite functions is negative-definite. Therefore the only question is whether $x \mapsto|x|^{p}$ is negative-definite on R. Now $\psi(x)=|x|^{2}$ is obviously negativedefinite on R (whether $R=\boldsymbol{R}$ or \boldsymbol{C}), and $|x|^{p}=\psi^{\alpha}(x)$ for $\alpha=p / 2 \leqq 1$.

The real version of Theorem 2 is known. For finite-dimensional real Banach spaces it was observed by the author [5] to be a consequence of a theorem of Paul Lévy [6, §63] on symmetric stable laws in several variables. The extension to the infinite-dimensional case is due to Bretagnolle, Dacunha-Castelle, and Krivine [3]. We do not need this extension, but we wish to comment later on the proof, see §4.
A complex Banach space B is a real Banach space equipped with an automorphism i such that $i^{2}=-$ id and $\|\cos \theta b+\sin \theta(i b)\|=\|b\|$ for all $b \in B$ and all $\theta \in \boldsymbol{R}$. The complex case of Theorem 2 follows from the next (the condition that $x \mapsto\|x\|^{p}$ be negative-definite does not depend on whether real or complex scalars are used).

Proposition 6. Let B be a complex Banach space and B_{R} the same space viewed as a real Banach space. For each real morphism $B_{R} \xrightarrow{\omega} L_{p}(\mu ; \boldsymbol{R})$ there is a complex morphism $B \xrightarrow{\underset{\longrightarrow}{\longrightarrow}} L_{p}(\mu ; C)$ given by $\psi(b)=c_{p} \varphi(b)-i c_{p} \varphi(i b)$ where c_{p} is a universal constant depending only on p. If φ is an isometry so is ψ.

Proof. There is a constant c_{p} such that

$$
(2 \pi)^{-1} \int_{0}^{2 \pi}\left|\operatorname{Re}\left(e^{1 \theta} z\right)\right|^{p} d \theta=c_{p}^{p}|z|^{p}
$$

for each $z \in C$. Observe that for each $b \in B, \varphi\left(e^{i \theta} b\right)=\operatorname{Re}\left\{e^{i \theta} \psi(b)\right\} c_{p}^{-1}$. Since $\left\|\varphi\left(e^{i \theta} b\right)\right\| \leqq\|b\|$ for each θ it follows that

$$
\int\left|\operatorname{Re}\left\{e^{i \theta} \psi(b)\right\}\right|^{p} d \mu \leqq c_{p}^{p}\|b\|^{p}
$$

Integrating with respect to $d \theta$ and interchanging the order of integration we get $\int|\psi(b)|^{p} d \mu \leqq\|b\|^{p}$ which is what was to be proved, since $b \rightarrow \psi(b)$ is obviously complex linear.
3. Properties of p-spaces. The affirmative part of Theorem 1 is a corollary of Theorem 2; the negative part follows from Lemmas 1 and 2 below. Indeed, Lemma 1 asserts that the elements of $\mathscr{B}_{p}(2,2)$ must satisfy certain inequalities on the norm that were obtained for \mathscr{L}_{p}-spaces by Clarkson [4]. In particular, for $1<p<\infty$, a space in $\mathscr{B}_{p}(2,2)$ is uniformly convex. Combining the Clarkson inequalities with Lemma 2, one gets that the only \mathscr{L}_{q}-spaces in $\mathscr{B}_{p}(3,2)$ with $q<p \leqq 2$ or $q>p \geqq 2$ are 0 and R. After Lemma 3 one has the following, even for $\mathscr{B}_{p}(3,3)$.

Proposition 7. Suppose $1<p<\infty$. Then a p-space is uniformly convex, hence reflexive, and its norm function is strongly differentiable everywhere except at the origin.

The lemmas below are all based on elementary calculations using well-chosen morphisms $L_{p}(\boldsymbol{m} ; R) \rightarrow L_{p}(\boldsymbol{n} ; R)$.

Lemma 1. If $B \in \mathscr{B}_{p}$ then for all $x, y \in B$

$$
\|x+y\|^{p}+\|x-y\|^{p} \leqq 2^{r}\left(\|x\|^{p}+\|y\|^{p}\right), \quad r=\max (1, p-1) .
$$

Proof. $(\xi, \eta) \mapsto 2^{-\gamma / p}(\xi+\eta, \xi-\eta)$ is an endomorphism of $L_{p}(\mathbf{2}, R)$.
Corollary. $\mathscr{L}_{q} \cap \mathscr{B}_{p}=\{0, R\}$ unless q is between p and p^{\prime}.
Proof. Each \mathscr{L}_{q}-space other than 0 or R contains a subspace isomorphic to $L_{q}(2, R)$. Hence it suffices to show that $L_{q}(2, R) \notin \mathscr{B}_{p}$. Take $x=(1,1)$ and $y=(1,-1)$ and look at the inequality of Lemma 1. We have $\|x+y\|=\|x-y\|=2$ while $\|x\|$ $=\|y\|=2^{1 / q}$. For $p \leqq 2$ we must have $2 \cdot 2^{p} \leqq 2 \cdot 2 \cdot 2^{p / q}$, i.e. $q \leqq p^{\prime}$. For $p \geqq 2$ the inequality is $2 \cdot 2^{p} \leqq 2^{p-1} \cdot 2 \cdot 2^{p / q}$, i.e. $q \leqq p$. Therefore $q \leqq \max \left(p, p^{\prime}\right)$. With $x=(1,0)$ and $y=(0,1)$ we get $q \geqq \min \left(p, p^{\prime}\right)$.

Corollary. $\mathscr{B}_{2}=$ Hilbert spaces.
Proof. For $p=2$, the inequality of Lemma 1 forces equality.
Lemma 2. Suppose $2 \leqq p<\infty$ and $B \in \mathscr{B}_{p}$. Then for $x, h \in B$ with $\|x\|=1$ and $\|h\| \leqq 1$ we have

$$
\|x+h\|^{p}+\|x-h\|^{p}-2\|x\|^{p} \leqq 2^{p-2} p(p-1)\|h\|^{2} .
$$

Proof. Let α with $0<\alpha<1$ be given. Then there exists β with $0<\beta<2$ such that the maximum, γ, of $|\xi+\alpha \eta|^{p}+|\xi-\alpha \eta|^{p}+|\beta \eta|^{p}$ on the "sphere" $\xi^{p}+\eta^{p}=1$ is
achieved at $\xi=\eta=2^{-1 / p}$. Then $(\xi, \eta) \rightarrow \gamma^{-1}(\xi+\alpha \eta, \xi-\alpha \eta, \beta \eta)$ is a morphism $L_{p}(\mathbf{2}, R) \rightarrow L_{p}(\mathbf{3}, R)$. Hence if $B \in \mathscr{B}_{p}$ and $x, y \in B$ with $\|x\|=1=\|y\|$ we must have

$$
\|x+\alpha y\|^{p}+\|x-\alpha y\|^{p}+\|\beta y\|^{p} \leqq(1+\alpha)^{p}+(1-\alpha)^{p}+\beta^{p} .
$$

Putting $h=\alpha y$ gives

$$
\|x+h\|^{p}+\|x-h\|^{p}-2 \leqq(1+\|h\|)^{p}+\left(1-\|h\|^{p}-2 .\right.
$$

Corollary. $\mathscr{L}_{q} \cap \mathscr{B}_{p}=\{0, R\}$ if $q<2 \leqq p<\infty$.
Proof. It suffices to show that $L_{q}(2, R) \notin \mathscr{B}_{p}$. Take $x=(1,0)$ and $h=(0, \alpha)$. The inequality of the lemma gives

$$
2\left(1+\alpha^{q}\right)^{p / q}-2 \leqq 2^{p-2} p(p-1) \alpha^{2}
$$

which cannot hold for small α since $\left(1+\alpha^{q}\right)^{p / q}-1 \sim(p / q) \alpha^{q}$ as $\alpha \rightarrow 0$.
Lemma 3. For $B \in \mathscr{B}_{p}, 1<p<\infty$, the function $x \mapsto\|x\|^{p}$ is differentiable on B.
Proof. Given $x, u \in B, \lim _{t \rightarrow 0+} t^{-1}\left\{\|x+t u\|^{p}-\|x\|^{p}\right\}=F(x ; u)$ always exists. The problem is to show that for each $x \in B, F(x ; \cdot)$ is a real-linear function on B. We henceforth regard B as a real Banach space. The proof of Lemma 2 shows that $F(x ;-u)=-F(x ; u)$ for all $x, u \in B$. Consider the matrix

$$
M=\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

as an element of $\operatorname{HOM}\left(L_{p}(\mathbf{3} ; C), L_{p}(\mathbf{3} ; C)\right)$. When $p=1,\|M\|=3$, when $p=2$, $\|M\|=3^{1 / 2}$. Hence by the Riesz Convexity Theorem, $3^{-1 / p} M$ gives a morphism $L_{p}(\mathbf{3} ; R) \rightarrow L_{p}(3 ; R)$ for $1 \leqq p \leqq 2$; that is to say

$$
\|x-y-z\|^{p}+\|x+y\|^{p}+\|x+z\|^{p} \leqq 3\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) .
$$

Putting $y=t u, z=t v$ we get

$$
\|x-t(u+v)\|^{p}+\|x+t u\|^{p}+\|x+t v\|^{p}-3\|x\|^{p} \leqq 3 t^{p}\left(\|u\|^{p}+\|v\|^{p}\right) .
$$

Therefore, for $1<p \leqq 2$ we get $F(x ;-u-v)+F(x ; u)+F(x ; v) \leqq 0$; and since $F(x ; \cdot)$ is odd it must be linear. An argument similar to that of Lemma 2 shows that $|F(x ; u)| \leqq p\|x\|^{p-1}\|u\|$. Since $F(x ; x)=p\|x\|^{p}$ and B is uniformly convex, it follows that $x \rightarrow p^{-1} F(x ; \cdot)$ is a one-to-one map of the unit sphere of B into the unit sphere of B^{\prime}. Since B^{\prime} is uniformly convex, this map must be onto (the argument is this: given $\xi \in B^{\prime}$ with $\|\xi\|=1$ there exists $x \in B$ with $\|x\|=1$ and $\langle x, \xi\rangle=1$; put $\eta=p^{-1} F(x ; \cdot)$; then $\left\langle x, \frac{1}{2}(\xi+\eta)\right\rangle=1$ so $\left\|\frac{1}{2}(\xi+\eta)\right\|=1$ which forces $\left.\xi=\eta\right)$. For $\xi, \eta \in B^{\prime}$ put

$$
\Phi(\xi ; \eta)=\lim _{t \rightarrow 0+} t^{-1}\left\{\|\xi+t \eta\|^{p^{\prime}}-\|\xi\|^{p^{\prime}}\right\} .
$$

If ξ is on the unit sphere in B^{\prime} then $\xi=p^{-1} F(x ; \cdot)$ for some $x \in B$. One can establish that $\Phi(\xi ; \eta)=p^{\prime}\langle x, \eta\rangle$, and hence $\xi \rightarrow\|\xi\|^{p^{\prime}}$ gives a differentiable function on p^{\prime}. This allows me to conclude the assertion of the lemma for $2<p<\infty$.
4. Sheaves and elementarity. Let X be a paracompact Hausdorff space and \mathscr{B} a complete category. Put $\tau^{*}(X)$ for the category of reverse inclusions of open subsets of X. Let $F: \tau^{*}(X) \rightarrow \mathscr{B}$ be a covariant functor. For each $x \in X$ put F_{x} $=$ ind $\lim _{\mathscr{N}_{x}} F$ where \mathscr{N}_{x} is a fundamental system of neighborhoods of x. The functor F is a \mathscr{B}-valued sheaf over X if
(S1) Let \mathscr{A} be any collection of open subsets of X and \mathscr{A}^{*} the subcategory of $\tau^{*}(X)$ constituted by the morphisms $U \supset U \cap V$ for $U, V \in \mathscr{A}$; then if A is the union of the elements of $\mathscr{A}, F(A)$ with the morphisms $F(A) \rightarrow F(U), U \in \mathscr{A}$ gives a projective limit, proj $\lim _{\mathscr{A}} \cdot F$.
(S2) For each open set U in X the canonical morphism $F(U) \rightarrow \prod_{x \in U} F_{x}$ an extremal monomorphism.

If $X \xrightarrow{\varphi} Y$ is a continuous map of paracompact Hausdorff spaces and F is a sheaf over X we obtain a sheaf over Y by defining $\varphi F: \tau^{*}(Y) \rightarrow \mathscr{B}$ as $\varphi F(V)$ $=F\left(\varphi^{-1}(V)\right)$. The sheaf φF is called the direct image of F.
A class of objects of \mathscr{B} will be called semi-elementary if it is stable for isomorphism and has the property: if F is a \mathscr{B}-valued sheaf over a discrete space X each of whose stalks F_{x} belongs to the class and $\beta: X \rightarrow \check{X}$ is the map of X into its Čech compactification then all the stalks of the direct image βF belong to the class. A stalk of the form $(\beta F)_{y}$ where $y \in \check{X}$ is called an ultraproduct. Presumably, semielementary classes are defined by properties of a special logical form appropriate to the category in question.

In the case where \mathscr{B} is the category of Banach spaces and F is a \mathscr{B}-valued sheaf over X, for each element $f \in F(U)$ we put $f(x)$ for the value of f under the canonical morphism $F(U) \rightarrow F_{x}$ where $x \in U$. According to (S2), $\|f\|_{U}=\sup _{x \in U}|f(x)|$ where $\|f\|_{U}$ is the norm in $F(U)$ and $|f(x)|$ is the norm in F_{x}. If $U \supset V$ we shall write $\|f\|_{V}$ for the norm of the image of f under $F(U) \rightarrow F(V)$. Given $x \in X$ and $b \in F_{x}$ there exists a decreasing sequence $\left\{U_{n}\right\}$ of neighborhoods of x and elements $f_{n} \in F\left(U_{n}\right)$ such that $\lim _{N \rightarrow \infty} f_{n}(x)=b$ and for each $\varepsilon>0$ there exists an integer m such that $\left\|f_{m}-f_{n}\right\|_{U_{n}}<\varepsilon$ whenever $n>m$. It follows that $x \mapsto|f(x)|$ is an upper semicontinuous function on U when $f \in F(U)$; indeed $|f(x)|=\inf _{v \in \mathscr{F}_{x}} \sup _{y \in V}|f(y)|$.

In case X is a discrete space, \check{X} the Cॅech compactification, and F a Banach-valued sheaf over X we must have for each open $V \subset \bar{X}$ and $g \in \beta F(V)$ that $y \mapsto|g(y)|$ is a continuous function on V. It is an immediate consequence of Proposition 0 that \mathscr{B}_{p} is a semi-elementary class of Banach spaces. What is much deeper is that \mathscr{L}_{p} is a semi-elementary class in the category of real Banach spaces. This follows from the work of Nakano [8] where the basic category is Banach lattices, but Banachlattice ultraproducts coincide with the Banach-space ultraproducts. (Note: $\{\boldsymbol{R}\}$ is semi-elementary in real Banach spaces but not in real vector spaces; the norm-
function on a Banach space kills infinitesimals.) For complex \mathscr{L}_{p}-spaces it is not known whether the class is semi-elementary, much less is there a concrete "elementary" characterization.

Bretagnolle, Dacunha-Castelle, and Krivine [3] proved that the class of subspaces of real \mathscr{L}_{p}-spaces is stable for direct unions by observing that \mathscr{L}_{p} was semielementary and then using a concrete form of the following argument. A category \mathscr{B} is said to have the "Grothendieck property" if whenever \mathscr{D} is a directed set and $F, G: \mathscr{D} \rightarrow \mathscr{B}$ are functors connected by natural extremal monomorphisms $F \rightarrow G$ then the natural morphisms ind $\lim _{\mathscr{D}} F \rightarrow$ ind $\lim _{\mathscr{D}} G$ is an extremal monomorphism. Banach spaces have the Grothendieck property.

Proposition 8. Let \mathscr{E} be a semi-elementary class in a complete category with the Grothendieck property. Let $\mathscr{H} \mathscr{E}$ be the class of subobjects of objects of \mathscr{E}. The $\mathscr{H} \mathscr{E}$ is semi-elementary and stable for direct unions.

Proof. That $\mathscr{H} \mathscr{E}$ is semi-elementary is an obvious consequence of the Grothendieck property and the fact that projective limits, in particular products, always preserve extremal monomorphisms. Now let \mathscr{D} be a directed set and $\Phi: \mathscr{D} \rightarrow \mathscr{B}$ a functor such that for each $x \in \mathscr{D}, \Phi(x) \in \mathscr{H} \mathscr{E}$. We suppose that when $x<y$, $\Phi(x) \rightarrow \Phi(y)$ is an extremal monomorphism; then ind $\lim _{\mathscr{D}} \Phi$ is a direct union. Regard \mathscr{D} as a discrete space and define $F: \tau^{*}(\mathscr{D}) \rightarrow \mathscr{B}$ by $F(u)=\Pi_{x \in U} \Phi(x)$. When $U \supset V$ the morphism $F(U) \rightarrow F(V)$ is projection on a partial product. For the stalks of the sheaf F there is a natural identification of F_{x} with $\Phi(x)$. Let \mathscr{N} be an ultrafilter of cofinal subsets of \mathscr{D}. Then there is a point $c \in \mathscr{\mathscr { D }}$, the Čech compactification, such that \mathscr{N} is the trace on \mathscr{D} of the open neighborhoods of c. Put Γ $=(\beta F)_{c}=$ ind $\lim _{\mathcal{N}} F$. We have $\Gamma \in \mathscr{H} \mathscr{E}$ since $\mathscr{H} \mathscr{E}$ is semi-elementary. Write $(\mathscr{N}, \mathscr{B})$ for the category of functors from the directed set \mathscr{N} to \mathscr{B}. Given $x \in \mathscr{D}$, put $S_{x}=\{y \in \mathscr{D}: x<y\}$ and define a functor $G: \mathscr{D} \rightarrow(\mathcal{N}, \mathscr{B})$ by $G(x)(U)$ $=F\left(U \cap S_{x}\right)$, the morphism $G(x) \rightarrow G(y)$ when $x<y$ being the natural partial product projections. We may regard ind $\lim _{\mathscr{N}}$ as a functor from $(\mathscr{N}, \mathscr{B})$ to \mathscr{B} and hence ind $\lim _{\mathscr{N}} G$ as a functor from \mathscr{D} to \mathscr{B}. Because of the way \mathscr{N} was chosen, $\left\{U \cap S_{x}: U \in \mathscr{N}\right\}$ is cofinal in \mathscr{N} for each $x \in \mathscr{D}$. Thus there is a natural identification of ind $\lim _{\mathscr{N}} G$ with Γ. Write $\Phi^{*}: \mathscr{D} \rightarrow(\mathscr{N}, \mathscr{B})$ for the functor $\Phi^{*}(x)(U)$ $=\Phi(x)$. There is a natural transformation $\Phi^{*} \rightarrow G$ coming from $\Phi(x) \rightarrow \prod_{x<y \in U} \Phi(y)$ as a product of morphisms $\Phi(x) \rightarrow \Phi(y)$. For fixed $x \in \mathscr{D}, \Phi^{*}(x) \rightarrow G(x)$ are natural extremal monomorphisms. By the Grothendieck property, ind $\lim _{\mathscr{r}} \Phi^{*}(x) \rightarrow$ ind $\lim _{\mathscr{H}} G(x)$ is an extremal monomorphism, but this is simply a natural transformation $\Phi \rightarrow \Gamma$. Once again by the Grothendieck property, ind $\lim _{\mathscr{D}} \Phi \rightarrow$ ind $\lim _{\mathscr{D}} \Gamma=\Gamma$ is an extremal monomorphism, i.e. the direct union ind $\lim _{\mathscr{O}} \Phi$ is a subobject of $\Gamma \in \mathscr{H} \mathscr{E}$, hence the direct union is in $\mathscr{H} \mathscr{E}$.

Bibliography

1. S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vectorraumes sind, Fund. Math. 20 (1933), 262-276.
2. S. Bochner, Stable laws of probability and completely monotone functions, Duke Math. J. 3 (1937), 726-728.
3. J. Bretagnolle, D. Dacunha-Castelle, and J.-L. Krivine, Lois stables et espaces L^{p}, Ann. Inst. H. Poincaré Sect. B 2 (1965/66), 231-259. MR 34 \#3605.
4. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
5. C. S. Herz, A class of negative-definite functions, Proc. Amer. Math. Soc. 14 (1963), 670676. MR 28 \#1477.
6. P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
7. J. Marcinkiewicz and A. Zygmund, Quelques inégalités pour les opèrations linèaires, Fund. Math. 32 (1939), 115-121.
8. H. Nakano, Uber normierte teilweisegeordnete Moduln, Proc. Imp. Acad. Tokyo 17 (1941), 311-317. MR 7, 249.

Brandeis University,
Waltham, Massachusetts 02154

