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Abstract: Colorectal cancer remains one of the leading prevalent cancers in the world and is the
fourth most common cause of death from cancer. Unfortunately, the currently utilized chemother-
apies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in
profound side effects. Researchers are focused on developing anti-cancer targeted medications,
which is essential to making them safer, more effective, and more selective and to maximizing their
therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted
much attention as a natural substitute product that effectively suppresses a wide range of tumor
cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular
composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.

Keywords: colorectal cancer; milk exosomes; extracellular vesicles; characterization; therapeutic effects

1. Introduction

Colorectal cancer (CRC) has recently become increasingly malignant in the diges-
tive tract, representing the third most common cancer in terms of incidence (10.2%) and
mortality (9.2%) according to the WHO [1]. Despite significant advancements in chemother-
apy, its severe disadvantages as well as the likelihood of therapy resistance and relapse due
to colorectal stem cells (CSCs) diminish treatment efficiency [2]. Thus, CSCs are the cause
of tumor initiation and their sustained growth [3].

Colorectal CSCs are chiefly generated from intestinal stem cells (ISCs) or differentiated
intestinal cells that have acquired adequate genetic changes to cause tumor formation [4].
Furthermore, many similarities are present in the fundamental properties of colorectal CSCs
and stem cells [5], such as the self-renewal ability and differentiation in several directions,
excellent treatment resistance, and distant metastasis [6].
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New therapeutic methods are required to destroy tumor cells and to avoid
metastasis [7]. The possible beneficial impacts of the extracellular vesicles (EVs) of breast
milk (BM) have recently gained a lot of interest in tumor treatment because they are less
harmful and immunogenic than synthetic nanoparticles; being very small and their bi-
layered lipid membrane nature permits them to traverse the blood–brain barrier (BBB) and
cell membranes to deliver valuable genetic cargo that affects the surrounding and distant
target cells [8–15].

Normal and abnormal cells, such as blood, amniotic fluid, bile, and milk, discharge
EVs into the extracellular space [16,17]. For more than the last three decades, EVs have been
believed to be cellular trash generated by cellular debris and to have no impact on adjacent
cells [14]. However, their role in cell connection (through transmitting genetic material)
and the immunological response has since been shown in previous research [18–21].

2. Extracellular Vesicles

Extracellular vesicles (EVs) are categorized into different forms according to their
(a) size (e.g., small <200 nm, medium and/or large >200 nm); (b) biochemical composition
(e.g., CD63+/CD81+-EVs or annexin V-stained EVs); and (c) cell of origin (e.g., apoptotic
bodies, neuronal EVs, and podocyte EVs).

Several researchers used the terms exosomes (for vesicles with a range from 30 to
200 nm), microvesicles (ranging between 100 and 1000 nm), and apoptotic bodies (with
a size of more than 1000 nm) according to the discharge mechanism of these EVs [22–28]
(Figure 1). However, according to the regulations of guidelines that were published and
circulated among the researchers (2018 Minimal Information for Studies of Extracellular
Vesicles (MISEV)), authors are encouraged to use the generic term EVs with an operational
term for the bilipid particles that are released from the cells, as mentioned above [29].

Figure 1. Classification of extracellular vesicles (EVs) with different discharge mechanisms.
(1) Exosomes are made by endocytosis pathway, and discharged via exocytosis at a diameter of
“30–200 nm”. (2) Plasma membrane budding forms the microvesicles (MVs), and they vary in diame-
ter from 100 to 1000 nm. (3) With a size above 1000 nm, apoptotic bodies are discharged from the cell
membrane by blebbing processes. Created with BioRender.com (accessed on 3 January 2022).

BioRender.com
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2.1. Exosome Biogenesis, Secretion, and Uptake

The biogenesis of exosomes consists of three steps. First, invagination of the cell
membrane generates endocytic vesicles. Second, the endosomal membrane budding inward
forms multivesicular bodies (MVBs), which include intraluminal vesicles (ILVs). Finally,
MVBs merge with the cell membranes of different cell types, secreting ILVs as exosomes
outside cells via exocytosis or breaking down MVBs through fusion to lysosomes [30,31].

Cells take up exosomes in many ways, including endocytosis [32], direct merger with
the cell membrane [33], and receptor–ligand interactions [34] (Figure 2).
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Figure 2. Exosome formation, discharge, and uptake. Late endosomes, often known as Multivesicular
bodies (MVBs), form exosomes. Multivesicular bodies’ membranes bud inward and generate various
sizes of exosomes known as intraluminal vesicles (ILVs). In this step, RNAs, proteins, and DNA
are loaded onto exosomes. Multivesicular bodies’ may be degraded in the lysosome or released
through the extracellular fluid by merging into the cell membrane. After that, the three ways that
exosomes engage with the receptor cell are (1) endocytosis, (2) a direct fuse between the exosome
membrane and the cell membrane, and (3) an interaction between the ligand and receptors. Created
with BioRender.com (accessed on 23 February 2022).

2.2. Techniques for Isolation of Milk EVs

Exosomes are now isolated and purified from cell cultures and bodily fluids using
different methods [35]. However, the separated exosomes’ pureness varies, which is prob-
ably related to the contaminated particles, different sub-types of EVs, sample viscosity,
and proteins of milk [36]. Furthermore, poor exosomal purity is because most existing
separation methods fail to fully isolate exosomes from compounds that have identical
biophysical characteristics, such as lipoproteins [35]. As a result, a combined enhanced
protocol that was developed after a systematic evaluation of ultracentrifugation, ultrafil-
tration, poly-ethylene glycol-based precipitation, immunoaffinity capture, microfluidics,
tangential flow filtration, and size-exclusion chromatographymethods to optimize exosome
separation from several different body fluids, as the 2018 Minimal Information for Studies
of Extracellular Vesicles (“MISEV”) guidelines reported [37,38], is recommended.

BioRender.com
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One of the most important challenges that researchers face during the isolation of milk
EVs is the high content of protein (especially casein micelles) and lipoprotein. Therefore,
milk samples should be processed for defatting and casein removal before starting EV
isolation from the whey portion of the milk. Defatted milk can be performed through
centrifugation at a lower force (1200× g, 4 ◦C, 10 min) to remove fat globules, cells, and cell
debris [39]. Casein can be excluded by one of these three methods: (1) centrifugation at a
mid-force (initially at 21,500× g, 4 ◦C, for 30 min and then repeated for 1 h); (2) the acetic
acid precipitation method, which can be applied through the addition of acetic acid 17.5 N
at a volume of 1:100 (acetic acid/milk) and centrifugation at a lower force (4500× g, 4 ◦C,
30 min); or (3) the ethylenediamine tetraacetic acid (EDTA) precipitation method, which
can be performed through mixing 250 mM EDTA-3Na with the defatted milk for 15 min
and then centrifuged at a lower force (4500× g, 4 ◦C, 30 min). The resulting defatted and
de-caseinated portion should be filtered with 0.8 µm filters to result in a whey portion free
of cell debris for EV isolation [39–42].

Milk, or any starting material type and its quantity; the accessibility of specialized
devices; medical usage; and the desired outcomes are some of the essential factors for
selecting the EV isolation approach [38]. Table 1 displays the advantages and drawbacks of
each approach.

2.2.1. Ultracentrifugation and Density Gradient Ultracentrifugation

Ultracentrifugation (UC) is classified as analytical or preparative. Particulate materials
can be studied using analytical ultracentrifugation [43]. Another method is preparative ul-
tracentrifugation, which is essential for exosome separation and for the separation of minute
bioparticles [44]. Ultracentrifugation is considered the exosome separation gold standard
and is commonly used and reported in procedures [43]. Moreover, ultracentrifugation is
expected to be used in 56% of all exosome isolation procedures in exosome research [45].
Differential and density gradients are the two types of preparative ultracentrifugation [43].
Differential centrifugation separation utilizes a series of centrifugation operations that
increase in velocity and duration [46]. The concept of this technique depends on large
molecules separating first before smaller ones [46,47]. EVs can be isolated depending on
their size, density, and mass, mostly by using density gradient ultracentrifugation using
a sucrose gradient or an iodixanol gradient [43]. When compared with differential cen-
trifugations, this method resulted in pure exosomes by isolating EVs from proteins and
non-vesicular particles. The method depends on placing biological substances on top of
the density gradient media and subsequent ultracentrifugation. Depending on the EV’s
density, they appear as a separate layer, and then, for further purification, they are collected
and ultracentrifuged [48]. However, the main drawbacks of this method are the possibility
of losing the sample during separation and the complex process [49]. In addition, studies
show that density gradient ultracentrifugation can be used to isolate EVs from bovine milk
successfully [50].

2.2.2. Ultrafiltration

Ultrafiltration (UF) uses membranes with certain pore sizes to separate the preset size
range particles [51–53]. The primary concept of ultrafiltration is the separation of particles
according to their volume and molecular weight using a filter membrane [38].

2.2.3. Size-Exclusion Chromatography

The size-exclusion chromatography (SEC) method employs a biological fluid as a
mobile phase and the stationary polymer of pored gel filtration [54,55]. Differential elution
is possible due to the characteristics of the stationary phase: initially eluting larger and then
smaller particles [38]. The main restriction of this method is the sample volume, which
should be below 5% of the column volume. For this reason, SEC is not valid for the direct
isolation of exosomes from bulk milk, and most researchers used it after other methods
of isolation, especially ultrafiltration and ultracentrifugation, to obtain pure exosomes
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without protein contamination. In terms of the purity of milk EVs, combining the acetic
acid precipitation and SEC method to yield high quantity of EVs with a high level of purity
is recommended [39,42]. Additionally, sequential centrifugation followed by SEC was
successfully used to isolate EVs from the milk of humans and cows [56].

2.2.4. Polyethylene Glycol-Based Precipitation

Exosome precipitation, which anticipates polyethylene glycol (PEG) as a media, is
a common way of isolating exosomes [57,58]. The idea behind this technique is that
PEG bonds to water molecules, allowing exosome aggregates to form quicker, which can
subsequently be precipitated using low-velocity centrifugation at 1500× g [53]. Exosome
separation is also performed with PEG, which is commonly produced in kits such as
ExoQuick [59].

2.2.5. Immunoaffinity Capture

This approach works by separating certain exosomes, depending on their membrane
protein expression. Antibodies are routinely used in certain exosome surface antigens,
particularly the tetraspanins CD9, CD63, and CD81. By incubating specimens with magnetic
beads [60] covered with antibodies against the antigens, exosomes can be isolated by
immunoaffinity capture [61].

2.2.6. Microfluidics

Exosome isolation using microfluidic instruments depends on many factors, such
as immunoaffinity, density, and size [62]. In this technique, antibodies fixed on microflu-
idic equipment, commonly called chips, specifically bind to exosome antigens and isolate
exosomes [49]. Moreover, microfluidic resistive pulse sensing (MRPS) has recently devel-
oped as a potent new method for detecting the size and concentration of EVs [63]. MRPS
utilizes electrical sensing to determine the number and size of EVs directly and individu-
ally, without the use of any optics or mathematical algorithm. Therefore, MRPS does not
depend on the material properties of EVs and can measure EVs precisely regardless of their
polydispersity [63].

2.2.7. Tangential Flow Filtration (TFF)

In tangential flow filtration (TFF), the fluid containing EVs is spread across instead of
pushed through the filter, thereby constituting a pressure differential. The milk sample runs
parallel to the filter and is reused several times across a reservoir [64]. TFF was successfully
used to isolate highly pure EVs from cow milk on a large scale compared with the UC
method [64]. Unlike direct filtration processes, TFF using two membranes with pore sizes
of 200 and 30 nm connected to a peristaltic pump can overcome clogging problems during
the isolation of milk EVs [65].

Table 1. Advantages and drawbacks of EV isolation approaches.

EV Isolation Approach Advantages Disadvantages

Ultracentrifugation (UC)

Simple to use, needs minimal technical
experience, cost-effective (one ultracentrifuge
machine for long-term usage), and requires

little or no sample preparation [43]

Time-consuming, structural deterioration, and
co-isolation of lipoproteins [28,54,66,67]

Ultrafiltration (UF) Takes less time and effort [53] andgenerates
very pure exosomes [68]

Employs power, which could result in a lack of
exosomes due to membrane rupture and impurity

of separated exosomes [69,70], andadherent
particles also clog pores, resulting in a decrease in

flow and elution performance [71]

Size-exclusion
chromatography (SEC) Fast, convenient, and inexpensive [54] This method cannot distinguish between exosomes

and similar-sized microvesicles [38]
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Table 1. Cont.

EV Isolation Approach Advantages Disadvantages

Poly-ethylene glycol
(PEG)-based precipitation

Handles multiple samples at once with
convenience, speed, and relatively low costs

without destroying the exosomes [58]

Other compounds such as protein can precipitate,
contaminating the exosome [53,72]

Immunoaffinity capture Shortens exosome separation periods and
increases exosome purity [45,59]

Costly, ineffective, and not recommended for
large-scale exosome separation [45,59]

Microfluidics Effective and quick processing, and high
pureness of exosome isolation [49] Highly complicated and costly [49]

Tangential flow filtration Fast and simple method [73] The existence of nanoparticles of similar sizes to
exosomes can be a limitation [73,74]

2.3. Techniques for Characterization of EVs

The main focus of the Minimal Information for Studies of Extracellular Vesicles
(MISEV) 2018 is EV characterization development, using markers such as lipid as well
as proteins, which tend to be very helpful in demonstrating the EVs’ general structure.
The markers used to characterize EVs can vary, depending on the cells of origin [29].
Nanoparticle tracking analysis, transmission electron microscopy (TEM), dynamic light
scattering, flow cytometry, and Western blot are methods that have been used for exoso-
mal characterization [35]. Two types of techniques can be used for EV characterization.
First, the physical characterization technique discovers the shape and molecular dimen-
sions. Second, biochemical characterization identifies the protein of the membrane and
the lipid composition [73]. Table 2 describes the advantages and drawbacks of exosome
characterization techniques.

Generally, EVs can be visualized with TEM, and a more detailed resolution can be
attained by cryo-TEM [47]. EVs are lipid bilayer membranous vesicles with heterogeneous
sizes (i.e., the average size of milk EVs ranges from 160 to 190 nm based on their method of
isolation [39]). As examined by TEM, camel milk exosomes isolated by differential ultracen-
trifugation appeared spherical, with diameters ranging from 30 to 100 nm [7,75,76]. Human
milk exosomes have similar shapes and sizes [77]. Similar shapes were observed in other an-
imal milk exosomes isolated by ultracentrifugation but with different sizes (80–130 nm) in
cow [78], (30–200 nm) [79] in buffalo, (70–170 nm) in goat [80], and (50–100 nm) in pig [81].
DLS revealed nearly similar size distributions of milk exosomes in yaks (131.1 ± 53.25 nm)
and cows (131.5 ± 52.39 nm) [82].

As the sources of exosomes are variable, many proteins can be found within the
exosomes or at their surfaces. Exosomal proteins including MHC I, MHC II, and heat shock
proteins as well as specific surface exosomal markers (such as CD9, CD63, and CD81) can be
detected and confirmed using Western blotting or flowcytometry [83–85]. Comparedwith
other EVs, exosomes lack integrin-β1, p-selectin, CD40, and calnexin but contain some
proteins associated with exosome biogenesis such as Alix and Tsg101 [86].

2.3.1. Dynamic Light Scattering (DLS)

Dynamic light scattering (DLS) uses a laser beam transmitted over a solution of
nanoparticles [87]. When the laser light hits EVs, the light scatters in different directions. By
calculating the intensity of the scattered light per time unit, its oscillations can be noticed as
a result ofthe Brownian motion of suspended EVs. The main advantage of this method is its
capability to quantify a wide range of particles (from 1 nm to 6 µm). However, this method
could not determine the accurate size of particles originating from different sources or with
variable size (polydispersed suspensions). Consequently, the presence of larger particles
in the sample, even at a low concentration, masks the recognition of smaller particles,
causing false results [88]. Therefore, to obtain more accurate results, we should remove
any large contaminates. DLS is the most preferable technique for determining the size,
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distribution, mobility, surface charge, and concentration of exosomes [87]. DLS was also
used to determine the distribution and size of EVs isolated from blood [89] and ovarian
cancer cells [90]. In general, the DLS method can determine the diameter range of EVs, but
cannot determine the source of these EVs [90].

2.3.2. Nanoparticle Tracking Analysis (NTA)

Nanoparticle tracking analysis (NTA) depends on Brownian movements, which ex-
plain the random variations of molecules in a liquid solution. The results can be analyzed
using the NanoSight device. The apparatus brightens individual nanoparticles with a laser
beam, whereas a camera follows and registers their Brownian motions by measuring the
dispersed illumination [91]. Similar to DLS, NTA also can determine particle size and
distribution [87,92].

2.3.3. Transmission Electron Microscopy (TEM) and Cryo-TEM

The concept of transmission electron microscopy (TEM) depends on the generation of
pictures by a stream passing electrons via a specimen, where a secondary electron can be
formed. Specific lenses can be used to gather and magnify electrons [93]. Cryo-TEM shows
high-resolution EVs and provides potentially a more realistic morphology of EVs [94].

2.3.4. Western Blot

Exosomal proteins and particular surface indicators, such as MHC I, MHC II,
tetraspanins, and heat shock proteins, can be detected and confirmed using Western
blotting (WB) [83–85]. This approach is also called immunoblotting because antibodies
are employed to identify unique proteins in complicated protein specimens. The method
combines many systems and involves separating proteins on a gel, transferring the proteins
to a hard surface, and identifying the proteins of significance [95].

Table 2. EV characterization techniques’ advantages and drawbacks.

EV Characterization
Techniques Aims Advantages Drawbacks

Dynamic light
scattering (DLS)

Identifying EV distribution
and size [87]

The best method for measuring a
single type of nanoparticle in a

solution and is easy to be
performed [96]

Does not allow for the nanoparticles
to be visualized [96]

Nanoparticle tracking
analysis (NTA)

Identifying EV distribution
and size [91]

Determination of very small EVs up
to 30 nm, sample preparation does
not affect the morphology of EVs,

very quick and easy sample
preparation, and samples can be

reused after the measurements and
can detect fluorescently labeled

antibodies targeting
EVs antigens [87,92]

Masking of small size particle by large
size particles, as in DLS, finding the
most appropriate dilution factor to

obtain resonant results, and the
fluorescent signal should be very
bright to detect the EV phenotype

accurately. Therefore, it is
recommended to use antibodies

coupled with quantum dots (Q-dots),
which are very bright
fluorochromes [87,92]

Transmission electron
microscopy (TEM) Identifying EV form [93]

The interior morphology of a
particle may be seen via TEM,

which can also reveal details on the
size of the particle [97]

Complex sample preparation
(numerous processes and EV

morphological alteration). Biological
specimens can be destroyed [93].

Western blot (WB) Identifying EV marker protein
expression [83–85]

Evaluates marker proteins in both
qualitative and quantitative

ways [97]

Complicated and consumes an
extended period [29].

Flow cytometry Identifying EV biomarkers [87]
Provides high-speed analysis and

needs minimal sample
concentration [97]

Takes a lot of time and is very
complicated [97]
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2.3.5. Flow Cytometry

This approach relies on a laser bar with a chosen frequency that is coordinated through
a liquid flood containing suspended molecules. Light-level dispersing relies on the particles
present inside the samples. Furthermore, this method estimates particles marked with
fluorescent pigments. If this is upheld, flow cytometry can investigate a particle’s overall
dimensions and granulation [87].

2.4. Bioactive Compounds of Milk EVs

Human colostrum and breast milk exosomes were first separated and characterized in
2007. In addition, Artiodactyla mammals’ milk exosomes were separated, and portrayals
were examined and reported [7,79,98–100]. Exosomes from milk may be discharged by
mammary gland epithelial cells. Furthermore, during breastfeeding, exosomes are deliv-
ered from milk fat globules [101,102]. Munagala et al. provided a detailed procedure for
milk exosome separation and characterization [103]. As shown in Figure 3, proteins, lipids,
and nucleic acids are milk exosomes’ organic elements.
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Figure 3. The main components of an EV. EVs are packed with a diverse array of molecules, such
as lipids, proteins, nucleic acids (DNA, mRNA, miRNA, non-coding RNA, and circular RNA), and
metabolites. In addition to sphingomyelin, phosphatidylserine (PS), cholesterol, and ceramides make
up the lipid bilayer of EVs. EVs include tetraspanins, antigen-presenting molecules, and adhesion
molecules. Furthermore, heat shock proteins (HSPs), cytoskeletal proteins, MVB biogenesis, enzymes,
membrane transport, fusion proteins, growth factors, and cytokines are all proteins present in the
EV lumen. Abbreviations in the figure: MVBs, multivesicular bodies; GAPDH, glyceraldehyde3-
phosphate dehydrogenase; HSP, heat shock protein; MHCI, major histocompatibility complex class I;
MHCII, major histocompatibility complex class II; miRNA, microRNAs; Tsg101, tumor susceptibility
gene 101; TNF, tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand; ICAM-1,
intercellular adhesion molecule 1; and PGK, phosphoglycerate kinase 1.

2.4.1. Proteins of Milk EVs

Unmistakably, the physiology of milk EVs relies heavily on proteins [28,103,104]. The
milk EVs’ protein percentage changes depending on the host’s age, lactation stage, activity
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level, host illnesses, and diet [105]. Moreover, the EVS separation process and EV sources
influence the amounts and variations of EV proteins [28,48,102]. EVs have many types
of proteins [106]. Around 1963, 2107, and 639 proteins were detected in human [107],
bovine [108], and pig [109] milk EVs, respectively. We summarize the top proteins that
has been confirmed by Western blotting in milk EVs in Table 3. Most of these proteins are
involved in the regulation of inflammation and cell proliferation, suggesting that milk EVs
may affect the infant’s immune system and gastrointestinal development [107]. However,
proteomics analyses of milk EVs and confirmation through the Western blot technique are
still in their infancy, and the mechanism by which EV-derived proteins can exert their biolog-
ical functions has not yet been elucidated. Rab proteins are tiny GTPases that are part of the
Ras superfamily. They have a critical function in regulating vesicle budding, motility, and
fusion [20,110]. Moreover, Alix (programmed cell death 6 interacting protein PDCD6IP),
TSG101 (tumor susceptibility gene 101), other endosomal sorting complex proteins [111],
and proteins involved in miRNA binding and transferring target cell identification, and
merging may be found in all exosomes (tetraspanins CD9, CD63, and CD81). Tetraspanins
are important structural elements of exosomal membranes that promote exosome attach-
ment on the surface of the target cells and are required for exosome production as well as
merger activities [20,112–114]. Exosomes may also include a variety of enzymes, including
proteases, peroxidases, lipid kinases, and some catalytic proteins [115]. Exosomes are full
of cytoskeleton proteins (actin, tubulin, and cofilin) and heat shock (HSP60, HSP70, and
HSP90) [116,117]. Integrins in exosomes derived from milk are critical indicators of EVs’
internalization and bioactivity and serve as delivery direction predictors [118]. All types of
exosomes, including milk exosomes, contain all of the proteins mentioned above, while milk
exosomes contain unique milk proteins, such as caseins, lactoglobulin, lactoferrin, CD36,
and the polymeric immunoglobulin receptor forerunner [119]. Moreover, milk exosomes
are indicated by butyrophilin, lactadhedrin, and xanthine dehydrogenase [106,120,121].
Furthermore, markers, such as integrin-β1, p-selectin, CD40, and the endoplasmic reticu-
lum (ER) marker calnexin, cannot be found on exosomes surfaces since they are counted as
other multivesicular body markers [28,86].

Table 3. Top proteins identified in milk EVs that were identified by the Western blot technique.

Species Protein Functions References

Human

Oleoyl-ACP Hydrolase Metabolism [107]

Parathyroid Hormone-Related Protein Endocrine Functions and
Epithelial–Mesenchymal Interactions [107]

Myelin Protein Zero-Like Protein 1 Immunoglobulin Superfamily and a
Receptor of Concanavalin A [107]

EH Domain-Containing Protein 3 Cholesterol and Sphingolipid Transport [107]

Heat Shock Cognate 70 Protein Homeostasis in Stressed and
Non-Stressed Cells

[122]
Heat Shock Protein 70

Cow
Butyrophilin, Xanthine Oxidase,
Adipophilin, and Lactadherin

Milk Fat Globule Membrane
(MFGM) Proteins [108]

MHC Class I Immune Response

Pig
EGF, TGFβ-3, MSTN, CTGF, IGFBP-7,
PDGFA, HTRA3, THBS1, and
Lactoferrin

Acute Inflammatory Response,
Complement Activation, Classical Pathway,
B Cell-Mediated Immunity, Negative
Regulation of Blood Coagulation,
Activation of Immune Response, and
Protein Maturation and Processing

[109]

Camel, cow,
human, and pig

Tumor Susceptibility
Gene 101 Protein (TSG101) Vesicle trafficking [75,107,108,123–125]
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2.4.2. Lipids of Milk EVs

Exosome membranes are full of different types of lipids, including phosphatidyl-
choline, cholesterol, sphingomyelin, and ceramides [126]. Various kinds of lipids are
circulated unevenly in exosomes membranes. Thus, sphingolipids and glycosphingolipids
such as gangliosides, can be situated in the external membranes, while various kinds of
lipids are situated in the inner membranes [106,127]. The lipids of the exosome mem-
branes are involved in vesicles’ biogenesis and influence their bioactivity; they are not inert
molecules [128].

2.4.3. Nucleic Acid of Milk EVs

Investigations during the last 20 years have found different noncoding RNAs [129]:
in bovine [101], human [130], panda [131], porcine [18], and rodent [132] milk. The exo-
somal RNA’s benefits include steadiness in the presence of RNases, and a low intestinal
PH [40]. Exosomes also include messenger RNA (mRNA) and thousands of microRNA
(miRNA), which can be transmitted into the target cell and may transport new genetic
information [133]. The target cell’s protein expression may be altered by transmitting new
genetic information. As a result, they may take part in protein expression and signaling
cascades between cells [75,134]. In addition, these elements play an important part in
the immune system’s development, inflammatory regulation, and cell proliferation and
progression [36,48]. The exosomal mRNA of mice can be translated into proteins in human
cells, for example, when human cells are treated with mouse exosomes [135]. Milk EVs
contain overexpressed miRNAs, suggesting a conserved release of specific milk miRNAs
that are mostly linked to cellular defense mechanisms, and anti-inflammatory and im-
munomodulatory potential [136–138]. For instance, among the top miRNAs found in
human and cow milk are miR-30d-5p, miR-148a-3p, miR-200a-3p, miR-200c-3p, let-7a-5p,
and let-7f-5p (Table 4). Moreover, miR-22-3p (stem cell differentiation and inflammatory
prevention) and miR-146a (prevention from hypoxic damage in intestinal epithelium) were
also detected in milk EVs [52]. Interestingly, miR-148a-3p works as a regulator of the DNA
methyl-transferase 1, which raises concerns about the impact of recurrent milk consumption
on epigenetic regulation of the human genome [139]. As a consequence, milk exosomes
seem to be potential candidates for creating novel therapeutic methods for a variety of
illnesses, particularly cancer [121,140].

Table 4. Top miRNAs identified in milk EVs from humans and cows.

Species miRNAs References

Human

miR-30d-5p, miR-148a-3p, miR-200a-3p, miR-200c-3p, let-7a-5p,
miR-200b-3p, miR-21-5p, let-7b-5p, hsa, let-7f-5p, miR-30a-5p. [138]

miR-148a-3p, miR-30b-5p, let-7f-5p, miR-146b-5p, miR-29a,
let-7a-5p, miR-141-3p, miR-182-5p, miR-200a-3p, miR-378-3p. [141]

miR-148a-3p, miR-22-3p, miR-30d-5p, let-7b-5p, miR-200a-3p,
let-7a-5p, let-7f-5p, miR-146b-5p, miR-24-3p, miR-21-5p [142]

miR-22-3p, miR-148a-3p, miR-181a-1, miR-30d-5p, miR-141-3p,
miR-26a-5p, miR-30b-5p, miR-92a-3p, miR-375-3p, miR-182-5p [143]

Cow mir-148a-3p, let-7a, let-7b, miR-21-5p, miR-99a-5p, let-7f-5p, let-7c,
mir-200c, miR-26a-5p, miR-30d-5p [144,145]

2.5. Therapeutic Potential of Milk EVs and Cancer

According to Munagala et al., cow milk-derived exosomes were reported to have
an inherent anti-cancer potential by reducing the growth of malignancies, such as colon
and ovarian tumors. As surveyed by the MTT test, cancer cells treated for 72 h using
50 µg/mL of exosomal proteins decrease growth by 8–47%, recommending using the
exosome as an anti-tumor drug carrier [146]. Furthermore, camel milk and its contents
have been shown to have anti-tumor impacts on the hepatoma cell line (HepG2), breast
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cancer cell line (MCF7), and mouse hepatoma cell line (Hepa 1c1c7) [147,148]. Camel
milk suppresses cell development and causes apoptosis in HepG2 and MCF7 cells by
stimulating caspase-3, in addition to the death receptor DR4, and accumulating superoxide
radicals inside the cells [146]. Furthermore, after studying camel milk and exosomes
derived from camel milk, it was found that they suppress MCF7 cell proliferation, which
is accompanied by a decline in MCF7 cell migration [7]. Rats that had cancer showed
significant improvements after the use of milk of camel milk and exosomes derived from it.
Camel milk as well as its derived exosomes fundamentally diminish cancer weight, stop
tumor development, and improve the immune system. While exosomes have a greater
anti-cancer impact in general, the number of splenic T lymphocytes in rats given camel milk
increased significantly, demonstrating that there are more immune-stimulating elements in
camel milk compared with exosomes [7]. According to El-Kattawy et al., exosomes derived
from camel milk had a specific antiproliferative impact on tumor HepaRG cells but no toxic
impact on regular liver THLE-2 cells. The anti-tumor impact may well be related to the
stimulation of apoptosis, as well as the prevention of inflammatory and angiogenesis. The
findings suggest that exosomes obtained from colostrum are more effective at inhibiting
tumor growth in HepaRG cells compared with exosomes isolated from the other lactation
periods [149].

Additionally, a combination of exosomes derived from camel milk, hesperidin, and
tamoxifen exhibited anti-tumor actions in MCF7 xenografts in mice and against MCF7 cells
by inducing apoptosis and inhibiting invasion, migration, and angiogenesis.

Combining tamoxifen, hesperidin, and camel milk exosomes reduced the unfavorable
effects of tamoxifen. This shows that hesperidin and camel milk exosomes may have
significance in the treatment of breast cancer as additives to tamoxifen [150].

2.6. Therapeutic Potential of Milk EVs in Colorectal Cancer

Consuming fermented milk products does not have a preventive effect on the progress
of colorectal cancer compared to patients consuming raw unfermented milk [151]. A
systematic review showed that a daily increment of 200 g of milk consumption could reduce
colorectal cancer danger [152]. Milk exosomes are negatively affected by the fermentation
process. Indeed, cow milk exosomes’ size and protein content were mainly diminished in
fermented cow milk, with severe losses in miRNA-29b and miRNA-21 [153,154]. Breast
milk-derived exosomes can selectively promote normal colon epithelial cell proliferation
but with no effect on colonic malignancy cells [155]. On the other hand, cow milk exosomes
have potent direct anti-tumor effects against colorectal cancer [146]. In contrast, another
study reported that the incubation of cow milk exosomes with CaCo-2 cells maintained their
metabolic activity and improved cell survival but did not trigger cell proliferation [122].

Chronic inflammation of the intestine mediated by cytokines such as TNFα, TGF-β,
and IL-6 can be a common element in colorectal cancer development [156]. TGF-β and
miR-155, two milk exosome components, inhibited T lymphocytes in the intestine, thereby
suppressing colitis progress [157]. MiRNA-148a can significantly affect immune control and
cancer development [158]. MiR-148a reduces the production of cytokines, such as TNFα,
IL-6, and IL-12, in addition to the innate response and antigen presentation of Toll-like
receptor (TLR)-stimulated dendritic cells when it targets calcium/calmodulin-dependent
protein kinase II (CaMKII) [159]. MiR-148a expression is decreased in colorectal cancer
cells [160–163], and this downregulated expression activates DNA-methyltransferase 1
(DNMT1) [164–166]. The incubation of colorectal cancer cells (Lim 1215) with exosomes
derived from human milk elevated the level of miR-148a in the cells but decreased DNMT
in the normal colon epithelial cell line (CRL 1831) [167]. Milk exosomal miR-148a tar-
gets DNMT1 and therefore inhibits the activity of this important activator of colorec-
tal cancer [168]. A higher level of Rho-associated coiled coil-containing protein kinase 1
(ROCK1), which is considered a major miR-148a target, plays a crucial role in the develop-
ment of colorectal cancer [169,170]. Therefore, the carcinogenesis of colorectal cancer may
be affected by the transport of miR-148a in milk exosomes [171].
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2.7. The Use of Milk EVS for Drug Delivery in Colorectal Cancer

The three main advantages of EV nanocarriers in drug delivery are as follows:
(1) The phospholipid bilayer of the EV membrane shields the content of the EVs from
destruction [172–175]. (2) EVs include membrane proteins (CD9, CD63, CD81, and oth-
ers) and membrane-associated proteins on their surfaces, which may significantly ex-
tend the duration of exosome circulation in the blood and improve drug delivery to
specific tissues [48,55,176–178]. (3) EVs can cross physiological boundaries, such as the
blood–brain barrier, blood–testis barrier, and cell membrane [173,179–182]. Currently, to
transport targeted drugs, EVs derived from cancer cell lines, lymphocytes, and stem cells
are used [176,183,184]. On the other hand, cell lines generate a small number of EVs,
which makes it impossible to attain the quantities necessary for industrial pharmaceutical
manufacture [185]. In addition, when delivered systemically, exosomes’ protein compo-
nents may elicit immunological responses. In comparison, bovine milk EVs can be obtained
in scalable quantities, as shown in some studies [176,186]; simultaneously, milk EVs do not
yield systemic toxic effects or anaphylaxis in animal models [187].

Previous experiments on Caco-2 cell lines have shown that curcumin encapsulated in
milk exosomes may cross the gastrointestinal barrier into the circulatory system and provide
an increased antiproliferative impact [188]. As a result, curcumin, which may be used as a
possible anti-cancer drug, is delivered by milk exosomes because it considerably enhances
the stability, solubility, and bioavailability of adverse conditions in the gastrointestinal tract
compared to free curcumin [3,189].

Additional research found that exosomal formulations of anthocyanidin (ExoAnthos)
enhanced the stability of and anti-cancer activities in a variety of tumors, including HCT116
human colorectal cell lines. Anthos encapsulated onto exosomes of milk could increase
medicinal effectiveness while avoiding hazardous adverse effects. Therefore, exosomes
offer a safe and efficacious replacement for the oral administration of Anthos to cure various
tumors [145].

Previous studies have shown that encapsulating siRNA in exosomes derived from milk
resists severe digestive systems, optimizes intestinal permeability, and protects payloads on
Caco-2 cells [190]. In addition, milk exosomes may be used to deliver siRNAs. After siRNAs
are loaded to exosomes derived from milk using electroporation and chemical transfection,
their activities of gene silencing were examined in vitro in a variety of tumors [191]. The
uptake of exosomes that have siRNA in tumor cells causes the target genes to be silenced
and to resist RNase [188].

Furthermore, exosomes coming from cow milk are effective miRNA carriers [191].
The target gene delivery performance was explained by examining the absorbance of the
miR148a-3p-loaded cow milk exosomes in the Caco-2 cell lines. A gene microarray analysis
revealed that cow milk exosomes could be employed as nanocarriers of efficient miRNAs
that could develop future miRNA-based gene treatments [192]. EVs have gained attention
as potential drug delivery vehicles due to their potential safety profile. Furthermore, milk
EVs have also shown the potential to become drug delivery vehicles as EVs are less likely
to evoke an immune response [193].

3. Conclusions

EVs are abundant in milk, as they are in other bodily fluids. These membranous
nanoparticles have a critical function in intercellular connections, and they can be superior
nanocarriers for proteins, messenger RNAs, and miRNA. Because of their potential anti-
cancer properties as well as their non-toxic and non-immunogenic features, milk EVs
have gained considerable interest. In vitro and in vivo, milk EVs influence immunological
function and inhibit the growth of certain tumor cells. Additionally, since milk EVs express
a high level of miRNA-148a, they may be employed to compensate for the miRNA-148a
deficit in colorectal cancers, inhibiting the development of colorectal cancer. Furthermore,
milk EVs may potentially be employed to treat colorectal cancer by acting as carriers of
natural components and nucleic acids. Given the undeniable advantages of camel and
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cow milk EVs, their potential applications in cancer therapies are unlimited. Establishing
how the different active compounds of camel and cow milk EVs perform biological roles,
particularly in colorectal cancer treatment, is necessary for future research. Moreover, any
potential adverse effects of milk EV therapy should be highlighted. Furthermore, it would
be critical to confirm the EVs’ quality before clinical use by developing a standardized
procedure for isolating, purifying, and manipulating milk EVs. Finally, as with other
species, a camel’s dietary habit might impact the nutritional and EV contents. This impact
will need to be further investigated in the future.
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