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Two-dimensional materials have opened up extensive applications for traditional materials.
In particular, heterostructures can further create fantastic performances. In this
investigation, the lateral heterostructure was constructed using Janus MoSSe and
WSSe monolayers with armchair and zigzag interfaces. Performing first-principles
calculations and molecular dynamics simulation method, the thermal stability and the
semiconductor characteristics with the type-II band structure to separate the
photogenerated charges of such Janus MoSSe/WSSe heterostructure are presented,
which suggests the potential application of acting as a photocatalyst for water splitting.
Importantly, the asymmetric interface of the Janus MoSSe/WSSe heterostructure can
result in natural bending, which limits the heat flow transport. Smaller heat flow and the
interfacial thermal resistance of the lateral MoSSe/WSSe heterostructure with a zigzag
edge interface are mainly due to suppressed acoustic branches. These structural
symmetry and interface-dependent properties show the future applications in
photovoltaic and thermoelectric devices.

Keywords: two-dimensional material, type-II band structure, interfacial thermal resistance, lateral MoSSe/WSSe
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INTRODUCTION

After graphene was discovered (Geim and Novoselov, 2010), it has frequently demonstrated some
novel properties due to its very special monolayer structure (Butler et al., 2013; Kim et al., 2015; Xu
et al., 2015; Wei et al., 2016; Gao et al., 2017; Zaminpayma et al., 2017; Zhang et al., 2018; Zhou et al.,
2018; Sun and Schwingenschlögl, 2021a), which has attracted tremendous investigations to explore
the other excellent characteristics and applications of two-dimensional (2D) materials (Li et al., 2014;
Li et al., 2019; Li et al., 2021; Vahedi Fakhrabad et al., 2015; Keyte et al., 2019; Xu et al., 2020; Ren
et al., 2021a; Ren et al., 2021b; Sun et al., 2021). For instance, biphenylene, a graphene-like material,
was prepared, which is metallic, instead of dielectric (Fan et al., 2021). Biphenylene also possesses
excellent electronic, mechanical, and catalytic properties (Luo et al., 2021). Two-dimensional
MoSi2N4 was synthesized by chemical vapor deposition, suggesting a sandwiched structure; the
exhibited semiconducting nature was also investigated, with a bandgap of about 1.94 eV (Hong et al.,
2020). A novel 2D material of transition metal dichalcogenides (TMDs) has attracted considerable
focus (Luo et al., 2019a; Luo et al., 2019b; Dongqi et al., 2021). For example, WSe2 has been proved to
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be a semiconductor material with indirect bandgap, high carrier
mobility, remarkable optical properties, and the responsivity of
the field effect transistor of this material in the visible wavelength
range is of 10−1–105A/W (Zhao et al., 2013; Allain and Kis, 2014;
Jo et al., 2018). MoSe2 is a layered material possessing a bandgap
of 1.55 eV. It is found that MoSe2 has strong light absorption
capacity and photoelectric conversion efficiency (close to 10%) in
the range of visible light and has a great application prospect in
photovoltaic devices (Ma et al., 2011; Shi et al., 2013; Liu et al.,
2016a). All these remarkable performances of the 2D materials
present advanced applications in metal-ion batteries (Sun and
Schwingenschlögl, 2020; Sun and Schwingenschlögl, 2021b),
photocatalyst (Ong, 2017; Ren et al., 2019; Ren et al., 2021c;
Sun et al., 2020; Agarwal et al., 2021), photodiode (Ouyang et al.,
2021), light emitting devices (Ren et al., 2021d), etc.

Interestingly, these novel performances of the 2D materials
can also be adjusted by suitable methods, such as external strain
(Wang et al., 2019a; Shu, 2021; Zhao et al., 2021), electric field
(Sun et al., 2017; Cui et al., 2021a), adsorption (Cui et al., 2021b),
doping (Cui et al., 2021a), and defect (Sun et al., 2019). Recently,
the synthesis of heterostructures demonstrates further properties
and applications (Novoselov et al., 2016; Ang and Ang, 2019;
Chen et al., 2020; Hidding and Guimarães, 2020). It is worth
noting that a 2D heterostructure can be divided into a vertical
heterostructure and a lateral heterostructure. The former can be
obtained by artificial fixed-point transfer and chemical vapor
deposition (CVD), and the latter is obtained by CVD epitaxial
growth (Ding et al., 2018; Jiang, 2018). A vertical heterostructure
is a structure that connects two or more layered materials through
van der Waals (vdW) force, which can induce astonishing
performances across the interface. For instance, the carrier
mobility of a ZnO/BSe vertical heterostructure is as high as

2538.16 cm2·v−1·s−1, which is higher than that of original ZnO
(360.88 cm2·v−1·s−1) and BSe (419.01 cm2·v−1·s−1) (Ren et al.,
2020a). The Z-Scheme photocatalytic mechanism was
discovered in the MoSe2/HfS2 heterostructure and is used as
an efficient photocatalyst for water splitting (Wang et al., 2019b).
Nevertheless, due to the weak vdW force between layers, the
vertical heterostructure will be unstable at high temperature and
other extreme conductance; thus, Duan et al. synthesized MoS2/
MoSe2 and WS2/WSe2 lateral heterostructures by using the CVD
epitaxial growth method and proved that the lateral
heterostructure can be formed with remarkable current
rectification behavior (Duan et al., 2014). The MoS2/WSe2
lateral heterostructure was studied that the fracture strength
was determined by the mechanical properties of MoS2. When
the temperature increases from 50 to 500 K, the fracture strength
and strain of MoS2/WSe2 vdW heterostructure are reduced by
about 35 and 36%, respectively (Qin et al., 2019). More recently,
the TMDmaterial with a Janus structure, MoSSe, was successfully
prepared (Lu et al., 2017), which exhibits novel electronic and
optical properties (Ren et al., 2020b). WSSe with a Janus structure
also have unexpected properties (Lou et al., 2021). WSSe with an
armchair edge nanotube has strong oxidation ability, resulting in
high conversion efficiency of solar hydrogen production (Guo
et al., 2020). Considering that both monolayers MoSSe andWSSe
have outstanding properties, and the MoSSe/WSSe
heterostructure was also recently prepared (Trivedi et al.,
2020), the lateral MoSSe/WSSe heterostructure was selected to
explore the interesting performances and potential applications.

In this investigation, the Janus MoSSe and WSSe monolayers
are selected to construct lateral heterostructures by armchair and
zigzag edges as interfaces. The stability of the Janus MoSSe/WSSe
heterostructure is addressed by using the molecular dynamics

FIGURE 1 | Crystal structure of the (A) arm-1, (B) arm-2, (C) zig-1, and (D) zig-2 MoSSe/WSSe heterostructures; the blue, gray, cyan, and yellow are Mo, W, Se,
and S atoms, respectively.
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(MD) method. Then, electronic properties of the type-II band
alignment of theMoSSe/WSSe heterostructure are obtained using
first-principles calculations. Importantly, the structural
symmetry and interface edge dependence for the thermal
performance are further investigated.

COMPUTATIONAL METHODS

For the first-principles calculations, the simulations were
conducted by the Vienna ab initio simulation package (VASP)
based on density functional theory (DFT) (Capelle, 2006). The
generalized gradient approximation (GGA) and the projector
augmented wave potentials (PAW) were used by the
Perdew–Burke–Ernzerhof (PBE) functional for the exchange
correlation functional (Kresse and Furthmüller, 1996; Perdew
et al., 1996; Kresse and Joubert, 1999). The energy cutoff and the
Monkhorst–Pack k-point grids were considered to be 550 eV and
17 × 17 × 1, respectively. The thickness of the vacuum energy level
was employed by the 25 Å to prevent the interaction of the nearby
layers. The studied heterostructures were fully relaxed by the
Hellmann−Feynman force smaller than 0.01 eV Å−1 for each
atom. Furthermore, the convergence of the energy for the
systems was controlled within 1 × 10–5 eV. The density

functional perturbation theory (DFPT) was used to obtain the
phonon spectra of the investigated heterostructure by the
PHONOPY code (Togo et al., 2008; Togo and Tanaka, 2015).

The MD calculations were performed by the LAMMPS
package (Plimpton, 1995) in this work using parameterized
Stillinger–Weber potential to demonstrate the covalent
interaction between S, Se, Mo, and W atoms (Jiang, 2018).
The time step of our MD simulation was set as 1 fs, and
Newton’s equations of atomic motion were considered in the
velocity Verlet algorithm. First, the studied heterostructure was
relaxed for 10 ps under 300 K by the NPT (isothermal and
isobaric) ensemble, and then, NVT ensemble was used to
further optimize the structure of the system by Nosé–Hoover
temperature sustaining 2000 ps. Next, the Janus heterostructure
was equilibrated by the NVE (isovolumetric and isoenergetic)
(Ren et al., 2020c).

RESULTS AND DISCUSSION

The structure of the lateral MoSSe/WSSe heterostructure is
constructed along two interfaces: armchair and zigzag edge.
For the MoSSe/WSSe heterostructure with an armchair
interface, asymmetric with a Janus structure, S and Se can be

FIGURE 2 | MD snapshot for the structures of the (A) arm-1, (B) arm-2, (C) zig-1, and (D) zig-2 MoSSe/WSSe heterostructures at 300 K.
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arranged on both sides of Mo (or W) atoms and the same layer,
namely, arm-1 and arm-2, as shown in Figures 1A,B,
respectively. Similarly, the zig-1 and zig-2 are shown in
Figures 1C,D, respectively. Besides, the MoSSe and WSSe
monolayers are also optimized by the lattice constants of 3.23
and 3.27 Å, respectively. The obtained bond lengths of the Mo–S,
Mo–Se, W–S, and W–Se in the optimized monolayered MoSSe
and WSSe are 2.41, 2.53, 2.43 and 2.54 Å, respectively, which are
agreement with the experimental work, 2.58 and 2.41 Å for
Mo–Se and Mo–S, respectively (Lu et al., 2017). Thus, the
lattice mismatch of the MoSSe/WSSe heterostructure with
armchair and zigzag edges is 3.7 and 2.8%, respectively.
Furthermore, the calculated formation energies of arm-1, arm-
2, zig-1, and zig-2 MoSSe/WSSe heterostructures are 0.136, 0.095,
0.364, and 0.050 eV, respectively.

To assess the thermal stability of such a lateral MoSSe/WSSe
heterostructure, molecular dynamics simulations were employed.
After complete relaxation of the lateral MoSSe/WSSe
heterostructure at a Nosé–Hoover temperature of 300 K, the
structures of arm-1, arm-2, zig-1, and zig-2 lateral MoSSe/
WSSe heterostructures are demonstrated in Figures 2A–D,
respectively. The whole optimization process took about
4000 ps for the lateral MoSSe/WSSe heterostructure, and one
can find that the structures of these heterostructures are still
intact. Interestingly, at the interface of the arm-1 and zig-1 of the
lateral MoSSe/WSSe heterostructure, a bending phenomenon
occurred because of the asymmetric atomic arrangement

pattern of the S and Se atoms. In detail, this natural folding
phenomenon is also caused by the uneven stress of bonds at the
interface.

The projected band structure of arm-1, arm-2, zig-1, and zig-2
lateral MoSSe/WSSe heterostructures is shown in as Figures
3A–D, respectively. It can be seen that arm-1 and arm-2
lateral MoSSe/WSSe heterostructures possess similar band
structures with the semiconductor characteristic with a direct
bandgap of 1.57 and 1.58 eV, respectively, suggesting the
conduction band minimum (CBM) and valence band
maximum (VBM) located at K point. The zig-1 and zig-2
lateral MoSSe/WSSe heterostructures also have a direct
bandgap of 1.56 and 1.56 eV, respectively, with the CBM and
VBM at Γ point. Importantly, the red, blue, cyan, and yellow
marks represent the band contributions of the Mo, S, W, and Se
atoms, respectively, which show that these four Janus lateral
heterostructures possess type-II band alignment and that the
CBM and VBM resulted from MoSSe and WSSe layers,
respectively. Besides, the obtained bandgaps are comparable
with those of the reported MoSSe/WSSe heterostructure (about
1.53 eV) (Li et al., 2017).

The obtained type-II band structure of the lateral MoSSe/
WSSe heterostructure provides the ability to separate the
photogenerated electrons and holes continuously. As Figure 4
shows, taking the arm-1 MoSSe/WSSe heterostructure as an
example, the energy positions are also demonstrated. When
the MoSSe/WSSe heterostructure is inspired by light, the
photogenerated electrons of the MoSSe and WSSe layers can
be stimulated to the conduction band (CB), and the
photogenerated holes will result in the valence band (VB).
Then, the photogenerated electrons at the CB of the WSSe
layer and the photogenerated holes at the VB of the MoSSe
layer transfer to the CB of the MoSSe layer and the VB of the
WSSe layer by the power of the conduction band offset and
valence band offset, named conduction band offset (CBO) and

FIGURE 3 | Projected band structures of the (A) arm-1, (B) arm-2, (C)
zig-1, and (D) zig-2 MoSSe/WSSe heterostructures.

FIGURE 4 | Schematic of the exciton migration mode of the lateral
MoSSe/WSSe heterostructure.
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FIGURE 5 | Schematic of the heat transfer style of the (A) arm-1, (B) arm-2, (C) zig-1, and (D) zig-2 MoSSe/WSSe heterostructures for the NEMD simulations.

FIGURE 6 | Temperature profiles the (A) arm-1, (B) arm-2, (C) zig-1, and (D) zig-2 MoSSe/WSSe heterostructures.
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valence band offset (VBO) in Figure 4, respectively. Thus, the
separated photogenerated electrons at the CB of the MoSSe layer
and holes at the VB of the WSSe layer can induce the hydrogen
evolution reaction (HER) and oxygen evolution reaction (OER),
respectively, suggesting these four lateral MoSSe/WSSe
heterostructures can act as a potential photocatalyst for water
splitting. In particular, if the photogenerated electrons at the CB
of the MoSSe layer and the photogenerated holes at the VB of the
WSSe layer develop recombination, the HER and the OER are
induced at the CB of the WSSe layer and the VB of the MoSSe
layer, respectively, and the Z-scheme photocatalytic mechanism
is promoted (Xu et al., 2018; Ren et al., 2020d).

To investigate the heat conduction properties of the lateral
MoSSe/WSSe heterostructure with different symmetries and
interface edges, the non-equilibrium molecular dynamics
(NEMD) method was adopted. A temperature gradient is
constructed with MoSSe and WSSe acting as cold and hot
baths, respectively. The schematic diagram of the temperature
gradient of these four heterostructures arm-1, arm-2, zig-1, and
zig-2 MoSSe/WSSe is shown in Figures 5A–D, respectively,
suggesting heat flux flow from the MoSSe layer to the WSSe
layer. Besides, NEMD simulations can explain the temperature
interaction between atoms. The temperature distribution can also
be demonstrated by NEMD calculations across the interface. In
MD simulation work Nose–Hoover and Langevin are popular
heat baths that can account for different experimental factors (Hu
et al., 2020). The Nose–Hoover and Langevin can induce different
temperature profiles, and in this NEMD investigation, the
temperature jump across the interface of the MoSSe/WSSe
heterostructure is critical. Therefore, the Nose–Hoover heat
bath was selected. We fixed the ends of the MoSSe and WSSe
and set the temperature at 80 and 100 K, respectively. We
obtained the time-independent heat flux with enough

relaxation time to build a non-equilibrium status. The heat
flux (J) was calculated as follows:

J� 1
V
⎡⎢⎢⎣∑N

i

εivi + 1
2
∑N

ij;i≠ j

(Fij · vi)rij + 1
6

∑N
ijk,i≠ j≠ k

(Fijk ·vi)(rij + rik)⎤⎥⎥⎦,
(1)

where εi is the energy; vi represents the velocity of an atom i; rij is
the interatomic distance between atoms i and j; Fij and Fijk are
two-body and three-body forces, respectively; and V represents
the volume of the investigated MoSSe/WSSe heterostructure.
Furthermore, the calculated thickness of MoSSe and WSSe is
3.243 and 3.230 Å, respectively.

After obtaining the steady state for the systems, the
temperature profile of the lateral MoSSe/WSSe heterostructure
with an armchair and zigzag interface edge is demonstrated in
Figures 6A,B, respectively. Reflection, transmission, and mode
conversion occur by phonons travelling across the interface of the
MoSSe/WSSe heterostructure, suggesting a temperature jump,
which can further result in interfacial thermal resistance. Linear
fitting and extrapolation were explored to calculate a more
reasonable temperature jump (Yu and Zhang, 2013). As
Figure 6 shows, a significant temperature jump (ΔT) is
characterized at the interface of the lateral MoSSe/WSSe
heterostructure. Such a temperature jump is also obtained by
other reported heterostructures, such as graphene/h-BN (Liu
et al., 2016b), phosphorene/graphene (Liu et al., 2018), and
MoS2/WSe2 (Qin et al., 2019). The heat flux of the arm-1,
arm-2, zig-1, zig-2 MoSSe/WSSe heterostructures is calculated
as 5.48 × 109, 6.21 × 109, 3.70 × 109, and 4.28 × 109 Wm−2,
respectively. Besides, the temperature jump of the arm-1, arm-2,
zig-1, and zig-2 MoSSe/WSSe heterostructures is obtained at
18.77, 14.66, 17.43 and 13.67 K, respectively. The interfacial
thermal resistance (ITC) of the lateral MoSSe/WSSe
heterostructure was decided as follows:

λ � J

ΔT
. (2)

Therefore, pronounced ITC across the interfaces of the
arm-1, arm-2, zig-1, and zig-2 MoSSe/WSSe
heterostructures is 2.92 × 108, 4.24 × 108, 2.12 × 108, and
3.13 × 108 W K−1·m−2, respectively, which is comparable with
that of graphene/BP (2.5 × 108 W K−1·m−2) (Liu et al., 2018).
More importantly, the obtained ITC, 4.24 × 108 W K−1·m−2, of
the arm-2 MoSSe/WSSe heterostructure is also larger than
lateral heterostructure MoS2/WSe2 (3.65 × 108 W K−1·m−2 and
3.76 × 108 W K−1·m−2 along armchair and zigzag directions)
(Qin et al., 2019). It is worth noting that the heat flux of arm-2
(or zig-2) is larger than that of the arm-1 (zig-1) MoSSe/WSSe
heterostructure, which is suppressed by the interface bending
in arm-1 (or zig-1).

In particular, it is observed that the heat flux of the arm-1
(arm-2) heterostructure is also higher than that of the zig-1 (zig-
2) heterostructure. The phonon scattering spectrums of lateral
MoSSe/WSSe heterostructures with armchair and zigzag
interfaces are demonstrated in Figures 7A,B, respectively,
obtained by the density functional theory by the unit cell, as

FIGURE 7 | Calculated phonon dispersion for MoSSe/WSSe
heterostructure with (A) armchair and (B) zigzag interface.

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 9 | Article 8386486

Shen et al. Heterostructure, Type-II, Interfacial Thermal Resistance

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


shown in Figure 1. It is worth noting that the slope of the acoustic
branch in the arm-1 (or arm-2) heterostructure is steeper than
that in the zig-1 (or zig-2) heterostructure in Figure 7A (or
Figure 7B), which illustrates that the acoustic branches can be
suppressed by the zigzag interface in the MoSSe/WSSe
heterostructure, resulting in a lower group velocity. Thus, the
heat flux in the MoSSe/WSSe heterostructure with an armchair
interface is higher than that of the zigzag interface.

CONCLUSIONS

First-principles calculations and MD simulations were carried
out to explore the electronic and thermal properties of the
lateral Janus MoSSe/WSSe heterostructure. Four different
structures of the Janus MoSSe/WSSe heterostructures were
constructed by different symmetry and interface edges. These
MoSSe/WSSe heterostructures possess direct type-II band
structures, which can provide the ability to separate the
photogenerated electrons and holes as a photocatalyst for
water splitting. More interestingly, the asymmetric
arrangement of S and Se in the Janus MoSSe/WSSe
heterostructure can decrease the heat flux because of
interface bending, while the lower heat flux and ITC of the
Janus MoSSe/WSSe heterostructure with a zigzag interface is
mainly due to the suppressed acoustic branches. The studied
lateral Janus MoSSe/WSSe heterostructure in our work will

provide theoretical guidance for the designing the 2D
heterostructure to be used for future nano-devices.
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