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Abstract

Many quantumalgorithms have daunting resource requirements when compared towhat is available

today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the

quantumvariational eigensolver’was developed (Peruzzo et al 2014Nat. Commun. 5 4213)with the

philosophy that evenminimal quantum resources could bemade useful when used in conjunction

with classical routines. In this workwe extend the general theory of this algorithm and suggest

algorithmic improvements for practical implementations. Specifically, we develop a variational

adiabatic ansatz and explore unitary coupled cluster wherewe establish a connection from second

order unitary coupled cluster to universal gate sets through a relaxation of exponential operator

splitting.We introduce the concept of quantum variational error suppression that allows some errors

to be suppressed naturally in this algorithmon a pre-threshold quantumdevice. Additionally, we

analyze truncation and correlated sampling inHamiltonian averaging asways to reduce the cost of this

procedure. Finally, we showhow the use ofmodern derivative free optimization techniques can offer

dramatic computational savings of up to three orders ofmagnitude over previously used optimization

techniques.

1. Introduction

Eigenvalue andmore general optimization problems lie at the heart of applications and technologies ranging

fromGoogle’s Page Rank and aircraft design to quantum simulation and quantum chemistry [2–4]. Quantum
computers promise to provide ground breaking advances in our ability to solve these problems by offering

solutions thatmay be exponentially faster than the classical equivalent in some cases. However, delivering on

these promisesmay require overcoming considerable technological challenges.

Since the initial proposal by Richard Feynman [5], a number of advances have beenmade in understanding

how to use a quantum computer to help solve eigenvalue and optimization problems. The quantum simulation

algorithms of Abrams and Lloyd [6, 7] showed how eigenvalues corresponding to someHermitian operator

could be extracted from eigenvectors exponentially faster with respect to dimension than the classical

equivalent. Leveraging this idea, Aspuru-Guzik et al showed howone could perform exact quantum chemistry

computations in polynomial time for some instances, pushing the boundaries of predictive quantum chemistry

[8]. These ideas have since been tested successfully in proof-of-principle quantum experiments using

architectures such as quantumphotonics, nitrogen vacancies in diamond, and ion traps [1, 9–12].
In recent years, there has been a growing interest in the particular application of quantum chemistry on

quantum computers. As a result, a number of efforts have beenmade to study the scaling and performance of

various algorithmswhile simultaneously offering dramatic algorithmic improvements [13–30]. The original
proposal of quantum chemistry on a quantum computer also introduced the idea of adiabatic state preparation,

closely related to general adiabatic quantum computation. A number of advances in this field aswell as

extensions of adiabatic computation concepts tomore general optimization problems have arisen as well

[27, 31, 32].
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Unfortunately, despite developments in quantumalgorithms and optimization of resource requirements,

many of the algorithms have hardware requirements far beyond the capability of near-termquantum

computers.Moreover, the overhead of some asymptotically optimal algorithms is such that even the first

quantum computers competitive with classical supercomputersmay not be able to run them. To this end, in

2014 Peruzzo andMcClean et al developed the variational quantum eigensolver (VQE), a hybrid quantum-

classical algorithmdesigned to utilize both quantumand classical resources tofind variational solutions to

eigenvalue and optimization problems not accessible to traditional classical computers [1]. This algorithmwas

originally implemented and tested on a photonic quantum chip and has since been extended both theoretically

and experimentally to ion trap quantum computers [33, 34].
TheVQEhas the notable property that it can run on any quantumdevice,making it a candidate for

exploring the performance of early quantum computers.Moreover, the algorithm is designed to take advantage

of the strengths of a given architecture. That is, if some gates or quantumoperationsmay be performedwith

higherfidelity, then the algorithm can leverage these strengths in the design of the quantumhardware ansatz.

Perhaps one of themost interesting features of the algorithm is its ability to variationally suppress some forms of

quantum errors, which is discussed later in this work. This intrinsic robustness to quantum errors in

combinationwith low coherence time requirements has placed this algorithm as a potential candidate for the

first to surpass a classical computer, using a pre-threshold quantumdevice. Even in the event that some error

correction is required to exceed current computational capabilities, this same robustnessmay translate to

requiringminimal error correction resources when comparedwith other algorithms.

In this workwe aim to present the hybrid quantum-classical variational approach inmore detail, offering

both theoretical and practical exposition on developments since the original hybrid quantum-classical proposal.

Additionally, although a strength of theVQE is its ability to adapt to the given hardware, this workwill be the

first to analyze VQE in the abstract, in away that is completely general to any quantumdevice.We begin by

reviewing background and notation aswell as the outline of theVQE algorithm. This is followed by a discussion

of ansatz states that allowone to explore classically inaccessible regions ofHilbert space, including a variational

formulation of adiabatic state preparation and unitary coupled cluster.We then explore how this approachmay

be used to variationally suppress certain types of quantum errors. Following this, we introduce several

computational enhancements to theHamiltonian averagingmethod for obtaining expectation values, including

the truncation of unimportant terms and grouping terms by commutation and covariance. These enhancements

are able to considerably reduce the cost of the procedure. Finally, we cover aspects of the classical optimization

procedure associatedwith theVQE and showhowmodern derivative-free optimization technique have the

potential to greatly enhance the efficacy of themethod.

2. Background andnotation

2.1. General quantum systems and the variational principle

Let us consider a quantum system S composed ofN qubits whichwill act as our quantum computer, and a

HamiltonianH of a different systemQ that need have no relation to S other than acting on a space of N qubits.

ThisHamiltonian could be derived from a physical system such as a collection of interacting spins or the

discretization of an interacting electronic system. Similarly it could come from the encoding of an optimization

problemor the problemHamiltonian in adiabatic quantum computation. In all of these instances, one is

interested in the eigenvectors and eigenvalues, i∣c ñ,λi of theHamiltonianH, and the goal will be tofind and

study these eigenvectors and eigenvalues using S.

In theVQE approach, the eigenvectors are encoded by a set of parameters that can be used to prepare them

ondemandwhen other observables are desired.We order the eigenvectors by the eigenvalues such that

N1 2  l l l . Indeed inmany cases, the eigenvectors corresponding to the lowest few eigenvalues and

their properties are of primary interest. In physical systems this is because low-energy states play a dominant role

in the properties of the system atmodest temperatures, and in optimization problems they often encode the

optimal solution.

Recall the expectation value of an operatorOwith respect to a state ∣Yñ

O
O

. 1
∣ ∣

∣
( )∣á ñ =

áY Yñ
áY Yñ

Yñ

Wewill assumenormalization of thewavefunction, 1∣áY Yñ = , for the remainder of thework, however

attention should be paid to normalization in the case of leakage errors from the computational basis. Our

attention is restricted to the class of operators whose expectation value can bemeasured efficiently on S and

mapped toQ. A sufficient condition for this property is that operators have a decomposition into a polynomial

sumof simple operators as
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O h O , 2( )å=
a

a a

whereO is an operator than acts onQ,α runs over a number of terms polynomial in the size of the system, hα is a

constant coefficient, eachOα has a simplemeasurement prescription on the system S. This will allow for

straightforward determination of expectation values ofO onQ byweighted summation of projective

measurements on the quantumdevice S. A simple example of this is the decomposition of aHermitian operator

into a sumof tensor products of Pauli operators weighted by constant coefficients.

Consider a set of real valued parameters {θi}, whichwe arrange into a vector q

, and theHamiltonianH ofQ.

If one prepares S into a quantum state depending on these parameters, ∣ ( )qY ñ


, then the variational theoremof

quantummechanics states that

H H H . 31( ) ( )∣ ∣ ( ) ( )∣ ( ) q q q lá ñ º á ñ = áY Y ñqY ñ
  



As a result, the optimal choice of q

to approximate the ground state (or eigenvector corresponding to the lowest

eigenvalue) is the choicewhichminimizes H ( )qá ñ

. Note that the state is normalized for all choices of q


by the

unitarity of quantum evolution or trace preservation under quantumoperations in state preparation.

Alternatively, one can perform a spectral transform to theHamiltonian and use the ground-state variational

principle tofind excited states, as in the folded spectrummethod [35]. That is,minimize H ( )qá ¢ñ

where

H H I 2( )g¢ = - and γ is some real parameter. In the transformedHamiltonian, the ground state corresponds

to the eigenvalue in the originalHamiltonian closest to γ.

More generally, the state preparation schememay be influenced by an environment andwould be better

represented by an ensemble given by a densitymatrix ( )r q

. In an ideal scenario where the preparation is error

free and a pure state ismaintained, ( ) ∣ ( ) ( )∣r q q q= Y ñáY
  

. In the densitymatrix formalism, the expectation

value of an operatorO is given by

O OTr 4[ ] ( )rá ñ =r

and the ground state variational principle on theHamiltonianH still holds such that for any approximate density

matrix ( )r q

, and for all choices of q



H H HTr . 51( ) [ ( ) ] ( )( ) q r q lá ñ º á ñ =r q
 



As a result, the optimal choice of q

to approximate the ground state is that whichminimizes H ( )á ñr q

 . The fact
that this principle still holds formixed states has important consequences for the robustness of themethod to

errors and environmental influence. Byfinding the set of parameters thatminimizes the energy, one is in effect,

finding a set of experimental parametersmost likely to produce the ground state on the average, potentially

affecting a blind purification of the state being produced. This ability to suppress errors without knowledge of

themechanismwill be elaborated upon later in this work.

Another important quantity is the variance of an operatorwith respect to a state. For an operatorO and a

generalmixed state ρ, this is given by

O O OVar , 62[ ] ( ) ( )= á - á ñ ñr r r

O O . 72 2 ( )=á ñ - á ñr r

Avariational principle on the variance exists as well, and has been used extensively for optimization in the

context of quantumMonteCarlo [36]. Note that for any eigenstate k∣Y ñof an operatorO, the variance is given by

O O 0 8k k k k k
2 2 2 2∣ ∣ ∣ ∣ ( ) ( ) ( )l láY Y ñ - áY Y ñ = - =

and for any approximate eigenstate ∣Ỹñ, we have that

OVar 0. 9[ ] ( )∣ ˜ Yñ

2.2. FermionicHamiltonians andquantum chemistry

While theVQE and its principles can be applied to general quantumproblems, an application of particular

recent interest is that of quantum chemistry and fermionicHamiltonians. Given a set of nuclear chargesZi and a

number of electrons, the standard formof the electronic structure problem is to solve for the eigenvectors and

eigenvalues of the electronicHamiltonianH, written as

H
M

Z

R r

Z Z

R R r r2 2

1
, 10

i

R

i i

r

i j

i

i j i j i

i j

i j i j i i j

2 2

, , ,

i i

∣ ∣ ∣ ∣ ∣ ∣
( )å å å å å=-


-


-

-
+

-
+

-> >

where atomic units have been used,Ri are nuclear positions, ri electronic positions, andMi are nuclearmasses.

Due to large separations in the nuclear and electronicmasses, an excellent approximation to this problem at the

time and energy scales of chemical interest is to treat the nuclei as classical point charges under the Born–

3
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Oppenheimer approximationwithfixed positionsRi. The problem aswritten is referred to as thefirst quantized

representation of the quantum chemistry problem. A number of algorithms have been developed for quantum

computers to treat the problemdirectly within this framework [28, 37, 38], however the focus in this workwill be
on the second quantized treatment.

To reach the practical formof the second quantizedHamiltonian, onemust project the problem into a finite,

orthogonal, spin–orbital basis, of whichwewill denotemembers ij , and impose the requirements of fermion

anti-symmetry through the fermion creation and annihilation operators ai
† and ai.With these steps, the second

quantizedHamiltonian takes the form

H h a a h a a a a
1

2
11

pq

pq p q

pqrs

pqrs p q r s ( )† † †å å= +

with coefficients determined by the spin–orbital basis as

h
Z

R r
d

2
, 12pq p

i

i

i
q

R
2

( )
∣ ∣

( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟*ò åsj s j s=

-
-

-

h
r r

d d , 13pqrs
p q r

1 2

1 2 s 1 2

1 2

( ) ( ) ( ) ( )

∣ ∣
( )

* *

ò s s
j s j s j s j s

=
-

whereσi describes both the spatial position and spin of an electron asσi=(ri, si). The operators ai
† and ai obey

the standard fermion commutation relations as

a a a a a a, , 14p r p r r p p r,{ } ( )† † † dº + =

a a a a, , 0. 15p r p r{ } { } ( )† † = =

A crucial part of solving these problems on quantum computers is themapping from fermions to qubits. The

twomost commonmappings under current study are the Jordan–Wigner transformation [39, 40] and the
Bravyi–Kitaev transformation [16, 41, 42]. In the case of the Jordan–Wigner transformation, themapping from

fermion operators to qubits is

a , 16p m p m
z

p( ) ( )†  s s=
<

+

a , 17p m p m
z

p( ) ( ) s s=
<

-

i 2. 18x y( ) ( )s s sº 

2.3. Reference states

Many traditionalmethods for electronic structure involve the concept of a reference state. A reference state is a

product state that is used as a starting point to define amore general quantum state, and can allow for great

formal simplification.Herewewill briefly introducewhy they are convenient and useful, and then how they are

obtained.

An example spin–reference s ref∣Y ñ- and fermion–reference state f ref∣F ñ- might be the general product states

c c0 1 , 19
i

N

i is ref
0 1

s

∣ ( ∣ ∣ ) ( )Y ñ = ñ + ñ-

c a , 20
i

N

j

M

i
j

jf ref

f

∣ ∣ ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ åF ñ = ñ-

where ∣ñ is the fermion vacuum state,M is the number of sites a fermion can occupy,Ns is the number of qubits,

andNfthe number of fermions. Even though these are separable product states, theirmanipulation theoretically

or preparation on a quantum computer can be cumbersome aswritten.However, because they are product

states, there exist efficient, local unitary basis transformationsU SU 2 N
s

s( )Î Ä andU MSUf ( )Î such that these

states can be rotated into a simple formwithweight on a single computational basis state. That is

U 000 ... 0 , 21s s ref∣ ∣ ( )Y ñ = ñ-

U a a a 22N Nf f ref 1 1f f
∣ ∣ ( )† † †F ñ = ¼ ñ- -

and because the transformations are local, the transformation of theHamiltonian to the newbasis such that the

physical problem remains unchanged is also efficient. In the case of quantum chemistry, this corresponds to a

transformation of the integral terms hpq and hpqrs, whichmay be computed in a time MO 5( ) exactly.
These new simpler forms of the state have advantages both in theoreticalmanipulation, and in ease of

preparationwith quantum resources. For example, the preparation of the untransformed spin reference state

could require at leastO(Ns) local rotations, not including error correction on a quantumdevice to prepare from

4
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a computational basis state, whereas the new reference is simply the computational basis state fromwhichmost

computations begin.Herewe have tradedmodest classical effort in transforming the basis of theHamiltonian

for savings in quantum resources.

These reference states are typically obtained frommean field calculations, which are guaranteed to have

product states, such as those given above, as solutions. In chemistry, this procedure is calledHartree–Fock, and

the transformation of the state to the simplified form is known as the canonical condition in the solutions of the

Hartree–Fock equations, resulting in the canonicalmolecular orbitals.

When the problem iswell treated bymean-field theory, it can be shown through perturbation theory that the

dominant corrections to themean-field solution are given by quantum states ‘close’ to themean-field solution in

the sense of fermion excitations [43] orHamming distance. This is the origin of the perturbativeMP2method,

CI, and coupled clustermethods [43, 44], which all solve the problem close to a given reference and have been

applied to both electronic and frustrated spin-systems [45].
In some problems, particularly when correlation is strong, themean-field description is a poor starting point

for the problem. In this case, onemay still use a reference-like formalism, but startingwith an entangled state.

Thesemethods are calledmulti-referencemethods in quantum chemistry [43, 46, 47], and carry considerably
more theoretical and computational challenges with them. In this work, wewill highlight how the generalization

ofmethods on a quantum computer to themulti-reference case is oftenmore natural than in the classical case.

2.4. Algorithmoutline

Touse a variationalmethodology tofind approximations to the eigenvalues and eigenvectors of the

Hamiltonian in a quantum computer, it is convenient to break the task into three distinct pieces and outline the

algorithm very coarsely as

(1.) Prepare the state ∣ ( )qY ñ


or ( )r q

on the quantum computer, where q


can be any adjustable experimental or

gate parameter.

(2.) Measure the expectation value H ( )qá ñ

.

(3.) Use a classical nonlinear optimizer such as theNelder–Mead simplexmethod to determine new values of q


that decrease H ( )qá ñ

.

(4.) Iterate this procedure until convergence in the value of the energy. The parameters q

at convergence define

the desired state.

In the coming sections wewill elaborate onwhat is known about each of these steps and offer new

algorithmic and conceptual improvements.

3. State parameterization and preparation

The set of states a quantum computer can easilymanipulate that a classical computer cannot is not yet fully

understood [48–50]. Given the set of parameters q

, it’s clear that in order for a quantum computer to have an

advantage, onewould like the state ∣ ( )qY ñ


to be good at describing the solution of interest, while also difficult to

prepare and/or sample from classically using currently knownmethods.Herewewillfirst discuss topics relevant

to state preparation for all classes of states in theVQE, independent of any notion of howdifficult they are to

prepare classically.Wewill then discuss some details concerning two classes of states currently believed to be

both good at describing systems of interest and difficult to prepare and/or sample from classically, namely

adiabatically parameterized states and (multi-reference) unitary coupled cluster states.

3.1. Error bounds and distributions

Once a state ∣ ( )qY ñ


has been prepared as a function of some set of parameters q

, onewould like to knowhow

close this state is to the solution of the problembeing solved. In this work, wewill say ameasured value v is

known to precision ò based on a normal distribution approximationwith standard deviation 2 , which is

reasonable given thatmost of our estimates will be derived from sums of randomvariates withfinite variance,

which by the central limit will rapidly converge to a normal distribution.

Suppose, for now, that the goal is to know an eigenvalue ofH towithin a specified precision ò. Letλk be the

eigenvalue ofH closest to H ( )qá ñ

. Under these assumptions on the eigenvalue theWeinstein inequalities [51, 52]

hold

5
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H HVar Var . 23k( ) ( ) ( ) ( ) ( ) q q l q qá ñ + á ñ -
   

As a result, a sufficient condition is to rigorously achieve the precision requirement ò on the eigenvalueλk is

Var
4

, 24
2

( ) ( )
q



where as one approaches an eigenstate, the variance approaches 0.When considering only the ground state, one

can derive a simple bound on the quality of the state.More specifically, in the zero variance limit, ifλ1 has

multiplicity 1, then the eigenstate corresponding toλ1 is reproduced aswell. That is, if a bound on the gap to the

first eigenstateΔ is known in addition to the variance, such that i0 1i1∣ ∣ l l- D > " ¹ , and 2 < D,

andwe decompose the state into its eigenstate representation c
i i i∣ ( ) ( )∣åq q cY ñ = ñ

 
thenwe can quantify the

quality of state preparation as a function of themeasured variance

c
Var

. 251
2

1
2∣ ( )∣ ∣ ∣ ( )∣

( )
( )q c q

q
áY ñ =

D -
D

 


For general excited states k, onemayfind a similar bound exists based on ameasurement of the variance of the

operator and a knownbound on the gapΔ>0, such that

c
Var

, 26k k
2 2∣ ( )∣ ∣ ∣ ( )∣

( )
( )q c q

g q
g

áY ñ =
-  

where Var 2( ( ) )g q= D +


, and both bounds given here are derived in this appendix. If one has prior

knowledge that a single eigenstate dominates the expansion, such that c 0.5k
2∣ ( )∣q >


, and a lower bound

c0.5 k
2∣ ( )∣a q<


, thenDelos andBlinder [53] showed through themethod ofmoments that a tighter lower-

bound on the eigenvalue is given by

H
1

1 Var . 27k 2

1 2

( ) ( ) ( )
( )

⎜ ⎟
⎛
⎝

⎞
⎠

l q
a

qá ñ - -
 

These boundsmay be used to estimate the absolute accuracy theminimization procedure obtainedwithin the

given basis and decide if the eigenvalue has been determined to the desired accuracy and precision or if the state

ansatz should be altered to adjust the cost or accuracy of the procedure.

3.2. Adiabatically parameterized states

One type of quantum state that can be explored as a parametric ansatz is that produced by adiabatic state state

preparationwith a variable path. In adiabatic quantum computation [54–56] and adiabatic state preparation
[8, 27] onemakes use of the adiabatic theorem [57], which states loosely that if one prepares the lowest eigenstate
of an initial HamiltonianHi, by continuously changing theHamiltonian fromHi to afinal problemHamiltonian

Hp, onefinishes in the lowest eigenstate ofHf if the evolutionwas slow enough. In adiabatic computation, slow

enough is quantified relative to theminimumeigenvalue gap between the ground andfirst excited states along

the evolution.Whilemany developments have occurred in the area of adiabatic quantum computation and

modifications to theHamiltonian, perhaps themost commonly considered formof evolution is defined by

H s A s H B s H , 28i p( ) ( ) ( ) ( )= +

where s 0, 1[ ]Î , A B0 1 1( ) ( )= = and A B1 0 0( ) ( )= = . The evolution is controlled by continuously

changing the parameter s as a function of time t.

Consider the set of all paths ofA(s) andB(s) from0 to 1 as a function of time t 0,[ ]tÎ and denote it F(τ),

where τ is some finite time. Label one such path as f F ( )tÎ . In a noiseless coherent situation at 0 K, the

unitarity of evolution dictates that the final state of the evolution is uniquely determined by the path f. In this

situation, wemaywrite thefinal pure state as a higher-order function of the path f, or f∣ [ ]Y ñ. Thus any
expectation values of thefinal statemay bewritten as functionals of the path, H f[ ]á ñ , and by the variational

principle

H f f H f 29p p 1[ ] [ ]∣ ∣ [ ] ( ) lá ñ = áY Y ñ

such that the optimal path is the path in F(τ) thatminimizes the value of H f[ ]á ñ . This functionalminimization

may be changed into a standardminimization by parameterizing the path f by a set of parameters q

, and

performing an optimization on the parameters q

that determine the path. As such, adiabatic state preparation

may be considered as an ansatz to be used in the variational hybrid quantum-classical approach, where the state

parameters are the shape or nature of the path. The idea of refining the adiabatic path has been used before in the

context of local adiabatic evolution [58]with great success. The idea here is to achieve similar benefits in an

entirely black-boxmanner, guided only by a variational principle andmeasurements of the final point of the

evolution.

6
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As a simple example, consider a linear path in F(τ) defined by a single parameter θ1 that controls howquickly

the evolution is performed

A s B s1 , 30( ) ( ) ( )= -

B s smin 1, 311( ) ( ) ( )q=

and the parameter θ1 is restricted bymembership in F(τ) to 1 1t q < ¥. In the case of an ideal evolutionwith

enough quantum resources such that the evolution ismuch longer than required by the problem gap, the

adiabatic theorem implies thatH(θ1) is optimal at the extremal point θ1=1/τ.Moreover, in the limit that
t  ¥, the adiabatic theorem implies that for anyfinitely gapped problem F(τ) contains a path that prepares

the exact ground state, and even the simplest linear paths, which are a subset of F(τ), are sufficient to do so.

Within this simple example, it is not immediately clear why onewouldwant theflexibility offered by the

VQE formulation, as one could choose the linear pathwithminimal θ1without the need for any optimization of

θ1. However, amore realistic situationmay be such that τ is smaller than the required time of evolution dictated

by the problem gap, due to technological constraints or simply human time constraints in a hard problem. It

might also be possible that no good estimate of the gap is known, and onemust attempt several paths regardless

to establish confidence that the evolution is not too fast to impair accuracy. One should exercise caution in such

attempts however, as the probability of success does not necessarily increasemonotonically with evolution time,

especially when one is far short of the time required by the problem gap orwhen errors are present [59].
Moreover, it is known that for systems experiencing decoherence or dephasing on the timescale of evolution that

the slowest possible evolution is not optimal in preparing the ground state of the final problemHamiltonian

[60–62]. In all situations, thefinal densitymatrix is determined by the parameters of the path, such that f

determines a densitymatrix f[ ] ( )r r q=

, and an optimal choice of parameters can bemadewithout detailed

knowledge of the gap or errors present in a systembyminimizing H f H HTrp p p[ ] ( ) [ ( ) ]q r qá ñ = á ñ =
 

as a

function of q

.

TheHamiltoniansmay also be generalized to include intermediate operators [62–65] such as

H s A s H B s H C s H , 32
j

j ji p( ) ( ) ( ) ( ) ( )å= + +

where one considers any number of intermediateHamiltoniansHj andCjwith C C0 1 0j j( ) ( )= = . The set of
paths satisfying these boundary conditions with available intermediateHamiltonians {Hj}, F(τ, {Hj}), offers
moreflexibility, and again a guiding principle to select parameters defining the optimal paths is given by the

variational principle.

From this discussion it is clear that adiabatic state preparationwhere the path of evolution is defined by some

set of parameters q

is one choice of parametric ansatz for theVQE. It can be inferred from the known capabilities

of adiabatic quantum computation that this ansatz is capable of preparing states that cannot be efficiently

prepared or sampled from classically using only a small number of parameters with currently knownmethods

[66]. As seen in the simple linear example, the number of parameters tomeet this conditionmay be as few as one

for a linear interpolation that is slow enough in ideal conditions.

Figure 1.The ground andfirst excited state eigenvalues of the scheduleHamiltonianH(s) as a function of the annealing pathA(s). This
shows the avoided crossing that occurs at A s 1 2( ) = , the size of which is controlled by the perturbation parameters ò in the
Hamiltonian, which in our example is set to a value of 0.1 = .
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3.2.1. Variational adiabatic path example

To further illustrate the utility of a variational perspective on adiabatic quantum computationalmethods in a

resource constrained setting, we consider here a simple one-qubit problemfirst studied in the adiabatic context

in the original work of Farhi et al [54]. In particular, wewill consider this problem in a resource constrained

context where themaximum evolution time τ is limited. In this problem, theHamiltonian the initial and

problemHamiltonians are given by

H I
1

2
, 33z xi ( ) ( )s s= - +

H I
1

2
. 34zp ( ) ( )s= +

If we take the following formof the scheduleHamiltonian

H s A s H A s H1 35i p( ) [ ( )] ( ) ( )= - +

then the eigenvalues of this problemundergo an avoided crossingwith a gap determined by the size of the

perturbation ò. For this example we choose ò=0.1 and the resulting spectrum is plotted infigure 1 as a function

ofA(s). Suppose that we are attempting to prepare the ground state of our problemHamiltonian in a situation

where the total evolution time τ is limited.

Wewill consider two types of paths, thefirst of which is afixed standard linear path as a function of time.

That is A s s t( ) t= = with t 0,[ ]tÎ . The second type of pathwill be a parameterized path of two variables

defined by the best cubic B-splinefit of the four points 0, 0 , .15 , , .85 , , , 11 2( ) ( ) ( ) ( )t q t q t , where the the

parameters θi are determined by a nonlinearminimization the expectation value of the final state in the (possibly

non-) adiabatic evolutionwithfixedmaximumevolution time, H 1 ,1 2( ) ( )q qá ñ . In this simple examplewe use

theNelder–Mead simplexmethod to perform a derivative free optimization of θi, in analogy to how itmight be

performed on a quantumdevice.We use as an initial condition .151q t= and .852q t= in the optimization,

which corresponds to the linear path.

The resulting variationally optimal adiabatic spline pathA(s) is plotted alongside the standard linear path in

figure 2, which shows that themethod naturally finds a pathwhich slows evolution near the closing gap, without

any prior knowledge of the spectrum, and onlymeasurements at the endpoint as opposed to the entire path. The

effect of this on the success of preparing the ground state as a function of the total available evolution time is

shown infigure 3. From thisfigure we observe that the variationally optimal adiabatic spline path is able to

achieve similar results to a linear pathwith roughly 10 times less evolution time. That is, at the cost of some

classicalminimization, we have reduced the quantum evolution time requirement by a factor of 10 by slightly

deforming the schedule in a black-boxmanner relying only onmeasurements of the final state of the evolution

and no prior knowledge of the problem.Moreover, even at this reduced evolution time, we achieve the desirable

property that the success of the computation is amonotonically increasing function of s, which is not true of the

linear schedule in this case.

Figure 2.A comparison of the standard linear pathA(s) versus the two-parameter split path that is variationally optimal with respect to
the expectation value of theHamiltonian at thefinal pointH(1). The path naturally slows the evolution near the location of the
avoided crossing, but is otherwise only slightly distorted from a standard linear path.
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3.2.2. Pontryagin’s principle and non-adiabatic bang–bang quantum computation

While adiabatic evolution or attempted adiabatic evolution is oneway to prepare a desired state, it is certainly

not the only option. Non-adiabatic evolution opens a different class of potential schedules for preparing a

desired state guided by the variational principle. The formof the scheduleHamiltonianH(s) has a particularly

interesting form, namely that it is a linear evolution problemwith a controlA(s) that effects a linear coupling. In

the theory of optimal control, it is known through application of Pontryagin’sminimization principle that the

optimal control setting for reaching a desired state of the controlled systemwhen the systemhas a linear

coupling to the control is to have the control at its extremal values [67]. That is,A(s) becomes a sequence of

step functionswhere it takes the values 0 or 1 andneed not satisfy the previous boundary conditionsA(0)=1

andA(1)=0. This class of solutions to optimal control problems is known as a ‘bang–bang’ solution, and is

obviously non-adiabatic by construction. This principle has been shown in quantumoptimal control

outside of the context of quantum computation, where aMonte Carlominimization schemewas applied to

determine the schedule of step functions, and a different variational principle was employed [68].
However this scheme could be straightforwardly adopted using the variational principlemethods described

here to engineer state preparation schedules for a state of interest, or to performmore general quantum

computation.

3.3. Unitary coupled cluster

Anothermethod to parametrically explore theHilbert space of possible quantum states is the unitary coupled

clustermethod developed in quantum chemistry [44, 69]. The projective non-unitary (and non-variational)

formof these equations form the basis for the gold-standard of classical quantum chemistry, coupled cluster

with single and double excitationswith perturbative triple excitations [44, 70–73] and has its origins in nuclear
physics [74]. The unitary formof these equations do not have awell defined truncation as the projective form

does, and onemust rely on perturbative arguments to handle the BCH expansion that break downwhen the

parameters defining the states grow. This ansatz for electronic systems has been documented in classical

quantum chemistry and in previousworks on theVQE [1, 33, 44, 69], and herewe document its generalization

to generic collections of interacting two-level quantum systems, which include the anti-symmetric electronic

case as a specialization.Wenote that coupled cluster has been utilized before in the context of frustrated spin

systems such asKagome lattices [45, 75], but our treatmentwill extend beyond afixed reference and also focus

on the unitary variant of themethod.

To conceptually introduce the approach, recall the introduction of reference states earlier in this work, and

consider a single computational reference state of anN-qubit quantum system, 000 ... 0R0∣ ∣F ñ = ñ. Oneway to
parametrically exploreHilbert space is to consider the space of states ‘close’ to R0∣F ñ in the sense ofHamming

distance or bit flips. Thismethod, sometimes called configuration interaction (CI) or state space restriction

enumerates available states through the use of spin–flip [43, 76]. For example, all states oneflip away from R0∣F ñ
may bewritten as

Figure 3.The squared overlap of the system state s∣ ( )Y ñ at parameter value swith the exact ground state ofH(1), f∣Y ñ, is show for both
the standard linear (Lin) schedule aswell as the variationally optimal spline schedule for different total evolution times τ. It can be seen
here that the performance of the variational schedule offers similar performance to a linear schedule roughly 10 times as long,
indicating an order ofmagnitude reduction in the quantum evolution time required for the variationally optimal schedule.
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, 36
p

p pCI R0

1

1 1
∣ ( ) ∣ ( )åq q sY ñ = F ñ+

where in this case θi are complex coefficients and ps
+ is the qubit raising operator applied to qubit p. This

expansion can be extended systematically by includingmulti-qubit spin–flip operators to eventually parametrize

all states in theHilbert space, or full configuration interaction.While this parametric construction of states is

straightforward, it has a number of deficiencies that render it non-optimal.Wewill not attempt to explore all of

those here, and note only that this ansatz is efficient to prepare and use classically for any truncation to a fixed

number of spin–flips k, and it is not clear that there is an advantage to specifically preparing a linear truncated

state on a quantumdevice.

An idea closely related to this is coupled cluster, which also uses the spin–flip concept to explore states ‘close’

to a reference, but as a generator used in exploration of the space. In the case of quantum computing, its unitary

variant is of particular interest, as unitary state preparation is a natural operation on a quantum computer.

Conventional implementations of coupled cluster often utilize a single, well defined reference statewith all spins

aligned, i.e. 000 ... 0R0∣ ∣Y ñ = ñ.With this assumption, onemay explore all of quantum space through successive

flips in the computational basis. As a simple example, if one is interested in only real wavefunctions, the space of

single spin–flipsmay be explored by

exp 37
p

p p pCC1 R0

1

1 1 1
∣ ( ) ( ) ∣ ( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥åq q s sY ñ = - F ñ+ -

and successively larger fractions of the space of real wavefunctionsmay be covered by introducingmultiple spin–

flips. In the study of general quantum states however, it is sometimes necessary ormore efficient to explore

quantum state space from an arbitrary reference R∣F ñ, which could be entangled or simplymore complex than

R0∣F ñ. These challenges have been studied in the context ofmulti-reference coupled cluster in quantum

chemistry [46, 47].Moreover in quantum computation onemay not have perfect knowledge of the reference

state, norwant to require it in their algorithm. For example the reference state could be prepared by some

adiabatic state preparation procedure. In this situation one could accidentally have as a reference state
...R∣ ∣F ñ = ++ +ñwith 1 2 0 1∣ (∣ ∣+ñ = ñ + ñ, fromwhich no state exploration is possible with the above

cluster operator. The space of non-trivial single qubit operators is spanned by I, , ,zs s s+ - . As suchwewant to

generalize to a set of anti-Hermitian operators spanning the same space, given by

i i
0 i
i 0

, 38p p p
p

1 ( )( ) ( )s s s+ = =+ -

i
0 1
1 0

, 39p p p
p

2 ( )( ) ( )s s s- = =
-

+ -

i
i 0
0 i

. 40p
p

3 ( ) ( )s =
-

For convenience we have introduced the standard Pauli operators in the numerical indexing scheme, that is

σ0=I,σ1=σ x=X,σ2=σ y=Y,σ3=σ z=Z. As one is not typically interested in global phase factors, we
implicitly ignore the identity operator in all equations going forward andwith the remaining operators wemay

write thefirst order cluster operator as

T i , 41
p

p p1

1 1

1

1

1

1( ) ( )åq q s=
a

a a

where pj
qa are real, Roman indices pj indicate different qubits, and theGreek indices indicate different Pauli

operator bases.More generally the kth order cluster operatormay bewritten as

T i , 42k

p
p p

,

( ) ( )åq q s=
a

a a
 






where ...p p p pk

k

1

1

2

2s s s s=a a a a


, pq
a

is a k-index tensor containing the variational parameters, and the full cluster

operator up to order k is written

T T . 43k

i

k

i( ) ( ) ( )( ) åq q=
 

From this general cluster operator, we define the unitary coupled cluster state of order kwith reference R∣F ñas

Texp . 44k k
CC R∣ ( ) ( ( ))∣ ( )( ) ( )q qY ñ = F ñ
 

With this exposition it becomes clear that unitary coupled cluster generators for a totally general spin reference
case at order k are the anti-Hermitian algebra 2k( )su and the set of possible actions on the qubits are all possible
unitary transformations on k qubits that leave the global phase unchanged, or SU 2k( ).
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This represents a parametric state preparationwith O N3 k(( ) ) real parameters.While this has the potential

to represent any knownquantumoperation at sufficient order and precision of implementation, practically

speaking one often restricts to the case of k=2, which has been found to be quite powerful in expressing states

in quantum chemistry. This represents a powerful ansatz with a number of parameters that grows only

quadratically in the size of the system. Additionally, the state preparation ismanifestly unitary by construction,

and has no known efficient classical preparation ormethod for samplingwith arbitrary (possibly entangled)

reference R∣F ñ. As has been noted previously, this state can be prepared efficiently for any fixed order k to a
specified accuracy on a quantumdevice by using the Suzuki–Trotter factorization of the unitary operator

Texp k( ( ))( ) q


[1, 77, 78].We note that as one is not trying to faithfully reproduce some dynamics as inmany uses

of the Suzuki–Trotter factorization, that a coarse factorizationmay suffice, altering the formal definition of the

ansatz, but still remaining difficult to simulate classically.

As an extension to the suggested implementation of spin unitary coupled cluster by Suzuki–Trotter, onemay
use the connection to 2k( )su to take amore geometric approach and explore states through geodesic

constructions aswas done byNielsen et al [79].Moreover if one allows values of different parameters at different

Trotter steps, onemay perform arbitrary 1 and 2 qubit gates at k=2, which forms a universal gate set and the

ansatz can bemade equivalent to an arbitrary quantum circuit with a sufficient number of Trotter steps. To see

this, consider thefirst order in a Trotter factorizationwith a second order cluster operator and aTrotter number

ofN. One could prepare the desired state from a given reference ref∣F ñas

N
exp i , 45

p p

p p

p p

N

cc ref

1 2 1 2

1 2

1 2

1 2

1 2∣ ( ) ∣ ( )
⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

q
q

sY ñ = F ñ
a a

a a
a a

wherewe emphasize that it ismore correct to consider the use of the exponential splitting as a redefinition of the

ansatz than an approximation. Instead of following this precise splitting procedure, where the same parameters

are used in eachTrotter step, one can relax the parameters to have independent values at each time step, and to

not split Pauli operators acting on the same two qubits within one time step. This results in an ansatz of the form

texp i . 46
t

N

p p
p p p pcc ref

1 2 1 2

1 2

1 2

1 2

1 2∣ ( ) ( ) ∣ ( )
⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥
⎥

  åq q sY ñ = F ñ
a a

a a a a

The operator defined by

O ti 47p p p p

1 2

1 2

1 2

1 2

1 2( ) ( )å q s=
a a

a a a a

can express an arbitrary element in 4( )su and thus its exponential Oexp( ) can be used to form an arbitrary two

qubit gate on any two qubits, or said differently, an arbitrary element of SU(4) on any two qubits. Arbitrary two

qubit gates on any qubit are known to constitute a universal gate set [80], and then clearly can be used to
construct any desired universal gate set such as theClifford+T set. This establishes a clear connection between

second order unitary coupled cluster and universal quantum computation through relaxation of parameters in

an exponential operator splitting. This also opens the research direction of connecting states of this type to

tensor networks where the network is defined by the action at each ‘timestep’ of unitary coupled cluster [81].

3.4. FermionicUCC

Due to particular interest in the quantum chemistry and other fermionic problems, it is worth discussing the

specialization of thismethod to those cases. First taking again the case of afixed computational reference, such

as a
i iR0∣ ∣†F ñ = ñ, in analogy to the spin case, the first and second order cluster operators conventionally take

on a simple form, that is

T a a a a , 48
i p

i p i p p i
1

1 1

1 1 1 1 1 1
( ) ( ) ( )( ) † †åq q= -


T a a a a a a a a 49
i i p p

i i p p i p i p p i p i
2

1 2 1 2

1 2 1 2 1 1 2 2 2 2 1 1
( ) ( ) ( )( ) † † † †åq q= -


with ij indexing the occupied spin–orbitals, pj indexing the unoccupied spin–orbitals, and higher orders defined

in the obviousway of includingmore excitation operators. These generators are constructed to conserve particle
number at all orders and parametrically depend on O M k2( ) real parameters at order k.

We can understand the equivalent action on qubits bymapping the fermion operators to spin operators via

either the Jordan–Wigner or Bravyi–Kitaev transformations discussed earlier in this work. In the case of the

Jordan–Wignermapping, as a result of the non-locality of thesemappings, at every fermion order k, wefind

spin–flips up to allN spins and observe that the allowed operations on the qubits are a non-trivial subgroup of

SU(2k) at every order k. This demonstrates that it is key to develop the ansatz in the fermionic framework before

mapping the problem to a spin representation. If onewere tofirstmap to spins, then use the spin coupled cluster
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formulation, the ansatzmight exploremany irrelevant or symmetry broken states, such asmixtures of different

particle number states. It is important to note, however, that such symmetries can be broken even in the

fermionic representation due to themethod bywhich the JWor BKmapped operators aremapped to gates in

Suzuki–Trotter factorizations. However these Trotter errorsmay be controlled and are expected to bemuch

smaller than symmetry breaking errors occurring from ansatz built without such restrictions.

In analogy to our exposition on spins however, this type of cluster operator is reference state specific. That is,

there are some reference states fromwhich it will fail to parameterize the entirety of theN fermion space and

extensions tomulti-reference states can require a different cluster operator for each reference. This can be seen

fromdimension counting in the vector space of the fermion excitation operators. For example atfirst order these

operators only span a real vector space of dimension M M22 - whereas the full space of all 1 fermion linear

operators has real dimensionM2. In classical implementations ofmulti-reference coupled cluster there aremany

different approaches to solving this and related problems going by names such as ‘universal’ or ‘state selective’

multi-reference coupled cluster [44, 82, 83]. In the case of unitary coupled cluster on a quantum computer, in

analogy to howwe generalized the distinguishable spin operators, we can generalize the fermion operators to

treat arbitrary references without such concerns.

The operators a ai j
† and their tensor products, where i and j run over allM spin–orbitals (instead of

restricting them to occupied and unoccupied relative to a reference) form a basis for the real vector space of

operators onN fermion states. As a result, to allow arbitrary action on the space ofN fermions, the span of the

generating operators usedmustmatch this. To span the same real vector space as these operators we use the

following anti-Hermitian basis

a a a a A p q Mi i ; 1 , 50p q q p pq
1( ) ( )† †   + =

a a a a A p q Mi ; 1 51p q q p pq
2 ( )† †  - = <

and all possible N-fold tensor products of these operators. One can verify by dimension counting of the real

vector space that these operators in fact span the entire space of possible fermion operators.With these

operators, thefirst order fermion cluster operator can bewritten as

T Ai , 52
p q

p q p q1

1 1

1 1 1 1
( ) ( )åq q=

a

a a

where pj and qj run over all spin–orbitals andα indexes the anti-Hermitian fermion generators. Higher orders of

the cluster operator can be built naturally from tensor products of these operators, such that at the kth order we

have

T Ai , 53k

p q
pq pq

, ,

( ) ( )åq q=
a

a a
  

 


 


where the same vector operator shorthand as the spin case has been used.With this construction the power of

the cluster operator is state agnostic, and fermion number conserving.We term this the state agnostic quantum

unitary coupled cluster ansatz. Again, in all cases the optimal choice of the parameters q

is determined through

the application of the variational principle with respect to theHamiltonian of interest.

3.5.Quantum error suppression and symmetries

Avariational hybrid quantum-classical is designed to performon pre-threshold computers, where gatesmay be

imperfect and randombit flip or phase errorsmay be introduced into the computation. Fortunately the

variational formulation allows one to suppress certain types of errors naturally, whichwewill discuss here in the

context of variational error suppression.

In the design of a parametric wavefunction ansatz, it is common to enforce known symmetry requirements

for both theoretical and practical purposes. For example, in the fermionic unitary coupled cluster

wavefunctions, the ansatz is designed to conserve the number of particles for all possible choices of the

parameters q

. That is both the ansatz and theHamiltonian commutewith the number operator N a a

i i i
†å= .

While we have not explicitly done so here, it is also possible to adapt the cluster operators to conserve total spin

[43]. In a fully error corrected quantum computer, this introduces no additional concerns and can simplify the

problemunder consideration.However in a pre-threshold device or anywith only partial error correction this

must be taken into consideration.Moreover, as noted above, this type of error can be introduced through the

implementation of the Trotter factorization on themapped spin operators, however this error can be controlled

and is expected to be small in comparison.

Consider the preparation of an ansatz from some initial state, whichwe denote asUa ( )q

. In a pre-threshold,

non-error corrected quantumdevice, there can be a distinction between the formal specification of the ansatz

preparationUa ( )q

as a gate or operation sequence and the operation sequence actually performed on the system

with inputs q

, whichwewill denoteUa

˜ ( )q

.We call an error in such an implementation suppressible if there
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exists a correction input vector b

such that U Ua a( ) ˜ ( ) q q b- + <

  
 for a specified 0 > , and further

denote it variationally suppressible if the corrected vector q b+
 

also corresponds to an optimumon the

parameter surface. In such a case, theVQE can suppress these errors naturally without detailed knowledge of the

errormechanism. A troublesome non-suppressible case is when an error violates a symmetry of the ansatz.More

explicitly, if we denote the symmetries of the ansatz as the set of operators S such that U S, 0a[ ( ) ]q =


for all q

,

then for any symmetry violating errorUe such that U S, 0e[ ] ¹ , there does not exist any correction vector a such
that the desired preparation can be performed.

To bemore concrete, consider the two examples given in this section, parameterized adiabatic state

preparation and coupled cluster. In these cases, some symmetries of the ansatz can be trivially determined by the

generating operators. In adiabatic state preparation, the symmetries will be given by the set of operators S such

that [Hi, S]=0 for all HamiltoniansHi, including the initial, problem, and intermediateHamiltonians. In the

case of coupled cluster, this will be the set of operators S such that [Ei, S]=0 for all excitation type operators Ei,

such as the number operator. These represent sufficient conditions for S U, 0a[ ( )]q =


for every possible choice

of q

. In the case of fermionic coupled cluster, the generating operators are specifically designed to conserve

particle number, such that one symmetry of the system is the number operator N a a
i i i

†å= . In a Jordan–

Wigner qubit representation, this simply counts the number of qubits in state 0∣ ñ. As such, if a random error of

the formU ce 1
1s= is acted on any qubit, this error is not suppressible (assumingminimal Trotter factorization

errors).

This particular error can bemade suppressible by extending the set of generating operators to include spin–

flips (e.g. i ps
+ and i ps

-) or fermionic non-number conserving operators, e.g. a ap q( )† - and a ai p q( )† + aswell as

all tensor products of these operators with the rest of the generating set.With the addition of these operators, this

error become suppressible, however the errorwill only be variationally suppressible if the desired symmetry state

of the ansatz corresponds to an energeticminimum. The concept of variational error suppression aswell as

extending the available operators is depicted schematically infigure 4. In the event that it does not, one can

construct an auxiliary Lagrangian of the form

H S s I , 54
i

i i i
2( ) ( ) å l= + -

whereλi are penaltymultipliers and si are constants corresponding to the desired expectation values of the

operators Si. In order to be efficient,measurements corresponding Si
2 and Simust be also be efficient. Using this

construction, onemayminimizewith respect to expectation values ( ) qá ñ

instead of H ( )qá ñ


, and in the limit

that il  ¥ the symmetries will be exactly preservedwhile allowing variational error suppression under action

by the extended operator set.

Thismethodology also allows for access to excited states that correspond to an energeticminima of a given

symmetry. An example of this could be the lowest triplet energy state of amolecule with a natural singlet ground

state, or the ionic state of amolecule after photodissociation. Use of this constructionmay allow easier access to

these particularly important excited states, as compared to amore general excited state approach.

Figure 4.A cartoon depicting the concept of variationally suppressible errors on energy contours. Dotted lines represent errors that
move the state away from the variationalminimum, and solid lines characterize a shift of the ansatz parameters that can return the
state to theminimum. In this case the vertical axis is within themanifold of the ansatz parameters, while the horizontal axis is not, as
indicated by the cross in the line returning along that axis. However by adding additional operators, represented by the diagonal
dashed line, it becomes possible to suppress these errors variationally.
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4.Operator averaging

Once a trial state ∣ ( )qY ñ


has been prepared, the next crucial step in theVQE is the evaluation of the objective

function corresponding to the problemoperatorH, H H( ) ( )∣ ∣ ( )q q qá ñ = áY Y ñ
 

. One possibility is to use the

quantumphase estimation algorithm [6–8]. If ∣ ( )qY ñ


is an eigenstate, then the value is obtained after a single

state preparationwith a cost in the desired precision of O 1( ) . Unfortunately, to achieve this precision, all of

the operationsmust be coherent which is a prohibitive technological requirement for current and near-term

quantum computers.Moreover, if the state is instead amixture ofmany eigenstates, it will still require O 1 2( )
repetitions of the entire procedure to converge the value H ( )qá ñ to a precision ò. The use of quantumphase

estimation done to a precision surpassing ò opens the possibility to insteadminimize theminimal value found in

a projectivemeasurement of the energy in a sequence of phase estimation runs.Howeverwe do not explore that

option further here.

In 2014, Peruzzo andMcClean et al [1] suggested away to retain the advantage of preparing classically
inaccessible states while removing the overwhelming coherence time requirements tomeasure the energy. This

method is calledHamiltonian averaging and has been discussed recently inmore detail [21].
The original formulation used the fact that tensor products of Pauli operators form a basis for the space of

Hermitian operators. As such anyHermitian operatorHmay bewritten as

H h h 55
i

i i

i i

i i i i

1 1

1

1

1

1

1 2 2 2

1 2

1 2

1 2

1 2 ( )å ås s= + +
a

a a
a a

a a a a 

and by linearity the expectation value as

H h h . 56
i

i i

i i

i i i i

1 1

1

1

1

1

1 2 2 2

1 2

1 2

1 2

1 2 ( )∣ å ås sá ñ = á ñ + á ñ +
a

a a
a a

a a a aYñ 

As a result, all that is required is theweighted sumof the results from simple Paulimeasurements. This is an

operation requiring coherence timeO(1) assuming parallel qubit rotation and readout are possible, otherwise

the coherence time required isO(k), where k is the locality of the term to bemeasured. Previously, some scaling

analysis of this procedure was done in the context of locality [21], but herewe detailmore specifically how to

perform the averaging and verify the error on thefly in a simulation of a general state.

Consider theHamiltonian decomposed as

H H , 57( )å=
g

g

where eachHγ is aHermitian operatorwith associatedmeasurement outcomesm1 andm2, of which Pauli

operators are a special case. In order to get the desired precision in a normal distribution approximation, we

require a variance of 2 in the estimator of Há ñ, whichwe denotewith a large hat as Há ñ. The estimator we have

described is constructed as a sumof independent estimators Há ñg

H H 58( )åá ñ = á ñ
g

g
 

each of which is a built a sequence of independentmeasurements X xi{ }= . As themeasurements are taken

from independent state preparations, we have that the covariance between the individual estimators on the

measurements is 0 or H HCov , 0[ ] a bá ñ á ñ = " ¹a b
 and thus the variance of the total estimator is the sumof

the variances of the individual estimators

H HVar Var . 59[ ] ( )åá ñ = á ñ
g

g
 

The individual estimators are constructed as themean of a sequence of independentmeasurements

corresponding to the operatorHγ on independent preparations of the state ρ. Eachmeasurement of the total

operator requires a state preparation andmeasurement for each individual term, and thus the total number of

expected state preparations andmeasurements to achieve a precision of ò in Há ñ is

n M
HVar

, 60expect 2

[ ]
( )

å=
g

g

whereM is the total number of terms in the decomposition of theHamiltonian.While this offers insight into

howmanymeasurements one expects to take, it does not yet constitute a practical algorithm, as the true value of

the variances HVar[ ]g in general will be unknown except in toy examples. Instead, one has access to the sample
mean and unbiased sample variance as themeasurements are taken. That is, after nmeasurements xi{ }of the
operatorHγ have been taken on ρ, one computes
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H x
n

x

H x
n

x H x

1

Var
1

1
61

i

i

n

i

i

i

n

i i
2

({ })

[ ]({ }) ( ({ })) ( )

å

å

á ñ =

=
-

- á ñ

g

g g





and continues takingmeasurements until H H x n MVar Var i
2[ ] [ ]({ }) á ñ » <g g

  , andmoves on to the next
term.While straightforward, thismethodology suffers from some ambiguities when using a small number of

measurements orwhen the state ρ represents an eigenstate of the operatorHγ. In particular, howmany

measurements are required to confirm that the variance is 0 to the desired precision. This is related to how

unobserved events are addressed in a frequentist perspective of probability. In practical implementations these

issues are often left unaddressed rigorously in stochastic samplingmethods and a reasonableminimumnumber

ofmeasurements is chosen such as n=1000 or n=10 000 before the estimates of H xVar i[ ]({ })g are taken to
be reliable, trusting that after a number of samples that it is well represented by a normal distribution and the

highermoments associatedwith errors in estimates of the variance vanish rapidly. An alternative perspective

that addresses such concerns from the outset is a Bayesian perspective, which has been investigated in the context

of quantumphase estimation [84], andwe now explore in the context ofHamiltonian averaging.

4.1. Bayesian perspective

In a Bayesian perspective, we start from anuninformative prior for the distribution Há ñg. In the case of two
measurement outcomes, the likelihood function is the binomial likelihood, and the posterior distributions after

measurement can beworked out analytically when usedwith a conjugate Beta prior. These distributions are

well-defined even for small numbers ofmeasurements orwhen ρ is close to an eigenstate ofHγ, resulting in

potentially unobserved events in a sequence ofmeasurements.

Consider a sequence of independentmeasurements X xi{ }= with two possible outcomes m m,1 2{ }, such as
the quantummeasurement of a Pauli operator. The likelihood of observing the sequence ofmeasurementsX is

completely defined by a single variable p and is written

P X p N
r

p p1 62r N r( )( ∣ ) ( ) ( )= - -

withN being the total number ofmeasurementsX and r being the number ofmeasurements equal tom1. The

value p defines the probability of observingm1 andwill be directly related to Há ñg. Our current knowledge of p is
defined by the prior distribution P(p).Many choices for the formof the prior distribution can bemade, but an

analytical result can be obtained by choosing the conjugate prior to the Binomial distribution, which is the Beta

distribution

P p p p; , Beta , 1 . 631 1( ) ( )
( )

( ) ( )
( ) ( )a b a b

a b
a b

= =
G +
G G

-a b- -

The Beta distribution is a function of two parametersα andβ, and these are the parameters wewill seek to

update with a Bayes inference scheme. Simply put, given themeasurementsXwith r instances ofm1, the

posterior distribution is given by

P p X r N rBeta , Beta , . 64( ∣ ) ( ) ( ) ( )a b a b= + + - = ¢ ¢

From a¢ and b¢, one can determine both themean value and variance in our desired quantity as

p , 65( )
a

a b
á ñ =

+

pVar
1

66
2

[ ]
( ) ( )

( )
ab

a b a b
=

+ + +

and the expected value and variance of pmay be used in the estimators associatedwithHγ. In particular

H p m p m1 , 671 2( ) ( )á ñ = á ñ + - á ñg


H m m pVar Var . 681 2
2[ ] ( ) [ ] ( )á ñ = -g



A reasonable choice of initial prior in this situation before anymeasurements are taken is the uniformprior

(sometimes called the Bayes’ prior probability in this case) Beta 1, 1( ). Thus a practical strategy in the Bayes
setting is to letα=β=1, then takeNmeasurements. One then updatesα andβ toα′ andβ′ according to

equation (64), and continues takingmeasurements until H MVar 2[ ] á ñ <g
 , which is simply computed as a

function of the newα andβ through the above formulae.We note that if one has a good reference state, a prior

distribution can be constructed from it to yield an informative prior. This has the potential to reduce the cost and

will converge to the same result undermost reasonable conditions. However onemust be careful as thismay

introduce a bias for poor reference states with a small number ofmeasurements.
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After using either the frequentist or Bayesian approach to check convergence of HVar[ ]á ñg for all γ, under a

normal distribution approximation the final estimation of Há ñ is precise to the desired precision ò.

An alternative to the normal approximation confidence intervalsmay be used in the Bayesian approach if

desired. As themeasurements are taken for each of the operatorsHγ in the Bayesian approach, the associated

probability distribution P H( )á ñg is known. The probability distribution of a sumof independent random
variables is known to be the convolution of the individual probability distributions, such that

P H P H . 69( ) ( ) ( )á ñ = * á ñ
g

g
 

Unfortunately the convolution of twoBeta distributions does not have a known analytical result, and these

convolutionsmust be performed numerically. Once the probability distribution P H( )á ñ is known, onemay

numerically bracket the desired confidence interval to estimate the precision of the approach. Practically

speaking, the convergence of this final probability distribution to a normal distribution is quite rapid, and thus

the normal approximation relying on the variance is the standard procedure.

4.2. Cost reduction

The computational cost ofHamiltonian averaging can be reduced in a number of ways. In this sectionwewill

consider twomethods for doing so. In thefirst wewill remove terms that are deemed unimportant, and in the

secondwewill consider how terms are grouped in order to reduce the required number of state preparations.

4.2.1. Term truncation

Thefirst strategy to reduce the number ofmeasurements and state preparations required is to avoid

measurements guaranteed not to contribute at the desired precision to the total estimate. To do this, onemay

order the terms by their expectedmaximum contribution to the estimate. For example themagnitude of a

weighted Pauli operator H h s=g g is bounded such that for any state ρ, H h∣ ∣ ∣ ∣á ñg g . Once the terms are
ordered according the themaximum expected contribution, with themaximumat Mg = , we can construct the

sequence of partial sums

e h 70k

i

k

i∣ ∣ ( )å=

with e0 defined to be 0, that defines themaximal bias introduced by truncating the k smallest terms. Using this

sequence, onemay choose a constant C 0, 1[ )Î and remove the k* lowest terms byfinding themaximal index

k* in the sequence such that e Ck* < . In this choice,C determines the both the number of terms one is allowed

to neglect and amount of bias introduced. As the estimator is nowbiased, onemust consider the bias-variance

tradeoff tomaintain the desired accuracy. In order to achieve an expectedmean-square-error of ò in the final

answer, wemust decrease the variance of the estimator on the remaining terms such that

C HVar
M k2 2 2[ ]

* å+ á ñ <g g
-  . Thismay be achieved by changing the per-term variance threshold for each

Há ñg to be C M k1 2 2( ) ( )*- - . This results in a new expected number ofmeasurements

n
M k H

C

Var

1
. 71

M k

expect 2 2

( ) [ ]

( )
( )*

*
*

å=
-
-g

g
-

One is free to choose a value of C 0, 1[ )Î tomaximize computational efficiency according to the particular

constraints of experiment and the distribution of operators in the sum. It has been seen previously that using this

strategy in conjunctionwith locality information can potentially reduce the costs of quantum chemistry

calculations dramatically [21].

4.2.2. Commuting groups and correlated sampling

Another strategy onemay use besides truncation is to take advantage of commuting operators within the sum to

reduce the number of state preparations required. If two operatorsHα andHβ commute, theymay bemeasured

in sequence on the same state preparationwithout biasing the final result of the expectation values. As the state

preparation is expected to bemore expensive than projectivemeasurements, this has the potential to offer

significant savings. However, the application of this technique requires some care.

While grouping terms into commuting sets cuts down on the number of state preparations required for a

single pass at themeasurements and does not bias the expected outcome, there is some detail to consider in the

statistics ofmeasurement and estimation of uncertainty. As termswithin a commuting set aremeasured on the

same state within each pass of the procedure, two operators within a setmay be correlated such that the

estimators of their averagemay have non-zero covariance i.e. H HCov , 0[ ]á ñ á ñ ¹a b
 . This additional covariance

can either requiremoremeasurements for the set of terms if the covariance is positive, or less if it is negative in

analogy to themethod of antithetic variables or correlated sampling in classicalMonteCarlo simulations
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[85, 86]. Thus onemust be careful to group only operators that result in a practical efficiency gain. This concept

is best illustratedwith a short example.

Consider the two spinHamiltonian

H X X Y Y Z Z Z Z , 721 2 1 2 1 2 1 2( ) ( )= - + + + +

whereX,Y,Z are the standard Pauli operators and a quantum state

01 73∣ ∣ ( )Yñ = ñ

whichwewill bemeasuring. The operators in thisHamiltonian can be grouped in a number of ways into groups

of commuting terms. Consider the following three options

X X Y Y Z Z Z Z

X X Y Y Z Z Z Z

X X Y Y Z Z Z Z

1 . , , , , ,

2 . , , , , ,

3 . , , , , .

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) { } { } { } { } { }
( ) { } { } { }
( ) { } { }

- -
- -
- -

Using the formulas from the previous section to compute the expected number of state preparations for each

grouping of operators to a precision ò, wemay proceed as follows. The expected estimator variance of the first

grouping is 2, but prescribes a total number of state preparations per term to be 5 (from5 sets of commuting

operators), resulting in an expected number of state preparations n 10expect 1
2=- . In the second case, we

maintain the same variance, but group commuting operators together that have 0 covariance, so the number of

preparations per iteration is reduced to 3 andwefind n 6expect 2
2=- . The last case has the smallest number of

commuting groups, but introduces an extra covariance term that results from covariance betweenX1X2, and

Y Y1 2 on the state ∣Yñ. As a result, the total number of expected preparations is given by n 8expect 3
2=- . Thus

while the last prescription had the fewest number of commuting terms, the secondwas a better grouping,

reducing cost by almost a factor of 2 from the naïvemeasurement of all terms individually.

This simple example illustrates how savings can be achieved through careful grouping, but also highlights

the state and operator dependence of this strategy. Themost crucial piece of information in decidingwhether to

group commuting terms is the covariance of different operators on the state. If one has a good approximation of

the state, this can be estimated classically before an experiment to group operators that are expected to give cost

savings. Alternatively, if one expectsmany points in an optimization to be similar, this can be estimated once on

the quantum state before beginning to a lowprecision, and these heuristic groupings can be used for the

remainder of the experiment. Again, we emphasize that this strategywill not bias thefinal result, even if the sets

chosen are non-optimal. It ismerely ameans of sampling cost reduction.

Regardless of the strategy chosen, it is crucial to correctly determine the statistical uncertainty of the final

estimate. One could estimate the covariances from themeasurements and account for this, but a perhaps

conceptually simpler approachmore true to the spirit of the experiments is to define new trivial estimators Qiá ñ,

which are constructed as follows. After a state preparation, each operator inQi ismeasured in turn in some pre-

defined order to give a sequence xi{ }g . The sumof thesemeasurements for all the operators is defined to be the

newmeasurement q xi iå= g
g, and the estimator for the average overmany realizations is simply the

arithmeticmean, Q
n

q
1

i j

n

jåá ñ = . In this way the final estimatormay be constructed equivalently as

H Q 74
i

i ( )åá ñ = á ñ 

that clearly yields the same expectation value but is now composed of estimators such that Q QCov , 0i j[ ]á ñ á ñ =
for i j¹ , allowing one tomore conveniently estimate only variance of uncorrelated estimators to determine the

uncertainty in the final estimate andfix the desired tolerances per termwhenmeasuring.

4.3. Beyond energy to general observables

Finally we note that themethod of calculating operator averages outlined in this section often yields additional

information besides the original designed expectation value. For example, in the case of quantum chemistry, the

individual operatorsmeasured that compose theHamiltonian are the reduced 1 and 2 electron densitymatrices,

defined for a state ∣Yñas

D a a , 75p
i

i p∣ ∣ ( )†= áY Yñ

D a a a a
1

2
. 76pq

ij
i j q p∣ ∣ ( )† †= áY Yñ

Knowledge of these reduced densitymatrices is sufficient to determine not only the energy but the expectation

value of any one- and two-electron operators, such as the dipolemoment or charge density. This follows from

the fact that any one- and two-electron operators F andGmay bewritten in a basis as
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F f a a , 77
ip

ip i p ( )†å=

G g a a a a
1

2
, 78

ijpq
ijpq i j p q ( )† †å=

where fij and gijkl are precomputedwith the single particle basis set. From this it is clear that the expectation

values are

F f a a f D , 79
ip

ip i p

ip
ip p

i∣ ∣ ( )†å åá ñ = áY Yñ =

G g a a a a g D
1

2
80

ijpq
ijpq i j p q

ijpq
ijpq qp

ij∣ ∣ ( )† †å åá ñ = áY Yñ =

whichmay be computed trivially on a classical computer with themeasured values from experiment. Thus the

operator averagingmethodology in this section gives access to a number of interesting observables of the

quantum systemwith no additional requiredmeasurements, and this approach can be viewed alternatively as a

formof scalable partial tomography. This point of view also suggests that a promising route for additional post-

processing of data is to use techniques designed to enforce physical constraints on the estimated reduced density

matrices [87, 88]. This perspective illuminates connections to quantum state and process reconstruction

methodswhere the one- and two-electron reduced densitymatrices are viewed as a generalized quantumprocess

tomography [88]. The study of this approach in connectionwith powerful classical approaches for direct use of
the reduced densitymatrices based on the contracted Schrödinger equation [89, 90]may lead to additional

insights as to the nature of the quantum algorithm.

5.Optimization of parameters

Thefinal piece of theVQE is amethod for updating the parameters q

based on themeasured value of the

objective function of interest. The dependence of the objective function on the parameters will, of course,

depend upon the ansatz being used andwill in general be nonlinear and non-convex. This is not to say ansatz

satisfying desirable criteria such as convexity could not be designed, but rather that in general itmay not be. As

such, onemay not expect global optimization or verification of a proposed solution to be feasible, respecting the

knownQMA-hard complexity offinding the ground state of k-local Hamiltonians [91].We also note that some

quantum statesmay require an exponential parameterization, however physical states are not expected to

exhibit this behavior [92]. However, inmany cases local optima are sufficient and prior knowledge of a problem

offers high quality starting points for the optimization. This has often been the case in quantum chemistry,

where nonlinear procedures such asHartree–Fock utilize very good local optima and benefit greatly fromhigh

quality starting guesses. The use of high quality starting guesses will likely be important for all types of ansatz

discussed here as well. In the case ofUCC for example, perturbation theorymethods such asMP2 could be used

to generate starting guesses.

Thefield of nonlinear optimization is well developedwithmany tools both general andmore specialized

methods to different optimization problems [93]. The objective function by design here is statistical in nature,
making it difficult to directly usemany of the basic tools fromnumerical optimization that rely on gradients. In

the original implementation, the derivative freeNelder–Mead simplexmethodwas used as it has reasonable

robustness to small quantities of noise, at least in comparison tomethods such as standard gradient descent.

However, with developments in the optimization of functions, it is clear that there aremore efficient options

available for this problem and in this workwe compare theNelder–Mead simplexmethod, TOMLAB/

GLCLUSTER, TOMLAB/LGO, andTOMLAB/MULTIMINmethods [94, 95] for an example problem. These

particular algorithmswere chosen because ofNelder–Mead’s use in the original work, and the superior

performance of the TOMLAB algorithms in a recent comprehensive benchmark of derivative free optimization

techniques [94]. Each of the TOMLAB algorithms uses a different derivative free search strategy and include

both global and local considerations in the choice of new iterates. Details of the TOMLAB algorithms can be

found in the user’s guide [95].
The example problemwe benchmark is this case is the optimization of a unitary coupled cluster

wavefunction forH2with an internuclear separation of R 0.74 Å= in aminimal STO-3G basis, encoded into 4

qubits using the Jordan–Wignermapping. Afirst order Trotter splittingwas used to implement theUCC ansatz

in this case, with truncation to the termU t a a a a a a a aexp 0 1 2 3 3 2 1 0[ ( )]† † † †= - . The optimization in this case is

over the single parameter t. In these benchmarks, simulatedmeasurement estimator noise is added to the

objective function at a specified variance 2 . The optimization is then repeated 20 times at a given ò and the

resulting accuracy with respect to the exact solution is plotted infigure 5 as a function of themeasurement noise,

which can be controlled through the number ofmeasurements taken in the experiment. The error bars indicate
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1 standard deviation in the distribution of valuesmeasured over the 20 repetitions. Additionally, the number of

evaluations of the expectation value of the energy required to reach convergence is plotted as a function of the

same precision ò in figure 6. It is seen in these plots that in all instances, the TOMLABmethods not only converge

to a higher accuracy in the energy, but do sometime asmany as 1000 times less function evaluations than the

Nelder–Meadmethodwhichwas previously coupled to the variational hybrid quantum-classical approach.

Moreover, the approximately constant number of function evaluations required to reach convergence as a

function of precision suggests thatmore savingsmay be reached by using a variable precision optimization, as

the cost of a function evaluation to a precision ò scales roughly as 1 2 in this case.

While the performance of the TOMLAB algorithms is impressive relative to previous standards, these

methods that utilize some global optimization and random search strategies will require further numerical

testing as the dimension of the problem space grows.Moreover, none of thesemethodswere specifically

designed for a stochastic objective function. This is an area of great importance in the algorithm as awhole, and

all improvements can translate to dramatic savings in the overall runtime. As a result this is a topic of ongoing

research.

6. Conclusions

Quantumcomputers promise to change thewaywe think about problems across a plethora of different fields,

including the important areas of optimization and eigenvalue problems.While the construction of full scale,

error corrected quantumdevices still posesmany technical challenges, great progress is beingmade in their

development. In the era of pre-threshold devices, and indeed beyond it, quantumdevicesmay find an advantage

in leveraging classical resources alongside quantum resources to exploit the powerful technologies already in

existence today. TheVQE is an algorithmdesigned to exploit these resources in both a pre- and post-threshold

world, and it has been speculated that variational algorithms of this typemay be thefirst to demonstrate a

quantumadvantage over classical supercomputers for practical problems [96].
In this work, we explored the theory of a variational hybrid quantum-classical approach beyond its original

context tomore general problems.We explored two potential candidates for an ansatz thatmay allow one to go

beyond classical computation, namely a variational adiabatic formulation and the unitary coupled cluster

method. A simple connection between the second order unitary coupled clustermethod and universal gate

models of quantum computationwas demonstrated.Moreover, we showed that the variational formalism

allows for a natural formof error suppression for some quantumproblems in a pre-threshold device. From a

practical computational side, we showed that careful grouping of terms and truncation can offer significant cost

savings in the use of this algorithm. Finally we improved the classical subparts of the algorithm and found that

advances in derivative free optimization offer dramatic cost savings over previous implementations.

Only timewill tell if variational algorithmswill be the first to surpass classical computers and if they can

accomplish that feat on a pre-threshold device. Regardless of this outcome, the variational framework offers a

Figure 5.The accuracy of thefinal energy of the optimizedwavefunction at convergence compared to the known exact solution, as a
function of the precision in the function value in the optimizer for differentmethods (ò). The values are averaged over 20 repetitions
and the error bars indicate 1 standard deviation of themeasured data. The TOMLABmethods provide dramatically superior
performance at essentially all levels ofmeasurement precision above 10 1 = - .
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powerful perspective for the development of tools throughout quantum computation and the perspectives we

have investigated and extended in this workwill aid in this endeavor.
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AppendixA. Eigenvector bound

In this sectionwe derive the bound on the quality of the eigenvector stated in the text as determined by the

variance of the operator. The ground state is different than general eigenstates in allowing a slightly easier

derivation, sowe split the derivations into two separate sub sections.

A.1. Ground state

Beginningwith a calculation of the average energy in terms of the eigenvalues andweights of eigenvectors in a

state ∣Yñdecomposed into eigenvectors ofH as c
i i i∣ ∣å cYñ = ñ

H c c

c c
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whereΔ is a lower bound on the gap between the ground andfirst excited eigenvalue. Rearranging yields the

desired bound on the overlapwith the ground state

c
Var

, 821
2∣ ∣

( )
( ) qD -

D



where the promise that the error is less than the gap, i.e. Var( )q < D


guarantees a positive bound, and the

overlap estimate converges to 1 as Var( )q

is reduced to 0.

Figure 6.The number of function evaluations required to reach convergence forminimization of thewave function as a function of
the precision in the function value. The accuracy of each of theseminimizations relative to the exact answer is shown infigure 5. The
TOMLABmethods are seen to be dramaticallymore efficient than theNelder–Meadmethod, requiring sometimes 3 orders of
magnitude less function evaluations to achieve higher accuracy in thefinal answer for higher desired precisions.
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A.2. General states

Startingwith an expression for the variance ofH over a state c
i i i∣ ∣å cYñ = ñ , where i∣c ñare eigenvectors ofH

with eigenvalue il , we have

H H E

E c E c

Var

, 83
i k

i i k k

2

2 2 2 2

[ ] ( ) ∣

( ) ∣ ∣ ( ) ∣ ∣ ( )å l l
= - Yñ

= - + -
¹

where E H= á ñ. Our goal is to bound the value of ck
2∣ ∣ based on ameasured variance of the state with respect to

H, HVar[ ]and a knownbound on the gapΔ. Let Ek
2( )a l= - , fromherewe see that

H H c cVar Var 1 84k k
2 2 2[ ] ( [ ] ) ( ∣ ∣ ) ∣ ∣ ( ) aD + - +

rearranging to have an expression for ck
2∣ ∣ and letting HVar 2( [ ] )g = D + , we have

c
HVar

. 85k
2∣ ∣

[ ]
( ) g

g a
-
-

Following our assumptions on the gap and errors, we know that and H0 Var[ ] a g< , fromwhich it

follows that

c
HVar

. 86k
2∣ ∣

[ ]
( ) g

g
-
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