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Introduction
Boolean algebras are those mathematical systems first developed by

George Boole in the treatment of logic by symbolic methodsf and since ex-
tensively investigated by other students of logic, including Schröder, White-
head, Sheffer, Bernstein, and Huntington.J Since they embody in abstract
form the principal algebraic rules governing the manipulation of classes or
aggregates, these systems are of technical interest to the mathematician
quite as much as to the logician. It is thus natural to suppose that a study
of Boolean algebras by the methods of modern algebra will prove fruitful of
important and useful results. Indeed, if one reflects upon various algebraic
phenomena occurring in group theory, in ideal theory, and even in analysis,
one is easily convinced that a systematic investigation of Boolean algebras,
together with still more general systems, is probably essential to further
progress in these theories.! The writer's interest in the subject, for example,
arose in connection with the spectral theory of symmetric transformations in
Hubert space and certain related properties of abstract integrals. In the
actual development of the proposed theory of Boolean algebras, there
emerged some extremely close connections with general topology which led
at once to results of sufficient importance to confirm our a priori views of the
probable value of such a theory.||

In the present paper, which is one of a projected series, we shall be con-
cerned primarily with the problem of determining the representation of a

* Presented to the Society (in part), February 25, 1933; see abstract 39-3-86. Received by the
editors October 10, 1935.

f See The Mathematical Analysis of Logic, 1847, and An Investigation of the Laws of Thought,
1854.

% For bibliographical information, see Huntington, these Transactions, vol. 35 (1933), pp. 274—
304, especially pp. 274-275.

§ Dedekind's observations and technical contributions, in Mathematische Annalen, vol. 53
(1900), pp. 371-403, relative to the occurrence of such general systems did not immediately provoke
general interest. Recently, a considerable amount of work along the general lines laid down by
Dedekind has appeared: see, for instance, Fritz Klein, Mathematische Annalen, vol. 105 (1931),
pp. 308-323; Garrett Birkhoff, Proceedings of the Cambridge Philosophical Society, vol. 29 (1933),
pp. 441-464; O. Ore, Annals of Mathematics, (2), vol. 36 (1935), pp. 406-437.

|| See Stone, Proceedings of the National Academy of Sciences, vol. 20 (1934), pp. 197-202.
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given Boolean algebra by algebras of classes, aggregates, or combinations.
It is natural to surmise that the problem always has a solution leading to the
construction of an algebra of classes isomorphic to the given Boolean algebra.
Such a result is a precise analogue of the theorem that every abstract group
is represented by an isomorphic group of permutations. Here we shall estab-
lish the validity of this surmise and, in addition, shall characterize all possible
algebras of classes homomorphic to a given Boolean algebra. It is a curious
fact that these results are considerably more recondite than the correspond-
ing theorems for abstract groups: the elements of the representative classes
must be taken as certain classes of elements in the given Boolean algebra
(in particular, as the prime ideals in the algebra), whereas the elements of the
permutations representing an abstract group are taken as elements of the
group itself; and the existence of prime ideals, in terms of which the repre-
sentation is constructed, can apparently be established in general only by
an appeal to the Zermelo hypothesis.

The observation that Boolean algebras can be regarded as special in-
stances of the systems known as abstract rings enables us to apply the
concepts and results of modern algebraic theory directly to the purposes of
the present paper.* Here we shall show in detail that Boolean algebras are
identical with those rings with unit in which every element is idempotent.f
In this identification, ring addition and multiplication correspond abstractly
to the formation of the union (modulo 2) and intersection, respectively, of
classes. The union (modulo 2), or symmetric difference, of two classes is the
class of objects belonging to one or the other, but not to both, of those classes;
and is thus familiar to combinatorial topologists. On algebraic grounds it is
convenient to admit rings other than those which possess units. We shall
therefore take as the central theme of this paper not merely Boolean algebras,
but, more generally, rings in which every element is idempotent, designating
the latter systems as Boolean rings or generalized Boolean algebras.

The paper falls naturally into four parts or chapters. The first deals with
the formal algebraic properties of Boolean rings; the second with subrings,
ideals, and homomorphisms ; the third with the structure of Boolean rings
with elements which are given as abstract classes; and the fourth with the
representation theory. In general we shall limit our investigations to those
topics which are essential for an adequate understanding of the algebraic

* For general information concerning modern algebraic developments, we refer to B. L. van der
Waerden, Moderne Algebra, vol. 1, Berlin, 1930, Chapter 3 of which deals particularly with the
definition and basic properties of abstract rings. We shall assume that the reader has a general
knowledge of this material.

f See Stone, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 103-105;
Gegalkin, Matematicheskii Sbornik, vol. 35 (1928), pp. 311-373.
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aspects of the representation theory, leaving until another occasion a deeper
study of the classification of ideals and the introduction of the concepts of
general topology. A more complete survey of the contents of the present
paper is the following: Chapter I, Formal algebraic properties of Boolean
rings: §1, Direct discussion of Boolean rings; §2, Connections with Boolean
algebras; §3, Special Boolean rules; §4, Special elements. Chapter II, Sub-
rings, ideals, and homomorphisms: §1, Subrings and their combinations;
§2, Ideals and their combinations; §3, A classification of ideals; §4, Prime
ideals; §5, Congruences, ideals and homomorphisms; §6, Direct sums. Chap-
ter III, Algebras of classes: §1, The construction of algebras of classes;
§2, Reduction and equivalence; §3, The analysis of algebras of classes;
§4, An illustration. Chapter IV, Representation theory: §1, General remarks;
§2, Existence and divisibility properties of prime ideals; §3, The perfect
representation.

Chapter I. Formal algebraic properties of Boolean rings

1. Direct discussion of Boolean rings. In this section we shall consider
the elementary facts relating to rings in which every element is idempotent,
leaving for the remaining sections of the chapter the study of their connec-
tions with Boolean algebras and of certain special relations and elements.
By a ring we mean a system with double composition, the operations being
called addition and multiplication and denoted here by the usual symbols
+ and • (the latter commonly being suppressed in writing down products),
subject to the following laws: addition is commutative and associative,
multiplication is associative and both left- and right-distributive with re-
spect to addition, and the equation x + a = b has a solution for arbitrary
a and b. We do not assume that multiplication is commutative or that a
ring contains more than one element. It is well known that in any ring the
solution 0 of the equation x+a = a is independent of a and satisfies the rela-
tions a+0 = 0+a = 0, Oa = aO = 0; that the solution —a of the equation
x+a = 0 is unique; and that the solution of the equation x+a = b is unique
and is given by x = 6 + ( — a), commonly written b — a. We now lay down the
following formal definition :

Definition 1. A ring in which every element is idempotent, satisfying the
law aa = a, is called a Boolean ring.

Our first result is embodied in the following theorem.

Theorem 1. A Boolean ring is necessarily commutative; obeys the two equiva-
lent laws a+a = 0, a= —a; and necessarily contains divisors of 0 if it contains
more than two elements. Every Boolean ring A can be imbedded in a Boolean
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ring B which possesses a unit element, in such a manner that B is unique in
the following sense : if C is a Boolean ring with unit containing A, then C con-
tains also a Boolean ring B* isomorphic to B and containing A. A finite Boolean
ring necessarily possesses a unit and has a cardinal number which is a power
of 2.

In this, as in all subsequent discussions, we may use the familiar rules
governing the ring operations without going into complete detail. Using such
rules, we see that in a Boolean ring

a + b = (a + b)(a + b) = (a + b) + (ba + ab)

and hence that ba+ab = 0. If we put b = a in the latter relation, we find at
once that a+a = 0, or, equivalently, a= —a. Using this result, we conclude
that ba= — iab) = ab, thus establishing the commutative law for multipli-
cation. The special rules which we have now demonstrated will henceforth
be used in our discussions without explicit reference. In a Boolean ring with
more than two elements, we can choose a and b so that a¿¿0, b^O, a^b.
If ab = 0, then a and b are both divisors of 0. On the other hand, if ab^O,
then ab and a+b are both divisors of 0: for a+b = 0 would imply a= —b = b,
contrary to hypothesis; and abia+b) =aab+abb = ab+ab = 0. A Boolean ring
with one or with two elements obviously cannot contain divisors of 0, every
product in such a ring either containing 0 as a factor or reducing, by the law
of idempotence, to an element other than 0.

In discussing the possibility of imbedding a Boolean ring A in a Boolean
ring B with unit, we may disregard the trivial case where A has a unit and B
coincides with A. When A has no unit, we construct B by the adjunction of
suitable elements. The construction can be carried out even when A has a
unit and always produces B as a proper superclass of A. We first provide an
abstract element e, distinct from those of A, and define

tt = t,     ta = at = a,     t + 0 = 0 + t = t,     e + e = 0,

observing that the elements 0 and e constitute a two-element Boolean ring.
We then consider the ordered pairs (a, a) where a is in A and a = 0 or a = e,
defining the operations of addition and multiplication upon them by the rules

ia,a) + ib,ß) = ia + b,a + ß),

(a, a)ib, ß) = iab + ab + aß, aß).

It is easily verified that under these operations the class of pairs (a, a) is a
Boolean ring with (0, e) as its unit. Instead of giving all the calculations in
detail, we shall discuss only one or two steps. Passing over the commutative

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1936] BOOLEAN ALGEBRAS 41

and associative laws for addition and multiplication, we turn to the demon-
stration of the left-distributive law for multiplication: we have

ia, a) [(b, ß) + (c, y)] = (a, a)(b + c, ß + y)

= (a(b + c)+ aib + c) + aiß + y), aiß + y))
= Hab + ab + aß) + (öc + ac + ay), aß + ay)

= iab + ab + aß, aß) + (ac + ac + ay, ay)

= ia, a)(b, ß) + ia, a)ic, y)

by appropriate combination of the properties of A with the easily checked
relations a(b+c) =ab+ac, aiß+y)=aß+ay, a(ß+y)=aß+ay. The right-
distributive law then follows from this by the use of the commutative law
for multiplication. We now see that the equation (x, £) + (a, a) = (/>, ß) has
the solution (x, £) = ib+a, ß+a) since

(b + a, ß + a) + ia, a) = (b + a + a, ß + a + a) = (b, ß).

Thus the pairs (a, a) constitute a commutative ring. The law of idempotence
is established as follows:

ia, a)ia, a) = (a<z + aa + aa, aa) = ia + (a + a)a, a)

= (a + Oa, a) = ia, a).

To show that the Boolean ring thus obtained has (0, e) as its unit, we note the
relations

(0, «)(a, a) = iOa + ta + 0a, ea) = (a, a).

As in any commutative ring, the unit is unique and is a right- as well as left-
unit. The pairs (a, 0) obviously constitute a Boolean ring isomorphic to A
in accordance with the equations

(a,0) + (6,0) = (fl + *,0),

(a, 0)(b, 0) = (ab + Ob + aO, 00) = (ab, 0).

To construct B, we now replace each pair (a, 0) by the corresponding element
a without disturbing in any other way the operations defined over the class
of pairs ia, a). Evidently B is a Boolean ring with unit isomorphic to the
ring of pairs (a, a) ; and it contains A. If C is a Boolean ring with unit e con-
taining A, we set up an isomorphism between B and a subring B* of C as
follows. The elements of B correspond in a one-to-one manner with the pairs
(a, a), by construction. We can easily set up a one-to-one correspondence
between the pairs (a, a) and certain elements of C by requiring that
ia, a)<->a+fia), where a is in A and/(0) =0, /(e) =e. The fact that e be-
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longs to C but not to A renders the indicated correspondence biunivocal,
since a+fia)=b+fiß) implies/(a)+/(/3) = a + Me,/(a)+/(/?) =0,/(a) =/(#>,
a = b. In view of the relations/(a+/3) =/(o0+/(/?),/(a/3) =f(oi)f(ß), which are
readily checked, the correspondence between the pairs (a, a) and the elements
a+f(a) is an isomorphism: for (a, a)<->a+/(a), (£>, ß)<->b+fiß) imply

ia, a) + (b, ß)

ia,a)ib,ß)

The elements a+fia) thus constitute a Boolean ring B* isomorphic to B,
containing the elements of A (since a = a+f'(0)), and contained in C.

If A is a finite Boolean ring, we determine its unit explicitly as a sym-
metric function of its elements. Denoting by p(ax, ■ ■ ■ , an) the sum of the n
elementary symmetric functions of the elements ax, ■ ■ ■ , an, we observe the
identity

p(au ■ ■ ■ , a„) = ak + piax, • • • , ak-x, ak+x, ■ • ■ , an)

+ akpiax, ■ ■ • , ak-x, ak+x, ■ ■ ■ , an),

valid for any commutative ring. In a Boolean ring A with exactly N elements,
we show that p(ax, • • • , aw) is a unit: for, if ak is one of the elements, the
above identity leads, in combination with the peculiar properties of A, to
the relation

p(ai, ■ ■ ■ , aN)ak = a* + 2pialt • • ■ , ak-x, ak+i, • • • , ax)ak = ak.

Ii A is a finite Boolean ring with exactly N elements, we show further that
A is a power of 2. Indeed, we shall establish the more general result that an
additive abelian group of N elements in which a-f-a = 0 has the property
that A is a power of 2. For N = 1, the desired result is obvious. Let us sup-
pose that this result has been extended to those cases where N^2M. If now
N ■¿¡2M+1 we may suppose also that known cases are excluded by subjecting
N to the inequality N>2M. The given group G contains an element a other
than 0, the two elements a and 0 constituting a normal subgroup g by virtue
of the relations 0-t-0 = a+a = 0, a+0 = 0+a = a. The quotient group G/g is
homomorphic to G and therefore obeys the law a-r-ci = 0. Since its order is
A/2 and therefore at most equal to 2M, we conclude that A/2 = 2m,N = 2m+1.
The inequalities satisfied by N show that N = 2M+1. By induction the desired

= ia + b, a + ß)  <->ia + b)+ fia + ß)

= ia + fia)) + ib + fiß)),
= iab + ab + aß, aß) *-> ab + ab + aß + fiaß)

= ab+ fia)b + afiß) + fia)fiß)
= ia+fia))ib+fiß)).
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result holds for all finite groups of the indicated type and hence, in particular,
for finite Boolean rings.

2. Connections with Boolean algebras. We shall prove in the present sec-
tion that the fundamental properties of Boolean rings, as stated in Definition
1, in reality constitute a new set of postulates for Boolean algebras and cer-
tain simple generalizations thereof, these systems having hitherto been char-
acterized by the postulation of different fundamental properties governing
operations among which the ring-addition of the preceding section did not
appear. Our task thus consists in setting up suitable relations between the
respective operations chosen as fundamental in various sets of postulates,
including the set suggested by Definition 1, and in establishing the inter-
deducibility of the postulates of these different sets. Another task which we
might undertake is that of eliminating possible redundancies from the set of
ring-postulates, as here extended to include the law of idempotence. We
shall not make any serious attempt to carry through the necessary investiga-
tions in the present paper, such an enterprise being of secondary importance
for our immediate purposes. What is of primary importance here is the
identification of the abstract algebras arising from logic and the theory of
classes with systems amenable to the methods developed by modern alge-
braists, namely, with those special rings which we have termed Boolean
rings in anticipation of the detailed results of the present section.

We shall first consider a recent set of postulates for Boolean algebras due
to Huntington.f The operations in terms of which the postulates are framed
are a binary operation, which we shall denote by v and which corresponds
to logical addition and to the formation of the union for classes, and a unary
operation, which is denoted by the prime ' and which corresponds to logical
negation and to the formation of the complement for classes. These opera-
tions are assumed to apply without restriction to elements of the system,
yielding elements of the system. Huntington's postulate requiring that the
system contain at least two elements plays no part in his deductions and
will be suppressed here so as to admit one-element Boolean algebras as well
as one-element rings. In stating the connection between Huntington's char-
acterization of Boolean algebras and the properties of Boolean rings, we
shall designate several propositions by the numbers attached to them in
Huntington's paper, thus facilitating comparison.

Theorem 2. If A is a Boolean ring with unit e, the introduction of a binary
operation v and a unary operation ' through the equations

f Huntington, these Transactions, vol. 35 (1933), pp. 274-304, 557-558. The set in question is
discussed on pp. 280-286, 557-558, a serious redundancy in the original set being eliminated on the
two pages last cited.
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(1)        a vi = a + b + ab, (2)        a'= a + e

converts A into an algebraic system B in which

(4.3)        avb = bva, (4.4)        av (¿>v c) = iavb)vc,
(4.6) ia'v b')'v ia'v b)' = a,

the old operations being expressed in terms of the new through the equations

(6) a + b = ab' v a'b = ia' v b")' v (a" v b')',
(7) <ii=(o'vi')'.

Ow the other hand, if B is an algebraic system obeying the laws (4.3), (4.4) and
(4.6), then B is a Boolean algebra; and the introduction of new operations through
the equations (6) and (7) converts B into a Boolean ring A with unit e = a v a'
and zero O = e' = ia v a')', the old operations being expressed in terms of the new
through the equations (1) and (2) abovc\

This theorem clearly serves to identify Boolean rings with unit and
Boolean algebras, as characterized by Huntington's postulates. In view of
Theorem 1, a Boolean ring without unit can be regarded as imbedded in one
which has a unit. Hence the present theorem reveals the essential nature of
all Boolean rings. In particular, it shows that the operation of addition in a
Boolean ring corresponds abstractly to the operation of forming the sym-
metric difference or union (modulo 2) of classes, as indicated by the rela-
tion (6); and it shows similarly that the operation of multiplication corre-
sponds to the operation of forming the intersection of classes, as indicated in
the relation (7).

If A is any Boolean ring, either with or without unit, we may write
avb = a+b+ab = pia, b), in terms of the symmetric function introduced in
the proof of Theorem 1. We then have

avibvc) = pia, pib, c)) = a + p(b, c) + apib, c) = pia, b, c)

= pipia, b), c) = iavb)vc.

Thus the operation introduced in (1) has properties (4.3) and (4.4), expressing
the commutative and associative laws. If A has a unit e, we observe that the
operation introduced in (2) has the properties

a" = ia + e) + e = a + (e + e) = a + 0 = a,

(av b)' = ia + b + ab) + e = (a + e)(b + e) = a'b'.

With their aid we can establish (4.6), (6), and (7), as follows:

t Stone, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 103-105.
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(a'vi')'v(a'vi)' = a"b"va"b' = abwab'

= ab + ab' + iab) iab')
= ab + ail + e) + abQ> + e)
= ab + ab + a + ab + ab = a,

(fl'vï")'v(a"vi')' = (a'vi)'v(ovi')' = a"b'v a'b" = ab' v a'b

= aib + e) + ia + e)b + abia + e)Q> + e)
= ab + a + ab + b+ (a + a)(i> + b) = a + b,

ia'vb')' = a"b" = ab.

Thus the introduction of the new operations v and ' converts A into a
Boolean algebra B in the sense of Huntington's postulates.

On the other hand, if B is a Boolean algebra in that sense, Huntington
has shown that the following propositions are valid in B :

(4.10) a" = a, (4.11) ava' = bvb', (4.5)      ava = a,
(4.16) ae = a, (4.22) ave-=e,
(4.15) Ova = a, (4.23) aO = 0,

(4.18) ab = ba, (4.19) iab)c = aibc), (4.34)    a(iW c) = abv ac,

where e is the element a va', unique in accordance with (4.11), 0 is the
element e', and ab = ia' vb')' in accordance with (7). On noting that
aa' = ia' va")' = e' = 0, we see that

a + b = ab' v a'b = ba' v b'a = b + a,
a+ ib + c) = aibc'vb'c)'\ra'ibc's/b'c) = aibc')'ib'c)' v a'bc' v a'b'c

= a(i'vc)(}vc')v a'bc' v a'b'c = ab'c'v abc v a'bc' v a'b'c

= ca'b' v cab v c'ab' v c'a'b = c + ia + b)

= ia + b) + c

by virtue of the propositions stated above. We see further that

ab + ac = abiac)'v iab)'iac) = abia' v c') v (a' v b')iac)

= abc' v ab'c = aibc' v b'c) = aQ> + c).

Thus the operations + and are both commutative and associative and the
second is left- and right-distributive with respect to the first. If we can show
that the equation x+a = b has a solution, we can therefore assert that the
introduction of these operations converts B into a commutative ring A.
Now we evidently have a+a = aa' vo'a = 0 and a+0 = a0' va'0 = a0' = ae = a.
Consequently, we find that x = b+a is a solution in accordance with the rela-
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tions (b+a)+a = b+(a+a) = b+0 = b. Since the indicated solution reduces
to x = 0 when b = a, we have also identified 0 as the zero element of the ring
A into which B is converted. The proposition (4.16) identifies e as the unit
of A. In order to show that A is a Boolean ring, we have only to observe the
equations aa = ia' va')' = a" = a. To complete the proof of the theorem we
must show finally that relations (1) and (2) are valid. Since we have

a + e = ae' v a'e = aO v a' = a',

avb = iasrb)" = ia'b')' = (a + e)(b + e) + e

= ab + a + b + e + e

= a + b + ab,

the desired results are established.
The postulates of Huntington which have just been discussed are not the

only ones in terms of which Boolean algebras may be characterized. Indeed,
the sets of postulates which involve only the operations corresponding to the
formation of the union and intersection of classes are quite numerous, should
one wish to confine himself to those postulates which are perhaps the most
natural as well as the most familiar. It may therefore be of some interest if
we establish a theorem relating Boolean rings to Boolean algebras as char-
acterized by at least one such set of postulates. In any event, the possibility
of extending such a relation so as to obtain a characterization of all Boolean
rings, both with and without unit, in terms of union and intersection surely
deserves consideration. We shall therefore proceed to discuss two sets of
postulates which we have given elsewhere, one set characterizing Boolean
algebras, the other slightly more general systems which we have called gen-
eralized Boolean algebras and shall now identify with Boolean rings, f

Theorem 3. If A is a Boolean ring with unit e, then the replacement of the
operation + by a new operation v defined by the relation

(1) avb = a + b + ab

converts A into a system B with the properties

(li)     avb = bv a;

(3X)        a(bvc) = ab vac; (32)        (avb)c = acvbc;

(4i) there exists an element 0 such that avO = afor every a;
(5) if there exists an element 0 with the property (4X), then there exists at least
one such element 0 to which corresponds a fixed element e such that the equa-
tions xv a = e, xa = 0 have a solution for every element a;

f Stone, American Journal of Mathematics, vol. 57 (1935), pp. 703-732.
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(61)        av a = a; (62)       aa = a;

where the old operation + is defined in terms of the new by the relation
(7) a + b is a solution, necessarily unique, of the simultaneous equations
xvab = avb, x(ab) =0.

Conversely, if B is a system with the indicated properties (li)-(62), the replace-
ment of the operation v by the new operation + defined by the relation (7) con-
verts B into a Boolean ring A with the elements O and e of (4i) and (5) as its
zero and unit elements respectively, the old operation v being expressed in terms
of the new by the relation (1).

If A is a Boolean ring with unit e, we verify properties (li)-(62) as fol-
lows: (li) is proved as in Theorem 2; (3i) is proved by the relations
a(b vc) = a(b+c+bc) =ab+ac+abc = ab+ac+(ab)(ac) =ab vac; (32) follows
from (3i) by the commutative law for multiplication, already proved in
Theorem 1 ; the element 0 of A has the property (4^, since av0 = a+0+a0=a;
for the solution x of the equations given in (5) we may take x = a+e, where e
is the unit in A, since (a+e) v a = (a+e)-+a+(a+e)a = a+e+a+a+a = e,
ia+e)a = a + a = 0; (61) is proved by the relations ava = a+a+aa = a
+a+a = a; and (62) is the characteristic property of Boolean rings. Thus A
is converted into a system B in the indicated manner. The relation (7) is
verified by virtue of the equations

(a + b)ab = ab + ab = 0,

(a + b) v ab = a + b + ab + (a + b)ab = a + b + ab = av b.

The converse part of the theorem is proved, though not explicitly stated,
in the paper cited above. The properties (li)-(62) are there shown to be
characteristic of Boolean algebras and the solution of the equations (7) is
discussed at length, being denoted by aAb instead of a+b. The commutative
and associative laws for the operation A or +, and for multiplication, the
distributive laws for multiplication, and the existence of a solution of the
equation x+a = b, are established in Theorems 26, 34, 13, 15, 38, and 33
respectively. Thus the replacement of the operation v by the operation
+ converts B into a commutative ring A. Property (62) identifies i asa
Boolean ring; and the existence of a unit is established in Theorem 2 of the
cited paper, where it is shown that the element e of (5) has the property
ea = a. The relation a+0 = a, proved in Theorem 29, identifies the element 0
of (4i) as the zero of the ring A. Finally we establish the relation (1) as fol-
lows: by (7) we see that (a+b)+ab must satisfy the equation xv (a+b)ab
= (a+b)v ab and hence must be equal to (a+b) v ab since (a+b)ab = ab
+ab = 0; but, by (7) again, (a + b) vab = avb.
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Theorem 4. If A is a Boolean ring, either with or without unit, the replace-
ment of the operation + by the operation v defined by the relation

(1) avb = a + b + ab

converts A into a system B with the properties

(li) avb = bva;
(22) aibc) = iab)c;

(3i) s(ivi) = abv ac;

(4i) there exists an element 0 such that avO = afor every a;
(5i) if ba = a, there exists an element 0 with property (4i), independent of
a and b, such that the equations iv a = b, xa=0 have a solution;
(52) if ab = a, there exists an element 0 with the property (4i), independent of
a and b, such that the equations xv a = b, ax = 0 have a solution;

(6i)        av a = a; (62)        aa = a;

where the old operation + is defined in terms of the new by the relation
il) a + b is a solution, necessarily unique, of the simultaneous equations
xvab = avb, xiab) = 0.

Conversely, if B is a system with the indicated properties (li)-(62), the replace-
ment of the operation v by the new operation + defined by the relation (7)
converts B into a Boolean ring A with the element 0 of (4i) as its zero element,
the old operation v being expressed in terms of the new by the relation (1).

This theorem serves to identify Boolean rings with those systems which
we have termed generalized Boolean algebras.

If A is a Boolean ring, we see from the discussion given under Theorem 3
that the operation v defined by (1) has properties (li), (3X), (4i), (61), and
(62). Property (22), the associative law for multiplication, holds in A by the
definition of a ring. Thus we have only to examine properties (50 and (52).
In view of the commutative law for multiplication in A, these properties are
equivalent, and we may confine our attention to the first. We show that
x = a+b satisfies the simultaneous equations of (5i): xv a = ia+b)+a
+ ia+b)a = a+b+a+a+a = b, when ba = a; and xa = ia+b)a = a+a = 0,
when ba = a. Hence the replacement of the operation + by the operation
v converts A into a system B of the indicated type. The proof that the re-

lation (7) is valid is the same as that given under Theorem 3.
The converse part of the theorem is proved, but not explicitly stated, in

the paper cited above. In fact, Theorem 55 of that paper shows that the
argument used in Theorem 3 above applies equally well to the present sys-
tem B, save for the part relating to the existence of a unit.
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3. Special Boolean rules. The results of §§1 and 2 show that the various
operations +, v, -, and ' obey all the formal rules peculiar to appropriate
corresponding operations upon classes. Many of these special rules, which
we may properly designate as Boolean rules, are stated explicitly in the text.
Such, for example, are the commutative and associative laws for each of the
operations +, v, and -, and the distributive laws for • with respect to
+ and v . Indeed, the only important rule which is neither stated nor trivi-
ally implied by rules given explicitly is the distributive law for v with re-
spect to -, a rule which we can prove at once in the following manner:

(av b)(av c) = (a + b + ab)(a + c + ac)

= a + ac + ac + ba + be + bac + ab + abc + abc

= a + be + abc = avbc.

In the sequel, we shall leave the justification for our use of such special
Boolean rules to the reader's recollection of the familiar corresponding rules
for operations upon classes or to his personal verification of their validity on
the basis of Theorem 1 and the relations a' = a+e, a v b = a+b+ab. It is per-
haps desirable that we should point out one essential fact at this place:
we raise no presumption that every possible law verifiable for the appropriate
operations upon classes is also verifiable in the abstract for the associated
operations in Boolean rings. Indeed, the proof that such is the case is one of
the central features of the representation theory which we propose to build
upon the basis of rules already cited or, at least, readily verifiable therefrom.

It is convenient for us to introduce at this point the abstract relation
which corresponds to the relation of class-inclusion and to outline its chief
properties. More exhaustive investigations of this topic are to be found else-
where, f We begin with the formal definition of the indicated relation.

Definition 2. In a Boolean ring A, the element a is said to be less than or
to be contained in the element b, in symbols a<b, and the element b is said to
be greater than or to contain the element a, in symbols b>a, whenever any of the
equivalent relations

ab = a,        avb = b,        ab' = 0, a' v b = e

is satisfied, the last two being significant if and only if A has a unit e.

The equivalence of the indicated relations is evident if we rewrite them in
terms of ring addition and multiplication as

f See Huntington, these Transactions, vol. 5 (1904), pp. 288-309; or Stone, American Journal
of Mathematics, vol. 57 (1935), pp. 703-732.
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ab = a,       a + b + ab = b,       ab + a = 0,        (a + e) + b + (ab + b) = e,

respectively.
The chief properties of this relation are given in the following theorem:

Theorem 5. The relation < of Definition 2 obeys the rules
(1) a<b and b<c imply a<c;
(2) 0<afor every a, and a<e for every a when the Boolean ring A has a

unit e;
(3) a<c and b<d imply ab<cd, avb<cvd;
(4) be = 0 implies ac = 0 if and only if a<b.
The proof of (1) is obtained as follows: ab = a and bc = b together imply

ac = (ab)c = a(bc)=ab = a. Property (2) results from the equations 0a = 0,
ae = a. The proof of (3) follows from the relations, valid when ac = a and
bd = d,

(ab)(cd) = (ac)(bd) = ab,
(avb)(cvd) = (a + b + ab)(c + d + cd)

= ac + ad + acd + be + bd + bed + abc + abd + abed
= a + ad + ad + be + b + be + ab + ab + ab
= a + b + ab = avb.

We verify (4) in two steps: first, if a<b, we see that ab = a and bc = 0 imply
ac = (ab)c = a(bc)=aO = 0; and, secondly, we see that, if ac = 0 whenever
bc = 0, the fact that b(a+ab) =ab+ab = 0 enables us to conclude that
a+ab = a(a+ab) =0, ab = a, and a<b.

4. Special elements. We shall now turn to the study of certain special
elements, other than the zero and unit elements, in Boolean rings, namely,
those elements which may be briefly described as minimal non-zero elements.
It should be observed that we do not assert the existence of such elements in
general; we merely consider what occurs when they do exist. We first lay
down some formal definitions.

Definition 3. A non-zero element a in a Boolean ring A is said to be an
atomic element if it has either of the following equivalent properties:

(1) a>b implies b = a or b = 0;
(2) ab=0 or ab = a for every b.
The equivalence of properties (1) and (2) is evident from the fact that

ab=b when a > b and that a>ab for every b.

Definition 4. A class 3 of atomic elements is said to be an atomic basis if
every non-zero element is the sum of elements in ö.
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Definition 5. A class 8 of atomic elements is said to be a complete atomic
system if b=0 is the only element such that ba = 0 for every a in 8.

We shall establish several simple theorems concerning systems of atomic
elements.

Theorem 6. If a and b are atomic elements, then a = b or ab = 0.

For aMO implies both ab = a and ab = b in accordance with Definition 3.

Theorem 7. A complete atomic system in a Boolean ring A contains every
atomic element in A.

For an atomic element a, being different from 0, cannot satisfy the rela-
tion ab = 0 for every b in the given system and must therefore be equal to
some element b in that system, by virtue of Theorem 6.

Theorem 8. If A is a Boolean ring, 8 a complete atomic system in A, and
8(£>) the class of all atomic elements a in i such that ab^O, then A is isomorphic
to the algebra dt of all classes 8(e) under the correspondence b*—>8(£>) in
accordance with the properties

(1) 8(6) = 8(c) if and only if b = c;
(2) ê(b+c)=ê(b)Aê(c);
(3) «(6c)=«(i)«(c);
(4) «(6vc)=«(6)u«(c).f

If b = c, then ab = ac for every a in 8, and hence 8(e) =%(c). On the other
hand if &(b) = ^ic), then ab = ac for every a in 8 by virtue of Definition 3;
hence ab+ac = 0, aQ)+c) =0, ¿7-r-c=0, b='c, in accordance with Definition 5.
In order that the element a in 8 belong to 8(0+e) it is necessary and sufficient
that ab+ac = aib+c)¿¿0; since ab+ac = 0 whenever ab = ac, we see that the
relation aQ>+c) ¿¿0 holds if and only if one, but not both, of the pairs of rela-
tions ab = a, ac = 0 and ab = 0, ac = a is valid; and we therefore conclude that
property (2) holds. In similar fashion, we establish properties (3) and (4).
We may also deduce (4) from (2) and (3), as follows:

$ibvc) = 8(0 + c + be) = 8(¿>)A8(c)A8(í>c)
= 8(¿>)A8(c)A8(¿V)8(c) = 8(ô)u8(c).

Theorem 9. An atomic basis 8 is a complete atomic system.

We must show that there is no element b such that ô^O, ba = 0 for every
element a in 8. Now, if there were, we should have b = ai+ • • • +an for some

f Here, as elsewhere in this paper, we use the symbols U and A to designate union and union
(modulo 2), or symmetric difference, for classes; and we indicate the formation of the intersection by
juxtaposition of the symbols for the classes affected.
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elements ax, ■ ■ ■ , an in 3, by Definition 4; we may suppose that these ele-
ments are distinct because of the law a+a = 0. Thus we should obtain the
relations ai = ai(ai+ • • • +a„) =ai£» = 0 in accordance with Theorem 6 but in
contradiction to the fact that ai^O.

Theorem 10. The representation of an element b as the sum of elements in a
complete atomic system ê is unique: the summands are precisely the elements of
the class %(b), b^O.

If b = ai+ ■ ■ • +an, the elements ah ■ ■ ■ , an in 3 being taken as distinct,
and if a is an arbitrary element in ê, then ab = aai+ ■ ■ ■ +aa„ is different
from 0 if and only if one of the relations a = ai, ■ ■ ■ , a = an is valid, as we see
by virtue of Theorem 6. Hence ai, ■ ■ ■ , a„ are precisely the elements of the
class 8(¿>), b^O, described in Theorem 8.

From Theorems 8, 9, and 10 we now obtain the following result:

Theorem 11. In order that a Boolean ring A contain an atomic basis 8,
it is necessary and sufficient that A be isomorphic to the algebra of all finite
subclasses of a fixed finite or infinite class 2, the elements in 3 being in one-to-one
correspondence with those of 2. In particular such a ring A has a unit if and
only if the classes $ and 2 are finite.

When A has an atomic basis, the theorem follows at once from the pre-
ceding results, as we have already indicated. On the other hand, when A is
isomorphic to an algebra of classes of the type described, it is evident that the
elements of A corresponding to the one-element subclasses of 2 constitute
an atomic basis in A. If a Boolean ring A containing an atomic basis ê has a
unit e, then it is evident that ê = ê(e) and hence that á and the corresponding
class 2 must both be finite. The converse result is also obvious.

Theorem 12. A finite Boolean ring with at least two elements contains an
atomic basis 3 and is therefore isomorphic to the algebra of all subclasses of a
finite class 2 in one-to-one correspondence with ê.

In view of Theorem 11, it is sufficient for us to show that the given
Boolean ring A has an atomic basis ê. First we shall show that, if a^O is an
arbitrary element in A, then there exists an atomic element contained in a.
If ax is not an atomic element, there exists an element a such that axa^0,
aia^ai. We denote aia by a2 and observe that ai>a2. Let us suppose
that there exist in A distinct non-zero elements ax, ■ ■ ■ , ak such that
ai>a2> ■ ■ ■ >ak-i>ak. If ak is not an atomic element, then there exists an
element a such that aka^0, aka^ak. We denote aka by a¡t+i and observe that
ak>ak+i. Thus we see, in view of the finiteness of A, that by virtue of this
inductive construction there exist an integer n and elements th, • • • , an,
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where ax> ■ ■ ■ >a„ and an is an atomic element. We next designate by 8
the class of all atomic elements in A and prove that 8 is an atomic basis.
Since 8 is finite, its elements have a sum a. If b is an arbitrary element in A,
we form the element b+ab and apply the result just established: unless
b+ab =0, there exists an atomic element c contained in b+ab. Now such an
element c obviously has the properties ac = c, ib+ab)c = c; but these proper-
ties imply that c = ib+ab)c = be+bac = bc+bc=0. We conclude therefore that
b + ab =0 or, equivalently, ab = b. It follows that a is the unit e of the Boolean
ring A and that any non-zero element b is expressible as the sum of atomic
elements in 8 through the equation b = ab. We have thereby shown that 8
is an atomic basis.

We may observe that this theorem yields a new proof of the last part of
Theorem 1, according to which every finite Boolean ring has a unit and has
a cardinal number of the form 2M. It shows further that when 17 2:1 this in-
teger is the number of elements in the atomic basis 8.

In order to complete the consideration of finite Boolean rings, we state
the following theorem without formal proof :

Theorem 13. A finite Boolean ring with exactly one element is isomorphic
to the algebra consisting of the void class.

Chapter IL Subrings, ideals, and homomorphisms

1. Subrings and their combinations. A non-void subclass of an algebraic
system is called a subsystem if it is closed under the fundamental operations
of the system; that is, if the application of these operations to elements of
the subclass yields elements of that class. The subsystems of a Boolean ring A
are thus the subclasses of A which contain a + b and ab whenever they con-
tain a and b. The relation a — b = a + b, which is an immediate consequence of
Theorem 1, therefore serves to identify the subsystems of A with the sub-
rings of A.\ Furthermore, the fact that the law of idempotence holds in any
subclass of A shows that the subrings of A are Boolean rings in the sense of
Definition 1. A few simple properties of the subrings of a Boolean ring A may
be noted here without formal proof. Thus a subring a has a unit a if and
only if it contains an element a such that ab = b or, equivalently, a>b for
every element b in a. Every subring contains the element 0 of A as its zero
element. A subclass of a subring a is a subring of A if and only if it is a sub-
ring of a. We may also cite the following examples of subrings: the subclass o
consisting of the element 0 alone ; the subclass e consisting of all the elements
of A; and the subclass a (a) consisting of all the elements b such that ab = b

j B. L. van der Waerden, Moderne Algebra, Berlin, 1930, vol. I, p. 53.
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or, equivalently, b<a. We observe that o = a(0); and that e = a(e) in the case
where A has a unit e.

Before passing to the study of combinations of subrings, we pause to con-
sider briefly those non-void subclasses of a Boolean ring which are closed un-
der the operations v and ■ of Theorems 2-4. In view of the relation
avb = a+b+ab, every subring is such a subclass; but there exist subclasses
with the indicated property which are not subrings, as is shown by the ex-
ample of the subclass consisting of the element a alone, where a9^0, and by
the example of the subclass consisting of the elements 0, a, b, ab, avb, where
a, b, and 0 are distinct (this subclass consists of three elements when ab = a or
when ab = b and of five elements otherwise ; Theorem 1 thus shows that it is
not a subring). It is easily verified that these subclasses are instances of those
algebraic systems variously known as C-lattices, distributive lattices, or
arithmetic structures.! More than this is true: for recently MacNeille has
proved that every distributive lattice is contained in a Boolean algebra
(Boolean ring with unit) as a subclass of the indicated type by virtue of a
strictly algebraic construction, of which the imbedding process given in the
proof of Theorem 1 above is a special and very much simplified instance. J

In any algebraic system, the intersection of any class of subsystems is
itself a subsystem except, of course, in the case where it is void;§ the inter-
section is obviously the greatest subsystem contained in all subsystems of
the given class. Hence any non-void subclass of an algebraic system generates
a least subsystem containing it, namely, the intersection of all subsystems
containing it. The subsystem thus generated by a given non-void subclass
may be characterized alternatively as the class of all elements which can be
constructed as "polynomials" in terms of the elements of the given subclass
and of the fundamental operations of the system. It is understood in this
statement that certain of the fundamental operations may, in a single appli-
cation, affect infinitely many elements of the system. If 31 is a non-void class
of subsystems a, we may therefore define the sum and product of the sub-
systems in 21 as follows : the sum, denoted by Sa<aa, is the least subsystem con-
taining every a in 21, or, equivalently, is the subsystem generated by the union

f The term C-lattice is used by Garrett Birkhoff, Proceedings of the Cambridge Philosophical
Society, vol. 29 (1933), pp. 441-464; distributive lattice by MacNeille, Harvard doctoral dissertation,
The Theory of Partially Ordered Sets, 1935; arithmetic structure by Ore, Annals of Mathematics, (2),
vol. 36 (1935), pp. 406-437.

X MacNeille, doctoral dissertation, The Theory of Partially Ordered Sets, 1935, not yet published.
A summary is given in the Proceedings of the National Academy of Sciences, vol. 22 (1936), pp. 45-50.

§ For some purposes it is convenient to regard the void class as a subsystem, but that is not the
case in the present paper.
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S0eaa of the classes a belonging to SI ; and the product, denoted by P0eäa, is
the intersection naeact of the classes a in 21, when it is not void. In the special
case where 21 consists of two subsystems a and b, we write the sum as a v b
and the product as a ■ b or simply ab. In general, the product of subsystems
may fail to exist ; but in the case of Boolean rings this difficulty is removed
by the fact that the element 0 is common to all subrings. It is important
for us to examine the specialization of these general concepts to the case of
Boolean rings.

In the first place we shall give more detailed information concerning the
subring generated by a given subclass. We have

Theorem 14. In order that the subring ai$) generated by a non-void subclass
6 of a Boolean ring A possess a unit, it is necessary and sufficient that 8 contain
elements ai, ■ ■ • , an such that b<axv ■ ■ ■ v anfor every element b in 8. When
this condition is satisfied, the element a = aiv ■ ■ ■ v anis the unit of aie) ; and
ct(8) is the class of all elements which can be constructed as polynomials in terms
of elements b and a + b, where b is in 8, and of the operations v and ■ alone. In
particular, if A has a unit e and 8 contains e, then aie) is the class of all elements
which can be constructed as polynomials in terms of elements b and b' = b+e,
where b is in 8, and of the operations v and ■ alone.

The existence of elements ai, ■ ■ ■ , an in 8 such that di v • • • va„>b for
every element b in 8 leads immediately to the conclusion that a = aiv ■ ■ ■ v an
is in ai%) and is its unit:,for, if c is any element of ct(8), then c=qQ)x, ■ ■ ■ , bm)
where q is a polynomial in terms of elements bu ■ ■ ■ , bm in 8 and of the opera-
tions + and • of the Boolean ring; and, by virtue of the distributive law
and the law of idempotence, such an element c satisfies the relations
ac = aqibx, ■ ■ ■ , bm) =qiabx, ■ ■ ■ , abm) =qibx, • • • , bm) =c. On the other hand,
if ct(8) has a unit a, we can express a as a polynomial r(di, • • • , a„), where
Oi, • • • , On are in 8, and have to show, in order to complete the discussion,
that a can be expressed asdiV • • • v an. Since öiv ■ ■ • v an is in ct(8) and
since a is the unit in a($), we have ax v ■ ■ ■ van<a. On applying the general
relations b vc>b+c, b>bc, c>bc to the polynomial r(al} ■ ■ ■ , a») we find
that ai v • ■ ■ v a„> a. Hence it is true that a = öi v ■ ■ • v a„, as we wished
to show. In a subring a(ë) with unit a, we can apply the relations (1),
(2), (6), and (7) of Theorem 2 with appropriate change of letters. Thus if
c = qibi, ■ ■ ■ , bm) where bx, ■ ■ ■ , bm are in 8 we can use these relations to
write qibi, • • • , bm) =q*iblt ■ ■ ■ , bm, bi, ■ ■ ■ , bm) where q* is a polynomial
in terms of the operations v and ■ alone, and bk = bk+a for k = l, ■ ■ ■ , m.
The final assertions of the present theorem follow at once from this result.

Using the notations for sums and products of subrings introduced above
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together with the customary symbol c for the relation of class-inclusion, we
now state the principle facts concerning the operations upon subsystems.
While we phrase them in terms of Boolean rings, they are easily seen to be
valid in quite arbitrary algebraic systems.

Theorem 15. If A is a Boolean ring, then the class 21 of all subrings of A has
the following properties under the operations of addition and multiplication in-
troduced above:

(I) avb = bva; (2)       ab = ba;
(3)       av(bvc) = (avb)vc; (4)       a(bc) = (ab)c;

(5)       a(b vc) a ab vac; (6)       (avb)(avc) = avbc;
(7)       ava = a; (8)       aa = a;

(9) acb if and only if ab = a ;
(10) if'Bis a non-void class of non-void classes 93 of subrings a of A, and if (5
¿s the union 293^,-3, then

S  (Sa) = Sa;

(II) ¿/"B, 93, and Q£ have the same significance as in (10), then

P (Pa) = Pa;
SBe-B  tu® (Km

(12) if b is any subring of A and 53 is any non-void class of subrings a of A,
then

b(Sa)= S (bo);
aeS8 Ufffl

(13) if b and 93 have the same significance as in (12), then

P (bva) = bv Pa.
OeiB aeSB

The special subrings o and e have the following properties :

(14) oa = o,        avo = a;

(15) ea = a,        ave = e.

Except for properties (5), (6), (12), and (13), all these properties are easily
verified by quite trivial arguments; and properties (5) and (6) are special
cases of (12) and (13) respectively. We shall therefore confine our discussion
to the two latter properties. To establish (12) we proceed as follows: an ele-
ment belongs to the subring on the right of (12) if and only if it is a poly-
nomial in terms of elements simultaneously in the subring b and in the sub-
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rings a; on the other hand, an element belongs to the subring on the left of
(12) if and only if it is simultaneously a polynomial in terms of elements in b
and a polynomial in terms of elements in the subrings a ; from these algebraic
descriptions, the inclusion-relation (12) is evident. We prove (13) in a similar
manner: an element belongs to the subring on the right of (13) if and only
if it is a polynomial in terms of elements in the subring b and common to all
the subrings a; and an element belongs to the subring on the left of (13) if
and only if it is, simultaneously for all subrings a, a polynomial in terms of
elements of the subring b and of a subring a. It is of interest to show that the
relations (5) and (6), and hence also the rei rions (12) and (13), cannot be
strengthened. In a Boolean ring with unit aiiû with four or more elements,
let a be an element distinct from 0 and from e; let a be the subring consisting
of the elements 0, a; let b be the subring consisting of the elements 0, e; let
c be the subring consisting of the elements 0, a', where a' = a+e; and let b
be the subring consisting of the elements 0, a, a', e. We then see that
a(b vc) = a, ab vac = o, (a vb)(a vc) =b, a vbc = a, o^a^b.

2. Ideals and their combinations. We shall now turn to the study of
those special subrings known as invariant subrings or ideals, characterized
by the property of containing a and ab together whatever the element b.
Thus a non-void subclass of a Boolean ring is an ideal if and only if it con-
tains a+b together with a and b, and c together with a whenever c <a. Since
ideals are special subrings, the discussion of the preceding section applies to
them at once; but, as we shall see below, is capable of being made considera-
bly more precise by virtue of the restriction to ideals. We shall note a few
simple properties of ideals without formal proof. Thus, an ideal a in a Boolean
ring A has a unit a if and only if it consists of all elements c such that c<a;
in other words, if and only if it is identical with the subring a(a) introduced
above and seen now to be an ideal. Moreover an ideal a which contains the
element a necessarily contains the ideal aia). A subclass b of an ideal a in a
Boolean ring A is an ideal in a, regarded as a Boolean ring, if and only if it is
an ideal in A. If a is an ideal and b a subring, then a is an ideal in the subring
avb and ab is an ideal in the subring b. The subrings o, a (a), e, previously
introduced, are all ideals. It is important for us to recall the arithmetical
terminology used to describe the inclusion relation acb between ideals : if a
is contained in b, then b is said to divide a or to be a divisor of a, and a is said
to be divisible by b. Thus the product ab of ideals a and b is divisible by its
factors a and b, the product being itself an ideal in accordance with a result
established below.

The distinction which it was necessary to draw between subsystems of a
Boolean ring defined in terms of the operations + and • and those defined in
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terms of v and • vanishes in the case of multiplicatively invariant subsys-
tems, as indicated in the following theorem :

Theorem 16. In order that a non-void subclass a of a Boolean ring A be an
ideal it is necessary and sufficient that

(1) o contain avb together with a and b,
(2) a contain ab whenever it contains a;

or, equivalently, that
(1) a contain avb together with a and b,
(2') a contain c together with a whenever c<a.

Since the conditions (2) and (2') are equivalent, we need consider only
conditions (1) and (2). The necessity of the latter conditions is evident. To
establish their sufficiency, it is enough to show that they imply that a con-
tains a+b together with a and b. Now if a and b are in a, so are avb and
(a v b)ia+b) by virtue of (1) and (2); but the relation

iavb)ia + b) = [ia + b) + ab]ia + b) = ia + b) + iab + ab) = a + b

shows that a+b is also in a, as we wished to prove.
Before considering the specialization of Theorem 15 to the case of ideals,

it is necessary for us to indicate some particular results analogous to those
presented in Theorem 14.

Theorem 17. 7/8 is an arbitrary non-void subclass of a Boolean ring A
and if ai%) is the class of all elements a such that a<axV ■ ■ ■ v an for appro-
priate elements ax, ■ ■ ■ ,an in 8, then a (8) is an ideal; and every ideal containing 8
contains aie). The ideal a(8) may be characterized alternatively as the class of
all elements a such that a = axbxv ■ ■ ■ v.anbn where ax, ■ ■ ■ , an are in 8 and
bx, ■ • • , bn are in A. If $ is the union of the ideals a in a given class 53, then
aie) is the class of all elements a such that a = axv ■ ■ ■ v an where ak is in ak
and ak in 53 for k = 1, • • • , n.

From Theorem 16, it is evident that an ideal containing the class 8 must
contain every element ax v ■ ■ ■ v an where ai, • • • , an are in 8, and hence
every element a such that a<axv • ■ • vu,. Thus a(8) is contained in every
ideal which contains 8. To show that ai%) is itself an ideal, we appeal again
to Theorem 16. It is evident that condition (2') of that theorem is satisfied in
the present instance. It is easily verified that condition (1) also holds: for, if
a<aiv ■ ■ ■ v a„ and b<biv ■ ■ ■ vbp where ax, • • • , an, bx, ■ ■ ■ , bp are in 8,
then avb<axv ■ ■ ■ vanvbiV ■ ■ ■ v bp. The equivalent characterization of
a(8) is established as follows: if ci<ai v • • ■ v a„, then a = axbx v • • ■ v anbn
with bx= ■ ■ ■ =bn = a; and, if a = axbxV ■ ■ ■ vanbn, then a<axV • ■ • va„.
Finally, to establish the characterization of a(8) when 8 is the union of ideals a,
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we first express the element a in a(ê) in the form a = aibx v ■• ■ v anbn where
ai, • • • , an are in 8. We then observe that there must exist ideals ai, • ■ • , a„
of the given class 93 which contain ah ■ ■ ■ , an respectively. It follows that
akbk is an element of the ideal ak. Thus an obvious change of notation per-
mits us to write a = ai v ■ ■ • v an where at is in a* and ak in 93, for k = l, • ■ ■ ,n.
Conversely, every such element is in the ideal a(8), as we have already seen.

With the help of Theorem 17, we can now obtain the desired counter-
part of Theorem 15.

Theorem 18. In a Boolean ring A, the subrings obtained as sums or as prod-
ucts of ideals are themselves ideals ; in other words, the class 3 of all ideals in A
is a subsystem of the system 21 of all subrings of A under the unrestricted opera-
tions of addition and multiplication. The properties of these operations which
hold in 21 hold also in 3, with the refinement that properties (5), (6), and (12)
of Theorem 15 are to be replaced respectively by the following sharper properties,
to which we give the corresponding numbers :

(5)       a(bvc) = ab vac; (6)        (avb)(avc) = avbc;

(12) if b is an ideal and 93 a non-void class of ideals a, then

b S a = S ba.
a«« a«SB

The ideal ab, where a and b are ideals, is the class of elements c where c = ab, a in
a and binb. The ideal a (a) of Theorem 17 is the product of all ideals containing 8 ;
and, in the particular case where 8 is the union of a class of ideals, a(ê) is the
sum of the ideals in that class.

If a is any element in the intersection of ideals a, then ab is also in their
intersection whatever the element b. Thus the subring which is the product
of the ideals a is an ideal. In particular the product ab of ideals a and b is an
ideal and consists of those elements c such that c = ab where a is in a and binb:
for any such element is common to a and b ; and, if c is common to a and b,
then c = ab where a = c and b = c. Theorem 17 now shows that the ideal a(8)
is the product, or, equivalently, the intersection, of all the ideals containing
8, the ideals e and a(&) both having the latter property. Now, if 8 is the union
of ideals a, we see from Theorem 17 that a(8) is contained in the subring which
is the sum of the ideals a; but, since a(?) is a subring containing 8, it must
contain also the sum in question. It follows that any sum of ideals is identical
with the ideal a(§), where 8 is the union of those ideals. The preceding results
evidently serve to establish the assertion that 3 is a subsystem of 21. It re-
mains for us to establish the sharper forms of (5), (6), and (12). Since (12)
implies (5), we confine our discussion to (6) and (12). In view of Theorem 15,
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it is sufficient for us to show that bS0,aa c S„(i8ba, (a v b) (a v c) c a v be. Using
the results of Theorem 17 together with those just proved, we see that every
element in bSae8a is expressible in the form e (ai v • • • vo»)=isiV • • ■ vban
where b is in b and a* in an ideal a* of the class 23. Since bak is in the ideal bak,
we conclude that every element of the indicated form is in the ideal S0t8ba,
thus establishing (12). Similarly, we see that every element in (avb)(ctvc)
can be expressed in the form (ai v b) (a2 v c) where ai and a2 are in a, b is
in b, and c is in c; and, since (axvb)(a2v c) = (a1a2v axev a2b) vbc where
axa2vaicva2b is in a and be is in be, we see that every such element is in
a v be, thus establishing (6).

It is of interest to remark that property (13) of Theorem 15 cannot be
similarly sharpened. This we shall show by examples to be given in a later
paper. It is also of interest to remark that in the case of a general abstract
ring the properties (5), (6), and (12) of Theorem 15 cannot be replaced by the
sharper ones which have just been established in the case of Boolean rings.
We note that under the finite operations, namely, the operations of forming
the finite sum avb and the finite product ab, the system 3 is a distributive
lattice by virtue of the sharpened properties (5) and (6). The Boolean rings
are thus special instances of those rings in which the ideals constitute a dis-
tributive lattice, f

We shall now introduce in the class S of ideals a unary operation in many
respects analogous to the operation ' defined in a Boolean ring with unit.
Such an operation can be defined in any commutative ring and can be suit-
ably generalized even in the case of a non-commutative ring. We shall in-
vestigate its properties only in the case immediately before us. It will be help-
ful to make use of the following terminology :

Definition 6. Two elements a and b in a Boolean ring are said to be orthog-
onal if ab = 0; and two non-void subclasses of a Boolean ring are said to be
orthogonal if every element of one is orthogonal to every element of the other.

As a basis for our definition of the desired operation, we first establish
the following result :

Theorem 19. If 8 is any non-void subclass of a Boolean ring A, then the
class 8' of all elements orthogonal to every element of 8 is an ideal in A which
is orthogonal to 8 and contains every subclass of A orthogonal to 8. Two ideals a
and b are orthogonal if and only if ab = o.

It is obvious that 8' contains the element 0, that it is orthogonal to 8,
and that it contains every subclass of A orthogonal to 8. If a and b are in %',

f The indicated class of rings has been discussed by Garrett Birkhoff, under certain strong
restrictions, Bulletin of the American Mathematical Society, vol. 40 (1934), pp. 613-619.
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then a+b is in 8': for we have (a+/»)c = ac+Z»c=0+0 = 0 for every element c
in 8. Similarly, if a is in 8' and b is in A, then ab is in 8': for we have iab)c
= iac)b = 0b =0 for every element c in 8. We see therefore that 8' is an ideal.
The characterization of the ideal product ab given in Theorem 18 shows at
once that a and b are orthogonal if and only if ab = o.

We can now state our fundamental definition.

Definition 7. The ideal 8' associated with an arbitrary non-void subclass 8
of a Boolean ring A in the manner indicated in Theorem 19 is called the or-
thogonal complement, or, more briefly, the orthocomplement of 8; and the opera-
tion of forming the ideal %' is called orthogonal complementation, or, more briefly,
orthocomplementation. The orthocomplement of 8' is denoted by 8", that of 8"
by $>"'; and, more generally, the symbol 8(n) is defined recursively for n>l by
the relations ^1) = ^', 8<n+1) = (8(n))'.

The chief properties of the operation so defined are given in the three
theorems which follow.

Theorem 20. The operation of orthocomplementation has the following gen-
eral properties:

(1) 8c t implies «'at';
(2) 8 c aie) c 8", where ai%) is the ideal generated by 8;
(3) 8(m) = 8(n) when m and n are congruent (mod 2), 8<m)8(n) = o when m and

n are not congruent (mod 2); in particular, %'" = %'.

If 8 is contained in t, then t' is orthogonal to 8 as well as to t and must
therefore be contained in 8' in accordance with Theorem 19. Since 8 is or-
thogonal to 8' by definition, 8 is contained in the ideal 8"; and by Theorem 17
we have 8 c a(8) c 8". The relation 8 c 8" implies 8' o 8'"; but we also have
$'" = (8')"d8' and therefore conclude that i'" = ^'. By an obvious induction
we now see that 8(n+2) = 8<n), 8(n+1)8(n) = o. A further induction leads to the gen-
eral proposition (3).

Theorem 21. Within the class3 of all ideals in a Boolean ring A, the opera-
tion of orthocomplementation has the following special properties :

(1) aca"; (2) aa' = o; (3) o' = e, e' = o;
(4) the orthocomplement of a sum is equal to the product of the orthocomple-

ments of the summands; in particular, (a vb)' = a'b';
(5) the orthocomplement of a product contains the sum of the orthocomple-

ments of the multiplicands; in particular, (ab)' o a' v b'.

The properties (1), (2), (3) follow at once from Theorems 19 and 20. To
prove (4), we observed that, by virtue of Theorems 17 and 18, an element b
is in (Saei8a)' if and only if è(aiv  • • •  van)=0 for every set of elements
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ai, ■ ■ • , an belonging respectively to ideals m, ■ ■ • , <t„ in the class 23. Now
b(axv ■ ■ ■ v an) = bax v ■ ■ ■ v ban = 0 if and only if bax = ■ • • = ba„ = 0, as is
easily verified. The latter condition obviously holds for the indicated elements
ai, • • • , an if and only if b is in every ideal a', where a is in the class 23. This
result serves to establish (4). To prove (5), we observe that by virtue
of Theorems 17 and 18 an element b in SQiS8a' is expressible in the form
b = axv • • ■ v an where ak is in ai and ak in 23 for k = 1, ■ ■ ■ , n ; hence we
see that, if c is an arbitrary element in the product of the ideals a, then
bc = (axv ■ ■ ■ van)c = axcv ■ ■ ■ vanc = 0; and we conclude that b is in
(P„eS8a)', thus establishing (5).

The properties (1) and (5) of this theorem cannot be sharpened within
the class 3, save in the case of Boolean rings of very special type. We shall
give relevant examples in another paper.

Since the product ab of an ideal a and a subring b is an ideal in b, we may
seek to determine the orthocomplement of ab relative to b. This determination
is possible when b is an ideal, and proves to be important in subsequent de-
velopments.

Theorem 22. If a and b are ideals in a Boolean ring A, the orthocomplement
c of the ideal ab in the subring b satisfies the relation c = a'b.

Since ab and a'b are ideals in b such that (ab) (a'b) = (aa')b = o, we see from
Theorem 19 that c s a'b. On the other hand, we obviously have cc b, we can
prove that cc a', and we can therefore conclude that cc a'b and hence c = a'b:
for, if c is any element in c, the element ac is in ab for every element a in a and
thus has the property ac = (ac)c = 0; but this property implies the relation
cca'.

In case b is a subring but not an ideal, the relation c s a'b is valid but can-
not in general be replaced by the stronger relation c = a'b. To show this, we
use the fact that in general the ideal a can be chosen so that ava'^t. Ii we
then take b as an element not in a v a' and let b be the subring consisting of
the elements 0, b, we see that ab = a'b = o, c = b^o.

3. A classification of ideals. The operation of orthocomplementation in-
troduced at the end of the preceding section leads to an important classifica-
tion of the ideals in a Boolean ring. While an exhaustive study of this classi-
fication would take us too far afield, some detailed knowledge of the behavior
of ideals under the operation of orthocomplementation is essential in Chapter
III. We shall therefore give only a partial investigation of this subject here,
leaving for another paper the presentation of the complete theory. It is
proper to point out in advance that the proposed classification degenerates
only in a few very special types of Boolean ring, too simple to be of very great
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interest in any other connection. We shall accordingly have no need to con-
cern ourselves in the present section with the possibility of degeneracies. Our
fundamental definition is the following:

Definition 8. In a Boolean ring A, an ideal a is said to be
(1) principal if a = a (a) for some element a;
(2) semiprincipal if a = a(a) or a = a'ia) for some element a;
(3) simple if a v a' = e; (4) normal if a = a".

The classes of principal, semiprincipal, simple, and normal ideals are denoted
by the letters $, ty*, <S, and 9t respectively.

We may observe that the term "principal ideal" is here used with its
ordinary significance: for Theorem 17 shows that the ideal a (a) is the ideal
generated by the class 8 consisting of the element a alone.

The elementary relations between the classes of ideals thus introduced are
given in the three following theorems.

Theorem 23. The classes defined in Definition 8 satisfy the following inclu-
sion relations :

(1) ^c^*c©c9icc3;

(2) $ contains o ; (3) $* contains e.

The relations (2) and (3) are obvious. Of the inclusions in (1), the first
and last are obvious. Hence we need discuss in detail only the relations
$*c ©, <Sc9c. Now if the ideal a is semiprincipal, we have either a = a(a)
or a = a'(a) for some element a. In the first case, we let b be an arbitrary ele-
ment in A and write b = ab+(b+ab). Since ab is in a, a proof that b + ab is
in a' will lead to the result that b is in a v a'. If c is an arbitrary element in
a = a(a), we have cib+ab) = cb + ica)b = cb+cb = 0 and thus conclude that
b+ab is in a'. Since b is arbitrary, we must have ava' = e, so that a is a
simple ideal. In the second case we apply the result just obtained to write
e = a(a) v a'(a) c a"(a) v a'(a) = a' v a = av a'. It is then evident that a v a' = e
and that a is simple. The proof of the relation $* c © is thus completed. If
now a is a simple ideal, we have a" = a"e = a"(a va')=a"a va"a' = a v o = a
in accordance with Theorems 18 and 21; and we conclude that a is normal.
The relation © c 9Î is thus established.

Theorem 24. The relation 3^® implies the relation 3^9?; in particular,
if the ideal a is not simple, the ideal av a' is not normal. In consequence, the rela-
tion 3 = 9Ï implies the relation 3 = ©.

Since (a va')' = a'a" = o by Theorem 21, and since therefore (a va')" = e,
we see that av a1Ve implies avaV(o va')".
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Theorem 25. The relation '$ = '$* implies the relation *$ = <& and hence
also the relation S)S* = @. In fact, the following assertions concerning a Boolean
ring A are equivalent:

(1) <ß = ©;     (2) <ß = r;
(3) there exists an ideal a such that a and a' are in ty;
(4) the Boolean ring A has a unit e.

It is evident that (1) implies (2), and also that (2) implies (3). We show
that (3) implies (4). If a = a(a) and a' = a(b), then a(a) va(b)=ava' = e in ac-
cordance with the relation *$=;<&. Hence an arbitrary element c is expressible
in the form c = ax vbx where ax<a and bx<b, as we see by reference to Theo-
rem 17. It follows that c<avb. Since c is arbitrary, this relation identifies
avb as the unit in A. We now complete the proof by showing that (4) implies
(1). If a is a simple ideal in a Boolean ring with unit e, the relation a v a' = e
shows that e = avb where a is in a and 6 in b, in accordance with Theo-
rem 17. If c is an arbitrary element in a, we obviously have cb = 0 and hence
c = ce = c(a vb) =cavcb = ca, or, equivalently, c<a. Thus we see that ac a(a).
On the other hand it is evident that a(a) c a. We therefore conclude that
a = a (a), as we wished to do.

We may remark that in a Boolean ring without unit we have, in general,
^ 7* $* ?¿ © ;¿ 9Í 9^3 ; and that in a Boolean ring with unit we have, in general,
<$ = <$* = &9¿yt9éS. When 3^91 we may have either SUV© or 5Jt = <3; but
we have not been able to determine whether the relations ^3^ $*, '$* = ©
are compatible or not. The various possibilities will be analyzed more fully
on another occasion.

The conditions that an ideal be principal or semiprincipal, as given in
Definition 8, are adequate for our purposes; but it is important for us to ob-
tain conditions, other than those given in the definition, for an ideal to be
simple or normal. The two theorems which follow present information on
this topic.

Theorem 26. In order that an ideal a in a Boolean ring A be simple, it is
necessary and sufficient that the product aa(a) be a principal ideal for every ele-
ment a in A.

We shall consider aa(a) as an ideal in the subring a(a) with unit a, recalling
that the orthocomplement of aaia) relative to a(a) is the ideal a'aia) in accord-
ance with Theorem 22. If a is simple relative to A, we have aaia) va'aia)
= (a va')a(a) =ea(a) =a(a) so that aa(a) is simple relative to a(a). By virtue
of Theorem 25 we see that aa(a) is principal relative to a(a). Since aaia) is an
ideal in A and since, considered as a Boolean ring, it has a unit by virtue of its
character in a(a), we conclude that there exists an element b such that
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aa(a) = a(Z>). Thus, when a is simple, aa(a) is principal. On the other hand, if
aaia) is principal for every a in A, we write aa(a) = a(2>) c a (a). It follows that
aaia) is principal, and hence simple, relative to a(a). Thus we see that
aid) = aaia) v a'aia) = (a va')a(a) cava'; in other words, that a va' contains
a. Since a is arbitrary, we conclude that a v a' = e, or, in other words, that a
is simple, as we wished to prove.

Theorem 27. The following assertions concerning an ideal a in a Boolean
ring A are equivalent:

(1) ais a normal ideal;
(2) a is the orthocomplement of some ideal in A ;
(3) a is a product of semiprincipal ideals.

In general, if a is an arbitrary ideal, then a" is the product of all the semi-
principal ideal divisors of a ; and, in particular, a normal ideal is the product of
all its semiprincipal ideal divisors. In the case of a Boolean ring with unit, the
term "principal ideal" is to replace the term "semiprincipal ideal" in the preced-
ing statements.

The equivalence of (1) and (2) is easily proved as follows: if a is normal,
then a = b' for b = a'; and, if a = b', then a = b' = b'" = a". If a is an arbitrary
ideal, it has at least one semiprincipal ideal divisor, the ideal e. Hence the
product of all the semiprincipal ideal divisors of a exists and is an ideal b
which divides a. Now if c is a semiprincipal ideal divisor of a, we have
c'ca', c = c"3a", so that c is also a semiprincipal ideal divisor of a". It
follows that bDa". On the other hand, if a is an arbitrary element in a',
we see that aia) c a', that a'(<z) d a" d a, and hence that a'ia) o b. The latter
relation implies that a(a)b = o. Since a is arbitrary, we see that a'b = o and
hence that be a". It follows from this and the earlier inclusion relation that
b = a"; in other words, that a" is the product of all the semiprincipal ideal
divisors of a. The special case where a is normal, that is, where a = a", is
now obvious. If an ideal a is the product of semiprincipal ideals, then we must
have a => a" since a" is the product of all the semiprincipal ideal divisors of a;
we now conclude by virtue of the relation a c a" that a = a" and hence that a
is normal. The preceding results show the equivalence of (1) and (3). The
final statement of the theorem follows immediately from Theorem 25.

We shall turn now to an examination of the behavior of the various
classes of ideals under the operations of addition and multiplication. As a
preliminary to our first theorem in this connection, we must make a few re-
marks concerning congruences in arbitrary algebraic systems. In any alge-
braic system, the fundamental relation of equality has to be taken as one of
the undefined concepts and must be connected with the operations of the
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system by suitable postulates. It is sufficient to assume, first, that the rela-
tion of equality is a reflexive, symmetric, and transitive dyadic relation, and,
second, that in terms of this relation the following law of substitution holds :
for each of the operations of the system, the substitution of equal operands
for given operands respectively replaces the element resulting from the ap-
plication of that operation by an equal element. Now any dyadic relation
which has these same properties and which holds whenever the fundamental
relation of equality holds may be called a congruence in the given algebraic
system. The fundamental equality is itself a congruence. By simple inductive
arguments it can be shown that, for any given relation of congruence, the
following general rule of substitution is valid: if an element a is obtained as
a polynomial in terms of elements of the system, then the substitution of
respectively congruent elements in this polynomial yields an element con-
gruent to a. Evidently, any relation of congruence in an algebraic system may
be used to replace the fundamental relation of equality; if this be done, the
system is converted into a new system which is easily seen to be homo-
morphic to the old. Conversely, any system homomorphic to the given one
is isomorphic to a system obtained in this way by the use of an appropriate
congruence: when the homomorphism is given, the associated congruence is
obtained by defining two elements to be congruent if and only if they are
carried by the homomorphism into equal elements of the homomorphic sys-
tem. The following theorem is stated with these general remarks as a back-
ground.

Theorem 28. The dyadic relation C defined between the elements of the class
3 of all ideals in a Boolean ring A by setting a = b if a' = b', is a congruence in
the algebraic system consisting of the class 3 and the operations of unrestricted
addition and finite multiplication. Each class of mutually congruent elements in
3 contains one and only one normal ideal as an element, in the following sense :
if a is any ideal, then a" is a normal ideal such that a = a"; and, if a and b are
normal ideals such that a = b, then a = b. The algebraic system 3° consisting of
the class 3 with the congruence C as the fundamental relation of equality and the
operations of finite addition and finite multiplication is a Boolean algebra with
unit in accordance with Theorem 3.f

Most of the properties of the relation C asserted in the theorem are easily
verified. Thus a = b implies a' = b' and hence a = b; in particular, a = a. We see
that a = b implies b = a, since a' = b' implies b' = a'; and that a = b and b = c

f This theorem bears a close formal or structural relation to a general proposition about the
logic of Brouwer in the symbolic statement of Heyting, Sitzungsberichte der Preussischen Akademie
der Wissenschaften, 1930, pp. 42-56. The proposition in question was given by Glivenko, Académie
Royale de Belgique, Bulletins des Sciences, (5), vol. 15 (1929), pp. 183-188.
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imply a = c, since a' = b' and b' = c' imply a' = c'. If 21 and 23 are subclasses of 3
in one-to-one correspondence in such a manner that corresponding elements
a and b are in the relation a=b, we see that

(Sa)' =pa' = Pb' = (Sb)'
otS 0.3 twSB btSä

in accordance with Theorem 21, and hence that

Sa = Sb.
as« b«SB

In particular, we note that a=c and b=^b imply a v b=c v b.
The proof that a^c and b^b imply ab = cb is more difficult. We shall first

prove that a=e and b=e imply ab=e, or, equivalently, that a' = o and b' = o
imply (ab)' = o. Let a be an arbitrary element in (ab)', b an arbitrary element
in aia)a, and c an arbitrary element in a(b)b. It is then clear that aie) c aib)b
ca(a)abc (ab)'ab = o and hence that c = 0. Since c was an arbitrary element in
aib)b, we conclude that a(è)b = o and hence that a(¿>)cb' = o, 6 = 0. Since b
was an arbitrary element in aia)a, we conclude that aia)a = o and hence that
aia) c a' = o, a = 0. Since a was an arbitrary element in iab)', we conclude that
(ab)' = o, as we wished to prove. We next prove that a"b"(ab)' = o. We begin
by writing a"b"(ab)' = (a' vb')'iab)' = (a' vb' v ab)' in accordance with Theo-
rem 21. We then observe that a' vb' vabsa'(b vb') vab' vab = (a va')(b vb')
and hence that (a'vb'vab)'c [(a va')(b vb') ]'. In view of the relations
(ava')' = a'a" = o, (b vb')' = b'b" = o, we can conclude that a"b"(ab)' = o by
virtue of the preceding results. We now observe that (a"b")' d (ab)' as a con-
sequence of the relation just established; and that (a"b")' c (ab)' in conse-
quence of the relation a"b" o ab. We thus see that ia"b")' = iab)', or, equiva-
lently, that a"b" = ab. The final step of the proof is simple. If a=c and b=-b,
then we have a' = c', a" = c" and b' = b', b" = b"; hence we have a"b" = c"b"
and a"b" = c"b"; and finally, from the relations a"b" = ab and c"b" = cb we
conclude that ab^cb. We can show by examples that this result cannot be
extended to the case of unrestricted multiplication.

The assertion concerning the classes of mutually congruent elements is
obvious.

Having shown that the relation C is a congruence in the indicated sense,
we may use it to replace the fundamental equality in 3 in accordance with
the general remarks above. When we restrict consideration to the finite op-
erations v and • alone, we obtain the system 3°. We wish to identify this
system as a Boolean algebra with e as unit, by showing that it has the proper-
ties (h), (3i), (32), (4i), (5), (6i) and (62) of Theorem 3. By combining the prop-
erties of the congruence C with the results given in Theorem 18, we establish
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all the desired properties, except (5), without any difficulty. To prove (5),
we show that the relations rva=e, ra=o have a solution r = a'. To this end
we have merely to note that (a' va)' = a"a' = o = e', a'a = o, and hence that
a' v a=e, a'a=o. To convert 3C into a Boolean ring we must replace the opera-
tion v by an operation + such that a+b = ab' v a'b, in accordance with Theo-
rem 2. Evidently, it is most convenient to take a+b as the ideal ab' v a'b,
rather than as some other ideal congruent to the latter.

In discussing the class of all normal ideals, it will be necessary to replace
addition by a new operation. We therefore give the following formal defini-
tion:

Definition 9. If 93 is a non-void class of ideals a, the ideal (SaeS8a) " is called
the normalized sum of the ideals a in 93 and is denoted by SaiSBa ; the normalized
sum of ideals a and b is denoted by avb. The operation of forming the normalized
sum is called normalized addition.

In terms of this definition, we have

Theorem 29. The normalized sum and the product of normal ideals are nor-
mal ideals ; but a finite sum of normal ideals is not necessarily normal. The nor-
malized sum of arbitrary ideals is the least normal ideal containing all the sum-
mands. Within the class 9c of all normal ideals the operations of normalized ad-
dition and multiplication have the following properties:

(1) if <B is a non-void class of non-void subclasses 93 of 9c, then

S" (S"a) = S"a,
S8.-B     0.9 tuffi

where 6 is the union 2^,^ 93 ;
(2) if 43, 93, and S have the same significance as in (1), then

P   (P a) = Pa;
»e-B    0.9 ae«

(3) if b is any normal ideal and 93 is any non-void subclass of 9Í, then

b(S"a) = S"(ba);
0.9 0.9

(4) if b and 93 have the same significance as in (3), then

P (bva) = bvPa;
0.9 0.9

(5) if 93 is any non-void subclass of 9Î, then

(S"a)' = Pa';
0.9 0.9
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(6) if 23 has the same significance as in (5), then

(Pa)' = S'V.

Under the finite operations v and ■ alone, the system yi is a Boolean algebra
isomorphic to the system 3C of Theorem 28 by virtue of the correspondence
a<—>a". This algebra has the property that its normal ideals are all principal.

In view of Theorem 27(2) ahd Definition 9, it is evident that the normal-
ized sum of ideals is always a normal ideal. In view of Theorem 27(3), it is
likewise evident that the product of normal ideals is a normal ideal: since
each factor is a product of semiprincipal ideals, the product is also a product
of semiprincipal ideals by Theorem 15(11) and Theorem 18. On the other
hand, if a is a normal ideal which is not simple, the sum a v a' is not normal,
as we showed in Theorem 24, in spite of the fact that a and a' are both normal.

If a is an arbitrary ideal, then a" is a normal ideal containing a. If b is a
normal ideal containing a, then b is the product of semiprincipal ideal di-
visors of a and thus contains a", in accordance with Theorem 27. Thus a"
is the least normal ideal containing a. By comparing this result with Defini-
tion 9, we see that the normalized sum of ideals is the least normal ideal con-
taining all the summands.

Some of the properties (l)-(6) have already been established. Thus (2)
has been proved in Theorem 15 (11) and Theorem 18, and (5) follows from
Theorem 21(4) and Definition 9 by the use of the relation a'" = a', since we
have

(S"a)' = (Sa)'" = (Sa)' = Pa'.
a«95 ae» cuSB a«S8

We can now deduce (6) from (5) by virtue of the relations

(Pa)' = (Pa")' = (S'V)" = S"a',
o.® oíSB «SB «S

since the ideals in 23 and all normalized sums are normal ideals. We can es-
tablish (1) from the corresponding property of ordinary sums already es-
tablished in Theorem 15(10) and Theorem 18 by using the results of Theorem
28 concerning the congruence C: from Definition 9 it is evident that any
normalized sum is congruent to the corresponding ordinary sum; in consé-
quence, the two members of (1) above are congruent, the corresponding ordi-
nary sums being equal; and finally, since the members are both normal ideals,
their congruence implies their equality. In a similar way, we establish (3)
from the corresponding relation for ordinary sums, already proved in Theo-
rem 18(12) : the two members of (3) are congruent and, being normal ideals,
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are therefore equal. With the help of (5) and (6) it is now easy to deduce (4)
from (3), as follows:

P (b v a) = P (b" v a") = P (bV) = (S"(b'a'))' = (b'(S"a'))'
o.9 0.9 0.9 0.9 0.9

= (b'(Pa)')' = b"v(Pa)" = bvPa,
0.9 0.9 0.9

the ideals a, b, and P^a being normal.
In order to show that under the finite operations v and the system 91

is a Boolean algebra, we must verify properties (li), (3X), (32), (4X), (5), (6X),
(62) of Theorem 3. Now (lx), (4X), (6X), and (62) are evident from the known
properties of the operation v and the relation avb = (a v b)". Properties (3i)
and (32) follow at once from (3) above and the commutative law for multi-
plication. To establish (5) we show that the equations rva = e, ra = o, where 0
and e are known to be normal ideals and a is assumed to be a normal ideal,
have as a solution the normal ideal r = a': we have only to note the relations
a'va = (a' va)" = (a"a')' = o' = e, a'a = o. In order to convert this Boolean alge-
bra into a Boolean ring, we have only to introduce the operation + defined
by the equation a + b = ab'va'b, in accordance with Theorem 2. It is now easily
verified that the correspondence a<-—>a" sets up an isomorphism between the
Boolean algebras 3C and 9c. This correspondence is biunivocal on account of
Theorem 28, which shows that a" is a normal ideal congruent to a and that
a=b if and only if a" = b". The correspondent of avb is given by (avb)"
= (a'b')' = a"vb" in accordance with Theorem 21(4) and (6) above. The corre-
spondent of ab is found to be (ab)" = a"b", by the following reasoning: the
normal ideal (ab)" is congruent to ab and hence also to a"b"; since a"b" is
normal, we must have (ab)" = a"b" in accordance with Theorem 28. These
results establish the indicated isomorphism.

It remains for us to prove that the Boolean algebra 9c has the special
property that its normal ideals are all principal. Since 9Î has the ideal e as its
unit, all simple ideals of the algebra 9Î are principal; in other words, a simple
ideal of 9Î is characterized by an element a in 91 such that b in 9Í belongs to
the ideal if and only if b c a. This result follows from Theorem 25 and applies
in particular to semiprincipal ideals of 91. Now a normal ideal of 9Î is by
virtue of Theorem 27 the product of semiprincipal ideals and hence, by virtue
of the result just noted, the product of principal ideals. If 93 is the class of
elements a generating the various factors in a product of principal ideals, the
element P^a belongs to 9c and is contained in every element a in 93 ; and any
element of 9Î belonging to the product is contained in every element a, and
hence also in the element ¥a&a. Thus the product of principal ideals in the
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algebra Sft is itself the principal ideal generated by the indicated element
PaeSBa. It follows that every normal ideal of Sit is principal.

Theorem 29 can be summarized briefly by pointing out that under the
operations S", P, and ' the class Sit has some of the chief formal properties
of an algebra of classes with the corresponding operations of forming unre-
stricted unions,products, and complements respectively. That it does not have
all the formal properties of such an algebra we shall see later in the present
paper.

Theorem 30. The class © of all simple ideals in a Boolean ring A is a
Boolean subring, with c as its unit, of the Boolean algebras 3C and Sft of Theorems
28 and 29 respectively. The application of the operations of finite addition, finite
normalized addition, finite multiplication, and orthocomplementation to simple
ideals yields simple ideals; in particular, if a and b are simple ideals, avb = avb.

If a and b are simple ideals, then a v b is a simple ideal : for (avb) v iavb)'
= avbva'b' ^ aib v b') v a'b v a'b' = (a va')(b vb') =ec = e and hence (avb)
v (a vb)' = e. It follows also that a vb is normal and that a v b = ia v b)" = avb.
If a is a simple ideal, then a' is a simple ideal: for a' v a" d a' v a = e and hence
a' va" = e. The results just proved show that ab and a+b = ab'va'b = ab' va'b
are simple ideals whenever a and b are simple ideals: for ab = a"b" = (a' vb')';
and ab'va'b = ab' v a'b whenever ab' and a'b are simple. Hence © is a subring
of 3C and also of SSI. The ideal e is in © and is obviously its unit.

Theorem 31. The class Sß of all principal ideals in a Boolean ring A is a
Boolean subring of Sft and an ideal in © ; it is isomorphic to the Boolean ring A
in accordance with the following relations.

(1) aia) = a(6) if and only if a = b ;
(2) a(a+b)= a(a) +a(b) = a(a) a'(b) v a'(a)a(b) ;
(3) a(avb)=a(a)vaib);      (4) a(ai) = a(a)a(6).

If the Boolean ring A has a unit e, then © = *$ and aia') =a'(a).

The class Sß is evidently non-void since it contains o = a(0). In showing
that it is an ideal in the Boolean algebra ©, we shall establish properties (3)
and (4) above. Theorem 14 shows that the element avb is contained in the
ideal a(a) v a(b) and hence that a(a vb)c a(a) v a(b). On the other hand the
relations a<avb and b<avb imply that a (a) ca(a vb), a(6) ca(a vb) and
hence that a(a) va(¿V) ca(a vb). It follows that (3) is valid. Theorem 26
shows immediately that the ideal aia)a is principal, whatever the simple ideal
a. In particular, a(a)a(6) is principal. Theorem 16 thus shows that ty is an
ideal in © and hence a subring in Sft. Theorem 18 shows that ab is in the ideal
a(a)a(b) and hence that aiab) c a(a)a(è). On the other hand, the relations c<a
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and d<b imply cd<ab and hence a(a)a(b) ca(ab). It follows that (4) is valid.
To prove (1), we note that a = b obviously implies a(a)=a(¿»); and that
a(a)=a(b) implies a<b, b<a and hence a = b. The relations (1), (3), and (4)
imply that the correspondence a<—>a(a) sets up an isomorphism between A
and Iß with respect to the operations v and given in these systems. In
order to extend this isomorphism to the operation +, we use (3) and (4) to
prove (2). When ab= Owe have a+b = a vb and a (a) a (b) =a(ab) =a(0) = o;and
we therefore see that a(a+b) =a(a v b) =a(a) v a(b) =a(a)+a(b). When a and
b are arbitrary we apply this result to the elements a+b and ab, which have
the property (a+b)ab = 0, to write a(a+b)+a(ab) =a(a+b+ab) =a(avb)
= a(a)va(b)=a(a)+a(b)+a(a)a(b)=a(a)+a(b)+a(ab); and we conclude
that a(a+b) =a(a)+a(b), as we wished to show. In case A has a unit e,
we know that ty coincides with ©. By simple calculations, we find that
a(a')=a(a+e) = a(a)+a(e) = a(a)+e = a(ö)e'va'(a)e = a'(a), as stated in the
theorem.

Theorem 32. The class $* of all semiprincipal ideals in a Boolean ring A
is a subring of ©, with e as Us unit, isomorphic to the Boolean ring B of Theorem
1 ; $ and A are ideals in ty* and B respectively. The operations v, •, +, and '
in the system © apply to elements of ty* in the manner indicated by the following
rules:

(li)       a(a)va(Z>) = a(avb); (12)       a(a)va'(b) = a'(b + ab);

(13)       a'(a)va'(b) = a'(ab);

(2i)        a(a)a(b) = a(ab); (22)        a(a)a'(b) = a(a + ab);

(23)       a'(a)a'(b) = a'(avb);

(30       a(a) + 0(6) = aia + b);        (3,)       aia) + a'(b) = a'(a + b);

(3,)       a'ia) + a'ib) = aia + b);

(40        a'(a)isin%*; (42)        (a'(a))' = a(a).

In the case where Iß ̂  Iß*, Iß ¿s not a normal ideal in $*.

Before giving proofs of the various numbered relations, we shall discuss
their consequences. The class Iß* is non-void since it contains the ideals o
and e; it is a subring of © by virtue of relations (20, (22), (23), (3i), (32), and
(33) ; and it obviously has e as its unit. Since Iß is an ideal in © by Theorem 31,
it is also an ideal in the subring Iß*. When A has a unit, Iß = Iß* in accordance
with Theorem 25, and the Boolean ring B of Theorem 1 coincides with A ;
the isomorphism between Iß* and B is thus a consequence of the isomorphism
between $ and A established in Theorem 31. When A has no unit, Iß^lß*
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and A ¿¿B. In this case we set up an isomorphism between %ï* and the Boolean
ring of pairs (a, a) described in the proof of Theorem 1, and hence between
Ç* and B. The necessary correspondence is indicated in the relations
a(a)<—>(a, 0), a'(a)<—>(a, e). With the help of the relations (2X), (22), (23),
(3i), (32), and (33), it is easily seen that this correspondence yields the desired
isomorphism. It should be observed that the isomorphism between Sß* and B
preserves the isomorphism between Sß and A already set up in Theorem 31.
Since Sß is an ideal in Sß*, it follows that A is an ideal in B; this statement can
also be confirmed by virtue of the relations (a, 0)(&, ß) = iab+aß+0b, 0/3)
= iab+aß, 0). In order to show that "iß is not normal in ty*, we shall determine
its orthocomplement relative to *$*. If a is any semiprincipal ideal, or, more
generally, a quite arbitrary ideal, we see that aaia) = o implies a(a) = aaia) = r>
and a = 0 whenever a is in a; and hence that, whenever aa(a) = o for every a,
the ideal a coincides with o. Thus the orthocomplement of 'iß relative to Sß*
or relative to © consists of the ideal o alone. Since $ ^^3* and ^5¿© in the
case under consideration, "iß is not normal in 'iß* or in @.

We turn now to the proof of the various numbered relations stated in the
theorem. Of these certain ones have been established previously. Relations
(li), (2i), and (3i) were proved in Theorem 31; (4i) is part of Definition 8;
and (42) follows at once from Theorem 23. By using the relation a'(a) =e-f-a(a)
which holds in © by virtue of Theorem 30, we see at once that relations (32)
and (33) follow from (3i) and the known properties of the operation +. In a
similar way, we deduce (22) from (2t) and (3i), writing

aia)a'ib) = aia) it + a(t>)) = aia) + a(a)a(¿>) = a(a) + a(ai) = aia + ab).

We obtain (lx) from (22) by virtue of the relation aia) va'(b) = (a'(a)a(ft))'.
Similarly, we use (2i) and (li) to establish (13) and (23) respectively with the
help of the relations

o'(ffl)vo'(ft) = iaia)aib))',       a'(o)a'(6) = (a(a) va(ft))'.

With the results established in Theorems 23-32 we have covered the most
important algebraic properties of the classes of ideals introduced in Defini-
tion 8. We call particular attention to the fact that Theorems 29-32 may be
regarded as propositions concerning the imbedding of a Boolean ring A and
its isomorph ^ß in Boolean rings of special type. Theorems 31 and 32 together
give a new proof of the result of Theorem 1, as we have already observed.
Theorems 30 and 31 give a similar imbedding theorem. Theorems 29 and 31
yield the result most interesting from the point of view of the present paper.
They show that any Boolean ring A can be imbedded in a Boolean ring B
which has a unit, which has the property that its normal ideals are all
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principal, and which has under the unrestricted operations of (logical) addi-
tion and multiplication many of the formal properties of an algebra con-
sisting of all the subclasses of a fixed abstract class under the operations of
forming unrestricted unions and intersections; the Boolean ring B is isomor-
phic to the system of normal ideals in A. Evidently, B coincides with A
when every normal ideal in A is principal, so that we can obtain nothing new
when we apply this imbedding theorem to the Boolean ring B. If B had all
the properties of an algebra of classes of the indicated type, in other words,
if B were isomorphic to such an algebra, the representation problem would be
solved by means of this imbedding theorem. In fact, this result fails to pro-
vide a solution; and, moreover, the considerations upon which it is based do
not permit us to go beyond the Boolean ring Tî.f

4. Prime ideals. The ideals in a commutative ring may also be classified
in terms of the relation of inclusion or divisibility. The three important types
of ideal to be considered here are divisorless ideals, prime ideals, and primary
ideals. An ideal a is said to be divisorless if it is distinct from the ideal e con-
sisting of all the elements of the ring and has no ideal divisors other than
a and e. An ideal a is said to be prime if it is distinct from e and if, whenever
it contains the product ab, it contains at least one of the factors a and b.
Finally, an ideal a is said to be primary if it is distinct from e and if, whenever
it contains the product ab but not the factor a, it contains some power, b",
of the other factor b. One of the chief problems of ideal theory is the investi-
gation of the properties of ideal products, the factors of Which belong to one
or another of the three classes just described. It is important to consider
when an arbitrary ideal can be represented as such a product; when such a
representation is unique; and when there exist divisorless, prime, or primary
ideals at all. The answers to such questions serve to develop, and also to
delimit, the generalization of the familiar arithmetic theory of prime numbers
to abstract rings.

In the case of Boolean rings, we shall see that the arithmetic theory of
prime ideals is equivalent to the theory of representations which is our major
concern. It is therefore important that we study the properties of prime ideals
in considerable detail. We shall begin with a series of conditions that an
ideal be prime.

Theorem 33. The following assertions concerning an ideal a in a Boolean
ring A are equivalent: a is divisorless, a is prime, a is primary.

f Further light is shed on these remarks by the work of MacNeille, The Theory of Partially
Ordered Sets, Harvard doctoral dissertation (1935), and Tarski, Fundamenta Mathematicae, vol. 24
(1935), pp. 177-198. See also the end of Chapter III, §3.
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The last two assertions are obviously equivalent since b" = b in accordance
with Definition 1. If a is a divisorless ideal and a an element not in a, the
ideal av aia) must coincide with e since it is a divisor of a containing an
element a not in a. Theorem 17 and the relation avaia)=t show that an
arbitrary element b can be expressed in the form b=cvd where c and d are
in a and a (a) respectively. Since ad = d, wehaveá+c(a+á) =ad+ac+iac)iad)
= acvad = ab and hence d = ab+cia+d), where cia+d) is in a. It therefore
follows that, when ab is in a, the element d, and hence also the element
b = cvd, is in a. Thus a must contain b whenever it contains ab but not a;
in other words, a is a prime ideal. If a is a prime ideal and b an ideal divisor
of a not coincident with a, we select an element a in b but not in a and form
the ideal a va(a); clearly we have acavaia) cb. If b is an arbitrary element
we write b = ib+ab)+ab where aib+ab) =ab+ab = 0 is in a and ab is in a(a).
Since a is not in a while the product aib+ab) is in a, the prime ideal a must
contain b+ab. It follows that b is in avaia). Since b was arbitrary, we have
ava(a) = e and hence b = e. Thus the ideal a is divisorless, as we wished to
prove.

In view of this theorem we need introduce only one symbol to denote the
coincident classes of divisorless, prime, and primary ideals in a Boolean
ring A ; we shall use the letter © for this purpose.

It is now convenient to restate the definition of a prime ideal in a Boolean
ring in the following equivalent form, reposing in part upon Theorem 16:

Theorem 34. If the elements of a Boolean ring A be distributed between two
non-void disjoint classes a and b, then in order that a be a prime ideal in A the
following set of conditions is necessary and sufficient :

(1) ata and bta imply a v bta;
(2) ata and btA imply ab ta;
(3) atb and btb imply abtb.

We now have the following variation of this result :

Theorem 35. In Theorem 34, the condition (2) may be replaced by
(2') atb and btA imply avbtb.

We have to prove that (2) and (2') are equivalent in the presence of (1)
and (3). To prove (2') from (1), (2), and (3), we proceed as follows: if a is
in b and b is arbitrary, the assumption that a v b is in a leads through (2)
and the relation a = avba = iavb)a to the contradiction that a is in a. To
prove (2) from (1), (2'), and (3), we argue as follows: if a is in a and b is
arbitrary, the assumption that ab is in b leads through (2') and the relation
a = av ab to the contradiction that a is in b.
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Theorem 36. If the Boolean ring A has a unit, the condition (3) of the set
(1), (2'), (3) of Theorem 35 may be replaced by]

(3') aeb implies a'ea.
The prime ideal a contains one, but not both, of the elements a and a'.

We have to prove the equivalence of (3) and (3') in the presence of (1)
and (2'). To prove (3') from (1), (2'), (3), we proceed as follows: if a is in b,
then the assumption that a' is in b leads through (3) and the relation 0 = a'a
to the result that 0 is in b and hence through (2') and the relation c = cvO
to the contradiction that b contains every element c. To prove (3) from (1),
(2'), (3'), we argue as follows: if a and b are in b, the assumption that ab is
in a leads through (1) and (3') to the result that a' v ab is in a and hence
through (2') and the relation a' vab = a' vb to the contradiction that a' vab
is also in b. Since the class a is a prime ideal under conditions (1), (2'), (3'),
it contains the product a'a = 0 and hence contains at least one of the factors
a and a'. Since a cannot contain e = a' v a without coinciding with e against
hypothesis, we see that a cannot contain both the elements a and a'.

As an application of the criteria given in Theorems 34-36 we have the
following result :

Theorem 37. The Boolean ring B of Theorem 1 contains A as a prime ideal
when A has no unit; and the system ty is a prime ideal in Ç* when ^^Iß*.

In Theorem 32 we have already proved that A and Iß are ideals. In order
to show that they are prime ideals it is sufficient to establish condition (3) of
Theorem 34. If we consider the Boolean ring of pairs (a, a) introduced in
Theorem 1, we see that (a, e)(b, e) = (ab+a + b, e) and hence that the ele-
ments of B which are not in A have the property demanded by (3).
Similarly, the ideals in Iß* but not in Iß have by virtue of the relation
a'(a)a'(b) =a'(a v b) of Theorem 32 (2) the property demanded by (3).

We next investigate the connections between the classification of the
present section and that of §3. They are indicated in the following theorem:

Theorem 38. In a Boolean ring A, the classes S, 9Î, and Iß* satisfy the
inclusion relation Ê9Î c Iß*. More precisely, an ideal p is both prime and normal
if and only if p = a'(a) where a is an atomic element; and a prime ideal p fails to
be normal if and only if p' = o.

f This theorem should be compared with recent work of Huntington, Bulletin of the American
Mathematical Society, vol. 40 (1934), pp. 127-136 and pp. 137-142. It is easily seen that a Boolean
ling with unit together with two subclasses a and b possessing properties (1), (2'), and (3') is a sys-
tem satisfying Huntington's postulates Pl-Pll (on pp. 139-140); and, conversely, that any system
satisfying those postulates is a Boolean ring with unit together with such subclasses a and b. Hunting-
ton's postulates may therefore be regarded as postulates for a Boolean ring with unit together with a
prime ideal.
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If p is any prime ideal, the fact that p is divisorless taken together with the
fact that p":>p shows that one of the relations p" = p, p" = e must be true.
If p" = e, then p is not normal and the relation p' = o is valid. If p" = p, then p
is normal and p'^o. When p'^o, we let a be an arbitrary element in p' such
that a^O. Since p'Da(a) and a'(a)^t, we see that p = p"ca'(a) and hence
that p = a'(a). This result shows that p' = a(a) contains just one element a
distinct from 0; in other words, that b<a implies b = 0 or b = a. The element
a is therefore atomic in accordance with Definition 3. To complete our proof,
we must show that any ideal a'id), where a is an atomic element, is both
prime and normal. Theorem 23 shows that a'ia) is normal. To show that
a'ia) is prime we proceed as follows: if b and c are elements not belonging to
a'ia), we have ab^O, ac^O, and hence, by virtue of the fact that a is an
atomic element, ab = a, ac = a; in consequence, we have aibc) = (ab)(ac)
= aa = a7£0 and conclude that be is not in a'ia); with the help of Theorem 34
(3), we thus find that p = a'(a) is a prime ideal.

We shall now turn to the consideration of prime ideals in connection with
operations upon ideals and the inclusion or divisibility relation between
ideals. We first have

Theorem 39. If ftis a prime ideal in a Boolean ring A and a is an arbitrary
ideal, then

(1) the relations a c p, ap = p, a v p = p are equivalent;
(2) the relations a <t p, ap^p, a v pj¿p are equivalent;
(3) one and only one of these two sets of mutually equivalent relations is valid.

In case p is normal, the relations ap' = o and ap' = p', where p'^o, are respec-
tively equivalent to the relations in (1) and (2) respectively.

We first prove the equivalence of the relations (1) : a c p obviously implies
ap = a; ap = a implies avp = apvp = p; and a vp = p obviously implies a cp'. We
next observe that one and only one of the relations avp = p, avp = eis valid,
since p is divisorless and a v p is a divisor of p. Consequently, the relations (2)
are simply the negations of the mutually equivalent relations in (1). Thus (2)
and (3) both follow from (1). In case p is normal, we know from Theorem 38
that p is semiprincipal and that p'^o. Thus ap' = o implies a = ae = a(pvp')
= ap; and ap'^o implies p cp vap'^p, p vap' = e, p va = p va(p vp') = (p vap)
vap' = p vap' = e, and ap' = (p vap')p' = ep' = p'. The final statement of the

theorem is thus evident.

Theorem 40. 7/ p is a prime ideal divisor of the ideal product ab in a Boolean
ring A, then p is a divisor of at least one of the factors a and b ; in other words,
p s ab implies p a a or p 3 b.
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If p divides neither a nor b, we have avp = bvp = e, in accordance with
the preceding theorem. By Theorem 18 (6), we see that the relation ab cp
leads to the absurd result p = ab vp = (a vp)(b vp) =ee = e. Hence p must
divide a or b. We point out that a corresponding result does not hold for
infinite ideal products, as will be seen later. The failure to generalize Theorem
18 (6) to infinite products accounts for the distinction which we have to
make here.

Theorem 41. 7/ p is a prime ideal in a Boolean ring A and a is an arbitrary
ideal, then at least one of the relations a c p, a' c p is valid; if a is simple, then
only one is valid.

Since pDO = a'a, at least one of the relations must hold by virtue of
Theorem 40. If a is simple and if both relations were to hold, we should have
p d a v a' = e, p = e, against hypothesis.

In accordance with the introductory remarks of the present section and
the result reached in Theorem 40, we may formulate for consideration the
following statement:

Fundamental Proposition of Ideal Arithmetic. In a Boolean ring A,
every ideal other than e is the product of all its prime ideal divisors.

Our comments upon Theorem 40 indicate the possibility that an ideal
may be expressible as the product merely of some, rather than of all, of its
prime ideal divisors; and we shall see later that this possibility is realized
in general. Now it is clear that the Fundamental Proposition of Ideal Arith-
metic, and, indeed, all the preceding theorems concerning prime ideals, lack
either meaning or content unless we can establish the following result :

Fundamental Existence Proposition. In a Boolean ring A containing
at least two elements, there exists at least one prime ideal.

The exclusion of one-element Boolean rings is essential here since such a
ring contains only the ideal o = e, which is not prime. We shall prove this
proposition in Chapter IV, by means of transfinite methods; and we shall
show that, if this proposition be true for every A, then the Fundamental
Proposition of Ideal Arithmetic is true also for every A. The relation of these
two central propositions to the theory of representations will be treated in
Chapter IV.

5. Congruences, ideals, and homomorphisms. We must now consider the
specialization of the general properties of ring-homomorphisms to the case
of Boolean rings. We may first recall the principal results for arbitrary com-
mutative rings. We denote a homomorphism from A to B by A—>B, referring
to B as homomorphic to A or as a homomorph of A ; and similarly we denote
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an isomorphism from A to B by A<—>B, referring to B as isomorphic to A
or as an isomorph of A. Any system with double composition homomorphic
to a ring (or to a commutative ring) is itself a ring (or commutative ring).
Here we confine our attention to the case of commutative rings. As we have
previously remarked the determination of the homomorphs of an arbitrary
algebraic system reduces essentially to the determination of all the con-
gruences in the system. In the case of commutative rings, it is found that
every congruence is a modular congruence. The modular congruences in a
ring A are those defined in terms of the ideals of A by setting a = b if and only
if a — b is an element of a specified ideal a; in order to exhibit the ideal a in
our notation, we write a = b (mod a). It is easily verified that the modular
congruences in a ring are congruences in the sense previously indicated. The
proof that an arbitrary congruence is modular is easily given : the class a of
all elements a such that a=0 is an ideal since, if it contains a and b, it con-
tains a — b by virtue of the relations a — b=0 — 0=0, and since, if it contains a,
it contains ac by virtue of the relations ac = 0c = 0; and the relation a = b is
equivalent to the relation a — b=0 and hence to the relation a — bta. If C is a
congruence with the ideal a as its modulus, we can introduce C as the funda-
mental equality in the given ring A so as to obtain the homomorph A c, as
previously indicated; we can also group the elements of A in classes of
mutually congruent elements (mod a) and define the operations + and for
these classes in the usual way so as to obtain the quotient ring A /a; and we
see at once that Ac and A/a are isomorphic. The chief theorem concerning
the homomorphs of a ring A now asserts that every such homomorph is an
isomorph of A c and of A/a, where C is the congruence (mod a) and a is the
ideal consisting of all the elements of A which are carried into the zero ele-
ment of the given homomorph.

We begin the consideration of Boolean rings with the following result:

Theorem 42. If the algebraic system B is homomorphic to a Boolean ring A
with respect to the pair of operations + and ■ or with respect to the pair of
operations v and ■, then B is homomorphic to A with respect to all three of the
operations +, v, and ■ ; and B is a Boolean ring. If the algebraic system B is
homomorphic to a Boolean ring A with unit with respect to the pair of operations
+ and ■, with respect to the pair of operations v and ', or with respect to the
pair of operations v and ■, then B is homomorphic to A with respect to all four
of the operations +, v, -, and ' ; and B is a Boolean ring with unit. The homo-
morphism A —>B carries the zero element of A into the zero element of B, and the
unit element of A, if any exists, into the unit element of B.

The first statement of the theorem evidently refers to the two character-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



80 M. H. STONE [July

izations of Boolean rings presented in Theorem 4. If B is a system with double
composition homomorphic to a Boolean ring A under the operations + and •,
then B is certainly a ring under the corresponding operations + and • re-
spectively. The law of idempotence is carried over from A to B by the given
homomorphism, so that B is a Boolean ring. If the operation v is now intro-
duced in A and in B through the equation avb = a+b+ab, the behavior of
the homomorphism relative to the operations + and • governs its behavior
relative to the operation v ; we thus see that the given homomorphism can
be extended to cover the operation v as well as the operations + and •, since
the image in B of the element avb in A is evidently equal to the result of
applying the operation v to the images in B of the elements a and b respec-
tively. On the other hand, if B is homomorphic to A under the operations
v and -, we can show that the properties (h), (22), (3i), (4i), (5i), (52), (61)
and (62) hold in B as well as in A. All of these properties except (5i) and (52)
are identities in A and are therefore carried over by the homomorphism as
identities in B. For example, if a* is an arbitrary element of B and 0* is the
image in B of the zero element 0 in A, we can show that a* v 0* = a* in B :
for there exists an element a in A which has a* as its image in B, and the
relation a v 0 = a is carried by the given homomorphism into the relation to
be proved. We may thus confine our attention to properties (5i) and (52).
If a* and b* are arbitrary elements in B satisfying the relation b*a* = ar,
we have to show that the system x*va* = b*, x*a* = 0* has a solution in B.
There exist elements c and b in A which have a* and b* as their respective
images in B under the given homomorphism. If we put a = bc, then
ba = b(bc)=bc = a; and the image of a is b*a* = a*. Consequently, the equa-
tions xva = b, xa = 0 have a solution x. If we now take x* as the image in B
of the element x, we see that the equations satisfied by x in A are carried by
the given homomorphism into the equations under consideration in B, and
that x* is the desired solution of these equations. Thus B is a generalized
Boolean algebra and hence a Boolean ring in terms of the operations + and •,
as shown in Theorem 4. We have to show that the image of the element a+b
in A is equal to the element a*+b* in B, where a* and b* are the images of
a and b respectively. Since a+b is the unique solution of the system
xvab = avb, x(ab)=0, we see that its image is a solution of the equations
x* va*b* = a* vb*, x*(a*b*) =0*; and since the latter equations have a* + b*
as their unique solution in B, the desired result follows immediately. The
homomorphism A —>7? can thus be extended to cover the operation + as well
as the operations v and with respect to which it was originally assumed to
hold. The remaining statements of the theorem refer in a similar way to the
characterizations of Boolean rings with unit presented in Theorems 2 and 4;
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they can be established by similar, and slightly simpler, arguments. If A and
B are Boolean rings, the homomorphism A—>B carries the element 0 in A
into an element 0* in B which has the characteristic property of the zero
element of B : for if a* is any element of B and a an element of A with a* as its
image, the relation a+0 = a is carried by the homomorphism into the relation
a*+0* = a*. Similarly if A has a unit e, the homomorphism A—>B carries e
into an element e* in B which has the characteristic property of a unit ele-
ment in B : for if a* is any element of B and a an element of A with a* as its
image, the relation ea = a is carried by the homomorphism into the relation
e*a* = a*.

We next state the result which determines all the homomorphs of a
Boolean ring; the proof has already been sketched above.

Theorem 43. In order that a Boolean ring B be homomorphic to a given
Boolean ring A, it is necessary and sufficient that B be isomorphic to some
quotient ring A/a, where a is an ideal in A ; in particular, the homomorphism
A^B determines a as the class of all elements in A which have the zero element
in B as their image.

We may consider also the characterization of all congruences in a Boolean
ring. We have the following result :

Theorem 44. The only congruences in a Boolean ring A are the modular
congruences. In order that a = b (mod a), where a is an ideal in A, it is necessary
and sufficient that a + b belong to a, or that there exist elements c and d in a for
which av c = bvd.

That the only congruences in a commutative ring, and hence in a Boolean
ring, are modular congruences, we have already proved in our introductory
remarks. The relation a+b = a — b, which holds by virtue of Theorem 1, shows
that a = b (mod a) if and only if a+b belongs to a. Thus, if a = b (mod a),
we have a v (a+b) =a+(a+b)+a(a+b) =a+b+ab = a vb = b v (a+b) and
hence avc = bvd where c = d = a+b and a+b is in a. On the other hand,
if avc = bvd where c and d are in a, we have a+(c+ac) =b+{d+bd) where
c+ac and d+bd are in a and hence a+b = (c+ac) + (d+bd) where the element
on the right is in a; and we conclude that a = b (mod a).

We shall next consider the behavior of subrings and ideals of a Boolean
ring under an arbitrary homomorphism.

Theorem 45. 7/^4i and A2 are Boolean rings, if 2li and 2i2 are the classes of
all subrings of Ai and of A2 respectively, and if the homomorphism Ai—*A2
determines the ideal ai in A, then the indicated homomorphism induces a homo-
morphism 2Ii—>2Í2 with respect to the operation of unrestricted addition. In par-
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ticular, the correspondences Ax~+A2,  2Ii—>2I2 have the following properties:
(1) if bi is a subring of Ax, the images of its elements under the homomor-

phism Ax~^A2 constitute a subring b2 of A2 corresponding to it under the homo-
morphism 2li—>2l2;

(2) if bx is the subring generated by a non-void subclass 8i of Ax, then its
image b2 under the homomorphisms Ax—>A2 and 2Ii—>2Í2 is the subring generated
by the class 82 of all images of elements of 8i ;

(3) if b2 is a subring of A2, the class bi of all elements of Ai with images in b2
is a subring of Ai with b2 as its image under the homomorphisms A\-^A2 and
2Ii->212;

(4) if bi and Ci are subrings of Ax with respective images b2 and c2 in A2, then
the relations bx v ax = Ci v ai and b2 = c2 are equivalent.

The proof is outlined essentially in (1), (2), and (3). The homomorphism
Ax—+A2 takes the subring bi into a subclass b2 of ^42. If a2 and b2 are in b2,
they are images respectively of elements czi and bx in bi. It follows that
a2+b2 and a2b2 are the images respectively of ax+bx and axbx in bi and hence
belong to b2. Thus b2 is a subring of A2. The correspondence from 21i to part
of 2I2 thus set up proves to be the desired homomorphism SIi—>3I2. By the
part of (1) now established, we see that the subring bi generated by a non-void
subclass 8i of ^4i is carried into a subring c2 of A2 containing the image of 81,
which we have denoted by 82. Hence c2 contains the subring b2 generated
by 82. On the other hand, every element of c2 is equal to a polynomial in terms
of elements of 82, by virtue of the construction of bi in terms of 81. Hence c2
is contained in b2. We see therefore that b2 = c2, as we wished to prove. By
the parts of (1) and (2) now established, we see that the class bi of all elements
in Ax with images in a given subring b2 of A2 generates a subring Ci whose
image in A2 is the subring generated by b2 and is thus b2 itself. By definition,
bi contains Ci. Hence bi coincides with ci and is therefore a subring of Ax with
b2 as its image. By the part of (3) thus established, we see that the corre-
spondence 2I1—>2I2 previously set up is a univocal correspondence taking the
entire class 2Ii into the entire class 2I2. In view of the part of (2) already
proved and in view of the definition of the sum of subrings as the least sub-
ring containing all the summands, we now see that the correspondence
21—»2I2 is a homomorphism with respect to the operation of unrestricted
addition. All parts of the theorem, except (4), are thus proved. To establish
(4), we first note that the image of the ideal ai under the correspondence
2li—>2l2 is the ideal o2 consisting of the zero element in A2 alone. If bi and Ci
have the respective images b2 and c2 under the homomorphism 2Ii—>2I2, then
bi v ai and Ci v ai have the respective images b2 v o2 = b2, and c2 v o2 = c2. It fol-
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lows that bi v ai = Ci v ai implies b2 = c2. Furthermore if ai is any element with
image b2 in b2, then there exists an element b in bi which also has b2 as its im-
age. The fact that ai and ¿>i have the same image implies that ai = bi (mod ai),
and hence that ax = bx+(ax+bx) belongs to bivai. Thus bivai is the class of
all elements in A i with images in b2. Similarly, Ci v ai is the class of all elements
in Ai with images in c2. In consequence, b2 = C2 implies bivai = Civai. This
completes the proof of (4). Evidently the homomorphism 2ti—>2i2 determines
a relation of congruence which is explicitly characterized by (4). We point
out that the homomorphism 2ii—>2I2 cannot in general be extended to hold
with respect to the multiplication of subrings. If ai is an ideal other than
Oi or Ci, we may determine elements £»i and Ci in Ax such that bi^Ci,
bi^Oi (mod ai), CiféOi (mod ai), h=Ci (mod ai). If ^42 is isomorphic to
Ai/ai, then the homomorphism AX-^>A2 takes bx and Ci into the same element
£>25¿02. If now bi and Ci are the subrings consisting of Oi, ¿>i and of Oi, cx re-
spectively, and if b2 is the subring consisting of 02 and b2, we see that
biCi = 0i, bi—>b2, C2—>b2, biCi—»o2 j^ b2 = b2b2. This example indicates the im-
possibility of so extending the homomorphism.

Theorem 46. If Ai and A2 are Boolean rings, if 3i and 32 are the classes
of all ideals in Ai and in A2 respectively, and if the homomorphism AX—*A2 de-
termines the ideal ax in Ai, then the indicated homomorphism induces a homo-
morphism 3t-*32 with respect to the operations of unrestricted addition and
finite multiplication. In particular, the correspondences AX-^A2 and 3i~*32
have properties (l)-(4) of Theorem 45 with the term "subring" everywhere re-
placed by the term "ideal."

Since ideals are subrings and since the sum of ideals is an ideal in accord-
ance with Theorem 18, we can prove all assertions of the present theorem,
except (2) and those dealing with ideal multiplication, by showing that the
correspondence 2íi—>2Í2 takes 3i into 32 and then specializing Theorem 45
in the obvious way. Now, if bi is an ideal in Ah its image b2inA2isa subring.
Furthermore, if b2 and c2 are elements of b2 and ^42 respectively, there exist
elements bi and Ci in bi and A i respectively with b2 and c2 as their respective
images ; and hence b2c2 is the image of ¿>iCi, an element in bi, and accordingly
belongs to b2. Thus b2 is an ideal. On the other hand, if b2 is an ideal in A2,
the class bi of all elements in ^4i with images in b2 is a subring. Also, if bi and Ci
are in bi and Ai respectively, their respective images b2 and c2 belong to b2
and A2 respectively; and hence bid has the image b2c2 in b2 and accordingly
belongs to bi. Thus bi is an ideal. The correspondence 2li—>2I2 takes 3i into 32,
as we wished to prove. We next discuss (2). The ideal ai(8i) generated by a
non-void subclass 8i of A i has as its image an ideal b2 which contains 82, the
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image of 81. It follows that b2 contains the ideal a2(i2) generated by 82. On the
other hand, the class bi of all elements in Ax with images in a2i^i) is an ideal
which contains 81 and hence also ai(8i). It follows that a2i^2) contains b2.
We therefore conclude that a2(82) is the image of ai(8i), as we wished to prove.
We still have to establish the assertion that the correspondence Si—>S2 is a
homomorphism with respect to finite multiplication. Since it is evident that
the image of the product biCi of ideals bi and Ci in Ax is an ideal contained
in the images b2 and c2 of bi and Ci respectively, we see that the image is
contained also in the product b2c2. On the other hand, if a2 is an arbitrary
element of b2c2, it is expressible in the form a2 = b2c2, where b2 is in b2 and c2
in c2, as we have proved in Theorem 18; and the elements b2 and c2 are the
images of elements bx and cx respectively in bi and Ci respectively. Thus a2
is the image of the element bxCx in biCi and hence belongs to the image of biCi.
We conclude therefore that the image of biCi coincides with the product b2c2
of the images of bi and Ci respectively, and thereby bring the proof to a close.

We may point out that the homomorphism 3i—>32 cannot be extended
to the operation of orthocomplementation. This we shall show by examples
cited in connection with the following theorem.

Our next result deals with the behavior of ideals relative to the classifica-
tion of §3. We have

Theorem 47. If Ax and A2 are Boolean rings, the homomorphism Ax~^A2
carries every principal isemiprincipal, simple) ideal in Ax into a principal
isemiprincipal, simple) ideal in A2; but it may carry a normal ideal in Ax into
a non-normal ideal in A2.

If bi is a principal ideal in Ax, its image in A2 is an ideal which, considered
as a Boolean ring, is homomorphic to bi and hence has a unit in accordance
with Theorem 42. It follows that b2 is a principal ideal in A2. We pass next
to the case of a simple ideal bi in Ax- The images of bi and bi in ^42 are ideals
b2 and c2 respectively. The relation bxbi = Oi implies the relation b2c2 = o2 in
accordance with Theorem 46 and hence the relation c2 c bi. The rela-
tion bivbi=ei similarly implies the relation b2vc2 = e2. Thus we have
b2vbi ob2v c2 = t2, b2vb2 =t2. It follows that b2 is a simple ideal. In case bi
is semiprincipal but not principal, b{ is principal. The image b2 of bi is
simple by the result just established; and the image c2 of bi is principal.
Thus b2' =bi t2 = bi (b2 vc2) =b2'c2 = c2 by virtue of the relations noted above.
Since b2 is simple and bi is principal, it follows that b2 = b2' is semiprincipal,
as we wished to prove. In order to show that similar results do not hold in
the case of normal ideals, let us consider the case where the homomorphism
Ax—>A2 determines an ideal ai which is normal but not simple, with a view to
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showing that the normal ideal a».' is carried into a non-normal ideal b2. The
homomorphism carries ai into o2, aivai into b2. We shall show that b29ée2,
bi = o2, so that the relation b2" = b2 is impossible. It is then clear that b2 is not
normal. Since ai v a/ j^ti, we see with the aid of Theorem 46 (4) that b2^t2.
Now let Ci be the class of all elements in Ai with images in bi. By virtue of
Theorem 46, the image of the ideal Ci(ai v a{ ) is bi (o2 v b2) = o2. Hence we have
Ci(ai vai)c au CiOi = Ci(ai v ai*)ai c aiai = oi, cutf = Oi, Ci c ai"' = ai, and b2 = o2,
as we wished to show. The fact that the homomorphism Ai-^A2 does not
always carry normal ideals into normal ideals shows that the induced homo-
morphism 3i—>32 does not always hold relative to the operation of ortho-
complementation, since an ideal bi in ^4i may satisfy the relation b/' =bi and
yet have an image b2 for which b" ^b2.

We shall also consider the behavior of prime ideals under a homomor-
phism, obtaining the following result:

Theorem 48. If Ai and A2 are Boolean rings and if ai is the ideal deter-
mined in Ai by the homomorphism Ai—>A2, then the indicated homomorphism
carries a prime ideal pi in Ai into an ideal p2 in A2 which is prime or coincides
with e2 according as pi contains ai or not. If p2 is a prime ideal in A2, the class
pi of all elements in Ai with images in p2 is a prime ideal in Ax.

If pi is prime, then pi v at = pi or pi v ai = ei, according as pt contains ai
or not, as we have proved in Theorem 39. Since pi and pi v ai have a common
image p2 in A2, we see that p25¿e2 or p2 = e2 according as pi contains Oi or not.
In case p25¿e2, let b2 be an ideal which contains p2, and let bi be the ideal
consisting of all elements in ^li with images in b2. Since bi evidently contains
pi, we must have either bi = pi or bi = ei and hence either b2 = p2 or b2 = e2. It
follows that p2 is divisorless and therefore prime, by virtue of Theorem 33.
If p2 is a prime ideal in A2, the ideal pi consisting of all elements in Ai with
images in p2 evidently contains ai. Since p2?ie2, we have pi^Ci likewise. If bi
is an ideal containing pi, its image b2 contains p2 and must therefore coincide
with p2 or with e2. When b2 = p2, we must have bi v ai = pi v ai by Theorem 46
(4); but since biDpiDOi, this relation implies bi = pi. Similarly, when b2 = e2,
we must have bi vai = ei vai and hence bi = ei. It follows that pi is divisorless
and therefore prime.

The final theorem concerning homomorphisms offers a new criterion to
determine whether an ideal is prime or not.

Theorem 49. In order that an ideal p in a Boolean ring A be prime, it is
necessary and sufficient that A/p be a two-element Boolean ring.

If ^4/p is a two-element Boolean ring, it consists of a zero element 0* and
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a unit element e*. An element a in A belongs to p or not according as its image
under the homomorphism A—>A/$ is 0* or e*. The homomorphism cannot
take the product ab into 0* if it takes a and b both into e*; in other words,
if p contains ab, it contains at least one of the elements a and b, and is there-
fore prime. If p is prime, then A/p contains no divisors of zero. For if a* and
b* are elements of A/p such that a*b* = 0*, they are images of elements a and b
in A such that ab is in p; since p is prime, at least one of these elements is in p,
and at least one of the elements a* and b* is equal to 0*. By Theorem 1,
the Boolean ring A/p cannot have more than two elements. On the other
hand, the relation p^e shows that A/p has at least two elements. The proof
is thus completed.

6. Direct sums. In the case of Boolean rings, the theory of representa-
tions has a very close connection with the concept of the direct sum and the
problem of representing a given Boolean ring as a direct sum. We shall there-
for close the present chapter with a brief section devoted to this topic. The
direct sum of Boolean rings Aa where the index a ranges over an arbitrary
finite or infinite class A is the algebraic system S„(A.4a described as follows:
the elements of the system are all the functions / defined over A with values
fia) in Aa; the relation of equality in the system is defined by putting/=g if
and only if fia) = g(a) for every a; the fundamental operations of the system
are addition and multiplication, the sum/+g being defined as the function h
such that hia) =/(«) +g(oi) inAa for every a and the product fg being defined
as the function k such that k(a)=f(a)g(a) in Aa for every a. In case the
class A consists of the integers 1 and 2, we denote the direct sum of the
Boolean rings Aa by Ax v A2; this direct sum may evidently be described as
the class of all ordered pairs (a-i, ai) where ai and a2 are elements of Ai and
of A 2 respectively, with (ai, a2) = (bi, b2) if and only if ai = bi and a2 = b2 and
with (ai, ai) + (bi, b2) = (ai+bi, a^+bi), (ai, ai)(bi, b2) = (aibi, ajb2). The follow-
ing properties of the direct sum may be stated without formal proof :

Theorem 50. The direct sum S„eA4.a of Boolean rings Aa where a ranges
over the class A is a Boolean ring. Its zero element is the function 0 which for
each a has as its value 0(a) the zero element of Aa. It has a unit if and only if
every A a has a unit; if Aa has a unit ea for every a, then the function e which for
each a has the value e(a) =ea is the unit of the direct sum.

It is an important problem to determine when a Boolean ring is isomor-
phic to a direct sum of Boolean rings in a non-trivial manner. Since the direct
sum of a Boolean ring A with a one-element Boolean ring is isomorphic to A,
we must evidently exclude one-element summands as trivial. A Boolean ring
which is representable as the direct sum of two or more Boolean rings, each
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with at least two elements, is said to be reducible ; and a Boolean ring which
is not so representable is said to be irreducible. The reducibility of a Boolean
ring is correlated with its ideal structure by virtue of the following result:

Theorem 51. If a is a simple ideal in a Boolean ring A, then A*—>iA/a)
v(A/a'), a*—>A/a', a'*—*A/a. Conversely, if A, Ai, and A2 are Boolean

rings such that A*—>Ai v A2, then there exists a simple ideal a in A such that
Ai<—>A/a, A2*->A/a'.

If a is a simple ideal in A, then every element a in A can be represented
in a unique manner as the sum ai+a2 of elements ax and a2 in a and a' respec-
tively. To establish the representation, we note that a and a' are simple by
Theorem 30 and hence that a(a)a and a(a)a' are principal ideals a(ai) and
a(a2) by Theorem 26. The relations a(ai) c a, a(a2) c a', 0(01+02) =a(ai) + a(a2)
= a(a)a + a(a)a' = a(a)(a + a') = a(a)(a + a' + aa') = a(a)(a va') = a(a)t = a(a)
show that di is in a, that a2 is in a', and that 01+02 = a. If a has a second repre-
sentation a = bx+b2 where bx and b2 are in a and a' respectively, the relation
ax + a2 = bx+b2 implies the relation ax + bx = a2 + b2, which shows that ai + bx
and a2+£>2 belong both to a and to a'. Hence we have a1+bx = a2+b2 = 0,
ax = bx, a2 = b2. The representation is therefore unique. In terms of this repre-
sentation we set up a biunivocal correspondence from A to the class of
ordered pairs (ax, ai) where di is in a and a2 in a': we put a*—>(di, a2) if and
only if a = ai+a2. It is evident that this correspondence has the property that
a<—>(ai, a2) and b<—>(bi, bi) imply a + b*—»(ai + ¿>i, 02 + ^2), ab*—>iaxbx, a2b2).
Consequently, we see that, if we regard a and a' as Boolean rings, their direct
sum is isomorphic to A. Furthermore, if a = a1+a2 and b = bx+b2, we see that
a=.a2 (mod a), o=¿>2 (mod a), a+b = a2+b2 (mod a), and ab = a2b2 (mod a).
We conclude at once that, if we regard a' as a Boolean ring, then a' is isomor-
phic to A/a. Since a' is simple and ia')' = a, the isomorphism a<—>A./a' is
also valid. The fact that A is isomorphic to the direct sum of a and a' shows
that A is also isomorphic to the direct sum of their isomorphs A/a and A/a',
taken in inverted order.

If A*—>AxvA2, we see that the class ai of all pairs (ai, 02) in AxvA2 is
an ideal; and similarly that the class a2 of all pairs (0i, ai) is an ideal. If the
ideals ai and a2 are regarded as Boolean rings they are isomorphic to Ax and
to A2 respectively. It is furthermore evident that aia2 consists of the zero
element (0i, 02) in Axv A2 and that ttiva2 consists of all elements (ai, ai) in
Ai v A2. Thus if we pass to the Boolean ring A by means of the isomorphism
A*—>AivA2, we see that A contains ideals b and a isomorphic to ai and a2
respectively and hence also to Ax and A2 respectively, these ideals satis-
fying the relations ab = o, avb = t. Since ab = o implies a'^b, we see that
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ava'^avb = e and hence that a is simple. Similarly b is simple. Since
a' = a'e = a'(avb) =a'b, we have a'cb and hence a' = b, b' = a. The isomor-
phisms Ax<—>b, b<->A/b' thus lead to the isomorphism ^4i<—>A/a.  The
isomorphisms ^42<—>a, a<—>A/a' lead similarly to the isomorphism
A2^A/a'.

An immediate consequence of Theorem 51 is the following proposition
about reducibility :

Theorem 52. A Boolean ring A is reducible if and only if it has more than
two elements.

From the preceding theorem we see that A is reducible if and only if the
class © of all simple ideals contains an ideal a other than o or e, the relations
a'^e, a't^o being equivalent to the relations a 5^0, a^e respectively. Since the
class $ of all principal ideals is contained in © and has the same cardinal
number as A, we see that, whenever A contains more than two elements,
© contains more than the two ideals 0 and e and A is reducible. If A has one
or two elements, then A has a unit by Theorem 1 and © coincides with ty by
Theorem 25. Thus © contains only the ideals 0 and e, and A is irreducible.

We conclude with the consideration of the direct sums of two-element
Boolean rings, that is, of non-trivial irreducible Boolean rings. We have

Theorem 53. A Boolean ring A is isomorphic to the direct sum of two-
element Boolean rings Aa, where a ranges over the class A, if and only if it is
isomorphic to the algebra of all subclasses of A.

It is evidently sufficient for us to prove that the direct sum of identical
two-element Boolean rings Aa, where a is in A, is isomorphic to the algebra
of all subclasses of A. To a function / in the direct sum we order the class A/
of all elements a such that/(a) =e. It is then evident that A/ = A„ if and only
if f=g, that A/+(, = A/AA^, and that A/„ = A/Ai,. It follows that the corre-
spondence /<->A/ determines an isomorphism between A and an algebra of
subclasses of A. That the latter algebra is the algebra of all subclasses of A
we see as follows: if B is an arbitrary subclass of A, the function/ which is
equal to e or to 0 according as a is in B or not is an element of the direct sum
and has the property that A/ = B.

This theorem is significant from two points of view. In the first place, it
shows that, although every Boolean ring of more than two elements is re-
ducible, such a ring need not be completely reducible in the sense that it is
representable as the direct sum of irreducible summands or components.
The complete reduction of finite Boolean rings is possible in accordance with
Theorem 12; but that of infinite Boolean rings is in general impossible. In
the second place, the theorem shows the existence of a connection between
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the theory of direct sums and that of the representation of Boolean rings by
algebras of classes.

Chapter III. Algebras of classes

1. The construction of algebras of classes. By an algebra of classes or
concrete Boolean ring we shall mean a Boolean ring which has as elements
certain subclasses of a fixed finite or infinite class and as operations those of
forming the union (modulo 2) (or symmetric difference) and the intersection
of classes. It is easily verified that the class of all subclasses of a fixed class
is such a concrete Boolean ring, in accordance with Definition 1. Furthermore,
this algebra of classes contains as a subring every concrete Boolean ring with
elements which are subclasses of the same fixed class. The object of the
present chapter is to discuss the structure of concrete Boolean rings in terms
of the general theory developed in the preceding pages.

While the explicit construction of algebras of classes is not of primary
concern to us here, some brief remarks upon this subject will permit us to
review briefly a few of the points of contact between the present abstract
theory and other branches of mathematics, and also to illustrate some of the
concepts which we have had occasion to introduce. The methods available
for constructing concrete Boolean rings on the basis of an entirely abstract
class are essentially those indicated in Chapter II, §§1-2. To them we may
add the use of cardinal numbers in forming rings and ideals : thus the count-
able subclasses of a non-countable class, the finite subclasses of an infinite
class afford examples of Boolean rings which are ideals in the algebras of all
subclasses of the respective basic classes. Since the union of classes corre-
sponds in the case of a concrete Boolean ring to the abstract element avb,
we have been at some pains, particularly in Theorems 14, 16, and 17, to
show how the operation v can be used in place of the operation + in carrying
out such constructions. It is only in the case of a class in which there are given
relations, operations, and properties other than those of the pure logic of
classes that other methods of construction can be applied to obtain algebras
of classes. For example, in the theory of measure in euclidean space of n
dimensions, it is the combination of the geometrical and topological proper-
ties of the space with the operations of the logic of classes which leads to the
study of the various concrete Boolean rings consisting respectively of the
subclasses described as follows: Lebesgue measurable sets, Borel measurable
sets, Lebesgue measurable sets of finite measure, Borel measurable sets of
finite measure, and sets of zero measure. It will be noted that the last-named
algebra of classes is an ideal in the algebra of all subsets of the given space.
Again, in general topology, analogous circumstances lead to the study of
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Boolean rings consisting of the subclasses variously described as follows:
Borel sets, nowhere dense sets, and sets of the first category. It will be noted
that the two last named algebras of classes are ideals in the algebra of all
subclasses of the basic topological space. Similar ideals are of such frequent
occurrence and of such real importance in topology that they have been given
the special designation "additive hereditary classes" by Kuratowski.f

We may point out that some of the algebras of classes cited above are
Boolean rings without unit. For instance, the finite subclasses of an infinite
class and the Lebesgue measurable sets of finite measure constitute such rings.
It is likewise possible to use these and similar concrete Boolean rings to
illustrate other points raised in the development of the general theory. At
the end of the present chapter we shall discuss the Boolean ring of Lebesgue
measurable sets of finite measure in sufficient detail to uncover a number of
such illustrative properties.

2. Reduction and equivalence. Before proceeding with the study of con-
crete Boolean rings, we shall describe a canonical form for such rings, and
show how any algebra of classes can be reduced to canonical form; that is,
how it can be replaced by an isomorphic algebra of classes in that form.

Definition 10. If A is a Boolean ring with elements a, b, c, ■ ■ ■  which are
subclasses of a fixed class E = E(4) with elements a, ß,y, ■ ■ ■ , then A is said to
be a reduced algebra of classes when it has the following property : every elemen
a in E is contained in some element of A and is the only element of E common
to all the elements of A containing it.

We can now prove the following result :

Theorem 54. Every algebra of classes with more than one element is isomor-
phic to a reduced algebra of classes, by virtue of an element-to-element corre-
spondence of the basic classes.

The case of a one-element algebra of classes is trivial, since it is isomorphic
to the algebra of all subclasses of a void class E. In case A is an algebra of two
or more subclasses of a class E, we construct an isomorphic reduced algebra
of classes B with elements which are classes of subclasses of E. We observe
that the zero element 0 of A must be the void class : for if a is any element of
A, the equation a + a = 0 identifies 0 as the symmetric difference of the class a
with itself. We observe also that the union of all subclasses of E belonging to
A is a non-void subclass H of E. If a is any element of H, the intersection
of all those classes a in A which contain a is a non-void class E(a) contained

f Kuratowski, Topologie, vol. 1, Warsaw-Lwow, 1933, p. 29.
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in H and containing a. We shall now show that two such classes E(a) and
Eiß) have an element 7 in common if and only if they coincide. Let a and b
be arbitrary classes belonging to A and containing a and ß respectively.
If E(a)E(/3) contains y then ab also contains 7. Since ab(a + b) =0, where 0
is the void class, the symmetric difference a+b cannot contain 7; further-
more it cannot contain a or ß without containing E(a) or E(/3) and hence 7.
Since a and ß belong to a and to Í» respectively but not to a + b, they must
belong to ab and hence to both a and b. It thus follows that E(a)=E(/3).
In consequence of this result, we see that a class a belonging to A has a non-
void intersection with a class E(x) if and only if a contains E(a): for ifßis
common to a and E(a), then ß is common to Eiß), which is contained in a,
and E(a); and E(a) = E(ß). We denote by § the class of all classes E(a) and
by ¡Q(a) the class of all classes E(a) which are contained in the class a be-
longing to A. It is evident that the correspondence a—>§(a) has the fol-
lowing properties: ÍQÍa)=ÍQÍb) if and only if a = b; £>(« + />) = £>(a)A^>(¿>);
¡Öiab) =§(a)§(&). Thus the class of all classes §(a) is an algebra of classes B
isomorphic to A. The correspondence a—>,£>(#) may evidently be regarded as
induced by the correspondence a—>E(a) carrying H into §. We still have to
show that B is a reduced algebra of classes. Since every a in H is contained
in some class a belonging to A, it is clear that every E(a) in H is contained in
some class §(a) belonging to B. The classes §(a) containing an arbitrary
E(a) in § are those for which a is a class containing a; and hence, for any ß
such that E(ß) ¿¿ E(x), there is some such a with the property that a does not
contain Eiß), §(a) does not contain E(/3). It follows that E(a) is the sole
element common to the classes § (a) containing it. Thus B is a reduced algebra
of classes in accordance with Definition 10.

Obviously, if A is any reduced algebra of classes we can construct iso-
morphic algebras of classes which are not reduced: we have only to replace
single elements of the basic class E by two or more elements and to adjoin
superfluous elements, in a reversal of the process of reduction described in
the proof of Theorem 54.

We shall consider also a relation of equivalence between algebras of
classes, defined as follows:

Definition 11. 7/^4 and B are algebras of subclasses of classes EA and EB
respectively and if there exists a biunivocal correspondence between EA and EB
which induces an isomorphism A<—>B, then the algebras A and B are said
to be equivalent.

Concerning this relation of equivalence, we may state the following the-
orem without formal proof:
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Theorem 55. If A, B, and C are algebras of classes, then the relation of
equivalence introduced in Definition 11 has the following properties :

(1) A is -equivalent to A ;
(2) if A is equivalent to B, then B is equivalent to A ;
(3) if A is equivalent to B and B to C, then A is equivalent to C;
(4) if A is a reduced algebra of classes and B is equivalent to A, then B is a

reduced algebra of classes.

It is not true that two isomorphic reduced algebras of classes are neces-
sarily equivalent. Illustrative examples are easily constructed on the basis of
the following result:

Theorem 56. If A is a reduced algebra of subclasses a of a class E and if H
is any subclass of E, then the classes Ha constitute a reduced algebra B of sub-
classes of H homomorphic to A under the correspondence a—>Ha. This homo-
morphism is an isomorphism if and only if the intersection Ha is non-void for
every non-void a in A.

The relations H(a + 6) = (Ha) + (Ho), H(ao) = (Ha) (He) hold in the algebra
of all subclasses of E and show that the correspondence a—>Ha determines a
homomorphism A—>B. It is evident that B is a reduced algebra of classes.
If the indicated homomorphism is an isomorphism, then Ha = H7> implies
a = b; in particular, for 6 = 0, we must have a = 0 whenever Ha = 0. On the
other hand, if H(a+o)=0 implies a+o = 0, we see that Ha = H¿> implies
H(a+o) =Ha+Ho = 0 and hence a+& = 0, or, equivalently, a = b; and the
indicated homomorphism is therefore an isomorphism.

In view of Theorems 54 and 55, we may properly confine our attention
to reduced algebras of classes; and we may regard equivalent algebras of
classes as abstractly identical. We shall therefore assume in the remainder
of the present chapter that we are dealing with reduced algebras of classes
exclusively.

3. The analysis of algebras of classes. If A is an algebra of subclasses of
a class E and if a is an ideal in A, we can form the union E(a) of all those sub-
classes of E which belong to the ideal a. On the other hand, if H is an arbitrary
subclass of E, we can form the ideal a(H) in A consisting of all those classes
which belong to A and are contained in H. The chief task of the present
section is to study the two correspondences thus defined between ideals in
A and subclasses of E.

We commence with the following theorem:

Theorem 57. Let A be an algebra of subclasses a of a class E; let a be an
arbitrary ideal in A ; and let E(a) be the union of all those subclasses of E which
are elements of the ideal a. Then the following relations are valid:
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(1) if 23 is any non-void class of ideals in A, then

2 E(a) = E(S a), n E(a) :> E(P a) ;
oei8 atiB Oí» aeS8

(2) if a and b are ideals in A, then E(ab) =E(a)E(b);
(3) if a and b are ideals in A, then a c b implies E(a) c E(b) ;
(4) if a and b are ideals in A, then E(a) =E(b) implies a' = b';
(5) the ideal a' consists of those and only those subclasses of E which belong
to A and are contained in E'(a) ; and E(a') c E'(a).

The correspondence a—>E(a) defines a homomorphism from the system 3 °f all
ideals in A (with unrestricted addition and finite multiplication as operations)
to the system of all classes E(a) (with the operations of forming arbitrary unions
and finite intersections), in accordance with il) and (2) above. This correspond-
ence has the following special properties:

(6) if a is a principal ideal aia), then E(a(a)) =a;
(7) if ais a simple ideal, then E(a') =E'(a);
(8) if a and b are normal ideals, then E(a) = E(b) implies a = b;
(9) if p is a prime ideal, then E'(p) contains at most one element.

If the correspondence a—>E(a) is restricted to normal ideals it is biunivocal; if it
is restricted to simple, semiprincipal, or principal ideals, it defines an isomor-
phism and the corresponding classes E(a) constitute an algebra of classes.

Properties (3) and (6) are evident from the definition of the class E(a).
From (3), we have

ZE(a)cE(Sa), n E(a) =>E(P a).
CleUi (le!b Of« Oe58

To complete the proof of (1) we must therefore show that

or, equivalently, that

2 E(o) = E(S a)
o.« oí»

2 E(a) 3 a for every a in Sa.
o.» o.«

Now by Theorem 17 such an element a can be expressed in the form
a = axv ■ ■ ■ v an where ax, ■ ■ ■ , a„ belong respectively to ideals ai, • ■ ■ , a„
in 23; and we thus have

2 E(a) d E(ax) u • • • u E(a„) => ax v • • • v an = a,
Oí»

as we wished to prove. In order to prove (2), it is now sufficient to show that
E(a)E(b)cE(ab). We have
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E(a)E(b) =2aS/»=Saôc E(ab)
ata.   beb ata

beb

since ab evidently belongs to the ideal ab. We next prove (5). In order that
the class a be an element of the ideal a' it is necessary and sufficient
that a(a)a = o. By (2) and (6), the latter relation holds if and only if
aE(a) =E(a(a))E(a) = E(a(a)a) =E(o) =0, where 0 is the void class and the
zero element of A. We thus conclude that acE'(a) and that E(a') cE'(a).
The first part of (5) obviously implies (4). If we combine (4) with a result
noted in Theorem 28, we obtain (8). To prove (7), we apply (1) and (2) to
the relations ava' = e, aa' = o, which hold when a is simple, finding that
E(a) u E(a') = E(a v a') = E(e) = E, E(a)E(a') = E(aa') = E(o) =0 and hence that
E(a')=E'(a). Finally, we consider (9). If E'(p) contains elements a and ß
where a^ß, the fact that A is a reduced algebra of classes shows that there
exists a class a in A which contains a but not ß. Since a does not belong to p,
we have p v aia) = e in accordance with Theorem 39. Thus we see that
E(p) u a = E(p) u E(a(a)) = E(p v a(a)) = E(e) = E. Since ß is not an element of
E(p), it must be an element of a, contrary to hypothesis. Hence (9) is estab-
lished. It is now evident that the correspondence a—>E(a) sets up a homo-
morphism as stated in the theorem. We note that the congruence determined
in 3 by this homomorphism, namely, the relation a = b equivalent to
E(a) =E(b), has by (4) the property that it implies the congruence C of Theo-
rem 38. It follows that the system of classes E(a) has the system 3C of The-
orem 28 as a homomorph. The specialization of this correspondence to the
various special classes of ideals now follows at once from Theorems 28-32
and Theorem 42.

Theorem 58. Let A be an algebra of subclasses a of a class E; let H be an
arbitrary subclass of E; and let a(H) be the class of all elements a in A which are
subclasses of H. Then a(H) is an ideal in A with the following properties:

(1) a(Hi)va(H2)ca(H1uH2);

(2) a(Hi)a(H2) = a(HiH2);

(3) Hi c H.2 implies a(Hi) c a(H2) ;

(4) a(H) is prime if and only if H' has exactly one element.
In connection with Theorem 57, the following relations are found to hold:

(5) a(E(b))3b; (6)        E(a(H))cH; (7)        b' = o(E'(b)).

It is easily verified that a(H), which always contains the void class 0,
that is, the zero element in A, is an ideal in A. Properties (1), (3), (5), and (6)
are evident; and (7) is a restatement of Theorem 57 (5). Since the relation
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a(Hi)a(H2) 3a(HxH2) follows from (3), we can prove (2) by showing that
a(Hi)a(H2) is contained in a(HiH2). If a is in the ideal a(Hi)a(H2), Theorem 18
shows that a = bc, where b and c are in a(Hi) and a(H2) respectively. It is
thus clear that a is contained in HXH2 and hence that a(Hj.)a(H2) ca(HiH2),
as we wished to prove. Finally, we consider (4). If a(H) is prime, then E'(a(H))
contains at most one element by Theorem 57 (9). Hence H' contains at most
one element by (6) above. It is clear, however, that H' must contain at least
one element, since H' =0 would imply a(H) =a(E) =e, contrary to hypothesis.
On the other hand, if H' contains exactly one element a, a(H) consists of those
classes in A which do not contain a; and the remaining classes in A all con-
tain a and constitute a class b, which cannot be void since A is a reduced
algebra of classes. It is evident that the classes a(H) and b have the properties
enumerated in Theorem 34, and hence that a(H) is a prime ideal.

It is now desirable that we consider in greater detail two special cases
corresponding to the possible extremes under Theorem 57 (4): the cases
where the relation E(a) =E(b) is equivalent to the relations a = b, and a' = b'
respectively. For subsequent considerations, it is helpful to introduce the
following terminology in the first case :

Definition 12. An algebra A of subclasses of a class E is said to be perfect if
E(a)=E(b) implies a = b; that is, if the homomorphism of Theorem 57 ¿5 an
isomorphism.

The characterization of perfect algebras of classes involves the following
connection with the closing remarks of Chapter II, §4:

Theorem 59. In order that an algebra A of subclasses of a class E be per-
fect, it is necessary and sufficient that

(1) the Fundamental Proposition of Ideal Arithmetic hold in A ;
(2) E'(p) be a one-element class whenever p ¿5 a prime ideal.

If the algebra A is perfect then E(a) =E = E(e) implies a = e. Theorem 57
(9) therefore shows, by virtue of the relation E(p)?¿e, that E'(p) is a one-
element class whenever p is a prime ideal. If a is an arbitrary ideal not equal
to e, then the prime ideal p is a divisor of a if and only if pa = a ; the latter rela-
tion is equivalent to E(pa) =E(a), since A is perfect, and hence to the rela-
tions E(p)E(a) =E(pa) =E(a), E(a) c E(p). If a is an element not contained in
E(a)^E, the class H of all elements in E not equal to a determines a prime
ideal p = a(H) in accordance with Theorem 58 (4). By Theorem 58 (6),
E(p) cH; since E'(p) is a one-element class by the preceding results, it follows
that E(p) =H d E(a) and hence that p a a. Thus the class SB of all prime ideal
divisors of a is non-void and consists of the ideals p = a(H) where H s E(a) and
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H' is a one-element class. We can now show that a = PiesBp. By Theorem 57 (1)
and the relation E(p)=H, we have E(P„eí8p) cIL,eíBE(p) =E(a). On the other
hand, the relation acP^p shows that E(a) c E(Pp«s8p). It follows that
E(a) =E(Pt)es8p) and, since A is perfect, that a = P))€s8p, as we wished to prove.

Now let us suppose that A is an algebra of classes in which conditions
(1) and (2) are satisfied. If a and b are distinct ideals, there must exist a prime
ideal p containing one but not both of these ideals, in accordance with (1).
Let us suppose that our notation is so chosen that p contains a but not b.
By Theorem 57 (3) we have E(p) z> E(a). On the other hand, (2) shows that
E'(p) is a one-element class and hence that a(E(p)) is a prime ideal divisor of p
in accordance with Theorem 58, (4) and (5). It follows that p = a(E(p)). If
the relation E(p)sE(b) were true, we should have b ca(E(b)) ca(E(p)) =p,
contrary to hypothesis. Thus E(p) contains E(a) but not E(b), so that
E(a)^E(b). We therefore conclude that A is perfect.

We now turn to the second case, that in which E(a) = E(b) and a' = b' are
equivalent relations. In view of Theorem 57 (4), we have merely to ascertain
the conditions under which a' = b' implies E(a) = E(b).

Theorem 60. The following assertions concerning an algebra A of subclasses
of a class E are equivalent :

(1) a' = b' implies E(a)=E(b);
(2) every one-element subclass of E is an element of A ;
(3) a(Hi) = a(H2) implies Hi = H2;
(4) E (a (H) ) = H for every subclass Ho/E;
(5) E(a') = E'(a) for every ideal a in A;
(6) a(H) is a normal ideal for every H;
(7) a(E(b)) = b" for every ideal b in A;
(8) a(Hi)va(H2)=a(HiuH2) for all Hi and H2.

When these conditions are satisfied, the Boolean ring Sft of all normal ideals in A
described in Theorem 29 is isomorphic to the algebra of all subclasses of E. Con-
versely, if the Boolean ring Sft of all normal ideals in an abstract Boolean ring B
is isomorphic to the algebra of all subclasses of a class E, then B is isomorphic
to a reduced algebra A of subclasses of E in which these conditions are satisfied.

We begin by establishing the implications 1—>2—>3—>4—>5—>6—>7—»1,
4—>8, and 8—>6. If (1) holds and H is a one-element subclass of E, then a (H')
is prime by Theorem 58 (4), E(a(H')) =H' by Theorem 57 (9) and Theorem
58 (6), and a'(H') ^o since (1) and a'(H') =e' would imply H' = E(a(H')) =E(e)
= E; and it is therefore evident that H, as the only subclass of H distinct from
0, must be an element of A. If (2) holds, the ideal a(H) contains those and
only those one-element classes which are subclasses of H; it is thus clear that
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a (Hi) =a(H2) implies Hi = H2. If (3) holds, we have a(E(a(H))) =a(H) by Theo-
rem 58, (3), (5), and (6), and hence E(a(H)) =H for every H. If (4) holds, we
have a' = a(E'(a)) by Theorem 58 (7), and hence E(a') =E(a(E'(a))), so that
E(a') = E'(a). If (5) holds, we have E(a"(H)) = E'(a'(H)) =E"(a(H)) = E(a(H))
and hence a"(H) ca(E(a"(H))) =a(E(a(H))) = a(H) ca"(H) by Theorem 58,
(3), (5), and (6), so that a(H) =a"(H) and a(H) is normal for every H. If (6)
holds, we have a(E(b))b' = a(E(b))a(E'(b)) =a(E(b)E'(b)) = a(0) = o, a(E(b)) d b
by Theorem 58, (2), (5), and (7), and hence b"3a(E(b)) =a"(E(b)) z>b", so
that a(E(b)) = b". If (7) holds, then E(b) = E(a(E(b))) = E(b") by Theorem
57 (3) and Theorem 58, (5) and (6), so that a' = b' implies a" = b" and
E(a)=E(a") = E(b")=E(b). If (4) holds, we have E(a(Hi uH2)) =HiuH2
= E(a(Hi)) uE(a(H2)) by Theorem 57 (1) and hence a'(Hi uH2) = (a(H0 v a(H2))'
by Theorem 57 (4); and, since (4) implies (6), we have a(Hi)va(H2)
= (a(Hi) va(H2))" = a"(HiuH2)=a(HiuH2), in accordance with Definition 9.
If (8) holds, we have a"(H) = a(H)va(0) =a(H uO) =a(H). The equivalence of
assertions (l)-(8) is thus established.

The correspondence H—>a(ll) takes the class of all subclasses of E into a
subclass of the Boolean ring 91 of all normal ideals in A by virtue of (6);
and does so in a biunivocal manner in accordance with (3). If b is any
normal ideal, and H = E(b), then a(H) = a(E(b)) = b" = b by (7), so that the
correspondence takes the class of all subclasses of E into the entire class 9Î.
By Theorem 58 (2) and (8) above, this correspondence determines the iso-
morphism described in the statement of the theorem. Let us suppose con-
versely that the Boolean ring 9Î associated with an abstract Boolean ring B
is isomorphic to the algebra of all subclasses of a class E. Since B is isomorphic
to the subring of principal ideals ^ß, it is evident that B is also isomorphic
to an algebra A of subclasses of E. If H is an arbitrary one-element subclass
of E, it corresponds in the isomorphism to a normal ideal a distinct from 0.
Since every element of B which belongs to the ideal a corresponds to a sub-
class of H, we see that a must consist of exactly two elements corresponding
respectively to H and to the void class. It follows that H is an element of the
algebra A. Since A has property (2) of the present theorem by the result just
proved, A is evidently a reduced algebra of classes in accordance with Defini-
tion 10; and it has all the other properties (l)-(8).

We see that Theorem 60 can be made to yield information about abstract
Boolean rings by virtue of the following result:

Theorem 61. In order that an abstract Boolean ring B be isomorphic to
an algebra A of subclasses of a class E with the property (2) of Theorem 60, it is
necessary and sufficient that B contain a complete atomic system.
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The sufficiency of the condition is evident from Theorem 8. The necessity
follows at once from the observation that the one-element subclasses of E
constitute a complete atomic system in A in accordance with Definition 5:
for the image of this system in B under the isomorphism A*->B is also a
complete atomic system.

We have on the basis of Theorems 60 and 61 the following proposition:

Theorem 62. In order that an abstract Boolean ring B be isomorphic to the
algebra A of all subclasses of a class E it is necessary and sufficient that every
normal ideal in B be principal and that B contain a complete atomic system.

The existence of a complete atomic system in B is necessary and sufficient
for the existence of an isomorphism B*->A, where A is an algebra of classes
with property (2) of Theorem 60, as we have just proved in Theorem 61. In
order that every subclass of the basic class belong to such an isomorphic
algebra A, it is necessary and sufficient, by virtue of Theorem 60, that every
normal ideal in A be principal: for the normal ideals in A are precisely the
ideals a(H) ; and such an ideal is principal if and only if the generating class H
is an element of A. The isomorphism A *->B shows that A has the indicated
property if and only if every normal ideal in B is principal. The proof is thus
completed.

We may remark that Theorems 60 and 61 furnish the basis for our com-
ments concerning the class Sft of normal ideals at the end of Chapter II, §3.
Since a Boolean ring does not necessarily contain any atomic element, let
alone a complete atomic system, Sft cannot in general be isomorphic to an
algebra of all subclasses of an appropriate fixed class.

4. An illustration. We shall now consider, by way of illustration, the ap-
plication of the results of §3 to the algebra A of all Lebesgue measurable sub-
sets of finite measure in the euclidean plane E. Since every one-element set
belongs to A, we see that A has property (2) of Theorem 60. Hence the normal
ideals in A are precisely the ideals a(H), consisting of all sets belonging to A
and contained in the arbitrary set H. In order that an ideal be principal, it
must be normal and hence must be expressible in the form a(H) where H is an
element of A. We can now determine the simple ideals in A on the basis of
Theorem 26 as follows: every simple ideal is normal and can therefore be
expressed as a(H) ; in order that a(H) be simple, the product a(H)a(Hi) = a(HHi)
must be principal whenever a(Hi) is principal, and conversely; in other words
a(H) is simple if and only if H has the characteristic property of Lebesgue
measurable sets, that HHi is in A whenever Hi is in A. The semiprincipal ideals
which are not principal are now seen to be the ideals a(H) where the comple-
ment of H belongs to A. From these characterizations of the ideals in A, we
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see that the classes 'iß, 'iß*, ©, and SSt are distinct. Furthermore, since the sets
of zero measure constitute an ideal in A which obviously cannot be put in
the form a(H), the classes Sit and 3 are also distinct. The prime ideals be-
longing to Sit are evidently given by a(H) where the complement of H is a one-
element class. Hence no normal prime ideal in A can contain every set of
zero measure; and, if the ideal of sets of zero measure has a prime ideal di-
visor in A, the latter ideal cannot be normal. This familiar example therefore
shows that the classifications discussed in Chapter II, §§3 and 4, are not de-
generate except in special Boolean rings.

Chapter IV. Representation theory

1. General remarks. We come now to the problem of constructing an al-
gebra of classes isomorphic to a given abstract Boolean ring. Indeed, we shall
consider the broader problem of determining all algebras of classes homo-
morphic to a given Boolean ring. In view of the results of Chapter III, §2,
we may confine our attention to reduced algebras of classes and we may re-
gard representations by equivalent algebras of classes as abstractly identical.
Thus the general problem of representation theory can be formulated in the
following precise terms: if A is any Boolean ring, it is required to construct
a family of reduced algebras of classes homomorphic to A so that any algebra
of classes homomorphic to A is equivalent, after the reduction described in
Theorem 54, to an algebra belonging to this family. We shall be able to solve
this problem completely in the present chapter.

The results of Chapter III, §3, are sufficient to indicate that the repre-
sentation problem is closely bound up with the theory of ideals, particularly
the prime ideals. Suppose that the Boolean ring A has a homomorph B with
elements which are subclasses of a fixed class E. Then each element of E is
associated by Theorem 58 (4) with a prime ideal in B and hence, by virtue
of Theorem 48, with a prime ideal in A. We may therefore suppose that each
element of E is replaced by the associated prime ideal, so that A is represented
by an algebra of classes of its own prime ideals. If this representation be
further analyzed, it becomes clear that a given element a in A must be repre-
sented by the class of those prime ideals which are thus determined by the
given basic class E and do not contain a as an element. Thus any attempt to
solve the representation problem must be based upon a preliminary theory
of the existence and divisibility properties of prime ideals. In particular, in
order to show that A has an isomorphic representation, it is evidently neces-
sary to prove that whenever a and b are unequal elements of A there exists a
prime ideal containing one, but not both, of these elements. It is not difficult
to see that the existence theorem thus suggested is equivalent to the Funda-
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mental Proposition of Ideal Arithmetic, stated at the close of Chapter II, §4.
Our program for solving the representation problem is thus prescribed:

we first prove the Fundamental Existence Proposition and the Fundamental
Proposition of Ideal Arithmetic, as previously stated; we then determine a
representation by subclasses of the class © of all prime ideals, noting that
this algebra of classes must be perfect in accordance with Definition 12 and
Theorem 59; and we then show that all other representations can be con-
structed from this perfect representation by the process discussed in Theorem
56. It will be observed that the indicated perfect representation also affords
an isomorphic representation of the class of all ideals under the operations
of unrestricted addition and finite multiplication, in accordance with Theo-
rem 57 and Definition 12.f

It will be evident from a closer inspection of our solution of the represen-
tation problem, that the relations thereby revealed are of such a nature that
they can appropriately be stated in topological terms. Once such a statement
has been made, a number of interesting topological connections are suggested.
The further development of the theory in the indicated direction will be car-
ried out in another paper. %

2. Existence and divisibility properties of prime ideals. In view of the re-
marks made in the preceding section, we shall now resume the study of prime
ideals at the point where we broke off in Chapter II, §4. We first establish the
Fundamental Existence Proposition.

Theorem 63. In a Boolean ring A containing at least two elements, there
exists at least one prime ideal.

We shall give two proofs, both based upon the principle of transfinite in-
duction^ In view of Theorems 34-36 and 39, we see that the construction of
a prime ideal, or, alternatively, the construction of a homomorphism A—>B

t The construction of this perfect representation was described in a communication to the
Society, abstracted in its Bulletin, abstract 39-3-86, received January 24, 1933, and also in Proceed-
ings of the National Academy of Sciences, vol. 20 (1934), pp. 197-202. A more general representation
theorem (for C-lattices or distributive lattices) was discovered independently and only slightly later
by Garrett Birkhoff, see Proceedings of the Cambridge Philosophical Society, vol. 29 (1933), pp. 441-
464, Theorem 25.2. Since MacNeille has shown in his doctoral dissertation The Theory of Partially
Ordered Sets (1935), not yet published, that every distributive lattice can be algebraically imbedded-
in a Boolean algebra, or Boolean ring, Birkhoff's result may now be regarded as included in those
given here.

Í See Stone, Proceedings of the National Academy of Sciences, vol. 20 (1934), pp. 197-202.
§ Still another proof is given by von Neumann and Stone, Fundamenta Mathematicae, vol. 25

(1935), pp. 353-378; a paper by Tarski, Fundamenta Mathematicae, vol. 15 (1930), pp. 42-50, al-
though couched in the language of the theory of measure, also gives a proof which could be adapted
to the present situation.
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where 73 is a two-element Boolean ring necessitates the distribution of the
elements of A between two subclasses according to certain prescribed rules,
and hence requires the examination and allocation of those elements to sub-
classes in some orderly fashion. In general, therefore, we can hardly expect to
devise a method of construction which does not involve the well-ordering
hypothesis.

In our first proof, we work with the class 3 of all ideals in A. We choose
an ordinal number co so that the ideals in A can be put in biunivocal corre-
spondence with the ordinals y such that y <co; and we may even suppose
that co is the first ordinal number available for this purpose. Since A has more
than one element, we can select an element a not equal to 0. We now define
a prime ideal p by transfinite induction, first forming ideals ba for all a <w
and then putting p = Sa<0)ba. If ai is the first ideal in 3, we define bi as equal
to o or to ai, according as a belongs to ai or not; and, if ba has been defined for
all ordinals a such that a<ß where ß<co, we define bß as the ideal S0<ßb„ or
as the ideal a^ v S„<ab„ according as a belongs to the latter ideal or not. By
the principle of transfinite induction, p exists and is an ideal in A. We shall
now show that p is divisorless and hence prime in accordance with Theorem
33. We first prove that p ̂  e; in particular, that p does not contain the element
a. Since a<ß implies ba c bß by construction, we see that, if p contained a,
Theorem 17 would establish the existence of ordinals ßx < ■ ■ ■ </3„<cosuch
that a belongs to bßn = bß, v ■ ■ • v bßn. Similarly, if bß contained the element a
for ß>l, Theorem 17 would establish the existence of an ordinal a<ß such
that b„ contains a: lor the fact that bß is assumed to contain a excludes the
relation bß = aß v Sa<sba and thus implies bß = Sa<ßba- We see therefore that, if p
contained a, there would be a first ordinal a such that ba contains a and this
ordinal would necessarily be a = 1. By construction, however, bi does not con-
tain a. Next we prove that if a is an ideal divisor of p, then a = p or a = e.
In the first place let us suppose that a does not contain a. If y is the ordinal as-
signed to o, we then have a = ay s p 3 Sa<7b« and hence p d by = ay v Sa<yba = ay,
since ay does not contain a. Thus in this case we have a = ay = p. In the second
place we suppose that a contains a and hence that 03pva(a). Since the
ideal a'(a) is equal to as for an appropriate ordinal number b, and since
a(a) c a¡ v S„<jba would imply

aia) = a(a)aäva(a) S ba = aia) S bac S b„cp,

contrary to the fact that p does not contain a, we have

a'ia) = ascasv S ba = b5cp
a<S
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and hence
a = p va(a) sa'(a) va(a) = e,        a = e.

The proof that p is a prime ideal is thus completed. It is of interest to indi-
cate a slight modification of the foregoing construction. The hypothesis that
A has two or more elements is equivalent to the hypothesis that A contains
two or more ideals. If, then, a and b are two ideals such that b is not divisible
by a, we may suppose that the numbering of 3 is arranged so that ax = a and
we may choose a as an element which is in b but not in a and hence is different
from 0. The construction given above then yields a prime ideal p which is a
divisor of a but not of b. We note also that, when A has a unit e, the proof
that p is a prime ideal given above assumes a slightly simpler form if one
takes a = e at the outset.

In our second proof, which is reminiscent of the discussion of simple ex-
tensions of a commutative field, we begin by considering the case of a Boolean
ring A with unit e. Let the elements of A be placed in biunivocal correspond-
ence with the ordinal numbers y less than an appropriately chosen ordinal
number co, the element a corresponding to y being denoted by a7. We may
suppose that in this correspondence ax = e, and that a2 is different from 0 and e
when A has more than two elements and is chosen at pleasure as any element
a subject to this restriction. We denote by aß the subring of A generated by
the class of all elements aa, a^ß, 1 5¡/3<oj; and by bß the subring of A gen-
erated by the class of all elements aa, a<ß, 1 <ß<co. It is then evident that
ba c aa c bfj c a0 for a <ß; that a¿¡ = bß v {aß ], ß > 1, where {aß ] is the subring
generated by the element aß; and that bß = Sa<f3a«, ß>l. We shall now
show with the help of the principle of transfinite induction that there exists a
homomorphism A—>B where B is a two-element Boolean ring. The subring
Oi = b2 generated by ax = e9i0 consists of the two elements 0 and e so that we
can define a homomorphism (indeed, an isomorphism) from ai to B in just
one way. Let us suppose that homomorphisms aa—*B have been defined for
all ordinals a<ß in such a way that the correspondent in B of an element in
aa is independent of a. Since bß = S„<fja„, it is then evident that the homo-
morphisms aa—>B together determine a homomorphism bß—>£ : for, if b and c
are elements of bß, there exists an ordinal a <ß such that b and c are elements
of aa, as we see by reference to the properties of the subrings aa noted above ;
and the homomorphism aa—>B implies that the elements b+c, be have the
correspondents b*+c*, b*c* respectively, where b* and c* are the fixed corre-
spondents in B of b and c respectively. Now the subring bß evidently contains
the element ai = e. Theorem 14 therefore shows that the subring aß = bßV [aa]
consists of those and only those elements of A which are expressible in the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1936] BOOLEAN ALGEBRAS 103

form xaß+yai =xaßvyai where x and y are elements of bß. Since we have
(xiüß+yiaß ) + (x2aß+y2ai ) = (xi+x2) aß + (y i+y i) ai, (xiaß + y iaß' ) (x2aß+y2a¿ )
= (xxx2)aß+(yxyi)aß , we see that aß is a homomorph of the Boolean ring 23p
obtained as the direct sum of bß with itself, this homomorphism being given
explicitly by the correspondence (x, y)-*xaß+yaß . The ideal cß determined by
this correspondence consists of those and only those elements (x, y) in 23s
such that xaß+yaß =0, or, equivalently, xaß = yaß =0; and aß is isomorphic
to the quotient ring $8ß/cß in accordance with Theorem 43. We note that, if
(x, y) is in C/j, then xy = 0 since xy = xye = xy(aß v a/ ) = xyaß v xyaß = 0 v 0 = 0.
Now the homomorphism bß—>B evidently induces a homomorphism 23,3—>C,
where C is a four-element Boolean ring obtained as the direct sum of B with
itself. The image of the ideal cß under the latter homomorphism is an ideal c
in C, by virtue of Theorem 46. The ideal c cannot contain the unit element
(e*, e*) in C since, if an element (x, y) in cß has the correspondent (x*, y*) in
C, then xy = 0 implies x*y*=0* (the unit and zero elements in B being de-
noted by e* and 0* respectively). The four elements of C are (0*, 0*), (0*, e*),
(e*, 0*), (e*, e*); and the ideal c must clearly be a principal ideal generated
by one of the three elements (0*, 0*), (0*, e*), (e*, 0*). It is easily verified that
the quotient ring C/c is homomorphic to $$ß/cß and hence also to aß. We now
have three cases to consider, according to the nature of the ideal c. First, if c
is the principal ideal generated by the element (e*, 0*), C/c is a two-element
ring which is isomorphic to B in one and only one way. Now, if x is an element
of bß with correspondent x* in B under the homomorphism bß—>B, the homo-
morphism 23,3—>C takes (*, x) into (x*, x*) ; the homomorphism a,3—>C/c there-
fore takes x = xaß+xai into the class of elements congruent (mod c) to
(x*, x*) ; and the isomorphism C/c—>7? takes this class, which consists of the
two elements (e*, ac*), (0*, x*), into the element x* in B. Hence the induced
homomorphism aß^>B takes each element of bß c aß into its correspondent un-
der the homomorphism bg—>7?. A similar result obtains in case c is the princi-
pal ideal generated by the element (0*, e*). Finally, if c is the principal ideal
generated by the element (0*, 0*), the quotient ring C/c is isomorphic to C.
In this case, we can define a homomorphism C^>C/b*->B by choosing the
ideal b as the principal ideal generated by (e*, 0*) or by (0*, e*), thus obtain-
ing, as in the two preceding cases, a homomorphism a<3—>7? which takes each
element of bß c aß into its correspondent under the homomorphism bp—>7?.
From the hypothesis that there exist homomorphisms aa—»7? for all a<ß we
therefore conclude that there exists a homomorphism aß-^B, with the precise
properties indicated above. The principle of transfinite induction thus estab-
lishes the existence of a homomorphism aß^>B for ß <co, such that, when a <ß,
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this homomorphism takes each element of aa into its correspondent under the
homomorphism aa—>B. Since we have A =Sj3<aiaf3, we conclude finally that
there exists a homomorphism A —>7J which carries each element of üß into its
correspondent under the homomorphism aß—>B. By Theorem 49 the ideal p
determined in A by this homomorphism is a prime ideal. If A contains an
element a not equal to 0 or to e, we may suppose that a does not belong to p.
For, if we take a2 = a, we see that the subring a2 consists of the four elements
0, a, a', e, and hence that we can define the homomorphism a2—»TJ by the
relations 0—>0*, a'—>0*, a—>e*, e—>e*. It is now possible to treat the case of a
Boolean ring without unit : we have only to imbed the given ring A in a ring
with unit in accordance with Theorem 1 and to construct a homomorphism
from the imbedding ring to a two-element Boolean ring B in such a manner
that an element a¿¿0 in A has as its correspondent in B the element e*. This
homomorphism evidently determines a homomorphism A—>B and hence a
prime ideal p in A ; and we may in particular require that p shall not contain a
specified element a^O. It should be noted that the foregoing construction
of a prime ideal consists essentially in the assignment, step-by-step, of the
correspondents in B of the elements of A ; and that at each step the construc-
tion reveals automatically whether the assignment is determined by the pre-
ceding steps or not. By particularizing the initial steps of the construction a
little more, we can obtain a slightly sharper result. Let i be a Boolean ring
with more than two elements and unit e; and let a and b be elements such
that a^e, b^e, ab9ea. We may then carry out the construction of the homo-
morphism A-^B as before, setting ai = e, a2 = a, a3 = b and determining the
homomorphism a3—>B as the correspondence which takes 0, b, a', a' v b, ab,
a'b, a'b', and ab v a'b' into 0* and takes a, e, b', avb, av b', a' v b', ab', and
a'b v ab' into e*. We leave the details to the reader, noting that a3 is in general
a ring of sixteen elements which may reduce to one of eight or of four ele-
ments by virtue of equalities, such as a' = b, not incompatible with the rela-
tions a^e, b^e, ab^a. We then see that the homomorphism A—>B takes a
into e* and b into 0*, so that the resulting prime ideal p contains b but not a.
In the case of a Boolean ring A without unit, we obtain a similar result by
imbedding A in a ring with unit, constructing a homomorphism from the im-
bedding ring to the two-element Boolean ring B so that the elements a and b
in A with ab^a are carried into e* and 0* respectively, and then determining
p from the restricted homomorphism A-^B.

In proving Theorem 63, we have obtained certain additional information
concerning prime ideals. We now formulate this information as a separate
theorem.
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Theorem 64. If A is a Boolean ring containing elements a and b such that
ab^a or, equivalently, such that a<b is false, then there exists a prime ideal p
in A which contains b and not a; and, if A is a Boolean ring containing ideals
a and b suck that b is not a divisor of a, then there exists a prime ideal p in A
which is divisor of a but not of b.

We may restrict our reliance upon transfinite methods, however, by prov-
ing the following result :

Theorem 65. Theorem 64 follows from Theorem 63 without the intervention
of transfinite methods or of the well-ordering hypothesis.

We are now to assume that every Boolean ring containing two unequal
elements contains a prime ideal. Let A be a Boolean ring containing elements
a and b such that ab ¿¿a. Then the ideal c = a(Z>) va'(a) cannot contain a(a),
and, in particular, cannot coincide with the ideal e: for the relation a(a) cc
would imply a(a)=a(a)c = a(a)a(i)ca(ii) and hence a = ab, contrary to hy-
pothesis. Since c^e, the quotient ring ^4/c contains two or more elements and
hence contains a prime ideal a. The elements of A which are carried by the
homomorphism A^-A/c into elements of q constitute a prime ideal p in ac-
cordance with Theorem 46. It is evident that p is a divisor of c and hence also
of a(b). On the other hand, p is not a divisor of a(a) : for, if p d a(a), we should
have $ o a(a) v c = a(a) v a(b) v a'(a) = e, p = e. Thus p contains b but not a.
Now let A be a Boolean ring containing ideals a and b where b is not a divisor
of a. The quotient ring ^4/b contains an ideal c consisting of all the images of
elements of a under the homomorphism A—>A/b, as we showed in Theorem
46. Since b is not a divisor of a, the ideal c contains an element other than the
zero element. If we apply the first part of the theorem to the Boolean ring
A/b, its zero element, and the indicated element of c, we see that A/b con-
tains a prime ideal q which does not contain the specified element of c and
hence does not contain c. The elements of A which have images in q under the
homomorphism A—>A/b thus constitute a prime ideal p which contains b
but not a, in accordance with Theorem 46.

It is now easy to establish the Fundamental Proposition of Ideal Arithme-
tic for Boolean rings.

Theorem 66. In a Boolean ring A, every ideal other than e is the product
of all its prime ideal divisors. This result follows from Theorem 64 without the
intervention of transfinite methods or of the well-ordering hypothesis.

If a is an ideal in a Boolean ring A such that a^t, then Theorem 64 shows
that there exists a prime ideal which is a divisor of a (but not of e), since e <t a.
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Hence the product of all the prime ideal divisors of a exists and is an ideal
divisor b of a. If a were not also a divisor of b, Theorem 64 would establish
the existence of a prime ideal containing a but not b, contrary to the definition
of b. The relations a c b, b c a together imply that a = b, as we wished to prove.

3. The perfect representation. We shall now turn to the study of the
representation problem. We can give the fundamental theorem of the theory
without any further preliminaries.

Theorem 67. Let A be a Boolean ring, a an arbitrary ideal in A, (5 the class
of all prime ideals in A, !$ the algebraic system of all ideals in A under the opera-
tions of unrestricted addition and finite multiplication, (5(a) the class of all prime
ideals which are not divisors of a, and 7(4) the algebraic system with the classes
S (a) as elements and with the operations of forming unrestricted unions and
finite intersections. Then the correspondence a—>(5(a) determines an isomorphism
3*-*I(A) in accordance with the relations

(1) (5(a) = (5(b) if and only if a = b;
(2) if 23 is any non-void class of ideals, then

<S(Sa) = 2 15(a);
UeSB (leí)

(3) (5(ab) = (5(a)(5(b).
Let (5(a) denote the class (5(a(a)) corresponding to the principal ideal aia);and
let B(A) be the algebraic system with the classes (5(a) as elements and with the
operations of forming finite unions, symmetric di fer enees (unions modulo 2),
and finite intersections. Then B (A) is a concrete Boolean ring or algebra of classes
isomorphic to A by virtue of the correspondence a—>(5(a) in accordance with the
relations

(4) (5(a) = <E(b) if and only if a = b;
(5) <g(a + i) = 6(a) A 6(6);
(6) diavb) = (5(a) c (5(6);
(7) <g(ai) =(g(a)(g(i).

The system 5(4) is a perfect reduced algebra of classes.

We first establish the numbered relations. Theorem 66 shows at once that
(1) is valid. The relation (2) is equivalent to the assertion, obviously true,
that a prime ideal fails to contain S0eSa if and only if it fails to contain at least
one of the ideals a in 23. Relation (3) is equivalent to the assertion that a
prime ideal fails to contain ab if and only if it contains neither a nor b, and
hence to the assertion, already proved in Theorem 40, that a prime ideal con-
tains ab if and only if it contains at least one of the ideals a and b. The rela-
tions (4), (6), and (7) then follow immediately from (1), (2), and (3) respec-
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tively by virtue of the respective relations (1), (3), and (4) of Theorem 31.
The relation (5) is then an immediate consequence of (6) and (7) through the
relations

<S(a + b) u <S(o)<8(6) = g((o + b) v ab) = <g(a v b) = @(a) u <g(6),
(g(o + 6)<S(a)<8(6) = (g((a + i)o6) = (g(0) = O,

where £> is the void subclass of (g. The fact that the correspondences a—>(g(a),
a—>©(a) set up isomorphisms 3<->1(A), A<->B(A) respectively is now
evident from the numbered relations. It remains to show that B(A) is a per-
fect reduced algebra of classes. If p is any prime ideal in A, then the classes
(£(a) where a is in p constitute a prime ideal in B(A) ; and

2 6(a) = @(Sa(a)) = <S(p)
a.p aep

in accordance with the relations (2); and, conversely, if the classes (g(a) con-
stitute a prime ideal in 73(.4), the corresponding elements a in A constitute a
prime ideal p in A. The class (g(p), where p is a prime ideal, clearly consists
of all prime ideals other than p; and its complement @'(p) thus consists of p
alone. The classes (§(£>) where b is not in p obviously have the ideal p in com-
mon. If b is any such element and a is an arbitrary element in p, then b+ab
cannot belong to p since it is congruent (mod p) to b; hence Q£(b + ab) contains
p and, by virtue of the relations (g(a)(g(6+a¿») = ®(a(&+a&)) = ©(0) =0, is
contained in the complement of S (a). Thus we see that the intersection of the
classes (g (6) where b is not in p is contained in the class

It<g'(a) = (Z«(a))'-Œ'(p),
a.p a.p

and thus consists of the ideal p alone. These facts show that B(A) is a reduced
algebra of classes in accordance with Definition 10; and a perfect algebra of
classes in accordance with Definition  12, Theorem 59 and Theorem 66.

We shall now introduce the following definition, justified by the result
just established :

Definition 13. The algebra of classes B(A) associated with a Boolean ring
A by Theorem 67 is called the perfect representation of A.

We call particular attention to the fact that, if A is a Boolean ring of just
one element, the class (g is void and B(A) is an algebra consisting of the void
class alone.

The application of Theorem 56 to the perfect representation opens the
way to the determination of all representations of a given Boolean ring. We
obtain the following result:
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Theorem 68. Let A, (5, (5(a), 7(4), (5(a), and 7J(4) have the meanings speci-
fied in Theorem 67. Let § be an arbitrary subclass of (5; a(£>') the ideal consisting
of all elements a such that (5(a) c §'; 7(4, !q) the algebraic system of all classes
¿p(5(a) under the operations of forming unrestricted unions and finite intersec-
tions; and BiA, £>) the algebraic system of all classes £>(5(a) under the operations
of forming finite unions, symmetric differences, and finite intersections. Then
the correspondence (5(a)—>§Q»:(a) determines homomorphisms 7(4)—>7(4,§),
7(4,a(§'))—>7(.4,§), the latter of which is an isomorphism if and only if
fê(a(£>')) =€>' or, equivalently, § = (5'(a(£>')). Similarly the correspondence
(5(a)—»§(5(a) determines a homomorphism 7J(4)—>7?(4, !q) and an isomorphism
BiA, §)<-*BiA/a(£>')). TTie algebra of classes BiA, ip) is perfect if and only
if (5(a(,£)')) =§'; awd, wÄera /fe's condition is satisfied, BiA, §) is equivalent
to BiA /a (§')). 7/ b ¿s aw arbitrary ideal, then we have in particular the result
that 7?(4/b) is equivalent to BiA, (S'(b)). The ideal a(§') is equal to e when ÍQ
is void and to the product of the prime ideals in !q otherwise.

Theorem 56 establishes the homomorphism B(A)^>B(A, §) at once; and
an argument similar to that given in the proof of Theorem 56 shows that
7(4)—>7(j4, §). Since the correspondence a—»(5(a)—>£)(5(a) defines a homo-
morphism A —>7?(4, §) by virtue of Theorem 67 and the result just proved, we
see that there exists an ideal b in A such that 4/b<->BiA, §) in accordance
with Theorem 43. Since a—>(5(a)—>£) if and only if §(5(a) = £) or, equivalently,
6(î) c §', we see that this ideal coincides with the class a($') described
above. Now Theorems 46 and 48 give detailed information concerning the
prime ideals in the Boolean rings 4, 4/b, and 72(4, £>) under the indicated
correspondence. If p is a prime ideal divisor of b, then its image p* in 4/b is a
prime ideal, and the image of p* in BiA, §) is also a prime ideal; conversely,
a prime ideal in 7?(4, ¡q) is the image of a prime ideal p* in 4/b, and p* is
in turn the image of a unique prime ideal divisor of b. Thus we see that the
class of prime ideals in 5(4, £>) is in biunivocal correspondence with the class
(5* of prime ideals inA/b and also with the class®'(b) of those prime ideals in4
which divide b. If an ideal a in A has the image a* in 4/b, then the prime ideal
divisors of a* are in biunivocal correspondence with those prime ideal divisors
of a which contain b. Hence the biunivocal correspondence between (5'(b) and
(5* takes (5'(b)(5(a) into (5*(a*); and (5'(b)(5(ai) = (5'(b)<5(a2) whenever ai
and a2 have the same image in 4/b. It follows that the correspondence
a->(8(a)->$@(a) determines a correspondence (5*(a*)->(5'(b)(5(a)->§(5'(b)(5(a)
= £>(5(a) which is a homomorphism 7(4/b)—>7(^4, §). We have here used the
obvious fact that (5(b) c £>' to write f>(5'(b) = §. Since the principal ideal a*
in 4/b is the image of at least one principal ideal aia) in 4, we may specialize
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this homomorphism to the systems B(A/b) and B(A, f>). We shall now show
that it becomes an isomorphism BiA/b)<->BiA, £>) when so specialized.
In order that the principal ideals a (a) and a(Z») in A have the same image in
^4/b we must have a(a) vb = a(Z>) vb, hence avcx = bvc2 where ¿à and c2 are
in b, and hence a=b (mod b), by Theorems 46,16,and 44 respectively; and the
converse is also true. On the other hand, §(g(a) = §(g(tV) is equivalent to
§(g(a + cV)=,g>(g(a)A£(g(6)=D and hence to tg(a + /»)c§', a + b eb, and a=b
(mod b). It follows immediately that the asserted relation of isomorphism
holds. In the case where § = (g'(b) or, equivalently, (g(b) = (g(a(§')) = £>', it is
evident that the correspondence (g*(a*)—*§(g(a) = (g'(b)(g(a) yields an iso-
morphism I(A/b)<->7(.<4, OS). Furthermore, it is evident that the corre-
spondence between (g* and ^ = (g'(b) renders the two algebras of classes
B(A/b) andB(A, £>) equivalent. Thus B(A, £>) is a perfect reduced algebra
of classes in this case, in accordance with Theorems 67 and 55. On the other
hand, if (g(b)5¿£>', there exists a prime ideal p in A which belongs to §' but
not to (g(b). It follows that p3b and (g(p)3§. Since p is a divisor of b, its
correspondent p* in A/b is a prime ideal; and the classes §(g(a) where a
is in p constitute a prime ideal in BiA, £>). Now the homomorphism
7C4/S8)—>7(yl, §) takes tg*(p*) into £(g(p)=|> and therefore cannot be an
isomorphism since it also takes (g* = (g*(e*) into §. Furthermore the union of
the classes ¡£><ë(a), where a is in p, is given by

2©<S(a) = $ze(a(a)) = $<S(S a(a)) = §(g(p) = $.
aep afp a.p

The algebra of classes BiA, §) therefore fails to have property (2) of Theorem
59, and cannot be perfect. Finally we prove that b = ai&') is characterized in
the manner indicated in the statement of the theorem. If § is void, then
(g(a) c §' for every a and a(§') is obviously equal to e. If § is not void, then
the product of all the prime ideals in ÍQ is an ideal c. Since (g(p) s a(§') when p
is in §, it is evident that p => a(§>') when p is in §, and hence that c o a(£>').
On the other hand, if a is an element of c, we have aia) ce c p for every p in
§ or, equivalently, ig (a) c (g(p) for every p in §. Since (g(p) does not contain
p, it follows that ©(a) c £>' and that a is in a(§'). Thus we have c c a(§') as
well as a(^>') cc, and conclude that c = a(£>') as desired. This result shows in
particular that, if § = (g'(b) where b is an arbitrary ideal in A, then a(.£>') = b.

We now complete the theory of representations by means of the following
result :

Theorem 69. If B is an algebra of classes homomorphic to a Boolean ring A
and if b is the ideal in A determined by the homomorphism A—+B, then there
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exists a class !q of prime ideals in A related to b through the equation ai^')=b
such that B is equivalent to BiA, §). In order that B be perfect it is necessary
and sufficient that § = (S'(b). The only perfect algebras of classes isomorphic to A
are those equivalent to BiA).

The prime ideals in B are in biunivocal correspondence with the prime
ideal divisors of b in 4, by Theorem 48. Those prime ideals in B which de-
termine one-element subclasses of the basic class E of B in accordance with
Theorem 57 (9) thus define a subclass § of (5'(b). This correspondence be-
tween E and § is biunivocal and defines the equivalence between B and
B(4, §): for if a is any element of A, the prime ideals which contain it and
also contain b constitute the class <5'(b)(5'(a); these prime ideals are carried
by the homomorphism 4—>5 into the prime ideals in B which contain the
image of a; of the latter ideals those and only those which determine one-
element classes disjoint from the image of a can correspond to ideals in §;
and the indicated correspondence between § and E thus takes §(5'(a) into
the complement of the image of a, §(5(a) into the image of a. Now those
elements a which are taken by the homomorphism A —»5 into the void class
in B are precisely those for which f>(5(a) is void, as we see from the foregoing
remarks. Thus it follows that the ideal b determined by the homomorphism
in question coincides with the ideal a(£>'). If B is perfect, then every prime
ideal in B determines a one-element class by Theorem 59; and it follows that
§ = (5'(b). On the other hand, if § = (5'(b), then 5(4, £>) is perfect by Theo-
rem 68; and B, being equivalent to BiA, §), is obviously perfect also. If B
is isomorphic to A, then b = o. Since £> = (S'(b) = (5'(o) = (5 in this case, B is
thus equivalent to 5(4, (5), and hence to 5(4), if it is perfect. Since BiA) is
isomorphic to A and is perfect, any algebra of classes equivalent to 5(^4) also
has these properties.

We may bring the discussion to a close by formulating in precise terms our
remarks in §1 concerning the relation between the representation theory and
the Fundamental Proposition of Ideal Arithmetic. We have

Theorem 70. The following propositions are equivalent without the use of
transfinite methods or the well-ordering hypothesis :

(1) every Boolean ring possesses an isomorphic algebra of classes;
(2) the Fundamental Proposition of Ideal Arithmetic is valid in every

Boolean ring.

In Theorem 67, we have shown that (2) implies (1), without the use of
transfinite arguments. In Theorem 58 (4) we showed without the use of such
arguments that (1) implies the existence of a prime ideal in any Boolean ring

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1936] BOOLEAN ALGEBRAS 111

which is a reduced algebra of classes with a basic class E which is non-void ;
and hence that (1) implies the Fundamental Existence Proposition, proved as
Theorem 63 by other methods. The work of §2 shows that Theorem 63 implies
(2), without the use of transfinite arguments, as indicated in Theorem 66.

Harvard University,
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