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Abstract

Many quantum algorithms have daunting resource requirements when compared to what is available
today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the
quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the
philosophy that even minimal quantum resources could be made useful when used in conjunction
with classical routines. In this work we extend the general theory of this algorithm and suggest
algorithmic improvements for practical implementations. Specifically, we develop a variational
adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second
order unitary coupled cluster to universal gate sets through a relaxation of exponential operator
splitting. We introduce the concept of quantum variational error suppression that allows some errors
to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we
analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this
procedure. Finally, we show how the use of modern derivative free optimization techniques can offer
dramatic computational savings of up to three orders of magnitude over previously used optimization
techniques.

1. Introduction

Eigenvalue and more general optimization problems lie at the heart of applications and technologies ranging
from Google’s Page Rank and aircraft design to quantum simulation and quantum chemistry [2—4]. Quantum
computers promise to provide ground breaking advances in our ability to solve these problems by offering
solutions that may be exponentially faster than the classical equivalent in some cases. However, delivering on
these promises may require overcoming considerable technological challenges.

Since the initial proposal by Richard Feynman [5], a number of advances have been made in understanding
how to use a quantum computer to help solve eigenvalue and optimization problems. The quantum simulation
algorithms of Abrams and Lloyd [6, 7] showed how eigenvalues corresponding to some Hermitian operator
could be extracted from eigenvectors exponentially faster with respect to dimension than the classical
equivalent. Leveraging this idea, Aspuru-Guzik et al showed how one could perform exact quantum chemistry
computations in polynomial time for some instances, pushing the boundaries of predictive quantum chemistry
[8]. These ideas have since been tested successfully in proof-of-principle quantum experiments using
architectures such as quantum photonics, nitrogen vacancies in diamond, and ion traps [1, 9-12].

In recent years, there has been a growing interest in the particular application of quantum chemistry on
quantum computers. As a result, a number of efforts have been made to study the scaling and performance of
various algorithms while simultaneously offering dramatic algorithmic improvements [13—30]. The original
proposal of quantum chemistry on a quantum computer also introduced the idea of adiabatic state preparation,
closely related to general adiabatic quantum computation. A number of advances in this field as well as
extensions of adiabatic computation concepts to more general optimization problems have arisen as well
[27,31,32].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Unfortunately, despite developments in quantum algorithms and optimization of resource requirements,
many of the algorithms have hardware requirements far beyond the capability of near-term quantum
computers. Moreover, the overhead of some asymptotically optimal algorithms is such that even the first
quantum computers competitive with classical supercomputers may not be able to run them. To this end, in
2014 Peruzzo and McClean et al developed the variational quantum eigensolver (VQE), a hybrid quantum-
classical algorithm designed to utilize both quantum and classical resources to find variational solutions to
eigenvalue and optimization problems not accessible to traditional classical computers [1]. This algorithm was
originally implemented and tested on a photonic quantum chip and has since been extended both theoretically
and experimentally to ion trap quantum computers [33, 34].

The VQE has the notable property that it can run on any quantum device, making it a candidate for
exploring the performance of early quantum computers. Moreover, the algorithm is designed to take advantage
of the strengths of a given architecture. That is, if some gates or quantum operations may be performed with
higher fidelity, then the algorithm can leverage these strengths in the design of the quantum hardware ansatz.
Perhaps one of the most interesting features of the algorithm is its ability to variationally suppress some forms of
quantum errors, which is discussed later in this work. This intrinsic robustness to quantum errors in
combination with low coherence time requirements has placed this algorithm as a potential candidate for the
first to surpass a classical computer, using a pre-threshold quantum device. Even in the event that some error
correction is required to exceed current computational capabilities, this same robustness may translate to
requiring minimal error correction resources when compared with other algorithms.

In this work we aim to present the hybrid quantum-classical variational approach in more detail, offering
both theoretical and practical exposition on developments since the original hybrid quantum-classical proposal.
Additionally, although a strength of the VQE is its ability to adapt to the given hardware, this work will be the
first to analyze VQE in the abstract, in a way that is completely general to any quantum device. We begin by
reviewing background and notation as well as the outline of the VQE algorithm. This is followed by a discussion
of ansatz states that allow one to explore classically inaccessible regions of Hilbert space, including a variational
formulation of adiabatic state preparation and unitary coupled cluster. We then explore how this approach may
be used to variationally suppress certain types of quantum errors. Following this, we introduce several
computational enhancements to the Hamiltonian averaging method for obtaining expectation values, including
the truncation of unimportant terms and grouping terms by commutation and covariance. These enhancements
are able to considerably reduce the cost of the procedure. Finally, we cover aspects of the classical optimization
procedure associated with the VQE and show how modern derivative-free optimization technique have the
potential to greatly enhance the efficacy of the method.

2. Background and notation

2.1. General quantum systems and the variational principle
Let us consider a quantum system S composed of N qubits which will act as our quantum computer, and a
Hamiltonian H of a different system Q that need have no relation to S other than acting on a space of <N qubits.
This Hamiltonian could be derived from a physical system such as a collection of interacting spins or the
discretization of an interacting electronic system. Similarly it could come from the encoding of an optimization
problem or the problem Hamiltonian in adiabatic quantum computation. In all of these instances, one is
interested in the eigenvectors and eigenvalues, | x;), A; of the Hamiltonian H, and the goal will be to find and
study these eigenvectors and eigenvalues using S.

In the VQE approach, the eigenvectors are encoded by a set of parameters that can be used to prepare them
on demand when other observables are desired. We order the eigenvectors by the eigenvalues such that
A < A < ---< A\y. Indeed in many cases, the eigenvectors corresponding to the lowest few eigenvalues and
their properties are of primary interest. In physical systems this is because low-energy states play a dominant role
in the properties of the system at modest temperatures, and in optimization problems they often encode the
optimal solution.

Recall the expectation value of an operator O with respect to a state [U')

(Vo)

(O)hw) = RCTO (1)

We will assume normalization of the wavefunction, (¥|¥) = 1, for the remainder of the work, however
attention should be paid to normalization in the case of leakage errors from the computational basis. Our
attention is restricted to the class of operators whose expectation value can be measured efficiently on S and
mapped to Q. A sufficient condition for this property is that operators have a decomposition into a polynomial
sum of simple operators as
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where Ois an operator than acts on Q, o runs over a number of terms polynomial in the size of the system, /i, is a
constant coefficient, each O, has a simple measurement prescription on the system S. This will allow for
straightforward determination of expectation values of O on Q by weighted summation of projective
measurements on the quantum device S. A simple example of this is the decomposition of a Hermitian operator
into a sum of tensor products of Pauli operators weighted by constant coefficients.

Consider a set of real valued parameters {6;}, which we arrange into a vector é, and the Hamiltonian H of Q.
If one prepares S into a quantum state depending on these parameters, | ¥/ 6) ), then the variational theorem of
quantum mechanics states that

(H)w@y = (H)(0) = (TO)|HT®B)) > \. 3)

Asaresult, the optimal choice of 6to approximate the ground state (or eigenvector corresponding to the lowest
eigenvalue) is the choice which minimizes (H) (5). Note that the state is normalized for all choices of 6 by the
unitarity of quantum evolution or trace preservation under quantum operations in state preparation.

Alternatively, one can perform a spectral transform to the Hamiltonian and use the ground-state variational
principle to find excited states, as in the folded spectrum method [35]. That is, minimize (H') (6) where
H' = (H — ~I)?and ~yis some real parameter. In the transformed Hamiltonian, the ground state corresponds
to the eigenvalue in the original Hamiltonian closest to .

More generally, the state preparation scheme may be influenced by an environment and would be better
represented by an ensemble given by a density matrix p (6). In an ideal scenario where the preparation is error
free and a pure state is maintained, p (@) = |\Il(§) ) (W(@) |- In the density matrix formalism, the expectation
value of an operator O is given by

(0), = Tr[pO] 4

and the ground state variational principle on the Hamiltonian H still holds such that for any approximate density
matrix p (#), and for all choices of 6

(H),@ = (H)(0) = Tr[p()H] > \. (5)

Asaresult, the optimal choice of 8 to approximate the ground state is that which minimizes (H), . The fact
that this principle still holds for mixed states has important consequences for the robustness of the method to
errors and environmental influence. By finding the set of parameters that minimizes the energy, one is in effect,
finding a set of experimental parameters most likely to produce the ground state on the average, potentially
affecting a blind purification of the state being produced. This ability to suppress errors without knowledge of
the mechanism will be elaborated upon later in this work.

Another important quantity is the variance of an operator with respect to a state. For an operator Oand a
general mixed state p, this is given by

Var[0], = ((O — (0),)%),, (6)
=(0%), — (O);. )

A variational principle on the variance exists as well, and has been used extensively for optimization in the
context of quantum Monte Carlo [36]. Note that for any eigenstate | ;) of an operator O, the variance is given by

(B0 — (TIONB? = (A — (> = 0 ®)
and for any approximate eigenstate |¥'), we have that
Var[O]g) > 0. 9

2.2. Fermionic Hamiltonians and quantum chemistry

While the VQE and its principles can be applied to general quantum problems, an application of particular
recent interest is that of quantum chemistry and fermionic Hamiltonians. Given a set of nuclear charges Z;and a
number of electrons, the standard form of the electronic structure problem is to solve for the eigenvectors and
eigenvalues of the electronic Hamiltonian H, written as

ijzvlz?ii V_f,iz Zi +Z
i 2M; i 2 i IR — il ij>i

Z.Z;
|Ri — Rjl

+ > — (10)
ij>i i — rjl
where atomic units have been used, R; are nuclear positions, r; electronic positions, and M; are nuclear masses.

Due to large separations in the nuclear and electronic masses, an excellent approximation to this problem at the
time and energy scales of chemical interest is to treat the nuclei as classical point charges under the Born—
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Oppenheimer approximation with fixed positions R;. The problem as written is referred to as the first quantized
representation of the quantum chemistry problem. A number of algorithms have been developed for quantum
computers to treat the problem directly within this framework [28, 37, 38], however the focus in this work will be
on the second quantized treatment.

To reach the practical form of the second quantized Hamiltonian, one must project the problem into a finite,
orthogonal, spin—orbital basis, of which we will denote members ¢;, and impose the requirements of fermion
anti-symmetry through the fermion creation and annihilation operators a,” and a;. With these steps, the second
quantized Hamiltonian takes the form

1 t
H=Y" hpqa;aq + 2 > hpqrsapa;a,as (11)
Pa pars

with coefficients determined by the spin—orbital basis as

~Vi Z;i
hpq = f dUS"p*(U)(TR - ; m)@q(fﬂ’ 12)
* *
o — fdaldaz w, (1) g, (02) o (1), (02) , (13)
In —

where o; describes both the spatial position and spin of an electron as o; = (r;, 5;). The operators a f and a; obey
the standard fermion commutation relations as

{a;, a,} = a;ar + a,a; = bpr> (14)

{a), a]} = {ap, a,} = 0. (15)

A crucial part of solving these problems on quantum computers is the mapping from fermions to qubits. The
two most common mappings under current study are the Jordan—Wigner transformation [39, 40] and the

Bravyi—Kitaev transformation [16, 41, 42]. In the case of the Jordan—Wigner transformation, the mapping from
fermion operators to qubits is

a; = (Hm<P oZyal, (16)
ap = (Hm<p U;)J;’ 17)
ot = (0% Fio?)/2. (18)

2.3. Reference states
Many traditional methods for electronic structure involve the concept of a reference state. A reference stateisa
product state that is used as a starting point to define a more general quantum state, and can allow for great
formal simplification. Here we will briefly introduce why they are convenient and useful, and then how they are
obtained.

An example spin-reference |U;_ .¢) and fermion-reference state |®¢_ .¢) might be the general product states

Ny
I‘Ilsfref> = H (Ci0|0> + C,1|1>); (19)
N (M
|(Df7ref> = H Z Ci]aj |>> (20)
i j

1

where |) is the fermion vacuum state, M is the number of sites a fermion can occupy, N; is the number of qubits,
and Ny the number of fermions. Even though these are separable product states, their manipulation theoretically
or preparation on a quantum computer can be cumbersome as written. However, because they are product
states, there exist efficient, local unitary basis transformations U; € SU(2)®N and U € SU(M) such that these
states can be rotated into a simple form with weight on a single computational basis state. That is

Uy _ref) = [000...0), (21
Ul ®s—ref) = af, ai,ﬁl...af‘l) (22)

and because the transformations are local, the transformation of the Hamiltonian to the new basis such that the
physical problem remains unchanged is also efficient. In the case of quantum chemistry, this correspondsto a
transformation of the integral terms ,,, and h,,,,,, which may be computed in a time O (M?) exactly.

These new simpler forms of the state have advantages both in theoretical manipulation, and in ease of
preparation with quantum resources. For example, the preparation of the untransformed spin reference state
could require at least O(N;) local rotations, not including error correction on a quantum device to prepare from

4
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a computational basis state, whereas the new reference is simply the computational basis state from which most
computations begin. Here we have traded modest classical effort in transforming the basis of the Hamiltonian
for savings in quantum resources.

These reference states are typically obtained from mean field calculations, which are guaranteed to have
product states, such as those given above, as solutions. In chemistry, this procedure is called Hartree—Fock, and
the transformation of the state to the simplified form is known as the canonical condition in the solutions of the
Hartree—Fock equations, resulting in the canonical molecular orbitals.

When the problem is well treated by mean-field theory, it can be shown through perturbation theory that the
dominant corrections to the mean-field solution are given by quantum states ‘close’ to the mean-field solution in
the sense of fermion excitations [43] or Hamming distance. This is the origin of the perturbative MP2 method,
CI, and coupled cluster methods [43, 44], which all solve the problem close to a given reference and have been
applied to both electronic and frustrated spin-systems [45].

In some problems, particularly when correlation is strong, the mean-field description is a poor starting point
for the problem. In this case, one may still use a reference-like formalism, but starting with an entangled state.
These methods are called multi-reference methods in quantum chemistry [43, 46, 47], and carry considerably
more theoretical and computational challenges with them. In this work, we will highlight how the generalization
of methods on a quantum computer to the multi-reference case is often more natural than in the classical case.

2.4. Algorithm outline

To use a variational methodology to find approximations to the eigenvalues and eigenvectors of the
Hamiltonian in a quantum computer, it is convenient to break the task into three distinct pieces and outline the
algorithm very coarsely as

(1.) Preparethe state W (6) yor p (6) on the quantum computer, where 6 canbe any adjustable experimental or
gate parameter.

(2.) Measure the expectation value (H) (6).

(3.) Useaclassical nonlinear optimizer such as the Nelder—Mead simplex method to determine new values of ]
that decrease (H) (6) .

(4.) Tterate this procedure until convergence in the value of the energy. The parameters 6 at convergence define
the desired state.

In the coming sections we will elaborate on what is known about each of these steps and offer new
algorithmic and conceptual improvements.

3. State parameterization and preparation

The set of states a quantum computer can easily manipulate that a classical computer cannot is not yet fully
understood [48-50]. Given the set of parameters 6,it’s clear that in order for a quantum computer to have an
advantage, one would like the state | () ) to be good at describing the solution of interest, while also difficult to
prepare and/or sample from classically using currently known methods. Here we will first discuss topics relevant
to state preparation for all classes of states in the VQE, independent of any notion of how difficult they are to
prepare classically. We will then discuss some details concerning two classes of states currently believed to be
both good at describing systems of interest and difficult to prepare and/or sample from classically, namely
adiabatically parameterized states and (multi-reference) unitary coupled cluster states.

3.1. Error bounds and distributions
Once astate |\If(5) ) has been prepared as a function of some set of parameters 6, one would like to know how
close this state is to the solution of the problem being solved. In this work, we will say a measured value v is
known to precision € based on a normal distribution approximation with standard deviation € /2, which is
reasonable given that most of our estimates will be derived from sums of random variates with finite variance,
which by the central limit will rapidly converge to a normal distribution.

Suppose, for now, that the goal is to know an eigenvalue of H to within a specified precision . Let \; be the
eigenvalue of H closest to (H) (6). Under these assumptions on the eigenvalue the Weinstein inequalities [51, 52]
hold
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(H)(0) + \Var(@) > X\ > (H) (@) — yVar(®). (23)

Asaresult, a sufficient condition is to rigorously achieve the precision requirement € on the eigenvalue Ay is

2
Var(0) < % , (24)

where as one approaches an eigenstate, the variance approaches 0. When considering only the ground state, one
can derive a simple bound on the quality of the state. More specifically, in the zero variance limit, if A; has
multiplicity 1, then the eigenstate corresponding to A, is reproduced as well. That is, if a bound on the gap to the
first eigenstate A is known in addition to the variance, such that |\ — A\j| > A >0 V i = lL,ande/2 < A,
and we decompose the state into its eigenstate representation [V (0)) = Zi ¢i(0)]x;) then we can quantify the
quality of state preparation as a function of the measured variance

A — \Var(§)

HE@) ) P = la@) > —x (25)

For general excited states k, one may find a similar bound exists based on a measurement of the variance of the
operator and a known bound on the gap A > 0, such that

; )  Var(@
@) WP = @) > L=

(26)
where y = (A + Var(a) )2, and both bounds given here are derived in this appendix. If one has prior
knowledge that a single eigenstate dominates the expansion, such that |, (8) > > 0.5, and alower bound

05 < a< g (5) ?, then Delos and Blinder [53] showed through the method of moments that a tighter lower-
bound on the eigenvalue is given by

. 1 1/2) .
A = (HY(O) — (; — 1) Var(6). 27

These bounds may be used to estimate the absolute accuracy the minimization procedure obtained within the
given basis and decide if the eigenvalue has been determined to the desired accuracy and precision or if the state
ansatz should be altered to adjust the cost or accuracy of the procedure.

3.2. Adiabatically parameterized states

One type of quantum state that can be explored as a parametric ansatz is that produced by adiabatic state state
preparation with a variable path. In adiabatic quantum computation [54-56] and adiabatic state preparation

[8, 27] one makes use of the adiabatic theorem [57], which states loosely that if one prepares the lowest eigenstate
of an initial Hamiltonian Hj, by continuously changing the Hamiltonian from H; to a final problem Hamiltonian
H,, one finishes in the lowest eigenstate of Hyif the evolution was slow enough. In adiabatic computation, slow
enough is quantified relative to the minimum eigenvalue gap between the ground and first excited states along
the evolution. While many developments have occurred in the area of adiabatic quantum computation and
modifications to the Hamiltonian, perhaps the most commonly considered form of evolution is defined by

H(s) = A(s)H; + B(s)Hy, (28)

where s € [0, 1], A(0) = B(1) = 1and A(1) = B(0) = 0. The evolution is controlled by continuously
changing the parameter sas a function of time £.

Consider the set of all paths of A(s) and B(s) from 0 to 1 as a function of time ¢ € [0, 7] and denote it F(7),
where 7 is some finite time. Label one such path as f € F (7). Inanoiseless coherent situation at 0 K, the
unitarity of evolution dictates that the final state of the evolution is uniquely determined by the path f. In this
situation, we may write the final pure state as a higher-order function of the path f, or |¥[ f1). Thus any
expectation values of the final state may be written as functionals of the path, (H)[ f], and by the variational
principle

(Ho) [f1 = (IfUHIP[f]) = N (29)

such that the optimal path is the path in F(7) that minimizes the value of (H) [ f]. This functional minimization
may be changed into a standard minimization by parameterizing the path f by a set of parameters 6,and
performing an optimization on the parameters 0 that determine the path. As such, adiabatic state preparation
may be considered as an ansatz to be used in the variational hybrid quantum-classical approach, where the state
parameters are the shape or nature of the path. The idea of refining the adiabatic path has been used before in the
context of local adiabatic evolution [58] with great success. The idea here is to achieve similar benefits in an
entirely black-box manner, guided only by a variational principle and measurements of the final point of the
evolution.
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Figure 1. The ground and first excited state eigenvalues of the schedule Hamiltonian H(s) as a function of the annealing path A(s). This
shows the avoided crossing that occursat A (s) = 1/2, the size of which is controlled by the perturbation parameters € in the
Hamiltonian, which in our example is set to a value of € = 0.1.

As asimple example, consider alinear path in F(7) defined by a single parameter ¢, that controls how quickly
the evolution is performed

A(s) =1 — B(s), (30)
B(s) = min(1, 6;s) (31)

and the parameter 6, is restricted by membership in F(7)to 1/7 < 6; < co. In the case of an ideal evolution with
enough quantum resources such that the evolution is much longer than required by the problem gap, the
adiabatic theorem implies that H(6,) is optimal at the extremal point 8, = 1/7. Moreover, in the limit that
T — 00, the adiabatic theorem implies that for any finitely gapped problem F(7) contains a path that prepares
the exact ground state, and even the simplest linear paths, which are a subset of F(7), are sufficient to do so.

Within this simple example, it is not immediately clear why one would want the flexibility offered by the
VQE formulation, as one could choose the linear path with minimal §; without the need for any optimization of
0,. However, a more realistic situation may be such that 7is smaller than the required time of evolution dictated
by the problem gap, due to technological constraints or simply human time constraints in a hard problem. It
might also be possible that no good estimate of the gap is known, and one must attempt several paths regardless
to establish confidence that the evolution is not too fast to impair accuracy. One should exercise caution in such
attempts however, as the probability of success does not necessarily increase monotonically with evolution time,
especially when one is far short of the time required by the problem gap or when errors are present [59].
Moreover, it is known that for systems experiencing decoherence or dephasing on the timescale of evolution that
the slowest possible evolution is not optimal in preparing the ground state of the final problem Hamiltonian
[60—62]. In all situations, the final density matrix is determined by the parameters of the path, such that f
determines a density matrix p[ f] = p (6),andan optimal choice of parameters can be made without detailed
knowledge of the gap or errors present in a system by minimizing (H,) [ ] = (H,,) 6) = Tr [p (é)HP] asa
function of 6.

The Hamiltonians may also be generalized to include intermediate operators [62—65] such as

H(s) = A(s)H, + B(s)H, + Y _ C;(s)H;, (32)
j

where one considers any number of intermediate Hamiltonians H;and C;with C;(0) = C;(1) = 0. The set of
paths satisfying these boundary conditions with available intermediate Hamiltonians { H;}, F(7, { H;}), offers
more flexibility, and again a guiding principle to select parameters defining the optimal paths is given by the
variational principle.

From this discussion it is clear that adiabatic state preparation where the path of evolution is defined by some
set of parameters 6 is one choice of parametric ansatz for the VQE. It can be inferred from the known capabilities
of adiabatic quantum computation that this ansatz is capable of preparing states that cannot be efficiently
prepared or sampled from classically using only a small number of parameters with currently known methods
[66]. As seen in the simple linear example, the number of parameters to meet this condition may be as few as one
for alinear interpolation that is slow enough in ideal conditions.
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Figure 2. A comparison of the standard linear path A(s) versus the two-parameter split path that is variationally optimal with respect to
the expectation value of the Hamiltonian at the final point H(1). The path naturally slows the evolution near the location of the
avoided crossing, but is otherwise only slightly distorted from a standard linear path.

3.2.1. Variational adiabatic path example

To further illustrate the utility of a variational perspective on adiabatic quantum computational methods in a
resource constrained setting, we consider here a simple one-qubit problem first studied in the adiabatic context
in the original work of Farhi et al [54]. In particular, we will consider this problem in a resource constrained
context where the maximum evolution time 7 is limited. In this problem, the Hamiltonian the initial and
problem Hamiltonians are given by

1
I_Ii = E(I - Uz) + €O0x; (33)

H,= %(I + o). (34)

If we take the following form of the schedule Hamiltonian

H(s) = [1 — A(9)|H; + A(s)H, (35)

then the eigenvalues of this problem undergo an avoided crossing with a gap determined by the size of the
perturbation e. For this example we choose € = 0.1 and the resulting spectrum is plotted in figure 1 as a function
of A(s). Suppose that we are attempting to prepare the ground state of our problem Hamiltonian in a situation
where the total evolution time 7 is limited.

We will consider two types of paths, the first of which is a fixed standard linear path as a function of time.
Thatis A(s) = s = t/7 with t € [0, 7]. The second type of path will be a parameterized path of two variables
defined by the best cubic B-spline fit of the four points (0, 0), (.157, 6,), (.857, 6,), (7, 1), where the the
parameters 0; are determined by a nonlinear minimization the expectation value of the final state in the (possibly
non-) adiabatic evolution with fixed maximum evolution time, (H (1)) (6}, 6,). In this simple example we use
the Nelder—Mead simplex method to perform a derivative free optimization of 6, in analogy to how it might be
performed on a quantum device. We use as an initial condition 6, = .157 and #, = .857 in the optimization,
which corresponds to the linear path.

The resulting variationally optimal adiabatic spline path A(s) is plotted alongside the standard linear path in
figure 2, which shows that the method naturally finds a path which slows evolution near the closing gap, without
any prior knowledge of the spectrum, and only measurements at the endpoint as opposed to the entire path. The
effect of this on the success of preparing the ground state as a function of the total available evolution time is
shown in figure 3. From this figure we observe that the variationally optimal adiabatic spline path is able to
achieve similar results to a linear path with roughly 10 times less evolution time. That is, at the cost of some
classical minimization, we have reduced the quantum evolution time requirement by a factor of 10 by slightly
deforming the schedule in a black-box manner relying only on measurements of the final state of the evolution
and no prior knowledge of the problem. Moreover, even at this reduced evolution time, we achieve the desirable
property that the success of the computation is a monotonically increasing function of s, which is not true of the
linear schedule in this case.
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Figure 3. The squared overlap of the system state [ U (s) ) at parameter value s with the exact ground state of H(1), |¥), is show for both
the standard linear (Lin) schedule as well as the variationally optimal spline schedule for different total evolution times 7. It can be seen
here that the performance of the variational schedule offers similar performance to alinear schedule roughly 10 times as long,
indicating an order of magnitude reduction in the quantum evolution time required for the variationally optimal schedule.

3.2.2. Pontryagin’s principle and non-adiabatic bang—bang quantum computation

While adiabatic evolution or attempted adiabatic evolution is one way to prepare a desired state, it is certainly
not the only option. Non-adiabatic evolution opens a different class of potential schedules for preparing a
desired state guided by the variational principle. The form of the schedule Hamiltonian H(s) has a particularly
interesting form, namely that it is a linear evolution problem with a control A(s) that effects a linear coupling. In
the theory of optimal control, it is known through application of Pontryagin’s minimization principle that the
optimal control setting for reaching a desired state of the controlled system when the system has a linear
coupling to the control is to have the control at its extremal values [67]. That is, A(s) becomes a sequence of
step functions where it takes the values 0 or 1 and need not satisfy the previous boundary conditions A(0) = 1
and A(1) = 0. This class of solutions to optimal control problems is known as a ‘bang—bang’ solution, and is
obviously non-adiabatic by construction. This principle has been shown in quantum optimal control

outside of the context of quantum computation, where a Monte Carlo minimization scheme was applied to
determine the schedule of step functions, and a different variational principle was employed [68].

However this scheme could be straightforwardly adopted using the variational principle methods described
here to engineer state preparation schedules for a state of interest, or to perform more general quantum
computation.

3.3. Unitary coupled cluster

Another method to parametrically explore the Hilbert space of possible quantum states is the unitary coupled
cluster method developed in quantum chemistry [44, 69]. The projective non-unitary (and non-variational)
form of these equations form the basis for the gold-standard of classical quantum chemistry, coupled cluster
with single and double excitations with perturbative triple excitations [44, 70—73] and has its origins in nuclear
physics [74]. The unitary form of these equations do not have a well defined truncation as the projective form
does, and one must rely on perturbative arguments to handle the BCH expansion that break down when the
parameters defining the states grow. This ansatz for electronic systems has been documented in classical
quantum chemistry and in previous works on the VQE [1, 33, 44, 69], and here we document its generalization
to generic collections of interacting two-level quantum systems, which include the anti-symmetric electronic
case as a specialization. We note that coupled cluster has been utilized before in the context of frustrated spin
systems such as Kagome lattices [45, 75], but our treatment will extend beyond a fixed reference and also focus
on the unitary variant of the method.

To conceptually introduce the approach, recall the introduction of reference states earlier in this work, and
consider a single computational reference state of an N-qubit quantum system, |®go) = [000 ... 0). One way to
parametrically explore Hilbert space is to consider the space of states ‘close’ to |®r,) in the sense of Hamming
distance or bit flips. This method, sometimes called configuration interaction (CI) or state space restriction
enumerates available states through the use of spin—flip [43, 76]. For example, all states one flip away from |®gg)
may be written as
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[T (6)) Z 0p,0, |¢'Ro (36)

where in this case 6; are complex coefficients and ap is the qubit raising operator applied to qubit p. This
expansion can be extended systematically by including multi-qubit spin—{lip operators to eventually parametrize
all states in the Hilbert space, or full configuration interaction. While this parametric construction of states is
straightforward, it has a number of deficiencies that render it non-optimal. We will not attempt to explore all of
those here, and note only that this ansatz is efficient to prepare and use classically for any truncation to a fixed
number of spin—flips k, and it is not clear that there is an advantage to specifically preparing a linear truncated
state on a quantum device.

An idea closely related to this is coupled cluster, which also uses the spin—flip concept to explore states ‘close’
to areference, but as a generator used in exploration of the space. In the case of quantum computing, its unitary
variant is of particular interest, as unitary state preparation is a natural operation on a quantum computer.
Conventional implementations of coupled cluster often utilize a single, well defined reference state with all spins
aligned, i.e. [Urp) = [000...0). With this assumption, one may explore all of quantum space through successive
flips in the computational basis. As a simple example, if one is interested in only real wavefunctions, the space of
single spin—flips may be explored by

[Weei(8)) = exp| Y- 0, (0 — ) ||®ro) (37)
b

and successively larger fractions of the space of real wavefunctions may be covered by introducing multiple spin—
flips. In the study of general quantum states however, it is sometimes necessary or more efficient to explore
quantum state space from an arbitrary reference | Py ), which could be entangled or simply more complex than
|DRo)- These challenges have been studied in the context of multi-reference coupled cluster in quantum
chemistry [46, 47]. Moreover in quantum computation one may not have perfect knowledge of the reference
state, nor want to require it in their algorithm. For example the reference state could be prepared by some
adiabatic state preparation procedure. In this situation one could accidentally have as a reference state

|®R) = |++ ...+ )with|+) = 1/4/2(|0) + |1), from which no state exploration is possible with the above
cluster operator. The space of non-trivial single qubit operators is spanned by 0", 0, 0%, I. As such we want to
generalize to a set of anti-Hermitian operators spanning the same space, given by

ito) +ap =iy = (3 1) . (38)
p

G -op=ioi=(_9 7). (39)
p

iy~ (} _?)p. (40)

For convenience we have introduced the standard Pauli operators in the numerical indexing scheme, that is

0 =Lo'=0*=X,0"=0" = Y,0° = 0° = Z Asoneis not typically interested in global phase factors, we
implicitly ignore the identity operator in all equations going forward and with the remaining operators we may
write the first order cluster operator as

L) =i 05 %, (41)

P

where 0, are real, Roman indices p; indicate different qubits, and the Greek indices indicate different Pauli
]
operator bases. More generally the kth order cluster operator may be written as

By _ 1N\"pd
bt
where 04 F=opop. oy 9“ is a k-index tensor containing the variational parameters, and the full cluster

operator up to order k is wr1tten
k
T®@) = Y T:(0). (43)

From this general cluster operator, we define the unitary coupled cluster state of order k with reference | Py ) as
[WED)) = exp (TO (@))1Px). (44)

With this exposition it becomes clear that unitary coupled cluster generators for a totally general spin reference
case at order k are the anti-Hermitian algebra su(2¥) and the set of possible actions on the qubits are all possible
unitary transformations on k qubits that leave the global phase unchanged, or SU(2).

10
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This represents a parametric state preparation with O ((3N)¥) real parameters. While this has the potential
to represent any known quantum operation at sufficient order and precision of implementation, practically
speaking one often restricts to the case of k = 2, which has been found to be quite powerful in expressing states
in quantum chemistry. This represents a powerful ansatz with a number of parameters that grows only
quadratically in the size of the system. Additionally, the state preparation is manifestly unitary by construction,
and has no known efficient classical preparation or method for sampling with arbitrary (possibly entangled)
reference |®g ). As has been noted previously, this state can be prepared efficiently for any fixed order kto a
specified accuracy on a quantum device by using the Suzuki-Trotter factorization of the unitary operator
exp(T® (6))[1,77,78]. We note that as one is not trying to faithfully reproduce some dynamics as in many uses
of the Suzuki-Trotter factorization, that a coarse factorization may suffice, altering the formal definition of the
ansatz, but still remaining difficult to simulate classically.

As an extension to the suggested implementation of spin unitary coupled cluster by Suzuki-Trotter, one may
use the connection to su(2¥) to take a more geometric approach and explore states through geodesic
constructions as was done by Nielsen et al [79]. Moreover if one allows values of different parameters at different
Trotter steps, one may perform arbitrary 1 and 2 qubit gates at k = 2, which forms a universal gate set and the
ansatz can be made equivalent to an arbitrary quantum circuit with a sufficient number of Trotter steps. To see
this, consider the first order in a Trotter factorization with a second order cluster operator and a Trotter number
of N. One could prepare the desired state from a given reference |®,f ) as

ajan N
3 . PP .
W) = [[ exp (1#0‘;]‘;};] [ Pref)» (45)
p1p2 [e51e%)

where we emphasize that it is more correct to consider the use of the exponential splitting as a redefinition of the
ansatz than an approximation. Instead of following this precise splitting procedure, where the same parameters
are used in each Trotter step, one can relax the parameters to have independent values at each time step, and to
not split Pauli operators acting on the same two qubits within one time step. This results in an ansatz of the form

N
1T (@)) =TT [ TT exp|i)_ 0552 0552 | |1 Peer)- (46)
t PP, aa;
The operator defined by
O =iy 05720 oty (47)

aron

can express an arbitrary element in s1(4) and thus its exponential exp (O) can be used to form an arbitrary two
qubit gate on any two qubits, or said differently, an arbitrary element of SU(4) on any two qubits. Arbitrary two
qubit gates on any qubit are known to constitute a universal gate set [80], and then clearly can be used to
construct any desired universal gate set such as the Clifford + T set. This establishes a clear connection between
second order unitary coupled cluster and universal quantum computation through relaxation of parameters in
an exponential operator splitting. This also opens the research direction of connecting states of this type to
tensor networks where the network is defined by the action at each ‘timestep’ of unitary coupled cluster [81].

3.4. Fermionic UCC

Due to particular interest in the quantum chemistry and other fermionic problems, it is worth discussing the
specialization of this method to those cases. First taking again the case of a fixed computational reference, such
as |Ppo) = Hi a]|), in analogy to the spin case, the first and second order cluster operators conventionally take
on a simple form, that is

T(l)(H) = Z eilpl(aij-apl - a;} aﬁ)) (48)
ip,
T(z)(a) = Z eilizPIPz (aijaplai: ap, — a}]’Lz i a;1 diy (49)
ni2pp,

with i;indexing the occupied spin—orbitals, p;indexing the unoccupied spin—orbitals, and higher orders defined
in the obvious way of including more excitation operators. These generators are constructed to conserve particle
number at all orders and parametrically depend on O (M ?¥) real parameters at order k.

We can understand the equivalent action on qubits by mapping the fermion operators to spin operators via
either the Jordan—Wigner or Bravyi—Kitaev transformations discussed earlier in this work. In the case of the
Jordan—Wigner mapping, as a result of the non-locality of these mappings, at every fermion order k, we find
spin—flips up to all N spins and observe that the allowed operations on the qubits are a non-trivial subgroup of
SU(2Y) at every order k. This demonstrates that it is key to develop the ansatz in the fermionic framework before
mapping the problem to a spin representation. If one were to first map to spins, then use the spin coupled cluster
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formulation, the ansatz might explore many irrelevant or symmetry broken states, such as mixtures of different
particle number states. It is important to note, however, that such symmetries can be broken even in the
fermionic representation due to the method by which the JW or BK mapped operators are mapped to gates in
Suzuki-Trotter factorizations. However these Trotter errors may be controlled and are expected to be much
smaller than symmetry breaking errors occurring from ansatz built without such restrictions.

In analogy to our exposition on spins however, this type of cluster operator is reference state specific. That is,
there are some reference states from which it will fail to parameterize the entirety of the N fermion space and
extensions to multi-reference states can require a different cluster operator for each reference. This can be seen
from dimension counting in the vector space of the fermion excitation operators. For example at first order these
operators only span a real vector space of dimension M2/2 — M whereas the full space of all 1 fermion linear
operators has real dimension M?. In classical implementations of multi-reference coupled cluster there are many
different approaches to solving this and related problems going by names such as ‘universal’ or ‘state selective’
multi-reference coupled cluster [44, 82, 83]. In the case of unitary coupled cluster on a quantum computer, in
analogy to how we generalized the distinguishable spin operators, we can generalize the fermion operators to
treat arbitrary references without such concerns.

The operators a, a; and their tensor products, where i and j run over all M spin—orbitals (instead of
restricting them to occupied and unoccupied relative to a reference) form a basis for the real vector space of
operators on N fermion states. As a result, to allow arbitrary action on the space of N fermions, the span of the
generating operators used must match this. To span the same real vector space as these operators we use the
following anti-Hermitian basis

i(a;aq + a;ap) = iAll,q; 1<p<qg<M, (50)
a;aq—a;ap:iAlfq;lép<q<M (51)

and all possible N—fold tensor products of these operators. One can verify by dimension counting of the real
vector space that these operators in fact span the entire space of possible fermion operators. With these
operators, the first order fermion cluster operator can be written as
o « «
L@ =i 05,40, (52)
UG
where p;and g;run over all spin—orbitals and v indexes the anti-Hermitian fermion generators. Higher orders of

the cluster operator can be built naturally from tensor products of these operators, such that at the kth order we
have

Tu(0) =i > 05:A%:, (53)

where the same vector operator shorthand as the spin case has been used. With this construction the power of
the cluster operator is state agnostic, and fermion number conserving. We term this the state agnostic quantum
unitary coupled cluster ansatz. Again, in all cases the optimal choice of the parameters 6 is determined through
the application of the variational principle with respect to the Hamiltonian of interest.

3.5. Quantum error suppression and symmetries

A variational hybrid quantum-classical is designed to perform on pre-threshold computers, where gates may be
imperfect and random bit flip or phase errors may be introduced into the computation. Fortunately the
variational formulation allows one to suppress certain types of errors naturally, which we will discuss here in the
context of variational error suppression.

In the design of a parametric wavefunction ansatz, it is common to enforce known symmetry requirements
for both theoretical and practical purposes. For example, in the fermionic unitary coupled cluster
wavefunctions, the ansatz is designed to conserve the number of particles for all possible choices of the
parameters 0. That is both the ansatz and the Hamiltonian commute with the number operator N = Y@ Ta;.
While we have not explicitly done so here, it is also possible to adapt the cluster operators to conserve total spin
[43]. Ina fully error corrected quantum computer, this introduces no additional concerns and can simplify the
problem under consideration. However in a pre-threshold device or any with only partial error correction this
must be taken into consideration. Moreover, as noted above, this type of error can be introduced through the
implementation of the Trotter factorization on the mapped spin operators, however this error can be controlled
and is expected to be small in comparison.

Consider the preparation of an ansatz from some initial state, which we denote as U, (é). In apre-threshold,
non-error corrected quantum device, there can be a distinction between the formal specification of the ansatz
preparation U, (f)asa gate or operation sequence and the operation sequence actually performed on the system
with inputs 6, which we will denote U, (é). We call an error in such an implementation suppressible if there
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Figure 4. A cartoon depicting the concept of variationally suppressible errors on energy contours. Dotted lines represent errors that
move the state away from the variational minimum, and solid lines characterize a shift of the ansatz parameters that can return the
state to the minimum. In this case the vertical axis is within the manifold of the ansatz parameters, while the horizontal axis is not, as
indicated by the cross in the line returning along that axis. However by adding additional operators, represented by the diagonal
dashed line, it becomes possible to suppress these errors variationally.

exists a correction input vector B such that || U, (@) -0, (5 + ,B’)H < ¢ foraspecified € > 0, and further
denote it variationally suppressible if the corrected vector 6+ B also corresponds to an optimum on the
parameter surface. In such a case, the VQE can suppress these errors naturally without detailed knowledge of the
error mechanism. A troublesome non-suppressible case is when an error violates a symmetry of the ansatz. More
explicitly, if we denote the symmetries of the ansatz as the set of operators S such that [U, (5), S] = Oforall 6,
then for any symmetry violating error U, such that [U;, S] == 0, there does not exist any correction vector & such
that the desired preparation can be performed.

To be more concrete, consider the two examples given in this section, parameterized adiabatic state
preparation and coupled cluster. In these cases, some symmetries of the ansatz can be trivially determined by the
generating operators. In adiabatic state preparation, the symmetries will be given by the set of operators S such
that [H;, S] = 0 for all Hamiltonians H;, including the initial, problem, and intermediate Hamiltonians. In the
case of coupled cluster, this will be the set of operators S such that [E;, S] = 0 for all excitation type operators E;,
such as the number operator. These represent sufficient conditions for [S, U, (6)] = 0for every possible choice
of 6. In the case of fermionic coupled cluster, the generating operators are specifically designed to conserve
particle number, such that one symmetry of the system is the number operator N = Zi ala;. InaJordan—
Wigner qubit representation, this simply counts the number of qubits in state |0). As such, ifa random error of
the form U, = ¢ o' isacted on any qubit, this error is not suppressible (assuming minimal Trotter factorization
errors).

This particular error can be made suppressible by extending the set of generating operators to include spin—
flips (e.g. iU:,r and io,) or fermionic non-number conserving operators, e.g. (a; — a,)and i(a; + ay) aswellas
all tensor products of these operators with the rest of the generating set. With the addition of these operators, this
error become suppressible, however the error will only be variationally suppressible if the desired symmetry state
of the ansatz corresponds to an energetic minimum. The concept of variational error suppression as well as
extending the available operators is depicted schematically in figure 4. In the event that it does not, one can
construct an auxiliary Lagrangian of the form

L=H+ Z )\i(S,‘ — SiI)z, (54)

where ); are penalty multipliers and s; are constants corresponding to the desired expectation values of the
operators S;. In order to be efficient, measurements corresponding S; and S; must be also be efficient. Using this
construction, one may minimize with respect to expectation values (£) (6) instead of (H) (f), and in the limit
that A\; — oo the symmetries will be exactly preserved while allowing variational error suppression under action
by the extended operator set.

This methodology also allows for access to excited states that correspond to an energetic minima of a given
symmetry. An example of this could be the lowest triplet energy state of a molecule with a natural singlet ground
state, or the ionic state of a molecule after photodissociation. Use of this construction may allow easier access to
these particularly important excited states, as compared to a more general excited state approach.

13



I0P Publishing

NewJ. Phys. 18 (2016) 023023 JRMcClean etal

4. Operator averaging

Once a trial state [¥ (6) ) has been prepared, the next crucial step in the VQE is the evaluation of the objective
function corresponding to the problem operator H, (H) () = (¥(8)|H|¥(6)). One possibility is to use the
quantum phase estimation algorithm [6-8]. If |\Ilz0)> is an eigenstate, then the value is obtained after a single
state preparation with a cost in the desired precision of O (1/¢). Unfortunately, to achieve this precision, all of
the operations must be coherent which is a prohibitive technological requirement for current and near-term
quantum computers. Moreover, if the state is instead a mixture of many eigenstates, it will still require O (1/¢2)
repetitions of the entire procedure to converge the value (H) () to a precision e. The use of quantum phase
estimation done to a precision surpassing € opens the possibility to instead minimize the minimal value found in
aprojective measurement of the energy in a sequence of phase estimation runs. However we do not explore that
option further here.

In 2014, Peruzzo and McClean et al [ 1] suggested a way to retain the advantage of preparing classically
inaccessible states while removing the overwhelming coherence time requirements to measure the energy. This
method is called Hamiltonian averaging and has been discussed recently in more detail [21].

The original formulation used the fact that tensor products of Pauli operators form a basis for the space of
Hermitian operators. As such any Hermitian operator H may be written as

H=3Y hiol + > hikobs + - (55)

iy i1

and by linearity the expectation value as

(Hywy = Y ki (od) + >0 hi2 (odl) + - (56)

i i an

As aresult, all that is required is the weighted sum of the results from simple Pauli measurements. This is an
operation requiring coherence time O(1) assuming parallel qubit rotation and readout are possible, otherwise
the coherence time required is O(k), where k is the locality of the term to be measured. Previously, some scaling
analysis of this procedure was done in the context of locality [21], but here we detail more specifically how to
perform the averaging and verify the error on the fly in a simulation of a general state.

Consider the Hamiltonian decomposed as

H=)> H, (57)
Y

where each H., is a Hermitian operator with associated measurement outcomes 11, and 1, of which Pauli
operators are a special case. In order to get the desired precision in a normal distribution approximation, we
require a variance of €2 in the estimator of (H ), which we denote with alarge hatas (H). The estimator we have

described is constructed as a sum of independent estimators (H.)

(H) =3 (H) (58)
5
each of which is a built a sequence of independent measurements X = {x;}. As the measurements are taken
from independent state preparations, we have that the covariance between the individual estimators on the
measurements is 0 or Cov [</Ha\,> , <7—IT>] =0 V «a = (@ andthusthe variance of the total estimator is the sum of
the variances of the individual estimators

Var(H) ZVar[ (H,)]. (59)

The individual estimators are constructed as the mean of a sequence of independent measurements
corresponding to the operator H., on independent preparations of the state p. Each measurement of the total
operator requires a state preparation and measurement for each individual term, and thus the total number of
expected state preparations and measurements to achieve a precision of € in <7—I\> is

Var[H,]
nexpect - MZ —) (60)

where M is the total number of terms in the decomposition of the Hamiltonian. While this offers insight into
how many measurements one expects to take, it does not yet constitute a practical algorithm, as the true value of
the variances Var[H,] in general will be unknown except in toy examples. Instead, one has access to the sample
mean and unbiased sample variance as the measurements are taken. That is, after n measurements {x;} of the
operator H., have been taken on p, one computes
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< v ({x})— sz

Var[H,1({x;}) = —Z (i — (H) ({x:}))? (61)

and continues taking measurements until Var|[ ( 1~ Var [H 1{x:}) / n < e? / M, and moves on to the next
term. While straightforward, this methodology suffers from some ambiguities when using a small number of
measurements or when the state p represents an eigenstate of the operator H.,. In particular, how many
measurements are required to confirm that the variance is 0 to the desired precision. This is related to how
unobserved events are addressed in a frequentist perspective of probability. In practical implementations these
issues are often left unaddressed rigorously in stochastic sampling methods and a reasonable minimum number
of measurements is chosen such as# = 1000 or n = 10 000 before the estimates of \7&[_HT] ({x;}) are taken to
be reliable, trusting that after a number of samples that it is well represented by a normal distribution and the
higher moments associated with errors in estimates of the variance vanish rapidly. An alternative perspective
that addresses such concerns from the outset is a Bayesian perspective, which has been investigated in the context
of quantum phase estimation [84], and we now explore in the context of Hamiltonian averaging.

4.1. Bayesian perspective
In a Bayesian perspective, we start from an uninformative prior for the distribution @ In the case of two
measurement outcomes, the likelihood function is the binomial likelihood, and the posterior distributions after
measurement can be worked out analytically when used with a conjugate Beta prior. These distributions are
well-defined even for small numbers of measurements or when p is close to an eigenstate of H., resulting in
potentially unobserved events in a sequence of measurements.

Consider a sequence of independent measurements X = {x;} with two possible outcomes {m;, m,}, such as
the quantum measurement of a Pauli operator. The likelihood of observing the sequence of measurements X is
completely defined by a single variable p and is written

P&lp) = (N)pra = pyr (62)

with N being the total number of measurements X and r being the number of measurements equal to m;. The
value p defines the probability of observing 71, and will be directly related to < ). Our current knowledge of p is
defined by the prior distribution P(p). Many choices for the form of the prior dlstrlbutlon can be made, butan
analytical result can be obtained by choosing the conjugate prior to the Binomial distribution, which is the Beta
distribution

F(Oé + 6) a 1( )“371‘

P(p; a, f) = Beta(a, ) = (63)
INEY (ﬁ)
The Beta distribution is a function of two parameters « and (3, and these are the parameters we will seek to
update with a Bayes inference scheme. Simply put, given the measurements X with r instances of m,, the
posterior distribution is given by
P(p|X) = Beta(a + r, B+ N — r) = Beta(a/, 3'). (64)
From o' and (3, one can determine both the mean value and variance in our desired quantity as
!
= , (65)
()= 5
Var[p] = : o (66)
(a+ P (a+F+1)
and the expected value and variance of p may be used in the estimators associated with H.,. In particular
(Hy) = (p)ym + (1 = (p))ym, (67)
Var[(H,)] = (my — my)*Var[p]. (68)

A reasonable choice of initial prior in this situation before any measurements are taken is the uniform prior
(sometimes called the Bayes’ prior probability in this case) Beta(1, 1). Thus a practical strategy in the Bayes
settingistolet« = 8 = 1, then take N measurements. One then updates avand Sto o/ and 3 according to
equation (64), and continues taking measurements until Var [(/Hm < €2/M,which is simply computed as a
function of the new o and 3 through the above formulae. We note that if one has a good reference state, a prior
distribution can be constructed from it to yield an informative prior. This has the potential to reduce the cost and
will converge to the same result under most reasonable conditions. However one must be careful as this may
introduce a bias for poor reference states with a small number of measurements.
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o —

After using either the frequentist or Bayesian approach to check convergence of Var[ (H, ) ]forall 4, undera
normal distribution approximation the final estimation of (H)) is precise to the desired precision e.

An alternative to the normal approximation confidence intervals may be used in the Bayesian approach if
desired. As the measurements are taken for each of the operators H. in the Bayesian approach, the associated

probability distribution P ((H,)) is known. The probability distribution of a sum of independent random
variables is known to be the convolution of the individual probability distributions, such that

— —

P((H)) = * P({H,)). (69)

Unfortunately the convolution of two Beta distributions does not have a known analytical result, and these
convolutions must be performed numerically. Once the probability distribution P (TI—T)) is known, one may
numerically bracket the desired confidence interval to estimate the precision of the approach. Practically
speaking, the convergence of this final probability distribution to a normal distribution is quite rapid, and thus

the normal approximation relying on the variance is the standard procedure.

4.2. Cost reduction

The computational cost of Hamiltonian averaging can be reduced in a number of ways. In this section we will
consider two methods for doing so. In the first we will remove terms that are deemed unimportant, and in the
second we will consider how terms are grouped in order to reduce the required number of state preparations.

4.2.1. Term truncation

The first strategy to reduce the number of measurements and state preparations required is to avoid
measurements guaranteed not to contribute at the desired precision to the total estimate. To do this, one may
order the terms by their expected maximum contribution to the estimate. For example the magnitude of a
weighted Pauli operator H, = h. o isbounded such that for any state p, | (H,) | < |h|. Once the terms are
ordered according the the maximum expected contribution, with the maximum at y = M, we can construct the
sequence of partial sums

k
e = Z |hil (70)

with ey defined to be 0, that defines the maximal bias introduced by truncating the k smallest terms. Using this
sequence, one may choose a constant C € [0, 1) and remove the k* lowest terms by finding the maximal index
k™ in the sequence such that e;* < Ce. In this choice, C determines the both the number of terms one is allowed
to neglect and amount of bias introduced. As the estimator is now biased, one must consider the bias-variance
tradeoff to maintain the desired accuracy. In order to achieve an expected mean-square-error of € in the final
answer, we must decrease the variance of the estimator on the remaining terms such that

C%? + Zyik* Var [@] < €2. This may be achieved by changing the per-term variance threshold for each

(H,)tobe (1 — C?)e%/(M — k*). This results in a new expected number of measurements

M—k*
(M — k*)Var[H,]
Mespect = D ——
(1 — CYe

v

(71)

Oneis free to choose a value of C € [0, 1) to maximize computational efficiency according to the particular
constraints of experiment and the distribution of operators in the sum. It has been seen previously that using this
strategy in conjunction with locality information can potentially reduce the costs of quantum chemistry
calculations dramatically [21].

4.2.2. Commuting groups and correlated sampling

Another strategy one may use besides truncation is to take advantage of commuting operators within the sum to
reduce the number of state preparations required. If two operators H, and Hz commute, they may be measured
in sequence on the same state preparation without biasing the final result of the expectation values. As the state
preparation is expected to be more expensive than projective measurements, this has the potential to offer
significant savings. However, the application of this technique requires some care.

While grouping terms into commuting sets cuts down on the number of state preparations required for a
single pass at the measurements and does not bias the expected outcome, there is some detail to consider in the
statistics of measurement and estimation of uncertainty. As terms within a commuting set are measured on the
same state within each pass of the procedure, two operators within a set may be correlated such that the
estimators of their average may have non-zero covariance i.e. Cov [</H;> , @] = 0. This additional covariance
can either require more measurements for the set of terms if the covariance is positive, or less if it is negative in
analogy to the method of antithetic variables or correlated sampling in classical Monte Carlo simulations
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[85, 86]. Thus one must be careful to group only operators that result in a practical efficiency gain. This concept
is best illustrated with a short example.
Consider the two spin Hamiltonian

H=-XX+ YW%) + 24+ Zi + 2y, (72)
where X, Y, Z are the standard Pauli operators and a quantum state
) = |01) (73)

which we will be measuring. The operators in this Hamiltonian can be grouped in a number of ways into groups
of commuting terms. Consider the following three options

(1)- {_XIXZ}’ {—Yle}a {ZIZZ}) {Zl}’ {ZZ}a
(2) {7X1X2}, {*YIY2> ZIZZ}r {er ZZ}>
(3) {7X1X2) *Y1Y2) leZ}a {Zb Z2}

Using the formulas from the previous section to compute the expected number of state preparations for each
grouping of operators to a precision €, we may proceed as follows. The expected estimator variance of the first
grouping is 2, but prescribes a total number of state preparations per term to be 5 (from 5 sets of commuting
operators), resulting in an expected number of state preparations #expec—1 = 10 /€?.In the second case, we
maintain the same variance, but group commuting operators together that have 0 covariance, so the number of
preparations per iteration is reduced to 3 and we find #zexpect—2 = 6 / €2. Thelast case has the smallest number of
commuting groups, but introduces an extra covariance term that results from covariance between X; X,, and

Y Y, on the state [¥). As aresult, the total number of expected preparations is given by #1expec—3 = 8/€2 Thus
while the last prescription had the fewest number of commuting terms, the second was a better grouping,
reducing cost by almost a factor of 2 from the naive measurement of all terms individually.

This simple example illustrates how savings can be achieved through careful grouping, but also highlights
the state and operator dependence of this strategy. The most crucial piece of information in deciding whether to
group commuting terms is the covariance of different operators on the state. If one has a good approximation of
the state, this can be estimated classically before an experiment to group operators that are expected to give cost
savings. Alternatively, if one expects many points in an optimization to be similar, this can be estimated once on
the quantum state before beginning to a low precision, and these heuristic groupings can be used for the
remainder of the experiment. Again, we emphasize that this strategy will not bias the final result, even if the sets
chosen are non-optimal. It is merely a means of sampling cost reduction.

Regardless of the strategy chosen, it is crucial to correctly determine the statistical uncertainty of the final
estimate. One could estimate the covariances from the measurements and account for this, but a perhaps
conceptually simpler approach more true to the spirit of the experiments is to define new trivial estimators @,
which are constructed as follows. After a state preparation, each operator in Q; is measured in turn in some pre-
defined order to give a sequence {x,"}. The sum of these measurements for all the operators is defined to be the
new measurement q; = Zw x;', and the estimator for the average over many realizations is simply the

. . ey 1 . . .
arithmetic mean, (Q;) = — Z? q;- In this way the final estimator may be constructed equivalently as
n

(H) = > (Q) (74)
i
that clearly yields the same expectation value but is now composed of estimators such that Cov [@ , @] =0
for i = j, allowing one to more conveniently estimate only variance of uncorrelated estimators to determine the

uncertainty in the final estimate and fix the desired tolerances per term when measuring.

4.3. Beyond energy to general observables

Finally we note that the method of calculating operator averages outlined in this section often yields additional
information besides the original designed expectation value. For example, in the case of quantum chemistry, the
individual operators measured that compose the Hamiltonian are the reduced 1 and 2 electron density matrices,
defined for a state |U) as

D, = (V]aa,|V), (75)

L1
_ Tat
Dy, = 5 (V]a; a; agap|¥). (76)
Knowledge of these reduced density matrices is sufficient to determine not only the energy but the expectation
value of any one- and two-electron operators, such as the dipole moment or charge density. This follows from
the fact that any one- and two-electron operators F and G may be written in a basis as
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F=3f,alap, (77)
ip
1
G = E Z giquafa;apaq, (78)

ijpq
where f;;and g;jx; are precomputed with the single particle basis set. From this it is clear that the expectation
values are

(F) = Y2, (Wla) al®) = > £, D, 79)
ip ip
1 ij
(G) = 7 Zgiqu <\I/|afa;fapaq|\11> = ZgiquDq]p (80)
ijpq upq

which may be computed trivially on a classical computer with the measured values from experiment. Thus the
operator averaging methodology in this section gives access to a number of interesting observables of the
quantum system with no additional required measurements, and this approach can be viewed alternatively as a
form of scalable partial tomography. This point of view also suggests that a promising route for additional post-
processing of data is to use techniques designed to enforce physical constraints on the estimated reduced density
matrices [87, 88]. This perspective illuminates connections to quantum state and process reconstruction
methods where the one- and two-electron reduced density matrices are viewed as a generalized quantum process
tomography [88]. The study of this approach in connection with powerful classical approaches for direct use of
the reduced density matrices based on the contracted Schrodinger equation [89, 90] may lead to additional
insights as to the nature of the quantum algorithm.

5. Optimization of parameters

The final piece of the VQE is a method for updating the parameters 6 based on the measured value of the
objective function of interest. The dependence of the objective function on the parameters will, of course,
depend upon the ansatz being used and will in general be nonlinear and non-convex. This is not to say ansatz
satisfying desirable criteria such as convexity could not be designed, but rather that in general it may not be. As
such, one may not expect global optimization or verification of a proposed solution to be feasible, respecting the
known QMA-hard complexity of finding the ground state of k-local Hamiltonians [91]. We also note that some
quantum states may require an exponential parameterization, however physical states are not expected to
exhibit this behavior [92]. However, in many cases local optima are sufficient and prior knowledge of a problem
offers high quality starting points for the optimization. This has often been the case in quantum chemistry,
where nonlinear procedures such as Hartree—Fock utilize very good local optima and benefit greatly from high
quality starting guesses. The use of high quality starting guesses will likely be important for all types of ansatz
discussed here as well. In the case of UCC for example, perturbation theory methods such as MP2 could be used
to generate starting guesses.

The field of nonlinear optimization is well developed with many tools both general and more specialized
methods to different optimization problems [93]. The objective function by design here is statistical in nature,
making it difficult to directly use many of the basic tools from numerical optimization that rely on gradients. In
the original implementation, the derivative free Nelder-Mead simplex method was used as it has reasonable
robustness to small quantities of noise, at least in comparison to methods such as standard gradient descent.
However, with developments in the optimization of functions, it is clear that there are more efficient options
available for this problem and in this work we compare the Nelder-Mead simplex method, TOMLAB/
GLCLUSTER, TOMLAB/LGO, and TOMLAB/MULTIMIN methods [94, 95] for an example problem. These
particular algorithms were chosen because of Nelder—Mead’s use in the original work, and the superior
performance of the TOMLAB algorithms in a recent comprehensive benchmark of derivative free optimization
techniques [94]. Each of the TOMLAB algorithms uses a different derivative free search strategy and include
both global and local considerations in the choice of new iterates. Details of the TOMLAB algorithms can be
found in the user’s guide [95].

The example problem we benchmark is this case is the optimization of a unitary coupled cluster
wavefunction for H, with an internuclear separation of R = 0.74 A in a minimal STO-3G basis, encoded into 4
qubits using the Jordan—Wigner mapping. A first order Trotter splitting was used to implement the UCC ansatz
in this case, with truncation to the term U = exp [¢ (ao+ a;r aas — a; 112;r a4 ap) ]. The optimization in this case is
over the single parameter t. In these benchmarks, simulated measurement estimator noise is added to the
objective function at a specified variance ¢2. The optimization is then repeated 20 times at a given € and the
resulting accuracy with respect to the exact solution is plotted in figure 5 as a function of the measurement noise,
which can be controlled through the number of measurements taken in the experiment. The error bars indicate
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Figure 5. The accuracy of the final energy of the optimized wavefunction at convergence compared to the known exact solution, asa
function of the precision in the function value in the optimizer for different methods (). The values are averaged over 20 repetitions
and the error bars indicate 1 standard deviation of the measured data. The TOMLAB methods provide dramatically superior
performance at essentially all levels of measurement precision above ¢ = 107,

1 standard deviation in the distribution of values measured over the 20 repetitions. Additionally, the number of
evaluations of the expectation value of the energy required to reach convergence is plotted as a function of the
same precision € in figure 6. Itis seen in these plots that in all instances, the TOMLAB methods not only converge
to a higher accuracy in the energy, but do sometime as many as 1000 times less function evaluations than the
Nelder—-Mead method which was previously coupled to the variational hybrid quantum-classical approach.
Moreover, the approximately constant number of function evaluations required to reach convergence as a
function of precision suggests that more savings may be reached by using a variable precision optimization, as
the cost of a function evaluation to a precision € scales roughly as 1/ ¢? in this case.

While the performance of the TOMLAB algorithms is impressive relative to previous standards, these
methods that utilize some global optimization and random search strategies will require further numerical
testing as the dimension of the problem space grows. Moreover, none of these methods were specifically
designed for a stochastic objective function. This is an area of great importance in the algorithm as a whole, and
all improvements can translate to dramatic savings in the overall runtime. As a result this is a topic of ongoing
research.

6. Conclusions

Quantum computers promise to change the way we think about problems across a plethora of different fields,
including the important areas of optimization and eigenvalue problems. While the construction of full scale,
error corrected quantum devices still poses many technical challenges, great progress is being made in their
development. In the era of pre-threshold devices, and indeed beyond it, quantum devices may find an advantage
in leveraging classical resources alongside quantum resources to exploit the powerful technologies already in
existence today. The VQE is an algorithm designed to exploit these resources in both a pre- and post-threshold
world, and it has been speculated that variational algorithms of this type may be the first to demonstrate a
quantum advantage over classical supercomputers for practical problems [96].

In this work, we explored the theory of a variational hybrid quantum-classical approach beyond its original
context to more general problems. We explored two potential candidates for an ansatz that may allow one to go
beyond classical computation, namely a variational adiabatic formulation and the unitary coupled cluster
method. A simple connection between the second order unitary coupled cluster method and universal gate
models of quantum computation was demonstrated. Moreover, we showed that the variational formalism
allows for a natural form of error suppression for some quantum problems in a pre-threshold device. From a
practical computational side, we showed that careful grouping of terms and truncation can offer significant cost
savings in the use of this algorithm. Finally we improved the classical subparts of the algorithm and found that
advances in derivative free optimization offer dramatic cost savings over previous implementations.

Only time will tell if variational algorithms will be the first to surpass classical computers and if they can
accomplish that feat on a pre-threshold device. Regardless of this outcome, the variational framework offers a
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Figure 6. The number of function evaluations required to reach convergence for minimization of the wave function as a function of
the precision in the function value. The accuracy of each of these minimizations relative to the exact answer is shown in figure 5. The
TOMLAB methods are seen to be dramatically more efficient than the Nelder-Mead method, requiring sometimes 3 orders of
magnitude less function evaluations to achieve higher accuracy in the final answer for higher desired precisions.

powerful perspective for the development of tools throughout quantum computation and the perspectives we
have investigated and extended in this work will aid in this endeavor.
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Appendix A. Eigenvector bound

In this section we derive the bound on the quality of the eigenvector stated in the text as determined by the
variance of the operator. The ground state is different than general eigenstates in allowing a slightly easier
derivation, so we split the derivations into two separate sub sections.

A.1. Ground state
Beginning with a calculation of the average energy in terms of the eigenvalues and weights of eigenvectorsin a
state |¥) decomposed into eigenvectors of Has |¥) = Zi cilx;)

(H)=lalPM + > leil®A;

i>1
>lalPh + Y el + A)
i>1
=lalPM+ 1 = laH N+ A)
=X+ A — |gPA
> ((H) — {Var(0)) + A — |al*A, (81)

where A is alower bound on the gap between the ground and first excited eigenvalue. Rearranging yields the
desired bound on the overlap with the ground state

A — JVar(d
o > T()’ (82)

where the promise that the error is less than the gap, i.e. 1/ Var(6) < A guarantees a positive bound, and the
overlap estimate converges to 1 as Var(@) is reduced to 0.
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A.2. General states
Starting with an expression for the variance of H over a state | ) = Zi cilx;) » where | x;) are eigenvectors of H
with eigenvalue \;, we have
Var[H] = (H — E)2|¥)
=>" (A — EXlcil> + O — Bl (83)
i=k
where E = (H). Our goal is to bound the value of |c|> based on a measured variance of the state with respect to
H, Var[H] and aknown bound on the gap A.Let o = (A\; — E)?, from here we see that

Var[H] > (A + {Var[H])*(1 — |a*) + alel? (84)
rearranging to have an expression for |;J> and letting v = (A + /Var[H])?, we have
la? > o — Var[H] (85)
v —«

Following our assumptions on the gap and errors, we know thatand 0 < « < Var[H] < ~, from which it
follows that

e > L——. (86)
Y
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