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Abstract

The Thermal Infrared Visual Object Tracking challenge

2015, VOT-TIR2015, aims at comparing short-term single-

object visual trackers that work on thermal infrared (TIR)

sequences and do not apply pre-learned models of object

appearance. VOT-TIR2015 is the first benchmark on short-

term tracking in TIR sequences. Results of 24 trackers

are presented. For each participating tracker, a short de-

scription is provided in the appendix. The VOT-TIR2015

challenge is based on the VOT2013 challenge, but intro-

duces the following novelties: (i) the newly collected LTIR

(Linköping TIR) dataset is used, (ii) the VOT2013 attributes

are adapted to TIR data, (iii) the evaluation is performed

using insights gained during VOT2013 and VOT2014 and

is similar to VOT2015.

1. Introduction

Visual tracking is a challenging task that has attracted

significant attention in the past two decades, e.g. [16, 29,

32]. The number of accepted motion or tracking papers in

high profile conferences, such as ICCV, ECCV, and CVPR,

has been consistently high (∼40 papers annually), summing

up to a few hundred relevant papers in the field. However,

the lack of established performance evaluation methodol-

ogy combined with this large number of publications makes

it difficult to assess and understand the advancements made

in the field. Several initiatives have attempted to establish a

common ground in tracking performance evaluation, start-

ing with PETS [43] and more recently with the Visual Ob-

ject Tracking (VOT) challenges [26, 27, 23] and the Object

Tracking Benchmark [42, 41].

In recent years, thermal cameras improved in image

quality and resolution while decreased in both price and

size. This development has opened up new application ar-

eas [15]. Historically, thermal cameras have delivered noisy

images with low resolution, used mainly for tracking small

objects (point targets) against colder backgrounds and have

mainly been of interest for military purposes. Today, they

are commonly used in various applications, e.g., cars and

surveillance systems. Increasing image quality allows ex-

ploration of new application areas, often requiring meth-

ods for tracking of extended dynamic objects. Further, for

some applications, the methods cannot be restricted to sta-

tionary platforms. The main advantages of thermal cameras

are their ability to see in total darkness, their robustness to

illumination changes and shadow effects, and reduced pri-

vacy intrusion.

This paper describes the first thermal infrared (TIR),

short-term tracking challenge, the Visual Object Tracking

TIR (VOT-TIR2015) challenge, and the results obtained.

Like the VOT challenge, the VOT-TIR challenge consid-

ers single-camera, single-target, model-free, causal track-

ers, applied to short-term tracking. It has been featured as a

sub-challenge to VOT2015, organized in conjunction with

ICCV2015. The challenge enabled participants not only to

evaluate their results on visual data, but also to benchmark

their trackers on thermal infrared sequences.

Available datasets for evaluation of tracking in thermal

infrared have become outdated [3]. This causes researchers

to evaluate their methods on proprietary datasets, which

makes it difficult to get an overview of advancement made

in the field. Inconsistent performance measures across dif-

ferent papers contributes to this difficulty. The Visual Ob-

ject Tracking challenge, provides an established evaluation

methodology for data in the visible spectrum. The main

idea of VOT-TIR2015 is to carry these ideas to the area of

TIR data, based on a recently collected dataset [3].

1.1. Related work

A large number of benchmarks exist in the area of vi-

sual tracking, but far fewer for TIR tracking. Among visual

spectrum (RGB) tracking, the most closely related inves-

tigations to the approach presented here is the VOT2015

challenge [23], as well as those of previous years [26, 27].

The online tracking benchmark (OTB) by Wu et al. [42, 41]

contains 100 sequences and is a widely used tracking bench-

mark. In the OTB, trackers are compared using a precision

score and a success score, without restarting a failed tracker.

The precision score is the percentage of frames where the

estimated bounding box is within some fixed distance to

the ground truth, while the success score measures the area

under the curve of number of frames where the overlap is

greater than some fixed percentage. This area has been

shown to be equivalent to the average overlap [37, 38]. For

further discussion on OTB we refer to [42, 41] and for com-

parisons with the VOT evaluation to [25, 24].

The series of workshops on Performance Evaluation of

Tracking and Surveillance (PETS) [43] have organized ther-

mal infrared challenges on two occasions. The first has

taken place in 2005 and the second in 2015, where the chal-

lenge was detection, multi-camera/long-term tracking and

behavior (threat) analysis. In contrast to VOT-TIR, the chal-

lenges concerned multiple research areas while VOT-TIR

focuses on the problem of short-term tracking only. The

lack of further related work within the area of thermal in-

frared tracking challenges motivates the VOT-TIR initiative.

1.2. The VOT­TIR2015 challenge

The VOT-TIR2015 challenge targets a specific set of

trackers. All participating trackers are required to be: (i)

Causal – sequence frames have to be processed in sequential

order; (ii) Short-term – trackers are not required to handle

reinitialization; (iii) Model-free – pre-built models of object

appearances are not allowed.
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Performance of participating trackers is automatically

measured using the VOT2014 evaluation kit [27]. The

toolkit performs a standardized experiment and stores re-

sulting bounding boxes. If the tracker fails, it is re-

initialized. Participants are required to integrate their track-

ers into the toolkit. Tracking results have been analyzed

using the VOT2015 evaluation methodology [23].

Participants were expected to submit a single set of re-

sults per tracker as well as binaries for result verification. A

different set of parameters does not constitute a new tracker.

Tracker parameters set by the participant is required to be

equal for all test sequences. Detection (by the tracker) of a

specific test sequence in order to set hand-tuned parameters

is not permitted. However, the tracker itself is allowed to

internally change parameters using, e.g., the bounding box

size. Further details regarding participation rules are avail-

able from the challenge homepage1.

Differences from the visual spectrum challenge

Compared to the visual equivalent, VOT2015 [23], there are

some differences in annotation as well as acquisition and

evaluation procedure. The annotated bounding boxes are

not allowed to rotate. Further, due to the limited amount of

freely available thermal infrared datasets and sequences, se-

quence selection could not be done as in VOT2015. A new

dataset, LTIR (the Linköping Thermal IR dataset) [3], was

created for this purpose. Seven different sources were asked

to contribute with data and the provided data that contained

sufficiently challenging tracking events were included in the

dataset. A more detailed description can be found in Sec-

tion 2.

The VOT-TIR2015 challenge applies the same evalua-

tion methodology as VOT2015 [23], except for the practical

difference evaluation. This evaluation requires multiple an-

notations, which are not (yet) available for the LTIR dataset.

1.3. Outline

The dataset used in the VOT-TIR2015 challenge is de-

scribed in Section 2. Section 3 briefly summarizes the per-

formance measures and evaluation methodology used in the

challenge. Analysis and results are presented in Section 4

and, finally, conclusions are drawn in Section 5. In addition,

short descriptions of all participating trackers can be found

in Appendix A.

2. The VOT-TIR2015 dataset

The dataset used in VOT-TIR2015 is LTIR, the

Linköping Thermal IR dataset [3]. Sequences included in

the dataset were collected from seven different sources us-

ing eight different types of sensors. The included sequences

1http://www.votchallenge.net/vot2015/

participation.html

originate from industry, universities, a research institute and

an EU FP7 project. Resolutions range from 320 × 240 to

1920 × 480 pixels and the average sequence length is 563

frames. Some sequences in the LTIR dataset are available

with both 8- and 16-bit pixel values, however, for this chal-

lenge, only 8-bit sequences were used. The main reason for

this restriction is that several of the submitted methods can-

not deal with 16-bit data. There are sequences from indoor

and outdoor environments, and the outdoor sequences were

recorded in different weather conditions. Example frames

from four sequences are shown in Fig. 1.

All benchmark annotations are in accordance with the

VOT2013 annotation process [26] and have been done man-

ually. One object within each sequence is annotated in each

frame with a bounding box that encloses the object through-

out the sequence. The bounding box is allowed to vary in

size but not to rotate. In addition to the bounding box an-

notations, global attributes are per-sequence annotated and

local attributes per-frame annotated.

Global attributes The per-sequence global attributes

from VOT have to be adapted to the properties of TIR in

order to be useful. Below, the global attributes have been

arranged according to similarity to VOT-attributes.

• Attributes different from VOT: Dynamics change and

temperature change have been introduced instead of

illumination change and object color change. Not all

cameras provide the full 16-bit range, instead, an adap-

tively changing 8-bit dynamics are sometimes used.

Dynamics change indicates whether the dynamics is

fixed during the sequence or not. Temperature change

refers to changes in the thermal signature of the object

during the sequence

• Attributes similar to VOT: In TIR, Blur indicates blur

due to motion, high humidity, rain or water on the lens.

• Attributes equal to VOT: Camera motion, object mo-

tion, background clutter, size change, aspect ratio

change, object deformation, and scene complexity.

Local attributes The local, per-frame annotated at-

tributes are: motion change, camera motion, dynamics

change, occlusion, and size change. The attributes are used

in the evaluation process to weigh tracking results. They

can also be used to evaluate the performance of the method

on frames with specific attributes.

3. Performance measures and evaluation

methodology

The performance measures as well as evaluation method-

ology for VOT-TIR2015 are equal to the ones for VOT2015,

except for the practical difference evaluation. Therefore,

only a brief summary is given here, further details can be

found in [23].
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(a) running rhino (b) quadrocopter (c) crowd (d) street

Figure 1: Snapshots from four sequences included in the LTIR dataset. The annotated bounding box is marked in yellow.

Similar to the VOT2015 challenge, the two weakly cor-

related performance measures, accuracy and robustness, are

used due to their high level of interpretability [37, 38].

The accuracy measurement measures the overlap between

the predicted bounding box and the ground truth while

the robustness measurement measures how many times the

tracker fails. If a tracker is considered to have failed, it

is re-initialized five frames later. Overlap calculations, re-

initialization, definition of a failure and the rank-based eval-

uation methodology is further explained in [23].

4. Analysis and results

4.1. The VOT2015 experiments

In our evaluation, and in contrast to VOT2014 [27], we

considered the baseline experiment only. We did not con-

sider the region noise experiment for three reasons: First,

the results of previous experiments hardly differed [27].

Second, the experiments need significantly more time. Fi-

nally, the reproducibility of results would have required to

store the seed, which has not been foreseen in the evaluation

kit.

4.2. Submitted trackers

In total, 24 trackers were included in the VOT-TIR2015

challenge. Among them, 20 trackers were submitted and 4
trackers were added by the VOT Committee (3 novel and

1 baseline trackers). The committee have used the accom-

panying binaries/source code for result verification. For the

baseline trackers, the default parameters were selected, or,

when not available, were set to reasonable values. All en-

tries are briefly described below and references to the orig-

inal papers are given in the Appendix A where available.

Twenty trackers participated in both the VOT2015- and

VOT-TIR2015 challenge while 4 trackers were only entered

in the VOT-TIR2015 challenge.2

2Here, we consider SRDCF and SRDCFir being the same, despite the

fact that SRDCFir uses a slightly different feature vector, see Appendix

A.15.

One tracker, EBT (A.11), uses object proposals [48]

for object position generation or scoring. Several track-

ers are based on Mean Shift tracker extensions [8], ASMS

(A.21), PKLTF (A.4), SumShift (A.14), and its derivative

DTracker (A.19). CMIL is based on online boosting (A.18)

and sPST (A.20) is based on tracking-by-detection learn-

ing. A number of trackers can be classified as part-based

trackers. These were LDP (A.16), G2T (A.8), AOGTracker

(A.7), MCCT (A.3), and FoT (A.22). A number of trackers

come from a class of holistic models that apply regression-

based learning for target localization. Out of these, one

is based on structured SVM learning, Struck3 (A.5). Sev-

eral regression-based trackers use correlation filters [5, 20]

as visual models. Some correlation filer based trackers

maintain a single model for tracking, i.e., NSAMF (A.10),

OACF (A.6), SRDCFir (A.15), sKCF (A.2), STC (A.23),

MKCF+ (A.12), CCFP (A.13), and several trackers apply

multiple templates to model appearance variation, i.e., SME

(A.9), and KCFv2 (A.1). One tracker, ABCD (A.17), ap-

plies a global, generative model exploiting channel repre-

sentations. Finally, the VOT Committee added a baseline

tracker, the HotSpot tracker, to the set of submitted track-

ers. Tracking by detecting hot areas is still state-of-the-art in

many TIR applications, e.g. pedestrian detection [22]. The

HotSpot tracker detects objects by pixel intensity threshold-

ing and tracks detections using a Kalman filter with a Global

Nearest Neighbor approach to the association problem.

4.3. Results

The results are summarized in sequence pooled and at-

tribute normalized AR rank and AR raw plots in Figure 2.

The sequence pooled AR rank plot is obtained by concate-

nating the results from all sequences and creating a single

rank list, while the attribute normalized AR rank plot is cre-

ated by ranking the trackers over each attribute and aver-

aging the rank lists. Similarly the AR raw plots were con-

structed. The raw values for the sequence pooled results are

also given in Table 1.

3The implementation used here is a recent improvement of [18].
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Figure 2: The AR rank plots and AR raw plots generated

by sequence pooling (upper) and by attribute normalization

(below).
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Figure 3: Robustness plots with respect to the visual at-

tributes. See Figure 2 for legend.

The following trackers appear either very accurate or

very robust among the top performing trackers (closest to

the upper right corner of rank plots): SME (A.9), MCCT

(A.3), sPST(A.20), SRDCFir (A.15), ABCD (A.17), and

AOG (A.7). In contrast to VOT2014, where methods

based on correlation filters were largely dominating [27],

top performers in VOT-TIR2015 belong to several different

classes.

The robustness ranks with respect to the visual attributes

are shown in Figure 3. The top three trackers with re-

spect to the different visual attributes are mostly SRDCFir,

Tracker A R Φ̂ Speed Impl.

SRDCFir 0.65 0.58 0.70 3.17 M C

sPST 0.66 2.18 0.64 0.61 M C

MCCT 0.67 3.34 0.55 15.05 M C

EBT 0.50 3.50 0.43 1.08 M C

CCFP 0.63 8.55 0.36 1.03 M C

ABCD 0.63 5.81 0.34 6.88 M

Struck 0.58 8.48 0.30 2.90 C

SME 0.64 9.97 0.30 6.67 M C

LDP 0.53 8.33 0.29 6.96 M C

NSAMF 0.57 12.63 0.28 10.69 M

OACF 0.61 9.57 0.28 3.22 M C

AOG 0.65 8.76 0.27 1.27 binary

sKCF 0.58 13.90 0.27 255.13 C

CMIL 0.54 14.04 0.25 5.31 C

MKCF+ 0.52 12.61 0.24 1.60 M C

KCFv2 0.54 17.81 0.23 14.78 M

STC 0.48 13.85 0.23 29.92 M

SumShift 0.62 15.67 0.19 19.78 C

G2T 0.53 18.59 0.18 0.39 M C

FoT 0.41 19.40 0.17 131.57 C

PKLTF 0.52 19.30 0.16 23.65 C

Dtracker 0.63 19.69 0.16 11.55 C

ASMS 0.52 20.03 0.14 163.42 C

HotSpot 0.38 62.27 0.04 5.98 M

Table 1: The table shows raw accuracy and the aver-

age number of failures, expected average overlap, tracking

speed (in EFO), and implementation details (M is Matlab,

C is C or C++).

sPST, and MCCT. A significant exception is camera motion,

where SME and EBT (A.11) come second and third.

The latter turns also out to rank well in the overall crite-

rion expected average overlap, see Figure 4. The expected

average overlap curve is given by the average bounding-

box-overlap averaged over a set of sequences of certain

length, plotted over the sequence length Ns [23]. These

curves confirm previous statements on the three top per-

forming methods MCCT, sPST, and SRDCFir, where the

latter gives the best overall performance. The fact that EBT

is ranked fourth underpins the importance of robustness for

the expected average overlap.

Apart from tracking accuracy, robustness, and expected

average overlap at Ns frames, the tracking speed is also

crucial in many realistic tracking applications. We there-

fore visualize the expected overlap score with respect to

the tracking speed measured in EFO units in Figure 5. To

put EFO units into perspective, a C++ implementation of a

NCC tracker provided in the toolkit runs with average 140
frames per second on a laptop with an Intel Core i5-2557M

processor, which equals to approximately 160 EFO units.

80



200 400 600 800 1000 1200 1400

Sequence length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p
e
c
te

d
 o

v
e
rl
a
p

Expected overlap for baseline

SRDCFir

sPST

MCCT

EBT

CCFP

ABCD

Struck

SME

OACF

AOG

NSAMF

LDP

sKCF

CMIL

KCFv2

STC

MKCF

SumShift

FoT

GGT

PKLTF

Dtracker

ASMS

HotSpot

159131721

Order

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 e

x
p
e
c
te

d
 o

v
e
rl
a
p

Expected overlap scores for baseline

Figure 4: Expected average overlap curve (above) and ex-

pected average overlap graph (below) with trackers ranked

from right to left. The right-most tracker is the top-

performing according to the VOT2015 expected average

overlap values. See Figure 2 for legend. The vertical lines

in the upper plot show the range of typical sequence lengths.

The vertical dashed line in Figure 5 indicates the real-

time speed (equivalent to approximately 20fps). Among the

three top-performing trackers, MCCT comes closest to real-

time performance. The top-performing tracker in terms of

expected overlap among the trackers that exceed the real-

time threshold is at the same time the overall fastest tracker,

sKCF (A.2).

4.4. TIR­specific analysis and results

A particular interesting question in context of VOT-TIR

is the effect of the differences between RGB sequences and

TIR sequences on the ranking of the trackers. For this pur-
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Figure 5: Expected average overlap scores w.r.t. the track-

ing speed in EFO units. The dashed vertical line denotes the

estimated real-time performance threshold of 20 EFO units.

See Figure 2 for legend.
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Figure 6: Comparison of relative ranking of 20 trackers in

VOT and VOT-TIR. See Figure 2 for legend.

pose, the joint ranking for VOT and VOT-TIR of the 20

common trackers2 is shown in Figure 6. The only VOT-TIR

trackers that have not been run on VOT are MCCT, CCFP,

ABCD, and the HotSpot detector.

The dashed lines are the margin of a rank-change by

more than three positions. Any change of rank within

this margin is considered insignificant and only 7 trackers

change their rank by more than three positions. The most
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dramatic change occurs for ASMS, which ranks 23 in VOT-

TIR, but 20 (out of more than 60) in VOT, corresponding

to rank 9 within the set of 20 trackers. Other trackers that

perform significantly worse are SumShift, and DTracker.

On the other hand, SME, sKCF, STC, and CMIL per-

form significantly better on VOT-TIR than on VOT accord-

ing to the relative ranking. Similar as for the overall per-

formance, it is difficult to identify a systematic correlation

between improvement and type of tracking methods. Track-

ing methods that do not use color are likely to perform

better on TIR sequences than color-based methods, such

as ASMS, SumShift, and DTracker. Also the size of tar-

gets differ between VOT (larger) and VOT-TIR (smaller).

It is also believed that the tuning of input features is more

important to maintain good performance on VOT-TIR, e.g.

SRDCFir introduces additional features beyond HOG (see

Appendix A.15) and works better on TIR sequences than

SRDCF with features as used in VOT2015.

5. Conclusions

The VOT-TIR challenge received 20 submissions and

compared in total 24 trackers, which we consider a good

success and the results presumably give a good guidance

to future research within TIR tracking. Best overall perfor-

mance has been achieved by SRDCFir, closely followed by

sPST and MCCT. However, further analysis of the results

will be required in order to draw deeper conclusions.

For future challenges, the dataset needs to be extended to

become larger and more challenging. Annotation and evalu-

ation need to be adapted to the current VOT standard: mul-

tiple annotations and rotating bounding boxes. Also chal-

lenges with mixed sequences (RGB and TIR) might be in-

teresting to perform.
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A. Submitted trackers - VOT TIR

In this appendix we provide a short summary of all track-

ers that were considered in the VOT-TIR2015 challenge.

A.1. Restore Point guided Kernelized Correlation
Filters (KCFv2)

Liang Ma, Kai Xue

mllx01161110@hotmail.com, xuekai@hrbeu.edu.cn

The Kernelized Correlation Filters [20] have been shown

effective for target tracking in VOT2014 challenges. Its suc-

cess lies in the fast online Support Vector Machine learn-

ing process in Fourier domain. Due to the fact that there

is only one positive sample and the negative samples are

generated virtually by circulant matrices at each frame, the

KCF tracker would learn a biased model during tracking

and the bias would definitely increase over time. The orig-

inal KCF tracker adopts a linear interpolation method in

the newly trained model to alleviate this bias. However,

the linear interpolation method cannot handle target appear-

ance change caused by camera motion, occlusion or target

deformation at a moderate level. Our approach, the RP-

KCF tracker, enhances its robustness by examine the simi-

larity between each candidate patch generated by the KCF

tracker and the Restore Point patch. A restore point patch

is a base patch that can characterize target appearance in a

short time period. In short-term target tracking, the restore

point patch can be directly set to be the ground truth patch

at first frame; whereas, in long-term tracking, the restore

point patch should be updated over time. We measure the

similarity likelihood of top k candidate positions produced

by the KCF tracker at neighboring scales, and the likelihood

function involves the histogram of gray-level and gradient.

A.2. Scalable Kernel Correlation Filter with Sparse
Feature Integration (sKCF)

Andrés Solı́s Montero, Jochen Lang, Robert Laganière

asolismon@uottawa.ca,

{jlang,laganiereg}@eecs.uottawa.ca

Fast scalable solution based on the Kernelized Correla-

tion Filter (KCF) framework. We introduce an adjustable

Gaussian window function and keypoint-based model for

scale estimation to deal with the fixed size limitation in

the Kernelized Correlation Filter. Furthermore, we inte-

grate the fast HoG descriptors and Intels Complex Conju-

gate Symmetric (CCS) packed format to boost achievable

frame rates.

A.3. Motion­aware Complex Cell Tracker (MCCT)

Dapeng Chen, Ang Li, Zejian Yuan

dapengchenxjtu@foxmail.com

The proposed tracker is a novel variant of CCT proposed

in [6]. CCT utilizes intensity histogram and oriented gradi-

ent histogram as cell descriptors, which is not sufficient for
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tracking in VOT-TIR 2015. This is because the thermal in-

frared images contain no color information and less texture

information. We observed that many of the sequences in

VOT-TIR 2015 are captured by a fixed surveillance camera.

This justifies the utilization of frame difference, as in this

situation the frame difference encodes the contour of mov-

ing the object. We compute the absolute values of frame

difference for the region surround the object, then generate

a binary image by a small threshold value, and finally com-

pute the oriented gradient histogram of the binary image to

describe the motion contour. Now, each cell is described

by the histogram of intensity, the oriented gradient, and the

motion contour, but the three visual cues can not always

be effective due to dynamically changing environment. A

score normalization strategy, which is similar to the fusion

method of the complex cells as introduced in [6], is adopted

to weight different visual cues. The other components are

same with CCT, including using the obtained cell descrip-

tors to describe complex cells, using score normalization to

mediate different visual cues and different types of complex

cells, and inferring the occlusion and stability situation for

each complex cells.

A.4. Point­based Kanade Lukas Tomasi color­
Filter (PKLTF)

Rafael Martin-Nieto, Alvaro Garcia-Martin, Jose M.

Martinez

{rafael.martinn, alvaro.garcia, josem.martinez}@uam.es

PKLTF [17] is a single-object long-term tracker that sup-

ports high appearance changes in the target, occlusions, and

is also capable of recovering a target lost during the tracking

process. It was originally designed for long term tracking

but it has been adapted to the VOT short term sequences.

A two stages algorithm has been designed for this single-

target object tracker. The first stage is based on the Kanade

Lukas Tomasi approach (KLT) [34] to choose the object fea-

tures (using color and motion coherence) in order to track

relatively large object displacements. The second stage is

based on mean shift gradient descent [7] to place the bound-

ing box into the exact position of the object. Besides the

color model is updated adding weight to the pixels which

are present in the original histogram.

The object model is based on the RGB color and the

luminance gradient. The model consists of a histogram

including the quantized values of the color components,

and an edge binary flag. The histogram is generated with

all the pixels of this first frame located inside the object

image patch. All pixels in this patch contribute with the

same weight to the histogram, regardless of their posi-

tion/location in the bounding box. After that, using the

CBWH method [33], the histogram is corrected reduc-

ing the effect caused by the background pixels which are

present in the initial patch.

A.5. Struck

Stuart Golodetz, Sam Hare, Amir Saffari, Stephen L

Hicks, Philip H S Torr

sgolodetz@gxstudios.net, sam@samhare.net,

amir@ymer.org, stephen.hicks@ndcn.ox.ac.uk,

philip.torr@eng.ox.ac.uk

Struck [18] is a framework for adaptive visual object

tracking based on structured output prediction. By explic-

itly allowing the output space to express the needs of the

tracker, the need for an intermediate classification step is

avoided. The method uses a kernelized structured output

support vector machine (SVM), which is learned online to

provide adaptive tracking. The version of Struck submitted

to VOT 2015 uses multi-kernel learning (MKL) and larger

feature vectors than were used in the past. In particular, we

combine a Gaussian kernel on 192D Haar features with an

intersection kernel on 480D histogram features. This sig-

nificantly improves the tracking performance, but at a cost

in speed. The reader is referred to [18] for details.

A.6. Object­Aware Correlation Filter
Tracker (OACF)

Luca Bertinetto, Ondrej Miksik, Stuart Golodetz, Philip

H.S. Torr

{luca.bertinetto, ondrej.miksik}@eng.ox.ac.uk,

stuart.golodetz@ndcn.ox.ac.uk, philip.torr@eng.ox.ac.uk

Correlation trackers have achieved excellent perfor-

mance in single-target model-free tracking. Several ver-

sions spurred from the original MOSSE [5], incorporating

multi-channel features (like HOG), kernels [19] and scale

adaptation [9]. A common trait is that they all train a new

filter at each frame by imposing a Gaussian desired re-

sponse (which acts as a soft label) in correspondence of the

center of the currently estimated bounding box. A global

filter is then updated with a (slow) running average. This

approach is doomed to fail when the object quickly changes

its appearance for two reasons. (a) The global filter cannot

handle fast changes because of its slow update rule, that is

however necessary to have a robust representation. (b) In

general, HOG features do not cope well with changes of

shape, and sometimes they are simply not adequate to dis-

criminate between target object and background. To tackle

this problem, we build on the scale adaptive DSST [9] and

we compute a per-pixel likelihood map of the target (imple-

mented with grayscale histograms) [4]. In this way we can

estimate, for each pixel x, the probability that it belongs to

the object to track O, i.e. L = P (x ∈ O|O,B), where

O,B are the areas delimiting foreground and background.

With this information, we can refine the estimation of the

correlation filter and also make sure that the new learned

filter is centered on the target, simply by shifting the peak

of the Gaussian desired response in correspondence of the

center of mass of the likelihood map.
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A.7. AOGTracker

Tianfu Wu, Yang Lu and Song-Chun Zhu

{tfwu, yanglv}@ucla.edu, sczhu@stat.ucla.edu

This method consists of a framework for simultaneously

tracking, learning and parsing objects in video sequences

with a hierarchical and compositional And-Or graph (AOG)

representation. We call our tracker AOGTracker. The AOG

explores latent discriminative part configurations to repre-

sent objects. It is discriminatively learned online to account

for the appearance (e.g., lighting and partial occlusion) and

structural (e.g., different poses and viewpoints) variations

of the object, as well as the distractors (e.g., similar objects)

in the scene background. The AOGTracker is formulated

under the Bayesian framework and a spatial-temporal dy-

namic programming (DP) algorithm is derived to infer the

state of the object (i.e., bounding box) on the fly in tracking.

During online learning, the AOG is updated iteratively with

two steps in the latent structural SVM framework: (i) Iden-

tifying the false positives and false negatives of the current

AOG in a new frame by exploiting the spatial and tempo-

ral constraints observed in the trajectory; (ii) Updating the

structure of the AOG based on the intrackability of the cur-

rent AOG, and re-estimating the parameters based on the

augmented training dataset. In experiments, the proposed

method is tested on both VOT2015 and VOT-TIR2015 with

the same parameter setting (except for the appearance fea-

tures).

A.8. Geometric Structure Hyper­Graph based
Tracker (G2T)

Yuezun Li, Dawei Du, Longyin Wen, Lipeng Ke, Ming-

Ching Chang, Honggang Qi, Siwei Lyu

{liyuezun, cvdaviddo, wly880815, lipengke1, mingching,

honggangqi.cas, heizi.lyu}@gmail.com

G2T tracker is especially designed for tracking de-

formable objects. G2T represents the target object by a

geometric structure hyper-graph, which integrates the local

appearance of the target with higher order geometric struc-

ture correlations among target parts. In each video frame,

tracking is formulated as a hyper-graph matching between

the target geometric structure hyper-graph and a candidate

hyper-graph. Multiple candidate associations between the

nodes of both hyper-graphs are built. The weight of the

nodes indicate the reliability of the candidate associations

based on the appearance similarity between the correspond-

ing parts of each hyper-graph. A matching between the tar-

get and a candidate is solved by applying the extended pair-

wise updating algorithm of [31].

A.9. Scale­adaptive Multi­Expert Tracker (SME)

Jiatong Li, Zhibin Hong, Richard Yi Da Xu, Baojun Zhao

{Jiatong.Li-3@student., Zhibin.Hong@student.,

yida.xu@}uts.edu.au, zbj@bit.edu.cn

SME is a multi-expert based scale adaptive tracker. In-

spired by [44], SME adopts the current tracker as well as

the historical trained tracker snapshots to constitute the ex-

pert ensemble. At each frame, each expert decide the target

state independently. If a disagreement among the experts

is reported, the best expert is selected by their accumulated

score. Unlike [44], SME proposes a trajectory consistency

based score function as the expert selection criteria. Fur-

thermore, an effective scale adaptive scheme is introduced

to handle scale changes on-the-fly. Multi-channel based

correlation filter tracker [19] is adopted as the base tracker,

where HOG and image illumination features are concate-

nated to enhance the performance.

A.10. NSAMF

Yang Li, Jianke Zhu

{liyang89, jkzhu}@zju.edu.cn

As the correlation filter-based trackers [19, 5] have

achieved the competitive results both on accuracy and ro-

bustness in VOT2014 challenge, we present a tracker based

on the correlation filter framework. The proposed tracker is

an improved version of our previous method, SAMF [30].

The main difference is that NSAMF employs color prob-

ability rather than color name. In addition, the final re-

sponse map is a fusion of multi-models based on the dif-

ferent features. The extensive empirical evaluation on the

VOT 2015 dataset demonstrates that the proposed tracker is

very promising for the various challenging scenarios.

A.11. Edge Box Tracker (EBT)

Gao Zhu, Fatih Porikli, Hongdong Li

{gao.zhu, fatih.porikli, hongdong.li}@anu.edu.au

Human visual system is adept at tracking shapes without

any texture. Motivated by this, we incorporated an object

proposal mechanism that uses sparse yet informative con-

tours to score proposals based on the number of contours

they wholly enclose into a detection-by-tracking process for

visual tracking. Our method is able to execute search in the

entire image quickly and focus only on those high-quality

candidates to test and update our discriminative classifier.

Using high-quality candidates to chose better positive and

negative samples, we reduce the spurious false positives and

improve the tracking accuracy. Since our tracker employs

only a few candidates to search the object, it has potential

to use higher-dimensional features if needed. More impor-

tantly, our method can track randomly and very fast moving

objects. It is robust to full occlusions as it is able to redis-

cover the object after occlusion. More details can be found

in [46]. The reader is referred to [46] for details.
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A.12. Multi­kernelized Correlation Filter
plus (MKCF+)

Ming Tang, Jiayi Feng, and Xu Zhao

{tangm, jiayi.feng, xu.zhao}@nlpr.ia.ac.cn

Our tracker is implemented based on the multi-

kernelized correlation filter tracker (MKCF) [36] and back-

ground modeling algorithm ViBe [2]. MKCF, as its name

suggest, combines the multiple kernel learning and correla-

tion filter techniques. Compared to traditional correlation

filter trackers, MKCF explores diverse features (gray and

HOG in this experiment) simultaneously to improve track-

ing performance. In addition, an optimal search technique

and PSR (peak to sidelobe ratio) are also utilized in MKCF

to estimate object scales. PSR is supposed to reach maxi-

mum when the bounding box fits target scale properly. Al-

though MKCF performs well on challenging sequences, it

can not prevent itself from model drift problem. Therefore,

ViBe is adapted to our MKCF+ to alarm its locating fail-

ures. ViBe is launched only on frames with stable scenes.

And in such case, it is probable for ViBe to find out the pos-

sible locations of the target in searching area. The candidate

locations are then tested by MKCF to determine which one

should be the target.

A.13. Clustering Correlation Tracking with Fore­
ground Proposals (CCFP)

Guibo Zhu, Jinqiao Wang, Hanqing Lu

{gbzhu, jqwang, luhq}@nlpr.ia.ac.cn

CCFP tracker is mainly based on the idea of collabo-

rative correlation tracking [47]. Some confident candidate

proposals are generated through online detection or back-

ground modeling, and used to improve the overall tracking

capability of the correlation filter-based tracker. To be spe-

cific, it relies on an incremental appearance clustering algo-

rithm for evaluation, discriminative scale space tracker [9]

and background modeling [2]. The collaborative combina-

tion of three parts constructs the CCFP tracker which is ro-

bust to heavily occlusion and fast motion.

A.14. SumShift

Jae-Yeong Lee, Sunglok Choi, Jae-chan Jeong, Ji-Wan

Kim, Jae-il Cho

{jylee, sunglok, channij80, giraffe, jicho}@etri.re.kr

SumShift tracker is an implementation of the histogram-

based tracker suggested in [28]. SumShift improves con-

ventional histogram-based trackers (e.g., meanshift tracker)

in two ways. First it uses a partition-based object model rep-

resented by multiple patch histograms to preserve geometric

structure of the color distribution of the object. Secondly

the object likelihood is computed by the sum of the patch

probabilities which are computed from each corresponding

patch histograms, which enables more robust and accurate

tracking. The reader is referred to [28] for details.

A.15. Spatially Regularized Discriminative Corre­
lation Filter Tracker for IR (SRDCFir)

Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan,

Michael Felsberg

{martin.danelljan, gustav.hager, fahad.khan,

michael.felsberg}@liu.se

SRDCFir adapts the SRDCF approach proposed in [10]

to thermal infrared data. Standard Discriminative Correla-

tion Filter (DCF) based trackers such as [9, 11, 20] suffer

from the inherent periodic assumption when using circular

correlation. The resulting periodic boundary effects leads to

inaccurate training samples and a restricted search region.

The SRDCF mitigates these problems by introducing a spa-

tial regularization function that penalizes filter coefficients

residing outside the target region. This allows the size of

the training and detection samples to be increased without

affecting the effective filter size. By selecting the spatial

regularization function to have a sparse Discrete Fourier

Spectrum, the filter is efficiently optimized directly in the

Fourier domain. Instead of solving for an approximate fil-

ter, as in previous DCF based trackers (e.g. [9, 11, 20]), the

SRDCF employs an iterative optimization based on Gauss-

Seidel that converges to the exact filter. The detection step

employs a sub-grid location estimation. In addition to the

HOG features used in [10], SRDCFir also employs channel

coded intensity features. SRDCFir also employs a motion

feature channel, computed by thresholding the difference

between the current and previous frame. The result is a bi-

nary image that indicates if a pixel has changed its value

compared to the previous frame. The intensity and motion

features are averaged over the 4 × 4 HOG cells and then

concatenated, giving a 43 dimensional feature vector at each

cell.

A.16. Layered Deformable Parts tracker (LDP)

A. Lukežič, L. Čehovin, Matej Kristan

alan.lukezic@gmail.com

LDP is a part-based correlation filter composed of a

coarse and mid-level target representations. Coarse rep-

resentation is responsible for approximate target localiza-

tion and uses HoG as well as color features. The mid-level

representation is a deformable parts correlation filter with

fully-connected parts topology and applies a novel formu-

lation that threats geometric and visual properties within a

single convex optimization function. The mid-level as well

as coarse level representations are based on the kernelized

correlation filter from [20].

A.17. Adaptive object region and Background
weighted scaled Channel coded Distribution
field tracker (ABCD)

Amanda Berg, Jörgen Ahlberg, Michael Felsberg

{amanda.,jorgen.ahl,michael.fels}berg@liu.se
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The ABCD tracker is based on the Enhanced Distribu-

tion Field tracker [14]. In order to avoid background con-

tamination of the object template, the ABCD tracker ex-

ploits background information for the online template up-

date and it adaptively selects the object region used for

tracking. Moreover, background information is also used

to estimate object scale change.

A.18. Multi­Channel Multiple­Instance­Learning
Tracker (CMIL)

Hilke Kieritz, Stefan Becker, Wolfgang Hubner, Michael

Arens

{hilke.kieritz, stefan.becker, wolfgang.huebner,

michael.arens}@iosb.fraunhofer.de

The Multi-Channel Multiple-Instance-Learning Tracker

is a deterministic version of the MIL-Tracker (’Online Mul-

tiple Instance Learning Visual Tracker’, [1]). Their work is

extended by the use of multiple feature channels in compli-

ance with the ICF person detector (’Integral Channel Fea-

tures’, [13]). Similar to the MIL-Tracker the appearance

of the target object is learned via online multiple instance

boosting and updated in each frame. This tracker uses a

tracking-by-detection approach, where the classifier out-

put is used to update the position. Different to the MIL-

Tracker the Multi-Channel MIL-Tracker uses multiple fea-

tures channels and only the sum of one region per feature.

Developed to work in combination with a person detector

similar to [13, 12] the Multi-Channel MIL-Tracker uses the

same feature channels as the person detector: LUV-color

channels, six per gradient direction quantized gradient mag-

nitude channels and the gradient magnitude channel. To

track the object over scale changes the feature responses

are scaled using a scaling factor depended on the feature

channel [12].

A.19. DTracker

Jae-Yeong Lee, Jae-chan Jeong, Sunglok Choi, Ji-Wan

Kim, Jae-il Cho

{jylee, channij80, sunglok, giraffe, jicho}@etri.re.kr

DTracker extends the sumshift tracker [28] with an op-

tical flow tracker and the NCC tracker. The color distribu-

tion of an object is modeled by kernel density estimation

(KDE) to provide continuous measure of color similarity.

Similarity evaluation of the KDE color model and the NCC

template matching acts as global localizer to bound possible

drift of the tracker and the optical flow tracker has a role of

adopting frame to frame variation.

A.20. simplified Proposal Selection Tracker (sPST)

Yang Hua, Karteek Alahari, Cordelia Schmid

firstname.lastname@inria.fr

The simplified Proposal Selection Tracker (sPST) is

based on our ICCV2015 paper [21]. sPST operates in two

phases. Firstly, we propose a set of candidate object loca-

tions computed by tracking-by-detection framework [35],

where we use the frame as is and rotate them according to

the ground truth annotation in the initial frame if applica-

ble. Secondly, we determine the best candidate as the track-

ing result by two cues: detection confidence score and an

objectness measure computed with edges [48]. Note that

the full version of our tracker uses additional proposals and

motion boundaries calculated with optical flow. But it is not

included in this submission due to the computational cost of

the optical flow method. The reader is referred to [21] for

details.

A.21. ASMS

Submitted by VOT Committee

The mean-shift tracker optimize the Hellinger distance

between template histogram and target candidate in the im-

age. This optimization is done by a gradient descend. The

ASMS [40] method address the problem of scale adapta-

tion and present a novel theoretically justified scale estima-

tion mechanism which relies solely on the mean-shift proce-

dure for the Hellinger distance. The ASMS also introduces

two improvements of the mean-shift tracker that make the

scale estimation more robust in the presence of background

clutter – a novel histogram color weighting and a forward-

backward consistency check.

A.22. Flock of Trackers (FoT)

Submitted by VOT Committee

The Flock of Trackers (FoT) [39] is a tracking frame-

work where the object motion is estimated from the dis-

placements or, more generally, transformation estimates of

a number of local trackers covering the object. Each local

tracker is attached to a certain area specified in the object

coordinate frame. The local trackers are not robust and as-

sume that the tracked area is visible in all images and that

it undergoes a simple motion, e.g. translation. The Flock

of Trackers object motion estimate is robust if it is from lo-

cal tracker motions by a combination which is insensitive to

failures.

A.23. Spatio­temporal context tracker (STC)

Submitted by VOT Committee

The STC [45] is a correlation filter based tracker, which

uses image intensity features. It formulates the spatio tem-

poral relationships between the object of interest and its lo-

cally dense contexts in a Bayesian framework, which mod-

els the statistical correlation between features from the tar-

get and its surrounding regions. For fast learning and detec-

tion the Fast Fourier Transform (FFT) is adopted.
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[38] L. Čehovin, A. Leonardis, and M. Kristan. Visual object

tracking performance measures revisited. arXiv:1502.05803

[cs.CV], 2013.

[39] T. Vojir and J. Matas. The enhanced flock of trackers. In

R. Cipolla, S. Battiato, and G. M. Farinella, editors, Regis-

tration and Recognition in Images and Videos, volume 532

of Studies in Computational Intelligence, pages 113–136.

Springer Berlin Heidelberg, Springer Berlin Heidelberg, Jan-

uary 2014.

[40] T. Vojir, J. Noskova, and J. Matas. Robust scale-adaptive

mean-shift for tracking. Pattern Recognition Letters,

49(0):250 – 258, 2014.

[41] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 37(9):1834–1848, 2014.

[42] Y. Wu, J. Lim, and M. H. Yang. Online object tracking: A

benchmark. In Comp. Vis. Patt. Recognition, 2013.

[43] D. P. Young and J. M. Ferryman. Pets metrics: On-line per-

formance evaluation service. In ICCCN ’05 Proceedings of

the 14th International Conference on Computer Communi-

cations and Networks, pages 317–324, 2005.

[44] J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking via

multiple experts using entropy minimization. In Comp. Vis.

Patt. Recognition, 2014.

[45] K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang. Fast

visual tracking via dense spatio-temporal context learning.

In Proc. European Conf. Computer Vision, pages 127–141,

2014.

[46] G. Zhu, F. Porikli, and H. Li. Tracking randomly moving

objects on edge box proposals. In CoRR, 2015.

[47] G. Zhu, J. Wang, Y. Wu, and H. Lu. Collaborative correlation

tracking. In Proc. British Machine Vision Conference, 2015.

[48] C. L. Zitnick and P. Dollar. Edge boxes: Locating object

proposals from edges. In Proc. European Conf. Computer

Vision, pages 391–405, 2014.

88


