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THE KO-THEORY OF TORIC MANIFOLDS

ANTHONY BAHRI AND MARTIN BENDERSKY

Abstract. Toric manifolds, a topological generalization of smooth projective
toric varieties, are determined by an n-dimensional simple convex polytope and
a function from the set of codimension-one faces into the primitive vectors of an
integer lattice. Their cohomology was determined by Davis and Januszkiewicz
in 1991 and corresponds with the theorem of Danilov-Jurkiewicz in the toric
variety case. Recently it has been shown by Buchstaber and Ray that they
generate the complex cobordism ring. We use the Adams spectral sequence
to compute the KO-theory of all toric manifolds and certain singular toric
varieties.

1. Introduction

We take as our definition of toric manifold the construction of Davis and Janusz-
kiewicz ([5], section 1.5). Let P n be an n-dimensional, simple (at each vertex, n
codimension-one faces meet), convex polytope. Set

F = {F1, F2, . . . , Fm}
the set of codimension-one faces of Pn. The fact that Pn is simple implies that
every codimension-l face F can be written uniquely as

F = Fi1 ∩ Fi2 ∩ · · · ∩ Fil

where the Fij are codimension-one faces containing F . Let

λ : F → Zn

be a function into an n-dimensional integer lattice satisfying the condition that
whenever F = Fi1 ∩ Fi2 ∩ · · · ∩ Fil

then λ(Fi1 ), λ(Fi2 ), . . . , λ(Fil
) span an l-

dimensional submodule of Zn which is a direct summand. Next, regarding Rn

as the Lie algebra of Tn, we see that λ associates to each codimension-l face F of
Pn a rank-l subgroup GF ⊂ Tn. Finally, let p ∈ Pn and F (p) be the unique face
with p in its relative interior. Define an equivalence relation ∼ on Tn × Pn by
(g, p) ∼ (h, q) if and only if p = q and g−1h ∈ GF (p)

∼= Tl. Set

M2n(λ) = Tn × Pn
/∼ .

M2n(λ) is a smooth, closed, connected, 2n-dimensional manifold with a Tn action
induced by left translation ([5], page 423). There is a projection

π : M2n(λ) → Pn

induced from the projection Tn × Pn → Pn.
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1192 ANTHONY BAHRI AND MARTIN BENDERSKY

Following [5], we note that every toric manifold has this description, in particular,
every smooth projective toric variety does too. Recently, Buchstaber and Ray [4]
have shown that toric manifolds generate the complex cobordism ring.

Here is a simple example selected from the list in [5]. Let n = 2 and P 2 be a
square. Here F = {F1, F2, F3, F4} consists of four codimension-one faces. Define
λ : F → Z2 as in the diagram below.

r
r r

rλ(F1) = (0, 1) λ(F3) = (−1, 1)

λ(F2) = (1, 0)

λ(F4) = (1,−2)

yields M4(λ) ∼= CP 2#CP 2.

Davis and Januszkiewicz point out that CP 2#CP 2 is a toric manifold but does
not have an almost complex structure and so cannot be a toric variety. Our main
results are:

Theorem 1. The Adams spectral sequence for the real connective KO-theory of
the toric manifold M2n(λ) collapses.

Corollary 2. KO∗M2n(λ) is determined by the mod 2 cohomology ring of
M2n(λ). In particular, the KO-theory depends only the values of λ mod 2.

Our methods yield the additional result that the theorem remains true for certain
singular toric varieties, of real dimension less than 12. We note that the K-theory
of toric varieties has been computed by Robert Morelli in [8]

Acknowledgement. We are grateful to Ciprian Borcea for his encouragement and
helpful comments and for introducing us to this subject through a series of fine
seminars he gave on toric varieties at Rider University. We would like also to thank
Bob Bruner for several helpful conversations.

2. Homology and Cohomology of M2n(λ)

In order to compute the KO-theory of M2n(λ) we shall need the computation
of its homology from [5]. To state their result we recall certain numbers defined
in terms of the combinatorics of P n. Let fi be the number of faces of Pn of
codimension (i + 1). Define numbers hi by the equality of polynomials in t

(t− 1)n +
n−1∑
i=0

fi(t− 1)n−1−i =
n∑

i=0

hit
n−i.

(h0, . . . , hn) is called the h-vector of Pn. Notice h0 = hn = 1 and

n∑
i=0

hi = fn−1 = the number of vertices of Pn.

For each k-face F of P n we have a connected 2k-dimensional submanifold MF of
M2n(λ) defined by MF = π−1(F ).
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THE KO-THEORY OF TORIC MANIFOLDS 1193

Theorem 3 (M. Davis and T. Januszkiewicz [5]). The group H∗(M2n(λ);Z) is
independent of the function λ. Specifically,

H2i+1(M2n(λ);Z) = 0,

H2i(M2n(λ);Z) = free of rank hi.

The group H2l(M2n(λ);Z) is generated by the Poincaré duals of classes of the form
[MF ] with F a face of codimension l. As a ring, H∗(M2n(λ);Z) is generated by
the degree-two classes dual to [MF ] with F a face of codimension one.

The ring structure of H∗(M2n(λ);Z) is determined from the Serre spectral se-
quence of the fibration

M2n(λ) → BPn → BTn

where BPn denotes the Borel construction

BPn = ETn ×Tn M2n(λ).

Let v1, v2, . . . , vm denote the degree-two generators of H∗(M2n(λ);Z), one for each
codimension-one face of P n. We need to define two ideals of relations in I and J .

Let K be the simplicial complex dual to Pn. That is, an (n − 1)-dimensional
simplicial complex with vertex set F , the set of codimension-one faces of Pn. A
set of (k + 1) elements in F , {Fi0 , . . . , Fik

} span a k-simplex in K if and only if
Fi0 ∩ · · · ∩ Fik

6= φ. The ideal I is the homogenous ideal of relations generated by
all square free monomials of the form vi1 · · · vis , where {vi1 , . . . , vis} does not span
a simplex in K.

The ideal J is defined in terms of the function λ. Let {e1, . . . , em} be the
standard basis of Zm. Then, identifying the codimension-one face Fi with ei, we
can regard

λ : F → Zn

as a linear map Zm → Zn given by an m×n matrix (λij). In example 3 above, the
linear map λ : Z4 → Z2 is the matrix

λ =
(

0 1 −1 1
1 0 1 −2

)
.

The ideal of relations J is determined by the system of equations

λ11v1 + λ12v2 + . . . + λ1mvm = 0
λ21v1 + λ22v2 + . . . + λ2mvm = 0

...
...

...
λniv1 + λn2v2 + . . . + λnmvm = 0.

Theorem 4 (M. Davis and T. Januszkiewicz [5]). As rings

H∗(M2n(λ);Z) = Z[v1, v2, . . . , vm]/(I + J).

As an illustration, we compute H∗(M4(λ);Z) with M4(λ) ∼= CP 2#CP 2, the
example from the introduction. The dual of P 2 is a one-dimensional simplicial
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1194 ANTHONY BAHRI AND MARTIN BENDERSKY

complex K with vertices {v1, v2, v3, v4}.

�
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r

r
r

r
v1 v3

v2

v4

{v1, v3} does not span a simplex

{v2, v4} does not span a simplex

so I = 〈v1v3, v2v4〉 ⊂ Z[v1, v2, v3, v4]

The relations J are read off from the matrix λ above
v2 − v3 + v4 = 0
v1 + v3 − 2v4 = 0

}
⇒ v3 = v2 + v4,

v1 = v4 − v2.

Choosing generators v2, v4 ∈ H2(M4(λ);Z) we get

H0(M4(λ);Z) = Z,
H2(M4(λ);Z) = Z⊕ Z 〈v2, v4〉,
H4(M4(λ);Z) = Z 〈v2

2 = v2
4〉,

H i(M4(λ);Z) = 0 i > 4, vi1vi2vi3 = 0, ij ∈ {2, 4}.

3. The Action of the Steenrod Algebra

For our calculation, we require the structure of H∗(M2n(λ);Z2) as a module over
the subalgebra A(1) , generated by Sq1 and Sq2, of the mod 2 Steenrod algebra
A. Let S0 denote the A(1) module consisting of a single class in dimension 0 and
the trivial action of Sq1 and Sq2. Denote by M the A(1) module with a class x in
dimension 0, a class y in dimension 2 and the action given by Sq2(x) = y.

Lemma 5. Let X be a space with H∗(X ;Z2) concentrated in even degrees. Then,
as an A(1) module, H∗(X ;Z2) is isomorphic to a direct sum of suspended copies
of S0 and M. Furthermore, the splitting is natural with respect to maps of spaces.

Proof. The sequence

→ H2n−2(X ;Z2)
Sq2

−→ H2n(X ;Z2) →
is a chain complex since Sq2Sq2 = Sq3Sq1 = 0 because H∗(X ;Z2) is concentrated
in even degrees. Its homology is defined to be the “Sq2 homology of X” and is
denoted

H∗(X ; Sq2).
Let A2n = Ker{Sq2 : H2n(X ;Z2)→H2n+2(X ;Z2)}. Then H2n(X ;Z2)≈A2n⊕B2n

for some vector subspace B2n. Define C2n ⊆ A2n to be Im{Sq2 : H2n−2(X ;Z2) →
H2n(X ;Z2)}. Then A2n ≈ C2n ⊕ D2n for some vector subspace D2n. Hence we
have

H2n(X ;Z2) ≈ C2n ⊕D2n ⊕B2n

with H2n(X ; Sq2) ≈ D2n and Sq2 : B2n−2 → C2n an isomorphism. The lemma
now follows since D2n generates copies of suspensions of S0 and B2n(≈ C2n+2)
generates suspensions of M. The naturality follows since H∗(X ; Sq2) and C∗ are
natural.

An algorithm allows us to determine the A(1) module structure of H∗(X ;Z2)
explicitly. Let {u(2,1), u(2,2), . . . , u(2,s2)} be a Z2 basis for H2(X ;Z2). We con-
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THE KO-THEORY OF TORIC MANIFOLDS 1195

struct a new basis {w(2,1), w(2,2), . . . , w(2,s2)} which will yield the decomposition
above. Set w(2,1) = u(2,1). If Sq2u(2,2) = Sq2w(2,1) set w(2,2) = w(2,1) + u(2,2),
else w(2,2) = u(2,2). Suppose now that w(2,t−1) has been defined. If Sq2u(2,t) is
linearly independent of {Sq2w(2,1), Sq2w(2,2), . . . , Sq2w(2,t−1)} set w(2,t) = u(2,t).
Otherwise, if

Sq2u(2,t) = Sq2w(2,i1) + Sq2w(2,i2) + . . . + Sq2w(2,it)

set w(2,t) = u(2,t) + w(2,i1) + . . . + w(2,it). Next, reorder {w(2,1), w(2,2), . . . , w(2,s2)}
so that Sq2w(2,j) = 0 for j = 1, . . . , t2 and Sq2w(2,j) 6= 0 for j = t2 + 1, . . . , s2. Set
d(2,j) = w(2,j) for j = 1, . . . , t2 and b(2,j) = w(2,t2+j) for j = 1, . . . , s2 − t2. So, in
the notation above,

D2 = {d(2,1), d(2,2), . . . , d(2,t2)}
and

B2 = {b(2,1), b(2,2), . . . , b(2,s2−t2)}.
Of course, C2 = φ and C4 ≈ B2. Now suppose that A2n−2, B2n−2 and C2n−2 have
been constructed. Set

C2n = {Sq2b(2n−2,1), Sq2b(2n−2,2), . . . , Sq2b(2n−2,s2n−2−t2n−2)} ≈ B2n−2.

The elements of C2n are linearly independent by the construction of B2n−2. Choose
any extension of C2n to a basis of N2n = H2n(X ;Z2). Denote the basis by

C2n ∪ {u(2n,1), u(2n,2), . . . , u(2n,s2n)}.
Finally, repeat the process above on the set

{u(2n,1), u(2n,2), . . . , u(2n,s2n)}
to produce B2n and D2n. Diagrammatically, the A(1) module structure looks like

s s s
s s s

s s s s s s
s s s

. . . . . . . . .

Sq2 Sq2 Sq2

Sq2 Sq2 Sq2

H2n+2(X;Z2)

H2n(X;Z2)

H2n−2(X;Z2)

B2n−2

C2n

D2n B2n

C2n+2

We conclude that the ring structure of M2n(λ) determines the A(1) module struc-
ture. Notice that the A(1) module structure of H∗(X ;Z2) can depend only on the
map λ mod 2.

Example. Let P 3 be the three dimensional cube and the map

λ : F → Z3
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(mod 2), be as in the diagram below.

s

s

s

s
s

s
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s
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�
�

�

6� bottom (1,0,0)

?

� top (1,1,1)

-�
side (0,0,1)










�

front (0,1,0)

����
back (0,1,0)

� side (0,0,1)

Now
H∗(M6(λ);Z2) = Z[v1, v2, . . . , v6]/(I + J) mod 2.

For P 3 we have f0 = 6, f1 = 12 and f2 = 8 from which it follows easily that h0 = 1,
h1 = 3, h2 = 3 and h3 = 1 where hi is the rank of H2i(M6(λ);Z2). The simplicial
complex K dual to P 3 is an octohedron with vertices {v1, v2, . . . , v6}. The ideal of
relations I is generated by v1v6 = 0, v2v4 = 0 and v3v5 = 0. The ideal of relations
J is determined by the matrix representation

λ =

1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0

 .

This gives v1 = v6 = v3 + v5 = v2 + v4. Choose as generators of H2(M6(λ);Z2),
{v1, v2, v3}. The relations in H4(M6(λ);Z2) become v1

2 = 0, v2
2 = v1v2 and

v3
2 = v1v3. In H6(M6(λ);Z2) we have v1v2

2 = v1v3
2 = v3v1

2 = v3
3 = v2

3 = 0 and
v3v2

2 = v2v3
2 = v1v2v3. We conclude that as A(1) modules

H∗(M6(λ);Z2) ∼=
3⊕

j=0

∑2j
S0 ⊕ 2

∑2M.

In the next section we show that this is sufficient to enable us to read off
KO∗(M6(λ)).

Problem. Given P n and λ, find an algorithm which will determine the Sq2 con-
nections directly from the matrix representing λ, that is, without doing the algebra
involved in solving the relations.

4. The Adams Spectral Sequence for ko-Homology

Let X be any space with H∗(X ;Z2) concentrated in even degrees. The (mod 2)
Adams spectral sequence relevant for our calculation takes the form

E2
∼= Exts,t

A (H∗(ko ∧X),Z2) ∼= Exts,t
A(1)(H

∗(X),Z2) =⇒ kot−sX.

More details about this Adams spectral sequence can be found in, for example, [3].
At odd primes, in the case X = Mn(λ), the Atiyah-Hirzebruch spectral sequence
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THE KO-THEORY OF TORIC MANIFOLDS 1197

converging to ko∗X collapses for dimensional reasons and we can conclude easily
that ko∗X has no odd torsion. In fact,

ko∗(Mn(λ)) ⊗ Z(p)
∼= H∗(Mn(λ);Z(p))⊗ ko∗

where Z(p) denotes the integers localized at p odd. So, a mod 2 calculation suffices
for the whole ko-theory.

Lemma 5 tells us that as A(1) modules

H∗(X ;Z2) ∼=
k⊕

j=0

mj

∑2j S0 ⊕
l⊕

j=0

nj

∑2j M

where positive integers mj and nj denote the number of copies of each summand
located in dimension 2j. Then

Exts,t
A(1)(H

∗(X),Z2) ∼=
k⊕

j=0

mj · Exts,t
A(1)(

∑2j S0,Z2)

⊕
l⊕

j=0

nj · Exts,t
A(1)(

∑2j M,Z2)

where the isomorphism is as Exts,t
A(1)(S

0,Z2) modules.

The bigraded algebra Exts,t
A(1)(S

0,Z2) is well known, [7].

Exts,t
A(1)(S

0,Z2) ∼= Z2[a0, a1, w, b]
/
(a0a1, a

3
1, a1w, w2 + a2

0b)

with |a0| = (0, 1), |a1| = (1, 1), |w| = (4, 3) and |b| = (8, 4), where |x| =
(t− s, s) specifies the geometric degree t− s and the Adams filtration s. It’s most
easily represented by the picture following. The vertical line segments indicate
multiplication by a0 and the sloping line segments, multiplication by a1.

a0
a2
0

ppp

qqq
qqq
qqq
qqq
qqq
qq

a1

a2
1

��
q q w

a0w
a2
0w

ppp

qqq
qqq
qqq
qqq
qq ppp

qqq
qqq
qqq
qqq
q

b

a0b

a2
0b

a1b
a2
1b

��
q q

ppp

qqq
qqq
qqq
q

bw

a0bw

a2
0bw

ppp

qqq
qqq
qqq

��
q q

ppp

qqq
qqq

ppp
qqq
qq
��

q q

0 5 10 15 20 25 t− s

s

0

5

10

15

Exts,t
A(1)(S

0,Z2)

The vertical multiplication by a0 yields multiplication-by-two extensions at E∞.
The vertical towers in this diagram produce copies of Z(2), the integers localized
at 2, in ko∗S0. The other classes yield copies of Z2. The class b represents the
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Bott periodicity operator. Embedded in this picture then is ko∗ the coefficients of
ko-theory.

ko∗S0 ∼= Z(2) ⊕
∑1 Z2 ⊕ ∑2 Z2 ⊕ ∑4 Z(2) ⊕

∑8 Z(2) ⊕
∑9 Z2 ⊕ . . . .

Exts,t
A(1)(M,Z2) is computed easily from Exts,t

A(1)(S
0,Z2) and the cofibration se-

quence associated to M. As a module over Exts,t
A(1)(S

0,Z2), Exts,t
A(1)(M,Z2) has

generators x, y, z, u with |x| = (0, 0), |y| = (2, 1), |z| = (4, 2) and |u| = (6, 3) and
relations

a1x = a1y = a1z = a1u = 0, a0z = wx, a0u = wy, wz = a0bx, wu = a0by

ppp

qqq
qqq
qqq
qqq
qqq
qq

x

xa0
xa2

0

ppp

qqq
qqq
qqq
qqq
qqq
q

y

ya0
ya2

0

ppp

qqq
qqq
qqq
qqq
qqq

z

xw

xwa0

ppp

qqq
qqq
qqq
qqq
qq

u

yw

ywa0

ppp

qqq
qqq
qqq
qqq
q

bx

bxa0
bxa2

0

ppp

qqq
qqq
qqq
qqq

by

bya0

bya2
0

0 2 4 6 8 10 t− s

s

0

5

10

15

Exts,t
A(1)(M,Z2)

Since
∑2M ' H∗(CP 2,Z2) and noting that no differentials are possible in

the spectral sequence, we can read off the connective ko-homology of the complex
projective plane

ko∗CP 2 ∼= ∑2 Z(2) ⊕
∑4 Z(2) ⊕

∑6 Z(2) ⊕
∑8 Z(2) ⊕ . . . .

The decomposition above of Exts,t
A(1)(H

∗(X),Z2) implies that its diagram is ob-
tained by superimposing shifted copies of the diagrams for Exts,t

A(1)(S
0,Z2) and

Exts,t
A(1)(M,Z2). Dimensional considerations and the fact that dr is a derivation

with respect to the action of Exts,t
A(1)(S

0,Z2) allow us to conclude that one type of
non-zero differential

dr : Es,t
r −→ Es+r,t+r−1

r

is possible in the spectral sequence. It occurs on a copy of Exts,t
A(1)(S

0,Z2) as in
the diagram below. In the diagram we have identified the generator

c2j ∈ Ext0,2j
A(1)(H

∗(X),Z2)

of an Exts,t
A(1)(

∑2j
S0,Z2) summand, with the dual of c2j ∈ C2j ⊆ H2j(X ;Z2).

The class c̃2p represents some linear combination of classes in Ext0,2p
A(1)(H

∗(X),Z2).
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ppp

ppp

rrr
rr
�

�r r r
bj c̃2p

ppp dr

rrr
rr
�

�r r r
bkc2q

t− s

s

O
O

pppppppp
pppppppp
pppppppp
pppppp

pppppppp
pppppppp
pppppppp
pppppp

A Differential in the Adams Spectral Sequence for ko∗X

Important Remark. Since b has (t − s, s) bidegree (8, 4), this differential cannot
occur in the Adams Spectral Sequence for a toric manifold or toric variety, of di-
mension less than 12, with mod 2 cohomology concentrated in even degrees. Con-
sequently, the spectral sequence collapses without any further analysis and theorem
1 holds for such spaces.

We shall use the fact that a toric manifold is a manifold to prove that there can
be no non-zero differentials in the spectral sequence. Choose q minimal so that for
some r, we have dr(bkc2q) 6= 0. Next, choose the smallest such r so that for some k,
we have dr(bkc2q) 6= 0. The derivation property of dr with respect to multiplication
by the periodicity operator b, implies then that dr(c2q) 6= 0 and so we can assume
that k = 0.

We restrict now to the case X = M2n(λ) a toric manifold of dimension 2n.
Consider all 2q dimensional submanifolds MFi of M2n(λ) corresponding to q-faces
Fi. The inclusions

MFi ↪→ M2n(λ)
induce maps of Adams Spectral Sequences and in particular, maps

Exts,t
A(1)(H

∗(MFi),Z2) −→ Exts,t
A(1)(H

∗(M2n(λ)),Z2).

In each Ext0,2q
A(1)(H

∗(MFi),Z2) there is a unique class corresponding to the funda-
mental class [MFi ]. Theorem 3 tells us that c2q is a linear combination of the images
of the classes [MFi ]. Because dr(c2q) 6= 0, the naturality of the Adams Spectral
Sequence implies that dr([MFi ]) 6= 0 for some i. In other words, a q-face F = Fi

of Pn must exist with a non-zero differential in the Adams Spectral Sequence for
ko∗(MF ) supported on the top class of filtration zero. We shall use the result fol-
lowing to show that this cannot be the case for the manifold MF and so complete
the proof of theorem 1

Theorem 6. Let M be an orientable manifold of dimension n Then M is a spin
manifold if the top dimensional cohomology class is not in the image of Sq2.

Proof. Let v ∈ H∗(M) be the total Wu class of M . It satisfies the property that
Sq(v) = w where Sq is the total Steenrod operation and w is the total Stiefel-
Whitney class. Since M is orientable we have v2 = w2 where w2 is the second
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1200 ANTHONY BAHRI AND MARTIN BENDERSKY

Stiefel-Whitney class. The Wu formula for M , ([6], page 261), is

〈a ∪ v, [M ]〉 = 〈Sq(a), [M ]〉
for any a ∈ H∗(M). In particular, for any class x ∈ Hn−2(M), we have

〈x ∪ w2, [M ]〉 = 〈x ∪ v2, [M ]〉 = 〈Sq2(x), [M ]〉.
So, if Sq2(x) = 0 for all x we must have w2 = 0 by Poincaré duality and so M is a
spin manifold.

Corollary 7. There are no non-zero differentials in the Adams Spectral Sequence
for ko∗(MF ) supported on the top class in filtration zero.

Proof. Suppose such a differential did exist. Then the A(1) module H∗(MF ),Z2)
must contain a summand S0 in the top dimension 2q. In particular, the top class
in H2q((MF ),Z2) is not in the image of Sq2 and so MF must be spin manifold.
This implies, ([2]), that MF is orientable with respect to ko∗. We can now apply
Poincaré-Lefschetz duality, ([9], page 39(a)), to conclude that as a ko∗ module,
ko∗(MF ) must contain a summand, free on a single generator in ko2q(MF ) dual to
the single summand on the generator in ko0(MF ). This contradicts the existence
of the differential.

The fact that the Adams spectral sequence collapses leaves us with possible group
extension problems before we can read off the group ko∗(Mn(λ)). Fortunately, in
our case these are not difficult. As mentioned earlier, the vertical multiplication
by a0 yields multiplication-by-two extensions at E∞. All other classes in the spec-
tral sequence are products of a1. Vertical extensions across copies of ko∗(S0), of
Z2 groups to groups of higher torsion, cannot occur because products of a1 yield
elements of order two in ko-theory.

We conclude that, if as A(1) modules

H∗(Mn(λ);Z2) ∼=
k⊕

j=0

mj

∑2j
S0 ⊕

l⊕
j=0

nj

∑2j
M,

then

ko∗(Mn(λ)) ∼=
k⊕

j=0

mj

∑2j ko∗S0 ⊕
l⊕

j=0

nj

∑2j ko∗M

where the graded groups ko∗S0 and ko∗M are described above.
Our calculation shows that multiplication by the Bott element b is a monomor-

phism in E∞ and hence in ko∗(Mn(λ)). So, we can invert b to get the periodic
KO-homology of Mn(λ).

KO∗(Mn(λ)) ∼=
k⊕

j=0

mj

∑2j KO∗S0 ⊕
l⊕

j=0

nj

∑2j KO∗M

where

KO∗S0 ∼= . . . ⊕ ∑−6 Z2 ⊕
∑−4 Z ⊕ Z ⊕ ∑1 Z2 ⊕

∑2 Z2 ⊕
∑4 Z ⊕ . . .

and

KO∗M ∼= . . . ⊕ ∑−4 Z ⊕ ∑−2 Z ⊕ Z ⊕ ∑2 Z ⊕ ∑4 Z ⊕ ∑6 Z ⊕ . . . .
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5. The KO-cohomology of Toric Manifolds

We employ the universal coefficient exact sequence following to compute the
KO-cohomology from the KO-homology.

Theorem 8 (D. W. Anderson, [1], theorem 2.4). Let X be a CW-complex. For all
n, there is a natural exact sequence

0 → lim1KOm−1(X) → ExtZ(KSpm−1(X),Z)

→ lim0KOm(X) → HomZ(KSpm(X),Z) → 0
where these limits are over the filtration of X by finite subcomplexes.

In our case, X = Mn(λ) is a finite complex and we are left with the sequence

0 → ExtZ(KSpm−1M
n(λ),Z) → KOmMn(λ)

→ HomZ(KSpmMn(λ),Z) → 0

Bott periodicity implies KSpmMn(λ) ∼= KOm−4M
n(λ). Combining this with

the results of the previous section, namely, that the groups KO∗Mn(λ) are direct
sums of copies of Z and Z2, we see that the short exact sequence splits. Explicitly,
if KOmMn(λ) ∼= αm · Z ⊕ βm· Z2, for integers αm and βm, then, as groups

KOmMn(λ) ∼= αm−4 · Z ⊕ βm−5 · Z2.

We conclude with a remark about the module structure. Let DMn(λ) denotes the
S-dual of Mn(λ). If

H∗(Mn(λ);Z2) ∼=
k⊕

j=0

mj

∑2j
S0 ⊕

l⊕
j=0

nj

∑2j
M,

then by duality

H∗(DMn(λ);Z2) ∼=
k⊕

j=0

mj

∑−2j
S0 ⊕

l⊕
j=0

nj

∑2j−2
M.

So, except for dimension shifts. the Adams spectral sequence for ko∗DMn(λ)
looks much as it did for ko∗Mn(λ) We cannot use the same arguments however to
conclude that the spectral sequence collapses. Instead, we now know the groups
KOmMn(λ) and so we can use a rank argument to conclude that all differentials
must be zero. This allows us to read off ko∗DMn(λ) as a ko∗S0 module because
we know the ko∗S0 module structure of ko∗M . Again, the Bott element b acts as a
monomorphism and we can conclude the KO∗S0 module structure of KO∗DMn(λ)
and so of KO∗Mn(λ)
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