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The Thermal Balance of Venus in Light of 
the Pioneer Venus Mission 
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Instruments flown on the Pioneer Venus orbiter and probes measured many of the properties of the 
atmosphere of Venus which control its thermal balance and support its high surface temperature. Esti- 
mates based on orbiter measurements place the effective radiating temperature of Venus at 228 ñ 5 K, 
corresponding to an emission of 153 ñ 13 W/m 2, and the bolometric Bond albedo at 0.80 ñ 0.02, corre- 
sponding to a solar energy absorption of 132 ñ 13 W/m 2. Uncertainties in these preliminary values are 
too large to interpret the flux difference as a true energy imbalance. A mode of submicron particles is 
suggested as an important source of thermal opacity near the cloud tops to explain the orbiter and probe 
thermal flux measurements. Comparison of the measured solar flux profile with thermal fluxes computed 
from the measured temperature structure and composition shows that the greenhouse mechanism ex- 
plains essentially all of the 500 K difference between the surface and radiating temperatures of Venus. 
Precise comparison of the observed and computed value of this difference is hindered by uncertainties in 
the local variability of H•O and in the thermal opacity of CO2 and H•O at high temperature and pres- 
sure. The directly measured thermal flux profiles at the small probe sites are surprisingly large and vari- 
able in the lower atmosphere. Observed zonal and meridional circulation are qualitatively as required to 
produce the observed uniformity of temperature structure. However, the present lack of quantitative es- 
timates of the horizontal and vertical dynamical heat transports implied by these measurements is a sig- 
nificant gap in the understanding of the thermal balance of the atmosphere of Venus. 

1. INTRODUCTION 

Venus has been known for many years to have a remark- 

ably high surface temperature of some 750 K despite its com- 

plete coverage by highly reflective clouds which cause it to ab- 
sorb less energy from the sun than does the earth. This fact is 

all the more remarkable in view of the overall similarity of 
Venus and the earth in terms of size, mass and distance from 
the sun. 

Mechanisms that might be responsible for the thermal bal- 

ance of the atmosphere of Venus have attracted considerable 

attention ever since the discovery of the planet's unexpectedly 

high surface temperature. A summary of the state of under- 

standing of the thermal balance of Venus before the Pioneer 

Venus mission is given by Tomasko et al. [1977]. Briefly, it was 

felt that radiative processes played the key role in determining 

the vertical temperature structure of the atmosphere with very 

efficient horizontal redistribution of heat by dynamical proc- 
esses required to explain the apparently small differences in 

temperature structure observed over the planet. 

I-n order to improve significantly the understanding of these 

processes, an ambitious and coordinated program of measure- 

ments of the temperature structure, solar and thermal radia- 
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tion fields, sources of thermal opacity, cloud cover, and wind 

field was undertaken by the Pioneer Venus (PV) mission. Re- 

mote sensing measurements of the atmosphere above the 

clouds having global coverage were made from the orbiter 

spacecraft. Entry probes were used to measure these quan- 

tities directly from the region near the cloud tops to the 

ground. A total of four probes were targeted to widely spaced 
locations in an attempt to estimate the global scale variations 

of the atmosphere beneath the clouds. The entry locations of 

these four probes are given by Colin [this issue]. Briefly, two 

probes landed in daylight, the 'Sounder' probe near the equa- 
tor and the 'Day' probe at • -30 ø latitude, and two on the 

night side of the planet, the 'Night' probe also at • -30 ø lati- 
tude and the 'North' probe at •60 ø latitude. Thus both day- 

night and latitude effects could be explored in a preliminary 

way. 

In this article we attempt to pull together the new measure- 
ments which bear on the thermal balance of Venus, and sum- 

marize our current understanding of the clarification they pro- 

duce and the new questions which they raise. In the next 

section we review the temperature structure measurements 

made by PV. In section 3 we discuss the measurements relat- 

ing to radiative processes•the solar and thermal flux mea- 
surements and the measurements concerning sources of ther- 

mal opacity. Section 4 discusses the new questions raised by 
the radiation measurements and some possible resolutions. In 

section 5 we briefly review the implications of the 'measure- 
ments concerning the dynamical state of the atmosphere for 
its thermal balance. A final section summarizes the important 

conclusions and new questions regarding the thermal balance 
of Venus which have resulted from the PV measurements. 

2. MEASUREMENTS OF TEMPERATURE STRUCTURE 

Extensive maps of the temperature structure above the 

clouds were obtained from the Pioneer Venus orbiter [Taylor 

et al., this issue], while radio occultation measurements pro- 
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Fig. 1. Temperature profiles measured by various Pioneer Venus 
instruments as indicated--atmosphere drag experiment (OAD), or- 
biter neutral mass spectrometer (ONMS), bus neutral mass spectrom- 
eter (BNMS), orbiter infrared radiometer (OIR), and the atmospheric 
structure experiments on the probes. 

vided limited coverage down to an altitude of about 45 km 

[Kliore and Patel, this issue]. In situ temperature measure- 
ments were obtained down to 13 km altitude on the four Pio- 

neer Venus entry probes [Seiff et aL, this issue; Suomi et al., 

1979]. Figure I shows atmospheric temperature data from sev- 

eral Pioneer Venus experiments collected on a single graph to 

show profiles from 13 to 200 km altitude. 

From the cloud levels to the surface, the mean temperature 

lapse rate is -•7.8 K/km on both the day and night sides of the 

planet at latitudes up to at least 60 ø. Above the clouds, a 

stratosphere extends upward to -•100 km, becoming nearly 

isothermal at a temperature near 170 K. The lower boundary 

of this major change in lapse rate coincides with the region of 

sharply increased heating seen in the solar net flux profile 

above 56 km [Tomasko et al., this issue]. A prevalent feature of 

the cloud top region at higher latitudes is the inversion in the 

temperature profile at about 60 km shown in Figure I by the 
North probe data. This has been seen consistently in radio oc- 

cultation measurements [Howard et al., 1974; Kliore and Patel, 

this issue], even at near equatorial latitudes, where its ampli- 

tude is smaller. It is apparently a region of adjustment in radi- 

ative balance, from the upper cloud to the haze and clear 

stratosphere above it. The upper atmosphere is cold relative to 

that of the earth, and is subject to large diurnal temperature 

variation [Keating et al., this issue]. 

The global variation in the temperature structure seen 

above the clouds by the orbiter infrared instrument was mod- 

erate. Temperature differences at a given altitude are no 

greater than a few degrees K from day to night at levels below 

100 km, and vary -•20 K with latitude. The warmest regions 

lie over the poles [Taylor et aL, 1979b, c, this issue]. Below the 
clouds, the two mid-latitude probes showed temperatures of 

a few degrees K warmer than those measured by the Sounder 

probe near the equator. The diurnal variation below the 

clouds is very small. At the North probe site, 60 ø latitude, 

larger temperature differences of up to 25 K cooler than at 
lower latitudes were observed in the clouds above 55 km [Seiff 

el al., this issue]. The temperature difference measured be- 

tween 60 ø and 30 ø latitude is approximately that needed to 

maintain the zonal winds in cyclostrophic balance [Seiffet al., 

1979b, this issue], reflecting the strong coupling in the clouds 

between temperature structure and dynamics. Although the 

probe entry sites were limited to local Venus times from mid- 
night to 8 A.M. and from 4 ø to 60 ø latitude, the radio o½½ult- 
ation data extend the observations to polar latitudes. These 

observations show that cooling of the atmosphere in the 

clouds with increasing latitude continues to the poles. 

Some of the most interesting results of the Pioneer Venus 

atmosphere structure experiments were related to atmospheric 

stability. Prior to Pioneer Venus, it had been thought that the 

deep atmosphere was generally near-adiabatic, or convective 

[see, e.g., Stone, 1975; Marov, 1973]. The temperature struc- 

tures measured by Pioneer Venus show instead that the deep 

atmosphere from •26 to 52 km is stable. The dashed line in 

Figure I extends the adiabatic profile upward into this stable 

layer. Below this deep stable layer lies a convective layer, but 

it only extends down to -• 18 km. Underneath this is another 
lower-lying stable layer (at latitudes up to at least 30ø). Near 

the surface, there is indication from Venera 9 and 10 data [Av- 

duevsky el al., 1977] of a convective layer, and in the middle 
cloud, there is also a thin (-•2 km) convective layer [Seiffet al., 

this issue]. These observations comprise an important con- 

straint on the thermal and dynamic models, serving as a sensi- 

tive discriminant to the selection of appropriate values for the 

model parameters. 

3. MEASUREMENTS OF RADIATIVE PROCESSES 

Global Radiative Energy Budget 

The Vortex experiment on the PV orbiter described by Tay- 

lor el al. [this issue] has mapped the thermal emission (in 

seven narrow passbands) and the reflected sunlight (in a 

broad wavelength channel) over the northern hemisphere of 
Venus. These data on the reflected solar and emitted thermal 

radiation fields at the top of the atmosphere provide the basic 

data needed to calculate the planetary-scale radiation budget 

for Venus. On the (highly probable) assumption that the sun 

is the only important source of energy driving the Cytherean 

atmospheric 'engine,' the excess of energy absorbed over that 

emitted in the equatorial regions must be transported to high 

latitudes to supply the observed deficit there. This require- 

ment for balance is the fundamental driving force behind the 

general circulation on Venus, as it is on earth. 

Ingoing solar radiation. The amount of solar absorption 

can readily be calculated using the information in Table 4 of 

the paper by Taylor et aL [this issue]. Sectioning the illumi- 

nated portion of the planet by meridional lines -30 ø and 
+30 ø longitude (solar fixed coordinate; subsolar point at 0 ø 

longitude) and zonal lines equally spaced at 10 ø intervals 

starting at 0 ø latitude; the amount of absorption (W/m 2) in 
each sector is given by 

f • = I..(œ- R) tin/I., dn (•) 

where 

œ = (2) 

' LLa, to, cos de, (3) 
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•rF = 2621 W/m 2, the incident solar flux at Venus, and Is is 

the intensity of sunlight scattered through an azimuth angle 

A•. Here • and p are the cosines of the zenith angles of the 
incident and emerging beams, respectively. 

Since our primary interest is in the latitudinal distribution 
of the ingoing and outgoing energy, the longitude bins were 

integrated to obtain zonal averages in each of the nine 10 ø 
wide latitude bins. 

Outgoing thermal radiation. The thermal component of 
the radiation field was obtained by making a fit of the form 

I(•) = ap •' (4) 

where a, b are constants, to the measured radiances I(•). The 
net outward flux is then 

fo' F t = I•)l.t dp = a/(b + 2) (5) 

Again, an effective wavelength was selected to simplify the in- 
tegration over wavelength. It was assumed that the planet ra- 
diates like a blackbody at the effective temperature of the 

cloud tops as measured at 11.5/•m; this wavelength is close to 

the peak of the Planck function at Cytherean bolometric tem- 
peratures. This is not as severe a simplification as it may ap- 
pear at first. Although the Vortex measurements themselves 
demonstrate that Venus is decidedly nongray, model calcu- 

lations show that the use of the brightness temperature mea- 

sured at 11.5 pm to calculate the total bolometric flux is accu- 
rate to within 5-10%. This is to some extent due to the fact 

that the higher far-infrared brightness temperatures caused by 

the reduced opacity of the clouds at longer wavelengths, is off- 
set fortuitously by the narrow but very opaque 15 pm CO2 
band which occurs near the maximum of Ix. The models re- 

ferred to above are generated by retrieving the vertical tem- 

perature profile and cloud model parameters from the Vortex 
thermal channels. The spectrum of Venus can then be com- 

puted from such a model and integrated over wavelength to 
obtain the net flux. This is a convenient way of integrating the 

portion of the spectrum (about 30% of the total energy) ac- 
tually monitored by Vortex, and estimating the rest. Since this 
has to be done accurately for all latitude-longitude and p bins, 

this approach to a more precise calculation of the energy bud- 
get is a long-term project and will be reported in a later paper. 

For the present report, its use has been limited to checking the 
grey approximation as noted above. 

The results of the radiation budget calculation are shown in 
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Fig. 2. Comparison of the planetary radiation budget for the earth 
[Vonder Haar and $uomi, 1971] and that measured by the infrared ra- 
diometer on the PV orbiter for the northern hemisphere of Venus. 
The longitudinally averaged thermal emission (solid line) and ab- 
sorbed solar energy (dashed line) at the top of the atmosphere are 
shown as functions of latitude. 

Table 1, and plotted in Figure 2. For comparison, Figure 2 

also shows the same quantities for the earth's atmosphere, as 

deduced by Vonder Haar and $uomi [1971], using data from 
Tiros and Nimbus satellites. The total thermal flux from 

Venus depends significantly less strongly on latitude than 
does that from the earth. Other and more tentative con- 

clusions which can be drawn from this are as follows: 

1. There is an anomalously high rate of cooling at the pole 
on Venus, due to the relative transparency of the clouds there. 

However, this is nearly negligible for the energy budget of the 

atmosphere as a whole because its area is a small fraction of 
the total. 

2. Both the absorbed and emitted components of the total 

hemispherical energy exchange, at 132 + 13 and 153 + 13 W/ 

m :, respectively (estimated errors), are only about 60% of the 
corresponding figures for the earth. This is contrary to a naive 

expectation based on the fact that the solar constant is ap- 

proximately twice as great at Venus as at earth. The reason, of 

course, is the much larger Bond albedo of Venus. The Bond 

albedo is found to be 0.80 + 0.02 in good agreement with Ir- 

vine's [1968] value of 0.77 + 0.07. 

3. The equivalent bolometric temperature of Venus, de- 
fined as 

TABLE 1. Mean Zonal Radiation Budget of Venus 

Latitude Bin, 

degrees north F t, W/m: Te, K F,, W/m: 

0-10 146.3 225.4 190.5 

10-20 153.4 228.1 179.7 

20-30 156.7 229.3 163.7 

30-40 158.7 230.0 126.7 

40-50 155.5 228.8 102.3 

50-60 152.0 227.5 73.0 

60-70 138.5 222.3 48.2 

70-80 143.5 224.3 36.2 

80-90 178.4 236.8 12.7 

F t is the total outward thermal flux, integrated over wavelength and 
emission angle, averaged around a latitude zone. F, is the absorbed 
solar flux in the zone. Te is the effective bolometric temperature of the 
planet for emission at all wavelengths into a hemisphere. It is not di- 
rectly comparable with the brightness temperature of the planet mea- 
sured at near-nadir viewing angles! The latter is typically 10-15 K 
warmer. 

{l•. fA !/4 , Te = F t d•l //l v (6) 
v 

where o is Stefan's constant and Av is the area of the north 

hemisphere of Venus, is found to be equal to 228 _+ 5 K. This 
value of Te is in approximate agreement with the value of 222 

K reported by Ksanfomaliti [1980] from Venera orbiter mea- 
surements. 

4. The difference between the ingoing and outgoing com- 

ponents for the north hemisphere corresponds to a net outflux 
of 20 _+ 20 W/m 2, or 13(+_13)% of the power input by the sun. 
However, in view of the large uncertainties this cannot be in- 

terpreted as a definite energy imbalance. 

Vertical Profiles of the Net Radiative Flux 

Solar net flux profiles. The solar flux radiometer (LSFR) 
experiment aboard the Sounder probe measured the intensity 
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Fig. 3. The SNFR thermal net flux measurements at the Night, 
North, and Day probe sites are compared with the globally averaged 
bolometric net solar fluxes as a function of altitude. The 'broad-band' 

and 'combined' channels (above 35 km altitude) are each scaled up to 
include energy outside the LSFR filters and averaged over the planet 
using a forward scattering cloud model are shown in the curves 
(nearly superimposed) labeled 'nominal solar.' Also shown is the 
highest solar net flux profile (labeled 'high solar') consistent with rela- 
tive and absolute calibration uncertainties in the LSFR upward and 
downward looking detectors. The dashed curve above 60 km altitude 
is a solar model calculation. The triangle corresponds to the net ther- 
mal flux and the dot to the net solar flux measured for the top of the 
atmosphere by the orbiter. The magnitudes of the net fluxes are 
plotted; the solar net flux is directed downward, and the thermal net 
fluxes are directed upward. 

of sunlight in several directions to the vertical .in a spectral 
band from about 0.4 to 1.0/•m from 65 km altitude to the 

ground [Tomasko et al., this issue]. Between 65 km and about 

35 km altitude, measurements were also made in a spectral 
channel from 1-1.8/•m. These data have been reduced to give 
the upward, downward and net flux profiles at the Sounder en- 

try site in passbands from 0.4-1.8 and 0.4-1.0/.tm. The abso- 
lute accuracy of these measurements is thought to be better 

than. 10%, with relative uncertainty in the upward and down- 
ward fluxes being less than +2%. Maximum errors of 2% with 

opposite sign in the upward and downward fluxes could cause 

30% errors in the net flux at the highest altitudes where the 

upward flux is only some 12% less than the downward flux. At 

lower altitudes, the percentage difference between the upward 
and downward fluxes increases until the downward flux is 

about a factor 6 greater than the upward flux at the ground 

and relative calibration uncertainties are insignificant. 
Models of the spectral dependence of the solar radiation 

field from 0.3-4.6 /an have been computed and compared 
with the measured solar flux profiles. These models have been 
used to rescale the measured net flux at the Sounder site to ac- 

count for two effects: (1) the inclusion of the net flux outside 

of the LSFR passbands and (2) the evaluation of the globally 
averaged solar net flux profile assuming that the cloud proper- 
ties at the Sounder site are typical of planetary conditions. It 
turns out that both these scale factors are reasonably near 
unity (within -20%) and of opposite sign so the measured net 

flux profiles need only relatively minor adjustment (-10%) to 

give the bolometric globally averaged solar net flux. ,Figure 3 
shows the globally averaged profile scaled to include solar 

energy outside the LSFR passband. Also shown are the pro- 
files that result if 2% relative calibration errors of opposite 
sign in the upward and downward fluxes plus 10% absolute er- 
rors act together to increase the level of the net flux. Calcu- 

lations of the net flux profile above 65 km are also shown for a 

forward scattering cloud model consistent with the measured 

spherical albedo of Venus and PV cloud data [Tomasko et al., 
this issue]. 

As discussed in the LSFR instrument paper, the measure- 
ments indicate that about 17 W/m: are absorbed at the 

ground corresponding to about 2«% of the sunlight incident 

on the planet. Some 15 W/m 2 are absorbed in the atmosphere 
below 40 km altitude. Remarkable little solar energy is ab- 
sorbed in the dense lower and middle clouds. Indeed, calcu- 

lations show that the net flux profile is not much affected even 
for models in which the lower cloud is omitted. By contrast, 
the upper cloud absorbs solar energy at a much greater rate. 
About half the solar energy absorbed by Venus is absorbed at 
altitudes greater than 60 km. 

Some checks on this profile can be made. Relative calibra- 

tion errors in the upward and downward fluxes would cause 

the net fluxes to vary most at high altitudes and almost not at 

all at the ground--in effect causing the profile to pivot about 
the value at the ground. Since the observed profile is quite fiat 
in the lower and middle clouds, relative calibration errors 

could not decrease the net flux at these levels without causing 
the net fluxes to increase with decreasing altitude through the 
clouds--an unphysical result requiring the atmosphere to 
glow at visible wavelengths. On the other hand, relative cali- 
bration errors could not increase the net flux values at middle 

altitudes (-30 km) very much without also increasing the net 
fluxes at 60 km hv so much that the profile would be in- 
compatible with the net solar flux of-132 + 13 W/m '• mea- 
sured at•the top of the atmosphere [Taylor et al., this issue]. 

FinallY, a comparison of the net solar flux at the ground 
measured by the LSFR and.by the Venera 8-12 entry probes 
gives some gonfirmation of absolute calibration and the con- 

stancy of the Venus cloud properties. Figure 4 shows the net 
flux measured at the ground by the LSFR as a little less than 

2% of the incident solar flux at the PV entry site. Venera 8 

measured -1% at a site much closer to the terminator [.Av- 

duevsky et al., 1973], while the value.given for the Venera 9 
and l0 sites is about 3% at solar zenith.angles of 27.7 ø and 
33.4 ø [Moshkin et al., 1978]. Moroz et al. [1980] gave a value 
for the downward flux of 72 W/m 2 at the Venera 11 and 12 

sites (solar zenith angle - 20ø). If the ground reflectivity is as 

high as 15%, the net flux would be correspondingly lower as 

indicated by the vertical bar in the figure. The solid curve 

passing through the PV value shows the variation with solar 

zenith angle of a forward scattering cloud model. It indicates 

that the various measurements of solar net flux at the ground 
fit together remarkably well. 

Thermal net flux profiles. The first and only measurements 

of net thermal radiation in the atmosphere of Venus were 

made by instruments on the Pioneer entry probes [Boese et al., 
1979; Suomi et al., 1979, this issue]. Since results from the 

large probe instrument were seriously affected below 50 km 

by an apparent window misalignment, and are presently being 
reviewed for possible effects above this level, we will present 
here only measurements from the small probes. 

The small probe measurements were made with an external 
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wide-field-of-view radiometer, sensing net radiation over a 

broad spectral bandpass from 0.2/•m to about 150/•m. The ra- 
diometers on the North and Night probes, which entered in 

darkness, measured profiles of net thermal radiation only. On 
the Day probe, which entered at a solar zenith angle of 79.9 ø, 
the profile includes solar as well as thermal contributions. To 
determine a thermal net radiation profile for this probe, it is 

necessary to subtract an estimated solar net radiation profile 
which can be derived from the LSFR measurements on the 

Sounder probe and scattering models. 
Measured and estimated thermal net flux profiles are pre- 

sented in Figure 3. The shaded band presented for the Day 

probe thermal profile is bounded by the estimated uncertainty 
in the calibration of the LSFR. At the top of each profile, ex- 

tending over an altitude range of about 5 kin, corrected values 
replace the raw measurements. Two corrections have been ap- 
plied in this region, both somewhat uncertain at this point 
[Suomi et al., this issue]: (1) subtraction of an erroneous down- 
ard flux induced by the effect of a large thermal transient initi- 

ated at deployment together with a small gas flow through the 
sensor head, and (2) corrections for nonvertical probe orienta- 
tion. No data are available for altitudes below 12.5 km be- 

cause of external sensor failures which occurred on all probes 

at this level. Night probe data below 27 km were omitted be- 

cause of questions raised by the beginning of saturated offset 
readings at this point. 

The probe-to-probe variabilities in the thermal net flux pro- 
files are remarkable and entirely unexpected. Factor of two 
variations are seen both in the cloud layer (generally above 

47-50 kin) and in the clear region below. Within the cloud 
layer variations may be attributed to differing cloud properties 
at the three entry locations, although nephelometer backscat- 

ter measurements [Ragent and Blamont, this issue] reveal sub- 
stantial variations only in the lower cloud layer. Variable 

amounts of nucleation size haze may be a possible ex- 

planation of differences in the upper cloud [Suomi et al., this 
issue]. In the North probe profile a temperature inversion 
above 60 km (apparently typical of high latitudes [Kliore and 

Patel, this issue] probably contributes to the observed varia- 
tion. Below the clouds, the apparent absence of significant 

particulate content and the relative uniformity of thermal 
structure suggest that compositional variability is required to 
explain the thermal flux profiles. The structural features seen 
in the stable layer between the cloud bottoms and about 35 
km suggest a fine scale vertical variation of composition as 
well. Water vapor mixing ratio variations appear to be a pos- 
sible explanation of these features [Suomi et al., this issue]. 

Even in the mean, the thermal profiles are unusual. Prior to 

Pioneer Venus it was expected that solar energy deposition at 
the surface would exceed thermal losses, maintaining an adia- 

batic temperature profile by radiative-convective equilibrium. 
The thermal net flux measurements, on the other hand, in- 

dicate that below 13 km more energy is being lost than is ab- 

sorbed from the sun. If the mean small probe net flux radio- 

meter (SNFR) fluxes were representative of the planetwide 
average, the implied rate of energy loss would be large, be- 
tween 15 and 30 W/m 2. This loss is not consistent with the 

most recent radiative transfer calculations (described in sec- 

tion 4), and should not be trusted until the possibility of 
SNFR measurement errors in the lower 35 km is more com- 

pletely investigated. 
The radiative gains and losses within the atmosphere due to 

thermal (planetary) radiation are indicated by the vertical de- 

rivative of the net fluxes; a positive slope implies cooling, a 

negative slope heating. A consistent feature seen in all the 

thermal profiles is a radiative heating at the base of the lowest 

significant cloud. This would tend to support the higher tem- 

peratures (relative to adiabatic extrapolations from below) 
measured at the cloud base and contribute to stabilization of 

the atmosphere below the clouds and destabilization immedi- 

ately above cloud base. Except for the possibility of significant 

cooling below 12.5 kin, where no thermal measurements are 

available, the bulk of the atmospheric thermal loss (and cer- 

tainly the greatest cooling rate) occurs near the cloud tops. 

This is most apparent in the Night probe profile, apparently a 

result of the unusually low cloud top altitude at this location 

[Ragent and Blamont, this issue]. In general, however, the net 

thermal fluxes measured by the probes at the highest altitudes 

do not provide an estimate of the thermal loss to space be- 

cause of significant gas and particulate opacity (especially for 

the North and Day probes) above the earliest measurements. 

Thermal Opacity Sources 

Cloudparticles. The Pioneer Venus mission has returned a 

wealth of data bearing on the physical and optical properties 

of the ubiquitous cloud layers. Knollenberg et al. [this issue] 

summarize the results from the relevant experiments. It is im- 

pressive how much information is now available concerning 
the cloud particles and yet the composition of at least some of 
the particles is still unknown. Furthermore, the number den- 

sity of the submicron particles, below the minimum size limit 

of the cloud particle size spectrometer (LCPS), remains to be 

measured. Despite the remaining uncertainties, the cloud par- 

ticle measurements provide valuable information concerning 

the infrared opacity of the clouds. 

At the Sounder probe entry site the LCPS measured the 

number density of the cloud particles as a function of the size 

[Knollenberg and Hunten, this issue]. This experiment is able 

to define the shapes of two size distributions, one with a mean 

diameter of 2.1-2.7/•m called mode 2 and another with mean 

diameter of about 7 /•m called mode 3. A third size mode 

(mode 1) is found in the smallest size bin (0.6-1.1/xm diame- 
ter) but the mean diameter of the mode is unknown from this 

experiment. However, the cloud photopolarimeter (OCPP) ex- 
periment does have information from high altitude hazes 
which defines a size mode that is consistent with mode 1 in the 

cloud deck [Kawabata et al., this issue]. 

The Venus clouds are stratiform and found in three major 

layers with haze regions both above and below the main cloud 

layers. The upper haze containing only mode 1 is found above 
about 65 kin. This layer seems to be located primarily in the 

polar region beyond about 50 ø latitude. It is also seen in an at- 
tenuated form at lower latitudes concentrated near the termi- 

nators. The upper cloud region (57-65 kin) is apparently a 

global feature. It has a bimodal size distribution as seen from 
both the orbiter and the LCPS (modes 1 and 2). A large frac- 

tion of the incoming sunlight is absorbed in this region, which 

implies that one or both of the modes has a low single scatter- 
ing albedo. This is inconsistent with a composition of only 

concentrated sulfuric acid. Absorption in the ultraviolet por- 

tion of the spectrum is due to a combination of materials 

whose identity is uncertain. A discussion of the various can- 

didates for this absorption is given in Pollack et al. [this issue]. 

The mode 2 distribution in this upper cloud region has a 

modal diameter of about 2.1/•m consistent with earth-based 

polarimetry analyses of Hansen and Hovenier [1974]. These 
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Fig. 4. Net solar flux at the surface of Venus as a function of the 

cosine of the solar zenith angle. Dashed lines represent con- 
stant fractions of the incident solar flux as indicated. The solid line 

represents the variation computed for a forward scattering cloud 
model adjusted to pass through the Pioneer Venus measurement at 
the Sounder probe site (labeled PI 0. This measurement and those 
measured at the Venera 8 (labeled V8), Venera 9 and 10 (V9,10) and 
Venera 11 and 12 (VII,12) sites are quite consistent as discussed in 
the text. 

authors were able to establish the cloud particles as spherical 
with a narrow size distribution and a refractive index of 1.44 

at 0.55/lm. The combined LCPS and nephelometer measure- 
ments confirm these results. This mode is firmly identified 
with concentrated surfuric acid. 

For any size mode assumed to consist of spherical H2SO4 
particles, the refractive indices measured by Palmer and Wil- 
liams [ 1975] and Mie theory can be used to compute the ratio 
of the absorption cross section to the visible extinction cross 

section (shown in Figure 15 as a function of wave number). A 
blackbody curve for 270 K, the temperature below the upper 
cloud deck, is shown for comparison. Since the visible optical 
depth for mode 2 in the upper clouds is about 6, the infrared 
optical depth due to this mode can be estimated as 6 x 0.05 -- 

0.3 in the 20-100/•m region. The additional opacity due to 
mode 1 can be expected to be even less. Therefore on the basis 

of PV cloud particle measurements, the upper cloud region 
will be optically thin in the thermal infrared. 

The lower and middle cloud regions are trimodal contain- 

ing an additional mode of larger particles (mode 3). The mean 
diameter of mode 2 shifts abruptly below the upper cloud 
layer to 2.7/lm (it is now referred to as mode 2' for clarity). 
Figure 15 shows modes 2' and 3 versus wave number compared 
to a blackbody curve for T-- 380 K, the temperature below 
the lower cloud. Mode 3 would be the dominant source of 

thermal opacity in these two regions assuming a surfuric acid 
composition. However, Knollenberg and Hunten [this issue] 
present strong evidence that the mode 3 particles are crystal- 
line; various sulfates and chlorides and their hydrates are sug- 
gested. In addition, the solar net flux profile constrains these 
particles to be essentially conservative scatterers at visible 

wavelengths [Tomasko et al., 1979, this issue] and the SNFR 
net fluxes show their thermal opacity is significantly smaller 
than that for spherical H2SO4 particles. To model the radia- 

tive properties of the mode 3 cloud, we assume the variation 

with frequency of the ratio of thermal to visible opacity is that 
given in Figure 5 for liquid H•SO4, but we decrease the effec- 

tive visible optical depth of the mode 3 particles to be consis- 

tent with the LSFR solar flux profiles in order to simulate the 

smaller opacity expected for irregular crystals. The resultant 

decrease in thermal opacity for this mode is also approxi- 
mately consistent with small probe net flux measurements. Be- 

low the lower cloud no appreciable infrared opacity due to 
aerosols is expected from the very thin haze of small particles 
seen down to 35 km altitude. 

Gaseous opacity. In evaluating the infrared opacity of the 

gases present in the atmosphere of Venus, we can make use of 

both the Pioneer Venus and the Venera compositional mea- 

surements. For the most part we have used the results of Hoff- 

man et al. [this issue] and Oyama et al. [this issue] with the ex- 

ception of the H•O abundance which we discuss briefly below. 

To illustrate the spectral dependence of opacity and the rela- 
tive contributions of different gases, we consider a 1 km thick 

layer of the atmosphere at the 20 bar level. 

The major infrared active gas is, of course, carbon dioxide. 

We find from the room temperature laboratory data of R. W. 

Boese and P.M. Silvaggio (private communication, 1979) that 
at 20 atm this gas is essentially opaque over the 450-2550 

cm-' spectral region. There are two transmission window re- 
gions from approximately 1100 to 1200 cm -' and from 1600 to 

1900 cm-'. Deeper in the Venus atmosphere, at higher tem- 
peratures and pressures, we would expect these windows to be 

closed or partially closed. 

One of the exciting findings of the Pioneer Venus mission 

was that sulfur dioxide is approximately 1000 times more 
abundant than deduced from remote observations. The ab- 

sorption intensity of many of the infrared bands of this mole- 

cule have not yet been measured. However, a fundamental vi- 

bration band (which has been measured) is centered at 1151 

cm -•. Considering the reported abundance of SO•, this band 
will easily close the 1100-1200 cm -• carbon dioxide window. In 

addition, there are at least three overtone/combination SO• 

bands in the 1600-1900 cm -= window region (intensities un- 
measured) which will probably close this window. 

The far-infrared absorption by SO2 has recently been mea- 

sured by R. S. Larkin et al. (private communication, 1980); 

that of CO• has been reported by Birnbaum et al. [1971]. 
These measurements indicate that, at the 20 bar level, the at- 

mosphere of Venus is opaque from 10 cm -= to at least 120 
cm -'. Thus these two species alone blanket most of the in- 
frared spectral region. The remaining windows are from about 

22 to 80/•m and shortward of about 2.5/•m. 

Of the atmospheric species detected by the Pioneer Venus 

mission [Hoffman et al., this issue] three may help to close the 

long wavelength window; H•S, C•H6, and COS. However, 

their low abundance values dictate that they cannot be the 

sole opacity source. The greenhouse must rely on water vapor 

absorption for this region and some other opacity source at 

short wavelengths. 

The abundance of water vapor reported by the Pioneer 

Venus mission is approximately a factor of 30 larger than de- 

duced by the Venera mission. If the water vapor abundance 

reported by Oyama et al. [this issue] is correct, there certainly 

is sufficient opacity for the atmospheric greenhouse. However, 

Moroz et al. [1980] report water abundances of--20 ppm near 

the surface and ,-•200 ppm in the clouds. In this case the calcu- 

lations of the thermal net flux in the 22-80/•m region may de- 



TOMASKO ET AL.: THERMAL BALANCE OF VENUS 8193 

2.5 

x (•) ----• 
$ 5 

r i 

!.R OPACITY 

H• SO,• 7 5 % 

MODE 3 

MODE 2 / 

MODE 2 

/ / 
/ / 

/ 

270 OK// 
T = 380øK 

3000 

20 IOO 

0 0 

5000 4000 2000 i000 0 

= •, ( crrF • ) 

Fig. 5. The ratio of infrared absorption cross section to extinction cross section in the visible (0.63/an) as a function of 
wavelength for sulfuric acid droplets having the size distributions measured for size modes 2, 2', and 3 by the cloud particle 
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atures at the base of the upper and lower cloud layers, respectively, on Venus. 

pend sensitively on the exact water vapor abundance and our 

knowledge of the behavior of the water vapor bands in this 

spectral interval at the elevated temperatures and pressures 
found on Venus. 

4. INTERPRETATION OF THE 

RADIATION MEASUREMENTS 

Thermodynamic Constraints on the 

Net Flux Profiles 

The large thermal net fluxes measured at low altitudes were 

so unexpected that the constraints placed on the net flux pro- 
files by the laws of thermodynamics have been investigated 
[Ingersoll and Pechmann, this issue; $uomi et al., this issue]. 
Constraints on the flux profile follow from the assumption of 

a steady state atmosphere in which the total rate of change of 
entropy due to solar energy absorption $, (positive), that due 
to thermal radiative exchanges $•, (negative), and that due to 
internal dissipative effects •d (positive) must sum to zero. This 
leads to the inequality I$l which implies that solar and 
thermal radiative exchanges have different distributions 

within the atmosphere, so that, on the average, thermal losses 
occur at a lower temperature than that at which solar energy 
is absorbed. 

$uomi et al. [this issue] have shown that the mean of the en- 

tropy change from planetary radiation $•, is just about equal 
to the entropy change for the 'high solar' profile shown in Fig- 
ure 3 (•0.48 W/m2-K). A more stringent bound on the differ- 
ence I$,,I-$, can be obtained by estimating the entropy pro- 
duction by convective heat transfer and dissipation of 
mechanical energy. 

Ingersoll and Pechmann [this issue] argue that including the 
convective flux leads to an entropy production rate too high 

for steady state thermal models of the atmosphere of Venus 

unless some of the flux profiles are incorrect, or unrepresenta- 

tive, of globally averaged conditions. However, the values ob- 

tained for the solar and thermal entropy intergrals depend 

sensitively on the shape of the flux profiles adopted between 

60 and 90 km altitudema region where only model calcu- 

lations are currently available. As data from the PV orbiter 

continue to be analyzed, the shape of the solar and thermal 

net flux profiles above the clouds should be better known. If 

the new data indicate a net generation of entropy, several pos- 

sible resolutions of this problem can be considered as sug- 

gested by Ingersoll and Pechmann [this issue] and by Suomi et 
al. [this issue]. With the current uncertainties in the flux pro- 

file, detailed consideration of these suggestions is not war- 
ranted at this time. 

Role of Radiative Processes in 

Vertical Energy Transfer 

We begin consideration of the role played by radiative 

processes in the energy balance of the atmosphere by com- 
paring the measured thermal net fluxes with the fluxes com- 
puted for several models of the atmosphere. The nominal 
model is based on the PV measured state parameters, cloud 

densities and size distributions. The optical depth of the mode 

3 cloud particles is about 40% of Knollenberg and Hunten's 
[1979] published value to take into account the hen-spherical 
aspect ratio as discussed earlier in section 3. The water mixing 
ratio is taken from Venera 11 and 12 measurements [Moroz et 

al., 1980]. For the effect of other minor gaseous absorbers see 

Pollack et al. [1980]. 

Cloud regions and above. A comparison of the net fluxes 

measured by the small probe net flux radiometers (SNFR) 

[$uomi et al., this issue] and the predicted net fluxes from the 
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nominal model atmosphere is shown in Figure 6. The nominal 

model predicts that the atmosphere as a whole is losing energy 
by thermal radiation to space at a rate of about 205 W/m 2, in 

excess of the OIR measurement of 153 + 13 W/m • [Taylor et 
al., this issue]. The emission to space predominately originates 

from the vicinity of the cloud tops, i.e., the upper cloud re- 

gion. It is here that another thermal opacity source must be 

included in order to reproduce the upper boundary condition. 

This conclusion is bolstered by the surplus of net flux pre- 
dicted at 60 km to that measured by the SNFR. A third and 

independent indication of problems in this region is the neces- 

sity of obeying the entropy constraint discussed above. The 

largest contribution to the entropy integral comes in this alti- 

tude range. If the altitude of optical depth unity for thermal 

emission is much lower than that for solar absorption, the at- 

mosphere absorbs energy at a lower temperature than that at 
which it radiates to space thus violating the entropy con- 
straint. 

The addition of increased gaseous, or aerosol, opacity 
sources to this region of the atmosphere can be considered. A 

simple method of estimating the amount of trace gas neces- 

sary to meet the boundary condition is to add water to the up- 

per cloud level (below •- >_ 1 since ,• 1 ppm is measured from 

the earth). Model atmospheres with enhanced water profiles 

have been tried, but they require unrealistic mixing ratios far 

in excess of the saturation vapor pressure. Pollack et al. have 

computed greenhouse models which include SO2, HC1, and 

CO in addition to water. After conducting a series of sensitiv- 

ity calculations they conclude that SO2 is indeed of secondary 
importance to the thermal balance problem (where HC1 and 
CO are of tertiary importance). However, they cannot match 

the observed lapse rate in the upper cloud region with even 10 
times the nominal water plus SO2. Therefore the dominant 

source of opacity is most likely aerosols. 

Overall, there is remarkable agreement concerning the 
properties of the upper cloud particles from the LCPS, the 
OCPP, the nephelometers and earth-based polarization mea- 

surements. Larger particles cannot be present in any sizable 
proportion without having been observed by these in- 
struments. One remaining option (suggested by $uomi st al. 
[1979, this issue] is the possibility that submicron particles 
much smaller than the nominal mode 1 distribution are pres- 
ent in sufficient number density to offer IR opacity. 

Since the Mariner 10 mission a strong case for the presence 
of submicron aerosols in the upper cloud and haze layers has 
been developed from observations in the UV, visible and near 

infrared [cf. O'Leary, 1975; Martonchik and Beer, 1975; Lane, 

1979]. None of these authors have discussed the important 
role that these haze layers might play in regulating the ther- 
mal balance of the Venus atmosphere. For the purposes of 
this discussion we will call these particles 'mode 0' to distin- 

guish them from the larger mode 1 particles. 

Laboratory studies of the nucleation of H•,SO4 particles 

from SO: gas in air irradiated by simulated solar UV fluxes 

show that one can expect large quantities of submicron parti- 
cles in proportion to the abundance of SO: and the relative 

humidity h [$hen and Springer, 1976]. The relation observed 

by these authors is 

N = 3.33 x 106 (SO:)(h): cm -3 (7) 

where (SO2) is in ppm and h is in percent. For (SO:) of 0.1-10 

ppm and h of 0.5-1%, the approximate Venus upper cloud en- 
vironment, this expression predicts N - l0 s-107 cm -3. The 

quantity N in this equation is for particles with diameters <0.1 

/tm. No particles with diameters greater than 0.3 /tm were 
measured in the laboratory after UV irradiation times of sev- 

eral minutes although the number density of small particles 

has asymptotically approached a maximum. In addition, 

earth-based atmospheric studies [cf. Whitby, 1978] reveal the 

existence of a nucleation mode of large number density with a 

mean diameter of about 0.01/tm as well as an accumulation 

mode which has a mean diameter of 0.069/tm. Therefore it 

seems likely that these modes must exist in some form in the 

Venus atmosphere at altitudes fulfilling the proper conditions 

of UV flux, SO: abundance and relative humidity. Just the 

fight conditions are found in the upper cloud and in the upper 

haze. In the middle cloud the UV radiation has been largely 

absorbed out of the spectrum. 

To briefly outline the characteristics mode 0 must have to 

be an important infrared opacity source let us assume that the 
haze has a constant number density and extends above the 

middle cloud (57.5 km) for 30 km. The optical properties of 
such an acid haze are markedly different from the visible to 

the infrared. The particles are conservative scatterers in the 

visible with a real index of about 1.43; however, beyond 2.8 

/tm they become strongly absorbing with an imaginary index 
approaching 1.0. The infrared optical depth (due almost en- 

tirely to absorption) is a function of the mass loading for a 

fixed imaginary index. The visible (scattering) optical depths 
depend on the size of the particles in which the mass is placed. 

Therefore the ratio R of the absorption optical depth in the in- 

frared to the extinction optical depth in the visible (0.63 

can be large for sufficiently small particles which have a large 
imaginary index in the infrared and a small imaginary index 
in the visible. The upper limit on the effective radius of the 

particles will be set by determining how much scattering opti- 
cal depth can be tolerated in the visible and UV. A lower limit 

on the effective radius is set by the condition that coagulation 
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does not cause the particles to grow out of the required size 
range faster than they can be replaced. 

As an illustration, we will select a mass loading which gives 

an infrared optical depth of 1.0 at 10/•m. In order to get an 
average particle lifetime of several hours, we choose a narrow 

mode distribution centered at 0.035/ma with a total number 
density of 2 x 105 cm -3. The R value is about 17.5 so that the 
visible optical depth is negligible at 0.06; however, note that 

the particles are Rayleigh scatterers so that the scattering opti- 

cal depth at 0.32/xm wavelength will be near unity. Larger 

particles will substantially increase the UV optical depth for a 

constant mass loading of 0.03 mg/m 3. Thus the two consid- 
eration of UV optical depth and long lifetime place tight con- 
straints on the choice of an effective radius for the mode 0 

particles. 

Even though the thermal opacity of mode 0 decreases lin- 

early to zero with decreasing frequency, model calculations 

indicate that it can be successful in lowering the calculated 

thermal flux at the top of the atmosphere by 50 W/m 2 so that 
it is consistent with the orbiter measurements described ear- 

lief. While we have not explored the cloud physics of these 

small particles to any great extent, Toon et al. [ 1979] find that 

particles of approximately this size range, number density, 

and altitude distribution are a natural consequence of their 

physical-chemical model of the Venus clouds. Their model 

also reproduces the measured cloud properties above 58 km. 

Region below the clouds. Prior to Pioneer Venus, the 

greenhouse effect represented the most popular explanation 

for Venus' high surface temperature [Sagan, 1960; Pollack, 

1969]. According to this model, the atmosphere is more trans- 

parent in the visible than in the infrared region of the spec- 

trum. As a result, sunlight more easily penetrates to the sur- 

face than thermal radiation from the surface can escape to 

space. Because the surface temperature of Venus is elevated 

by about 500 K above the planet's effective temperature, the 

atmosphere must have considerable opacity at all thermal 

wavelengths, in contrast to the situation for the earth, where 

several major 'window' regions occur. 

In part, acceptance for the greenhouse explanation of 

Venus' surface temperature can be attributed to the appar- 
ently reasonable requirements it placed on the abundances of 

the major infrared absorbers. In the classical models, CO2 and 

H20 were assumed to be the key absorbers, with about 1/2% 

of H20 vapor by volume being required in the lower atmo- 

sphere [Pollack, 1969]. As results from the early Venera space- 
craft probes into Venus' atmosphere became available, it was 

realized that the optically thick sulfuric acid clouds could also 

make a significant contribution to the greenhouse effect [Pol- 
lack and Young, 1975]. 

The most serious alternative model was one in which the 

large scale atmospheric dynamics created the high surface 

temperature [Goody and Robinson, 1966]. According to this 

model, heat was vertically advected downward by the general 

circulation from the cloud region, where all the solar energy 
was assumed to be deposited, to the lower atmosphere and 

surface. Temperature gradients between the subsolar and 

antisolar point drove the circulation. However, when allow- 

ance was made for the density stratification of the atmo- 

sphere, numerical circulation models failed to achieve the de- 

sired surface warming [Kdlnay de Rivas, 1975]. 

Initially, the PV thermal flux measurements and the Venera 

11 and 12 H20 mixing ratio estimates suggested that the atmo- 

sphere of Venus was much less opaque than expected. How- 

ever, Pollack et al. [this issue] have carried out a new series of 
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Fig. 7. A one-dimensional radiative-convective greenhouse model 
is shown with the temperature profile adjusted such that the thermal 
net fluxes equal the solar net fluxes. Wherever the calculated lapse 
rate exceeds the adiabatic lapse rate, it is assumed that convective 
processes dominate. The opacities are taken from the nominal model 

plus enough mode 0 aerosols in the upper cloud region and above to 
match the observed effective temperature. Both the nominal and the 
high solar net flux profiles are tried and compared with the temper- 
ature profile observed by PV at the large probe site (see Figure 1). 

greenhouse calculations incorporating enhanced CO 2 opa- 
cities based on laboratory measurements of pressure induced 

transitions. Using Moroz's water vapor profile and incorporat- 
ing mode 0 particles into the upper portion of the clouds, they 
obtained values for the surface temperature of 720 K and 760 

K with the 'nominal' and 'high' global solar net flux profiles of 
Tomasko et al. [this issue], respectively. These predicted val- 

ues bracket the observed value of 730 K. In addition, the tem- 

perature stability structure of these models reproduced ap- 

proximately the observed structure in the lower atmosphere 

(0-65 km). Figure 7 illustrates the temperature profile of these 
two models and compares them with the observed profile of 

Seiff et al. [1979b] at the location of the Pioneer Venus Soun- 
der probe. The success of these model calculations suggests 
that almost all of the high surface temperature of Venus is due 

to a very effective greenhouse. 

There are several additional aspects of the above calcu- 
lations that warrant comment. First, results obtained with the 

greatly enhanced water vapor abundances (~2000 ppm) re- 

ported by the Pioneer Venus gas chromatograph were much 

less satisfactory than those obtained with the Venera spectro- 
photometer abundances, particularly with regard to reproduc- 

ing the stably stratified region located immediately below the 

main clouds. Second, while the inclusion of the mode 0 parti- 

cles led to only a small enhancement of the surface temper- 
ature (~30 K), they exerted a strong influence on the stability 
structure both within the clouds and below them, with the re- 

sulting structure being sensitive to their altitude profile. Fi- 

nally, the dominant sources of infrared opacity in the nominal 
models were CO2, H20, cloud particles, and SO2, in order of 

decreasing importance. 
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For the most part, the temperature profiles obtained below 

35 km altitude in the greenhouse calculations are not too sen- 

sitive to increases in the opacity tables because they already 

require lapse rates as steep as the adiabatic value at these lev- 
els. Nevertheless, the calculations of net thermal flux are ham- 

pered by lack of complete opacity data of CO2, H20, and SO2 
at high temperature, pressure, and abundance. At least some 
authors [Young, 1979] maintain that a comprehensive analysis 
of CO• alone at the elevated temperatures and pressures of the 

lowest 20 km of the Venus atmosphere would reveal large 

opacities in several of the spectral regions commonly consid- 
ered to be CO2 windows such as between 8-11/fin and short- 

ward of 2.5/•m. It is fair to say that there is some doubt that 
larger thermal net fluxes can be maintained in the lower 
Venus atmosphere. , 

Thus even calculations using recently revised opacity data 

[Pollack et al., this issue] may be incomplete and tend to pro- 

vide an upper limit to the fluxes likely to be present in the 

lower atmosphere. The direct measurements of the net ther- 
mal flux in the lower atmosphere significantly exceed these 

calculated estimates as shown in Figure 6. The North and 

Night probe fluxes in particular are so great below 35 km that 

instrumental problems are suspected. To date, although no in- 

strumental problem has been identified, there are certain de- 
scent conditions which may perturb flux measurements in the 

deep atmosphere but which have not yet been adequately sim- 
ulated in laboratory tests [Suomi et al., this issue]. Work in this 

area is continuing. 

5. ROLE OF DYNAMICS IN MAINTAINING 

• THERMAL BALANCE 

A general discussion of the structure and circulation of the 
Venus atmosphere in light of all Pioneer Venus results is given 

by Schubert et al. [this issue]. Here we briefly indicate the PV 

results concerning atmospheric circulation and discuss the 

role of dynamical processes in maintaining the thermal bal- 

ance of the Venus atmosphere. 

The relationship between radiative energy exchanges and 

the circulation of an atmosphere is a complex feedback proc- 

ess in which radiation creates small horizontal gradients of the 

atmospheric state parameters that force circulation. In turn, 

the circulation affects the size of the state parameter gradients 

and the radiative exchanges. On Venus, this process has 

yielded an atmosphere in which the horizontal variability of 

pressure, temperature, and even composition is small by earth 
standards. Since the radiative energy deposition from the sun 

is not uniform over the planet, dynamical energy transport is 

required if the present state of the atmosphere is to be main- 
tained. 

Circulation patterns have been measured in some portions 

of the Venus atmosphere which could provide the energy 

transport needed to explain the lack of horizontal structural 

variability over parts of the planet. The dominant circulation 

at cloud levels is a zonal retrograde motion. Pioneer Venus 

has confirmed earlier observations that the motion is roughly 

equivalent to a superrotation of the upper atmosphere, with a 

period of about 4 earth days at cloud top heights [Counselman 
et al., this issue; Rossow et al., this issue; Seiff et al., this issue]. 

The superrotation must be a consequence of the radiative 

heating distribution, but the actual mechanism for driving the 

rapid zonal winds is unclear at present. Proposed explanations 

for the superrotation have relied on motions induced directly 

or indirectly by radiative heating [Young and Schubert, 1973; 

Gierasch, 1975; Young and Pollack, 1977]. Thus in attempting 
to understand the drive behind the rapid zonal circulation, it 

is important to look for correlations between the flux profiles 

obtained by the LSFR and SNFR and the zonal wind pro- 

files. The 30 km altitude level divides the Day and Night 
SNFR profiles into two distinct regions: a lower one of uni- 

form radiative heating and an upper one with a complicated 

structure of alternating heating and cooling [Suomi et al., 

1979, this issue]. This level also divides the Day and Night 
zonal wind profiles [Counselman et al., this issue] into two dis- 
tinct parts [Schubert et al., this issue]. In the lower portion of 

the "staff-step" structure velocities reach about 25 ms-'; in 

the upper part velocities build up to over 100 ms-'. Com- 

parisons among the simultaneous measurements of zonal 

wind velocity by the four Pioneer Venus probes are another 

way to provide constraints on the mechanism by which radia- 

tive heating drives the 4-day circulation. In particular, the 

very close similarity between the Day and Night probe zonal 

wind profiles [Counselman et al., this issue] suggests that the 

processes driving the super-rotation are not confined to the re- 

gion of the subsolar point, but occur everywhere over the 
planet. 

In addition to small diurnal temperature variations, the ob- 

served equator-to-pole temperature gradient is quite small as 
seen in the direct measurements [Seiff et al., 1979a, b, this is- 

sue; Taylor et al., 1979b, c; Kliore and Patel, this issue; Schu- 

bert et al., this issue], and observations of upward infrared flux 

by the Night and North probes. The latter indicate that there 

is little variation of flux with latitude up to •60 km altitude, 

the limit of measurement [Suomi et al., 1979, this issue]. Since 
the infrared cooling of the planet varies more slowly with lati- 
tude than does the solar heating (see Figure 2) some form of 
dynamical transport of heat from equator to pole must be oc- 
curring. 

The simplest way in which heat could be dynamically trans- 
ported from equator to pole is by a direct Hadley circulation. 
This would involve rising motion over the equator, poleward 

motion at and above cloud top heights, sinking over the pole, 
and an equatorward return flow at lower levels. There is some 

direct evidence for just such a Hadley circulation at cloud lev- 

els [Schubert et al., this issue]. Meridional winds deduced from 

the tracking of Pioneer Venus probes are generafly equa- 
torward between about 55 and 30 km altitude [Counselman et 

al., 1979, this issue; Seiffet al., this issue], while poleward mo- 

tion is indicated by the tracking of cloud features at cloud top 
(60-70 km) altitudes [Suomi 1974; Rossow et al., this issue]. 
Furthermore, the greatly reduced infrared cloud opacity near 
the north pole is probably caused by atmospheric subsidence 

at high latitudes [Taylor et al., 1979a]. 

However, it must be emphasized that a Hadley circulation 

is not the only way an atmosphere can transport heat pole- 
ward. On earth, for example, a Hadley circulation exists be- 

tween the equator and about +30 ø latitude, but poleward heat 

transport in the mid-latitudes is accomplished by baroclinic 
waves [see, e.g., Holton, 1972]. It is possible that in the Venus 

atmosphere wave or eddy motions also play an important role 

in meridional heat transport at some latitudes. The "polar col- 
lar" of high clouds detected by the orbiter infrared radiometer 

[Taylor et al., 1979b, c] does in fact suggest a change of circu- 

lation regime at high latitudes, but there is as yet no direct evi- 
dence to support this concept. 

In addition to the planetary-scale circulations discussed 

above, radiative heating can drive small and intermediate 
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scale motions such as cellular convection. A necessary condi- 
tion for the occurrence of convection is that the decrease of 

temperature with height be large enough to make the static 
stability of the atmosphere vanish. Pioneer Venus observa- 
tions indicate that this occurs in two altitude ranges: the 

middle cloud level (50-55 km) and the lower atmosphere (be- 
low 25 km) [Seiff et al., 1979a, this issue]. Significantly, the 
Day probe SNFR measured net radiative heating in both 
these regions. This suggests that convective motions are 
driven at these levels. Some evidence exists to support this 

possibility. Preliminary analysis of probe accelerometer data 
indicates vertical winds of--,0.5 ms-' between about 25 km 

altitude and the surface [Seiff et al., this issue]. Pioneer Venus 

ultraviolet images show cellular structures (with diameters of 
a few hundred kilometers) near and downwind of the subsolar 

point [Travis et al., 1979; Rossow et al., this issue]. These fea- 
tures are reminiscent of mesoscale convection cells seen in 

weather satellite pictures of the Earth [Agee et al., 1973]. 
Thus far we have concentrated our discussion on the levels 

of the atmosphere where most of the solar heating and cooling 
takes place--the cloud levels and above. Beneath this region 
there is an atmosphere some 100 times as massive as the 
earth's. Very little is known about the circulation below the 
clouds except that the motions are relatively slow. The meri- 
dional wind velocities drop below measurement uncertainties 
of 1-2 ms-' at altitudes lower than about 30 km, and the 

zonal winds fall to zero (to within measurement uncertainty) 
below 10 km altitude [Counselman et al., this issue]. In the 

lowest few scale heights, the huge thermal inertia of the deep 

atmosphere suppresses diurnal temperature variations even in 
the absence of a zonal circulation [Stone, 1975]. The nature of 

the mean meridional circulation below the clouds is specula- 

tive. Schubert et al. [this issue] discuss several possibilities in- 

cluding cells stacked one upon the other, with some of the 
cells involving direct thermally driven flows while others un- 
dergo frictionally driven indirect motions. While some combi- 
nation of direct and indirect multiple cellular structure might 

exist in Venus' atmosphere, the net dynamical heat transport 

would have to be poleward. 

The PV measurements of winds, temperature contrasts, and 

solar and thermal fluxes obtained globally above the clouds 

and at the probe sites below the clouds have not yet been in- 
corporated into a comprehensive circulation model for Venus. 
While the one dimensional radiative-convective calculations 

discussed in section 4 have been very instructive, until such a 

comprehensive model of the circulation of the atmosphere of 
Venus is constructed, our understanding of its thermal bal- 

ance will remain incomplete. The task of determining and un- 

derstanding the circulation patterns and the advection of heat 
in the atmosphere of Venus within the constraints imposed by 
the recent measurements still requires considerable effort be- 

fore being realized. 

6. SUMMARY AND CONCLUSIONS 

Our main conclusions regarding the thermal balance of the 

atmosphere of Venus can be summarized as follows. 
1. The globally averaged effective temperature for thermal 

radiation is measured by PV as 228 + 5 K (153 + 13 W/m') 
consistent with earlier measurements. The Bond albedo has 

been measured as 0.80 ñ 0.02 (implying the absorption of 132 

ñ 13 W/m'- of sunlight) also consistent with earlier data. The 
uncertainties of these preliminary results are too large to inter- 

pret them as evidence for an internal energy source. 

2. The thermal opacity of cloud particles having the prop- 

erties directly measured by the Sounder probe and CO,_, 

and SO,_ is not sufficient to prevent the thermal emission of 

-•200 W/m'- to space by the planet. The presence of a mode of 
submicron aerosols in the vicinity of the upper cloud with 

modest mass loading would reduce the flux loss to the ob- 

served value. These particles would also be important in mak- 

ing the planetary emission occur at slightly higher altitudes 

(lower temperatures) than those at which solar radiation is ab- 

sorbed as required by thermodynamic arguments. 

3. The measured solar flux profile indicates that about 

half of the solar energy absorbed by Venus is absorbed above 

60 km altitude. Scattering models indicate PV measurements 

of solar net flux at the ground are in agreement with Venera 

8-12 measurements and show that -•2• percent of the total 

solar energy incident on Venus is absorbed at the ground. 

4. The observed surface temperature and the lapse rate 

structure of Venus' lower atmosphere can be matched quite 

closely with one-dimensional radiative-convective equilib- 

rium models that incorporate the solar net flux profiles and 

gas and aerosol abundance data from the Pioneer Venus and 

Venera spacecraft missions. The more successful models of 

this type incorporate a water vapor mixing ratio of only sev- 

eral tens of ppm in the lowest regions of the atmosphere, in 

accord with the Yenera spectrophotometer results. Hence it 

appears that the very high surface temperature of Venus is 

due almost entirely to the greenhouse effect. 
5. The direct net thermal flux measurements on the small 

probes indicate a radiative energy imbalance in the lower at- 
mosphere when compared with net solar flux measurements. 

To the extent this comparison is significant, it suggests the 

downward transport of heat by processes in addition to solar 

radiation. A departure from radiative-convective equilibrium 

also may be indicated by the increase of static stability with 

decreasing altitude below about 18 km at low latitudes. The 

reality of this apparent imbalance is, however, questionable 
since the direct measurements of the net thermal flux from the 

three small probes differed widely, precluding a simple deter- 

mination of the globally averaged net thermal flux deep in the 

atmosphere. In addition, questions remain about the thermal 

flux measurement errors in the lower atmosphere where the 

fluxes significantly exceed the most recent radiative transfer 
estimates. 

6. High zonal wind velocities were directly measured in 

the four probes confirming the 4-day rotation of the atmo- 

sphere at the cloud levels needed to explain the low diurnal 
thermal contrasts. The drive for the winds is undoubtedly re- 

lated to the observed high radiative flux divergences observed 

at cloud altitudes, but the exact mechanism is still unclear. 

7. The role of both meridional and vertical dynamical 

heat transports in the thermal balance of Venus is not yet well 

defined, although new wind measurements are qualitatively in 

accord with requirements for maintaining relatively low equa- 

tor to pole variations in temperature structure. 
8. Radiative transfer calculations, based on measured 

temperatures and water vapor amounts, yield thermal flux 

profiles which differ enormously for water vapor profiles 
within the range of those found by PV gas chromatograph 

(LGC) and Venera 11 and 12. Models which reproduce the 
measured thermal net fluxes between 15 and 12 km require 

the presence of significant transmission windows in CO,• un- 

der the appropriate temperatures and pressures, and water va- 

por amounts somewhat less than that measured by Venera 11 
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and 12. Improved knowledge of the opacity of CO2 and H20 
under conditions of high temperature and pressure along with 
better information regarding the global water vapor distribu- 
tion would lead to an improved understanding of the thermal 

budget of the lower atmosphere of Venus. 
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