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Abstract 

Obesity and type 2 diabetes mellitus (T2DM) are attributed to a combination of 

genetic susceptibility and lifestyle factors. Their increasing prevalence necessitates 

further studies on modifiable causative factors and novel treatment options. The 

gut microbiota has emerged as an important contributor to the obesity- and T2DM 

-epidemic proposed to act by increasing energy harvest from the diet. Although 

obesity is associated with substantial changes in the composition and metabolic 

function of the gut microbiota, the pathophysiological processes remain only partly 

understood. In this review we will describe the development of the adult human 

microbiome and discuss how the composition of the gut microbiota changes in 

response to modulating factors. The influence of short-chain fatty acids, bile acids, 

prebiotics, probiotics, antibiotics and microbial transplantation is discussed from 

studies using animal and human models. Ultimately, we aim to translate these 

findings into therapeutic pathways for obesity and T2DM in humans.
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introduction

The medical community is currently facing an unprecedented epidemic of obesity 

and type 2 diabetes mellitus (T2DM) (1;2). These metabolic disorders are believed 

to be caused by a combination of genetic susceptibility and lifestyle changes (1-3). 

Recently, interest has been drawn towards the role of the intestinal microbiota as a 

potential novel contributor to this epidemic. 

Until recently, knowledge of the intestinal microbiota was limited mainly due 

to the lack of analytical methods to identify microorganisms. The introduction of 

culture-independent approaches based on 16S ribosomal RNA-analysis (rRNA) and 

it corresponding gene has profoundly changed the landscape allowing to identify 

a large number of previously undetected microbes in a wide variety of ecosystems 

and has lead to a major shift in research on the ecology of microbes including those 

harbouring the intestinal tract. The application of these 16S rRNA based approaches 

in researched focusing on the intestinal ecosystem has resulted in renewed insights 

into the pathophysiological roles of the intestinal microbiota in cardiometabolic 

diseases. In initial studies, obese mice as well as humans were characterized by 

an altered composition of gut microbiota in compared to their lean counterparts 

(4;5). These distinct differences in gut microbiota have been shown to result in a 

greater capacity to harvest energy from the diet, thereby contributing to obesity 

(5;6). In support, germ-free mice were protected from obesity, insulin resistance, 

dyslipidemia and fatty liver disease/non alcoholic steatosis hepatis (NASH) when fed 

a high-fat Western diet (7;8). In contrast, following the colonisation with microbiota 

from conventionally raised mice, body fat content in the originally germ-free mice 

increased up to 60% in 14 days. Moreover, insulin resistance increased, despite a 

reduced food intake (9). Food ingredients otherwise indigestible for the hosts were 

microbially fermented and absorbed afterwards (6). Furthermore, the presence of 

gut microbiota resulted in an increase in hepatic lipogenesis and suppression of the 

lipoprotein lipase (LPL)-inhibitor angiopoietin-like 4 (ANGPTL4), which was formerly 

known as fasting-induced adipocyte factor (FIAF) (7;9). On the basis of these and 

other observations, the gut microbiota is hypothesized to influence total body energy 

homeostasis (figure 1).
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Figure 1. Studies comparing germ-free to conventionally raised animals have revealed 
important effects of gut microbiota on bile acid, fatty liver (NASH) disease as well as glucose, 
lipid and short-chain fatty acid metabolism. On the right side of this figure is depicted how 
metabolism in germ-free animals differs from metabolism in conventionally raised animals.
Moreover, absorption of different food-derived nutrients in different parts of the intestine is 
depicted. 
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This review portrays modulators that influence the composition of the gut microbiota. 

We will also describe how the specific changes in gut microbiota affect metabolism 

and how these findings could be translated into novel therapeutic pathways for 

obesity and T2DM. 

The arising of an adult human microbiome: role of the epithelial lining 

It is estimated that the human adult intestines contain more than 1014 bacteria 

from over 1000 species. The genetic material of the intestinal microbes, collectively 

named the microbiome, exceeds the magnitude of the human genome over one 

hundred times (10-13). Medical literature therefore refers to the gut microbiota 

as an ‘exteriorized organ’ (13). The phyla that account for the vast majority of 

all gut microbes include the Gram-negative Bacteroidetes,	 Proteobacteria	 and 

Verrucomicrobia	as well as the Gram-positive Firmicutes and Actinobacteria	(10;13-

15). Despite its enormous diversity and complexity, it has been demonstrated that 

the microbiota can be divided into three enterotypes driven by different groups of 

species that are suggested to contribute to the preferred community composition 

(14). How does this exteriorized organ develop, realizing a fetus is considered to be 

predominantly sterile? At birth, the intestine is immediately colonized with bacteria 

from the mother and the environment (12;16;17). Within several years after this 

initial colonization, an adult-like microbiome has succeeded. External insults during 

life can (temporarily) change the composition of the adult microbiome. Examples of 

these are dietary changes, bacterial infections and the use of microbiota-modulating 

agents (e.g. antibiotics). Despite continuous external stimuli, the composition 

of a humans gut microbiota remains relatively stable over time in healthy adults 

(10;12;13). 

Host-characteristics may contribute to the selection of a specific gut microbiota. 

Epithelial cells throughout the gastrointestinal tract are covered by an integrated 

layer of glycocalyx and mucus gel (18). This layer is continuously renewed and varies 

between different parts of the intestine. Its functions are the selective binding and 
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nourishing of commensal intestinal microbes and trapping and clearing of invasive 

pathogens, thereby affecting the composition of the gut microbiome (19). Vice 

versa, bacteria are capable of adapting to the surrounding mucus- and glycocalyx-

layer. Sonnenburg et al. colonized germ-free mice with one of the Bacteroides-

species, B.	thetaiotaomicron, which prevented its own wash-out from the intestines 

by assembling on partially digested food particles, on shed elements of the mucus 

gel layer and on exfoliated epithelial lining cells. In addition, B.	 thetaiotaomicron 

showed the capacity to digest endogenous (mucus-derived) glycans when exogenous 

polysaccharides were absent (20). Similarly, Akkermansia	muciniphila was isolated as 

the only cultured Verrucomicrobium species that exclusively grows on mucus, has a 

large glycobiome and is found in healthy intestinal mucosa (21). Escherichia	coli on 

the other hand seems to be capable of deploying specific pili to bind to mucus or 

mannose sugars on intestinal epithelium (14). Bearing the variability and changing 

capacities of the mucus and glycocalyx layer in mind, the symbiotic ‘system’ of 

host and microbiota at least partially might determine the composition of the gut 

microbiota and its observed enterotypes in humans (14;20). 

The interaction between diet and gut microbiota composition; a role 
for short chain fatty acids 

Diet is one of multiple factors that can determine the composition of the gut 

microbiota (22). Although dietary-induced changes in gut microbiota occur within a 

short time frame (within 1 to maximally 3-4 days after a diet switch), the changes are 

readily reversed (23-25). In animal models, the ratio of the most prominent intestinal 

bacteria, the Bacteroidetes	and Firmicutes, is altered in response to dietary changes 

(10;13). High-fat Western diets in mice resulted in an increase of the abundance of 

Firmicutes	and a decrease in the abundance of Bacteroidetes	(23;24;26-28). To date, 

human studies have not been able to fully confirm these observations. Ley et al. 

reported a similar response in the presence of Bacteroidetes and Firmicutes	when 

obese subjects were put on a low-calorie diet (29). In contrast, others reported no 

relationship between the Bacteroidetes/Firmicutes-ratio and low-carbohydrate diets 
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or BMI (14;30). Hence, more data are needed to demonstrate the presence as well 

as the value of the Bacteroidetes/Firmicutes-ratio in humans. 

While diet may alter gut microbiota composition, it is only partly clear how this 

in turn might influence metabolism. Intestinal microbes are capable of generating 

short-chain fatty acids (SCFAs, i.e. acetate, butyrate, proprionate) by fermenting 

dietary carbohydrates that humans cannot digest themselves (5;14;31;32). Acetate 

is the dominant SCFA type in humans (31;32). SCFAs like proprionate can be utilised 

for de novo glucose or lipid synthesis and serve as an energy source for the host 

(5). A recent study showed that germ-free mice are devoid of SCFAs, indicating the 

importance of gut microbiota for production of SCFAs in the intestine (33). From these 

observations it would appear that following diet-induced changes in the composition 

of the gut microbiota, the availability of SCFAs in the intestines changes, thus 

directly modulating energy absorption. In line, therapeutic modulation like alpha-

glycosidase inhibitors, primarily used as oral antidiabetics, also have the capacity 

to influence plasma SCFA-concentration, underscoring the potential importance of 

SCFA-production (34). 

Indirect pathways by which SCFA might influence metabolism are suggested. An 

enteroendocrinological pathway is proposed in which SCFAs stimulate the secretion 

of peptide YY (PYY), a hormone related to obesity (35;36). Of all SCFAs, butyrate in 

particular seems to function as a signalling molecule, although the precise role is 

unclear. High-fat diets supplemented with butyrate prevented and reversed insulin 

resistance in dietary-obese mice. The effects of butyrate action were related to a 

promotion of both colonic epithelium (37) and whole body energy expenditure via 

a modulation of mitochondria function (38). At the same time, butyrate-producing 

bacteria and fecal butyrate concentrations decline with diets containing decreasing 

amounts of carbohydrates (30). Apparently, butyrate can beneficially affect 

metabolism in pathophysiological states.
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The complex relationship between gut microbiota and bile acid 
metabolism 

After having travelled through the small intestine, 95% of all liver-secreted bile 

acids are reabsorbed in the ileum to be taken up by the liver: the enterohepatic 

cycle (EHC) (39). Only a small part of the bile acid pool escapes the EHC and travels 

towards the large intestine to be excreted in the feces. This excretion is accompanied 

by microbial deconjugation of glycine- and taurine-conjugated bile acids (40;41). 

Following the discovery that germ-free rats tend to accumulate more cholesterol 

than their conventionally raised counterparts (42), Wostmann showed that in the 

absence of gut microbiota, the bile acid concentration in bile was 3 times increased 

and cholesterol absorption was 25% greater (43). The cholesterol accumulation was 

thought to be due to an increase in intestinal bile acid reabsorption (43;44). Follow-

up studies supported Wostmanns hypothesis by showing that germ-free animals 

have elevated levels of conjugated bile acids throughout the intestine with no 

deconjugation and strongly decreased fecal excretion (41;45). More recently, these 

results were confirmed in experiments with mice treated with antibiotics. Three days 

of treatment with ampicillin increased biliary bile acid output threefold while fecal 

output decreased 70% (46). The authors concluded that increased expression of the 

sodium-dependent bile acid-importer SLC10A2 underlies this response. In addition 

to the increased expression of SLC10A2, Miyata et al. observed a striking decrease 

in expression of fibroblast growth factor 15 (FGF 15) (47). This autocrine hormone 

is a product of intestinal bile acid-stimulated nuclear hormone farnesoid X receptor 

(FXR), which is apparently deactivated in the absence of ileal microbiota. FGF 15 is 

involved in the cross-talk between liver and intestine and under normal physiological 

conditions serves to down regulate hepatic bile acid synthesis in the postprandial 

phase. Clearly the presence of intestinal microbes influences this signalling pathway 

and may explain the ampicillin-induced increase in expression of 7-alpha-hydroxylase 

(CYP7A1), the key enzyme in bile acid synthesis (47). 



R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

R32

R33

R34

Potential of manipulating gut microbiota in obesity

39

3

Compared to conventionally raised animals, the bile of germ-free rats and mice 

contains relatively more hydrophilic muricholic acid (MCA) than amphiphatic 

cholic acid (CA) (43;48). The ratio of both primary bile acids may play a role in the 

regulation of the endogenous production and absorption of cholesterol by the liver, 

by determining the hydrophobicity and thus level of cholesterol solubilisation in 

mixed micelles of the total bile acid pool (49). Therefore, the decrement of the CA/

MCA-ratio in germ-free animals changes cholesterol homeostasis. Claus et al. tried 

to determine which mechanism caused this change (49). They hypothesized that 

the enzyme CYP8B1 is a contributing factor, as it is responsible for the production 

of CA, whilst MCA may be produced independently of this enzyme (48;49). Germ-

free mice indeed showed lower expression levels of CYP8B1 (48-50). Activation of 

hepatic FXR by the increased bile acid pool in the portal blood may be the cause 

of this phenomenon. However, activation of FXR would also be expected to result 

in decreased expression of CYP7A1 and this has not been observed (49). Clearly, 

the relationship between activity of the gut microbiota and bile acid homeostasis is 

complex. Competition between intestinal derived FGF 15 propagated signalling and 

hepatic FXR may underlie this complex behaviour. 

Besides FXR, bile acids may signal via a newly discovered signal transduction pathway, 

mediated by the membrane receptor TGR5. This receptor is strongly expressed in 

brown adipose tissue and the small intestine. In mice, oral gavage with exogenous bile 

acids led to increased energy expenditure in brown adipose tissue via activation of 

TGR5 (51-53). As such, obesity and insulin resistance were prevented. In addition, as 

L-cells in the distal ileum and colon express TGR5 in high amounts, bile acid–induced 

stimulation of TGR5 results in glucagon-like peptide (GLP-1) release and stimulation 

of insulin secretion (52;54).

It appears there is a complex interaction between bile acids and gut microbiota. 

Nevertheless, it is irrefutable that gut microbiota can influence human metabolism 

via the bile acid pathway. 
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Gastrointestinal surgery and gut microbiota 

Bariatric surgery is one of the most efficient procedures to treat morbid obesity. 

It results in drastic weight loss and improvement of metabolic and inflammatory 

status, but very little is known about the effect of this type of surgery on the gut 

microbiota (55). Roux-en-Y gastric bypass (RYGB) is the bariatric major intervention. 

Detailed studies were able to link both the preoperative metabolic state and the 

postoperative changes to gut microbiota composition. Before surgery, high levels 

of an H2-producing subgroup of Bacteroidetes, the Prevotellacaea, next to high 

levels of H2-utilizing methanogens (Archaea) were observed (56). The transfer of H2 

between both bacteria increases the energy uptake by the intestine, as methanogens 

are capable of removing fermentation intermediates (H2) from polysaccharides. This 

results in greater amounts of SCFAs present to be absorbed across the intestinal 

epithelium (57). Moreover, a small pilot study showed that after surgery the amounts 

of both methanogens and Prevotellacaea were lowered and the initial predominance 

of Firmicutes was mitigated (56). A recent animal study partially confirmed these 

human results. RYGB in non-obese rats diet resulted in decreased amounts of 

Firmicutes and Bacteroidetes but a 52-fold higher concentration of Proteobacteria in 

comparison with sham-operated rats (58). With regards to the inflammatory state in 

obesity, the butyrate-producing Faecalibacterium	prausnitzii species was shown to 

negatively associate with inflammatory markers before and after RYGB indicating its 

contribution to a healthy intestine (55). 

Although bariatric surgery is directly aimed towards improving metabolic 

disturbances, other surgical interventions within the gastrointestinal tract also seem 

to influence gut microbiota composition. Patients with short bowel syndrome for 

instance are characterized by nutrient malabsorption and aberrant SCFA-metabolism 

(59). An invasive therapy for this patient group is a small bowel transplantation (SBT). 

After SBT, a temporary ileostomy is created to allow monitoring of the transplanted 

tissue. During the presence of an ileostomy, the ileal microbiota shifts dramatically 

with increased colonization by the facultative anaerobic bacteria Lactobacilli, 

belonging to the Firmicutes-phylum, and Enterobacteria whereas under physiological 
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conditions and after closure of the ileostomy, Bacteroidetes	and Clostridia dominate 

the ileum (60). Booijink et al. compared ileal effluent microbiota with fecal 

microbiota in patients with a Brooke ileostomy. Their results confirmed previous data 

as they found a greater concentration of Lactobacilli and a decrease concentration 

of Bacteroidetes in the ileal microbiota. More importantly, they found a lesser 

diversity and stability of ileal microbiota when compared to fecal microbiota (61). In 

conclusion, surgical interventions in the gastrointestinal tract have profound effects 

on gut microbiota composition and SCFAs in particular. Nevertheless, the surgically 

induced malnutrition status in case of an RYGB outweighs the finetuning effect of the 

gut microbiota in reversing obesity and T2DM. 

Prebiotics

Prebiotics (mostly oligosaccharides) are non-digestible but fermentable food 

ingredients that selectively stimulate the growth or activity of one or multiple gut 

microbes that are beneficial to their human hosts (62;63). The human intestinal tract 

can not digest the food ingredient, but the intestinal microbes ferment the food 

particles. Effects of prebiotics have been claimed in all ages, ranging from infants 

to elderly (62). Bacteria of the Bifidobacterium, belonging to the Actinobacteria	– 

and in some cases Lactobacillus	spp.- particularly are known for a response to the 

administration of certain prebiotics (62;63). 

The effects of prebiotics on metabolism in part arise by reducing a diet-induced 

inflammatory state. High-fat diets have the ability to increase lipopolysaccharide 

(LPS)-containing gut microbiota and subsequently downregulate the amount 

of Bifidobacteria. The accompanying inflammatory state, called metabolic 

endotoxaemia, is accompanied by insulin resistance and weight gain (64;65). In a 

physiological situation, Bifidobacteria are capable of lowering LPS-levels (65;66), 

Prebiotics containing oligofructose (OFS) specifically stimulate the growth of these 

intestinal bacteria (62;67;68). Administering OFS totally restored Bifidobacteria-

levels and normalized plasma endotoxin-levels. It diminished the metabolic 
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endotoxemia, thus leading to improved glucose tolerance, increased satiety and 

weight loss in human subjects (64;69;70). Besides modulating endotoxemia, OFS 

can alter metabolism in various other manners. Cani et al. showed that effects of 

OFS were mediated via a GLP1-dependent pathway. High-fat fed diabetic mice on 

OFS treatment exerted improved glucose tolerance, diminished body weight and 

a decrease in endogenous glucose production. Either adding the GLP-1 receptor 

antagonist exendin 9-39 (Ex-9) or using GLP-1 knockout mice resulted in a complete 

lack of the OFS mediated beneficial effects (71), thus demonstrating the causal role 

of GLP-1 in this pathway in animals. Attempts to translate these findings to human 

subjects are ambiguous showing that OFS tends to dose-dependently decrease 

energy intake and increase PYY plasma concentrations (70;72), but reported effects 

on satiety are conflicting (72;73). Finally, oligofructose fermentation directly affects 

butyrate synthesis from extracellular acetate and lactate implicating the therapeutic 

potential of prebiotics (74).

Thus, there is emerging evidence to support the hypothesis that prebiotics can 

influence gut microbiota composition and as such, metabolic disturbances. The 

amount of evidence however is limited and a definite beneficial effect on metabolic 

disturbances remains to be demonstrated in large prospective randomized controlled 

trials. 

Probiotics

Probiotics are food-supplements that contain living bacteria such as Bifidobacteria,	

Lactobacilli,	 Streptococci	 and non-pathogenic strains of E.	 coli (75;76). When 

adequately administered, they confer beneficial effects to the host due to changes 

in the gut microbiota that are both transient and diminish gradually with time after 

cessation (77-83). In 2006, Goossens et al. compared the effects of consuming 

Lactobacillus	Plantarum on the microbial colonisation of feces and biopsies from the 

ascending colon and rectum (80). Within fecal samples, the amount of Lactobacilli was 

significantly increased. However, the biopsies did not confirm a growth of Lactobacilli. 

These data suggest that probiotics influence the intestinal lumen rather than the gut-
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epithelium, possibly explaining the transient effect of probiotics. Surprisingly, Van 

Baarlen et al. recently described changes in the expression of up to thousands of 

genes in duodenal biopsies after administration of 3 types of Lactobacilli (84).

Alterations in the gut microbiota as a result of probiotics are widely acknowledged 

but evidence showing that probiotic administration directly affects inflammatory 

state has only recently been shown in humans (85;86). In contrast, studies on the 

effects of probiotics on characteristics of T2DM are mostly performed in animal 

models, reporting beneficial effects by various strains of Lactobacilli on characteristics 

of T2DM (87-89). Naito recently described both anti-diabetic as anti-inflammatory 

effects of Lactobacillus	casei in diet-induced obese mice (90). In addition to these anti-

diabetic effects, diet-induced obese mice and diet-induced overweight rats showed 

a reduction in body weight gain after they were fed specific Lactobacilli	 (91;92). 

Although these animal findings are interesting, translation of these beneficial effects 

of Lactobacilli in humans merits caution. First, none of the above mentioned studies 

directly assessed the relationship between the observed metabolic changes and the 

gut microbiota composition. Second, Lactobacilli are widely used within the farming 

industry, resulting in weight gain in animals (93;94) and this weight-modulating role 

has also been confirmed both in children and adults (95-97). 

Synbiotics

Studies on probiotics have shown that every probiotic only benefits from a selected 

number of carbohydrates (98). Amylase-resistant starch for example increases the 

number of intestinal Lactobacilli	and	Bifidobacteria, whilst decreasing the number 

of Enterobacteria (99). From 40 types of Bifidobacteria, the species Bifidobacterium	

lactis showed the most growth when combined with this type of starch (100). These 

observations have led to the production of preparations containing both bacteria 

(probiotics) and saccharides (prebiotics): synbiotics (101). As the prebiotic-part of 

synbiotics is specifically selected on the basis of its ability to stimulate the growth of 

the probiotic-part, the effects of the probiotics are enhanced. In certain cases, these 

combinations show synergistic effects. Lactobacillus	 reuteri was more resistant to 
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bile salts when combined with soygerm powder (102). In addition, the combination 

of fructooligosaccharides (FOS) with Lactobacillus	 Acidophilus not only led to an 

expected increased amount of Lactobacilli. It also caused a growth of Bifidobacteria, 

to an even higher extent than the growth of Lactobacilli (103). Thus, although a 

possible relationship seems logical, new studies should focus on directly relating 

probiotic-/synbiotic-induced changes in metabolism to changes in gut microbiota. 

Antibiotics

Antibiotics normally are prescribed to remove or prevent a bacterial colonization 

in the human body, without specifically targeting certain types of bacteria. As a 

side effect, antibiotics can influence the composition of the gut microbiota up to 

2 years after administration (104-106). The decrement of intestinal bacteria after 

using antibiotics causes alterations in several bacteria-induced metabolic pathways. 

Tetracycline-antibiotics resulted in improved glucose tolerance and insulin sensitivity 

in diabetic rats and obese mice (107-109). Further exploring this relationship, 

ampicillin and norfloxacin caused a reduction in hepatic steatosis (NASH), liver 

triglyceride production and lipogenesis in ob/ob mice. In line, glucose levels 

normalized and insulin sensitivity increased. Obesity itself was not a contributing 

factor to the state of improved glucose tolerance as these results were independent 

of weight changes (110). 

Two mechanisms are proposed to bridge metabolism and antibiotic-induced changes 

in the gut microbiota composition. The first is a reduction in low-grade inflammation. 

Tumor Necrosis Factor(TNF)-α and LPS were shown to negatively correlate with insulin 

sensitivity (110). Cani et al. further elucidated the role of LPS as they demonstrated 

that antibiotics lowered LPS-levels, which inhibited metabolic disorders from 

developing. Glucose intolerance, body weight gain and fat mass development all 

were reduced (111). The second possible explanation is that antibiotics directly 

influence SCFA-levels. When female mice were administered vancomycin orally, 

microbial fermentation of carbohydrates diminished, with a subsequent decrease of 
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fecal SCFA-excretion. In line with what was expected, fecal samples contained more 

(unfermented) oligosaccharides (112). Previous in	vitro experiments showed similar 

results (113). Although one might hypothesize that antibiotics result in a diarrhoea 

induced detrimental nutritional status and thus weight loss, recent observations have 

suggested otherwise. Early exposure to oral antibiotics was found to be associated 

with overweight in children (114). Even more interesting is the recent report of 

an association between intravenous administrated vancomycin and weight gain in 

adults subjects, most likely via a Lactobacilli-mediated pathway given the intrinsic 

resistance of Lactobacilli for vancomycin (114;115). 

The present data offer an intriguing view into the potential beneficial effects 

of antibiotics on human metabolism. Future interventions however should be 

introduced deliberately, as antibiotic-resistance is an increasing problem and 

antibiotics are associated with Clostridium	difficile diarrhoea (116). 

recent interest: microbial transplantation

First described in 1958 (117), the transplantation of fecal microbiota remains 

a controversial treatment. Until recently, this therapy was limited to cases of 

pseudomembraneous colitis, a bacterial infection often following antibiotic treatment 

(116). Fecal transplant aids in curing this disease by restoring the gut microbiota of 

the diseased. This has raised interest in the result of fecal transplantation on the 

modulation of metabolism. Previous studies reported an increase of body fat up to 60% 

and an increase in insulin resistance after feces was transplanted from conventionally 

raised mice to germ-free (9). When comparing different feces donors, lean versus 

obese, the latter caused a greater rise in body fat within germ-free recipients (6;23). 

Fecal transplants were even tested between different mammals. Gnotobiotic mice, 

mice conventionalized with human feces, have shown a preservation of structure 

and diversity of the gut microbiota transplanted from humans. At the same time, 

the cholesterol metabolism and adiposity of the donor were preserved (24;118;119). 
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As aforementioned data are hampered by methodological concerns, we recently 

performed a study on fecal transplantation in humans (FATLOSE-trial) (120). In this 

double-blind RCT we studied the therapeutic effects of allogenic lean donor feces 

infusion on insulin resistance in male patients with metabolic syndrome. We observed 

beneficial alterations in glucose metabolism after lean donor transplantation, thus 

offering a new view on the metabolic deviations in obese subjects and a rationale 

for novel therapeutic intervention methods directly affecting gut microbiota-induced 

metabolism. A follow-up study, the FATLOSE 2-trial, has been initiated to study the 

long-term effects of single versus multiple lean donor fecal transplants on metabolic 

measurements. 

Conclusions

The gut microbiota may be a major player in maintaining human metabolism 

homeostasis. Although interest in humans has only recently developed, it becomes 

clear that we first need to unravel the underlying mechanisms in the causality of 

human obesity and T2DM in order to know how to influence these gut microbiota-

driven processes. Despite our increasing knowledge on genetic pathways underlying 

human obesity and T2DM, specific data on the human gut microbiome are scarce. 

In this review, we tried to answer which potential gut microbiota-driven pathways 

would be worth to study in humans and could hopefully render novel treatment 

options in the near future.
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