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Alan Lukežič2, Gustavo Fernández5, Alfredo Petrosino20,
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Abstract. The Thermal Infrared Visual Object Tracking challenge
2016, VOT-TIR2016, aims at comparing short-term single-object visual
trackers that work on thermal infrared (TIR) sequences and do not
apply pre-learned models of object appearance. VOT-TIR2016 is the
second benchmark on short-term tracking in TIR sequences. Results of
24 trackers are presented. For each participating tracker, a short descrip-
tion is provided in the appendix. The VOT-TIR2016 challenge is similar
to the 2015 challenge, the main difference is the introduction of new,
more difficult sequences into the dataset. Furthermore, VOT-TIR2016
evaluation adopted the improvements regarding overlap calculation in
VOT2016. Compared to VOT-TIR2015, a significant general improve-
ment of results has been observed, which partly compensate for the more
difficult sequences. The dataset, the evaluation kit, as well as the results
are publicly available at the challenge website.

Keywords: Performance evaluation · Object tracking · Thermal IR ·
VOT

1 Introduction

Visual tracking is sometimes considered a solved task, but many applied projects
show that robust and accurate object tracking in the visual domain is highly chal-
lenging. Thus, tracking has attracted significant attention in review papers from
the past two decades, e.g. [1–3] and is subject of a constantly high number (∼40
papers annually) of accepted papers in high profile conferences, such as ICCV,
ECCV, and CVPR. In recent years, several performance evaluation methodolo-
gies have been established in order to assess and understand the advancements
made by this large number (a few hundred) of publications. One of the pioneers
for building a common ground in tracking performance evaluation is PETS [4],
followed-up more recently by the Visual Object Tracking (VOT) challenges [5–7]
and the Object Tracking Benchmarks [8,9].

Thermal cameras have several advantages compared to cameras for the visual
spectrum: They are able to operate in total darkness, they are robust to illumina-
tion changes and shadow effects, and they reduce privacy intrusion. Historically,
thermal cameras have delivered low-resolution and noisy images and were mainly
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used for tracking point targets or small objects against colder backgrounds.
Thus applications had often been restricted to military purposes, whereas today,
thermal cameras are commonly used in civilian applications, e.g., cars and sur-
veillance systems. Increasing image quality and decreasing price and size allow
exploration of new application areas [10], often requiring methods for tracking
of extended dynamic objects, also from moving platforms.

Tracking on thermal infrared (TIR) imagery has thus become an emerg-
ing niche and evaluation or comparison of methods is required. This has been
addressed by VOT-TIR2015, the first TIR short-term tracking challenge [11].
This challenge resembles the VOT challenge, in the sense that the VOT-TIR
challenge considers single-camera, single-target, model-free, and causal track-
ers, applied to short-term tracking. It has been featured as a sub-challenge to
VOT2015, organized in conjunction with ICCV2015.

Since the first challenge attracted a significant number of submissions and due
to required improvements of the dataset, a second VOT-TIR challenge has been
initiated in conjunction with VOT2016 [12] and ECCV2016: VOT-TIR2016.
The present paper summarizes this challenge, the submissions, and the obtained
results. The aim of this work is to give guidance for future applications in the TIR
domain and to trigger further development of methods, similar to the boosting
of visual tracking methods caused by the VOT challenges. Likewise VOT2016,
the dataset, the evaluation kit, as well as the results are publicly available at the
challenge website http://votchallenge.net.

1.1 Related Work

In contrast to the large number of benchmarks that exist in the area of visual
tracking (cf. the VOT2016 results paper [12] for several examples), TIR tracking
offers few options for evaluation. For tracking in RGB sequences, the most closely
related approach is obviously the VOT2016 challenge [12], as well as those of
previous years [5–7].

An evaluation resembling VOT is offered by the online tracking benchmark
(OTB) by Wu et al. [8,9], which is however based on different measures of
performance. Trackers are compared using a precision score (the percentage of
frames where the estimated bounding box is within some fixed distance to the
ground truth) and a success score (the area under the curve of number of frames
where the overlap is greater than some fixed percentage). This area has been
shown to be equivalent to the average overlap [13,14] and is computed without
restarting a failed tracker as done in VOT. For further comparisons with the
VOT evaluation we refer to [7,12,15].

For TIR sequences, basically two challenges have been organized in the past.
Within the series of workshops on Performance Evaluation of Tracking and Sur-
veillance (PETS) [4], thermal infrared challenges have been organized on two
occasions, 2005 and 2015. The PETS challenges addressed multiple research
areas such as detection, multi-camera/long-term tracking, and behavior (threat)
analysis.

http://votchallenge.net
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In contrast, the VOT-TIR2015 challenge has focused on the problem of short-
term tracking only. The challenge has been based on a newly collected dataset
(LTIR) [16], as available datasets for evaluation of tracking in thermal infrared
had become outdated. The lack of an accepted evaluation dataset leads often to
comparisons on proprietary datasets. This and inconsistent performance mea-
sures make it difficult to systematically assess the advancement of the field. Thus,
VOT-TIR2015 made use of the well-established VOT methodology [11].

The challenge had 20 participating methods and the following observations
were made: (i) The relative ranking of methods differed significantly from the
visual domain, which justifies a separate TIR challenge. For instance, the EDFT-
based ABCD tracker [17] performed very well on VOT-TIR2015, but only mod-
erately on VOT2015 (despite that EDFT [18] was among the top three in
VOT2013). (ii) The recent progress of tracking methodology rendered the LTIR
dataset being too simple for observing a significant spread of performance: the
benchmark was basically saturated, at least for the top-performing methods.
Thus, for the VOT-TIR2016 challenge, some of the easiest sequences from LTIR
have been removed and new sequences that have been contributed by the com-
munity have been added. Furthermore and in parallel to VOT2016, the bounding
box overlap estimation is constrained to the image region [12].

1.2 The VOT-TIR2016 Challenge

Similar to VOT-TIR2015, the VOT-TIR2016 challenge targets specific trackers
that are required to be: (i) Causal – sequence frames have to be processed in
sequential order; (ii) Short-term – trackers are not required to handle reinitial-
ization; (iii) Model-free – pre-built models of object appearances are not allowed.

The performance of participating trackers is measured using the VOT2016
evaluation toolkit1. The toolkit runs the experiment in a standardized way and
stores the output bounding boxes. If a tracker fails, it is re-initialized and the
evaluation is continued after some few frames delay. Tracking results are analyzed
using the VOT2015 evaluation methodology [7], but without rotating bounding
boxes.

The rules are as always in VOT: Only a single set of results may be submit-
ted per tracker and binaries are required for result verification. User-adjustable
parameters need to be constant for all sequences and different sets of parameters
do not constitute new trackers. Detecting specific sequences for choosing para-
meters or training networks on similar, tracking-specific datasets is not allowed.
Further details regarding participation rules are available from the challenge
homepage2.

Compared to VOT2016 [12], VOT-TIR2016 is still using a simpler annotation
and no fully automatic selection of sequences (as in VOT2014 [6]). The LTIR
dataset (the Linköping Thermal IR dataset) [16] has been extended by a public

1 https://github.com/vicoslab/vot-toolkit.
2 http://www.votchallenge.net/vot2016/participation.html.

https://github.com/vicoslab/vot-toolkit
http://www.votchallenge.net/vot2016/participation.html
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call for contributions and replacing simple LTIR sequences with community-
provided sequences. A detailed description of the sequences can be found in
Sect. 2.

Section 3 briefly summarizes the performance measures and evaluation
methodology that resembles VOT2016 [12]. Since top-performing methods
showed hardly any failures, no OTB-like no-reset experiments have been per-
formed as done in VOT2016. Instead, a ranking comparison similar to the one
in VOT-TIR2015 and a sequence difficulty analysis have been performed.

The results and their analysis are presented in Sect. 4 together with recom-
mendations regarding trackers and a meta analysis of the challenge itself. Finally,
conclusions are drawn in Sect. 5. In addition, short descriptions of all evaluated
trackers can be found in Appendix A together with references to the original
publications.

2 The VOT-TIR2016 Dataset

The dataset used in VOT-TIR2016 is a modification of the LTIR, the Linköping
Thermal IR dataset [16], denoted LTIR2016. Sequences contained in the dataset
were collected from nine different sources using ten different types of sensors.
The included sequences originate from industry, universities, a research institute
and two EU projects. The average sequence length is 740 frames and resolutions
range from 305 × 225 to 1920 × 480 pixels.

Fig. 1. Snapshots from six sequences (Running rhino, Quadrocopter, Crowd, Street,

Bird, Trees2 ) included in the LTIR2016 dataset as used in VOT-TIR2016. The ground
truth bounding boxes are shown in yellow. (Color figure online)

Although some sequences in the LTIR dataset are available with 16-bit
dynamic range, we only use 8-bit pixel values in the VOT-TIR2016 challenge.
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This choice is motivated by the fact that several of the submitted methods can-
not deal with 16-bit data. There are sequences recorded outdoors in different
weather conditions and sequences recorded indoors with artificial illumination
and heat sources.

Example frames from six sequences are shown in Fig. 1. Compared to VOT-
TIR2015, the sequences Crossing, Horse, and Rhino behind tree have been
removed. The newly added sequences are Bird, Boat1, Boat2, Car2, Dog, Exca-

vator, Ragged, and Trees2.
In contrast to the novel annotation approach in VOT2016 [12], all bench-

mark annotations have been done manually in accordance with the VOT2013
annotation process [19]. Exactly one object within each sequence is annotated
throughout the sequence with a bounding box that encloses the object entirely.
The bounding box is allowed to vary in size but not to rotate. In addition to the
bounding box annotations, local attributes are annotated frame-wise and global
attributes are annotated sequence-wise.

Some attributes from VOT had to be changed or modified for VOT-TIR:

Changed attributes: Dynamics change and temperature change have been intro-
duced instead of illumination change and object color change. Several cameras
convert an internal constant 16-bit range into an adaptively changing 8-bit
range. Dynamics change indicates whether the dynamic range is fixed during
the sequence or not. Temperature change refers to changes in the thermal signa-
ture of the object during the sequence.

Modified attributes: Blur indicates blur due to motion, high humidity, rain or
water on the lens instead of defocussing.

Based on the modified attribute set, the following local and global attributes
are annotated:

Local attributes: The per-frame annotated local attributes are: motion change,
camera motion, dynamics change, occlusion, and size change. The attributes are
used to evaluate the performance of tracking methods on frames with specific
attributes. The attributes allow also weighting the evaluation process, e.g., pool
by attribute.

Global attributes: The per-sequence global attributes are: Dynamics change,
temperature change, blur, camera motion, object motion, background clutter, size

change, aspect ratio change, object deformation, and scene complexity.

3 Performance Measures and Evaluation Methodology

The performance measures as well as evaluation methodology for VOT-TIR2016
are identical to the ones for VOT2016, except for the OTB-like average overlap
and the practical difference evaluation. Therefore, only a brief summary is given
below and for details the reader is referred to [12].
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Similar to VOT2016, the two weakly correlated performance measures, accu-
racy (A) and robustness (R), are used due to their high level of interpretability
[13,14]. The accuracy measurement is computed from the overlap between the
predicted bounding box and the ground truth, restricted to the image region,
while the robustness measurement counts the number of tracking failures. If
tracking has failed, the tracker is re-initialized with a delay of five frames. In
order to reduce biased accuracy assessment, the overlap measure is continued
with a further delay of ten frames.

The two primary measures A and R are fused in the expected average overlap
(EAO), which is an estimator of the expected average overlap of a tracker on
a new sequence of typical length. The EAO curve is given by the bounding-
box-overlap averaged over a set of sequences of certain length, plotted over the
sequence length Ns [7]. The EAO measure is obtained by integrating the EAO
curve over an interval of typical sequence lengths of 223 to 509 frames. Overlap
calculations, re-initialization, definition of a failure, and the computation of the
EAO measure are further explained in [12].

As in VOT-TIR2015, the performance measures are only evaluated in the
baseline experiment and we did not consider the region noise experiment for
the same reasons as before [11]: Results hardly differed, experiments need more
time, and reproducibility of results requires to store the seed.

4 Analysis and Results

4.1 Submitted Trackers

As in VOT-TIR2015 [11], 24 trackers were included in the VOT-TIR2016 chal-
lenge. Among them, 21 trackers were submitted to the challenge and 3 trackers
were added by the VOT Committee (DSST, the VOT2014 winner, SRDCFir,
which achieved the highest EAO score in VOT-TIR2015, and NCC as baseline).

The committee has used the submitted binaries/source code for result veri-
fication. All methods are briefly described below and references to the original
papers are given in the Appendix A where available. All 24 VOT-TIR2016 par-
ticipating trackers also participated in the VOT2016 challenge.3

One tracker, EBT (A.2), uses object proposals [20] for object position gen-
eration or scoring. One tracker is based on a Mean Shift tracker extension [21],
PKLTF (A.5). MAD (A.4) and LOFT-Lite (A.16) are fusion based trackers.
DAT (A.8) is based on tracking-by-detection learning.

Eight trackers can be classified as part-based trackers: BDF (A.3), BST
(A.14), DPCF (A.1), DPT (A.20), FCT (A.15), GGTv2 (A.7), LT-FLO (A.19),
and SHCT (A.12).

Seven trackers are based on the method of discriminative correlation filters
(DCFs) [22,23] with various sets of image features: DSST2014 (A.22), MvCF

3 Here, we consider SRDCF/SRDCFir and Staple/Staple-TIR being the same,
despite the fact that the TIR versions use slightly different feature vectors, see
Appendices A.24 and A.13.
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(A.6), NSAMF (A.10), sKCF (A.17), SRDCFir (A.24), Staple-TIR (A.13), and
STAPLE+ (A.11).

One tracker applies convolutional neural network (CNN) features instead
of standard features, deepMKCF (A.9), and two trackers are entirely based on
CNNs, TCNN (A.21) and MDNet-N (A.18). Finally, one tracker was the basic
normalized cross correlation tracker NCC (A.23).

4.2 Results

The results are collected in AR-rank and AR-raw plots, pooled by sequence and
averaged by attribute, c.f. Fig. 2. The sequence-pooled AR-rank plot is obtained
by concatenating the results from all sequences and creating a single rank list.
The attribute-normalized AR-rank plot is created by ranking the trackers over
each attribute and averaging the rank lists.

The AR-raw plots are constructed without ranking. The A-values correspond
to the average overlap for the whole dataset (pooled) or the attribute-normalized
average overlap. The R-values correspond to the likelihood that on S = 100
frames the tracking will not fail (pooled over dataset or attribute-normalized).
The raw values and the ranks for the pooled results are given in Table 1.

Three trackers are either very accurate or very robust (closest to the upper or
right border of rank/AR plots): NCC (A.23), Staple-TIR (A.13), and EBT (A.2).
Three trackers combine good accuracy and good robustness (upper right corner
of rank/AR plots): MDNet-N (A.18), SRDCFir (A.24), and TCNN (A.21).

The top accuracy of NCC comes at the cost of a very high failure rate.
Due to the frequent re-initializations, the NCC results are very accurate. The
excellent robustness of EBT is achieved by a strategy to enlarge the predicted
bounding boxes in cases of low tracking confidence. This implies some penalty
on the accuracy so that EBT only achieves moderate average overlap.

The three trackers that combine good robustness and accuracy as well as
further well-performing trackers are based on CNNs (TCNN, MDNet-N) and
DCFs (SRDCFir, Staple-TIR, STAPLE+). SHCT combines DCFs with a part-
based model and deepMKCF combines DCFs with deep features. Hence, the
top-performing methods are mostly based on deep learning or DCFs.

The robustness ranks with respect to the visual attributes are shown in
Fig. 3. The top three trackers of the overall assessment, EBT, SRDCFir, and
TCNN, are also mostly among the top robustness ranks for the different visual
attributes (exceptions SRDCFir on Dynamics change & Occlusion and TCNN on
Motion change). The top ranks are sometimes shared with other well-performing
methods: Camera motion FCT; Dynamics change DPT, MDNet-N, and SHCT;
Empty DPT and Staple-TIR; Motion change SHCT and STAPLE+; Occlusion
MDNet-N; Size change deepMKCF, MDNet-N, SHCT, and Staple-TIR.

The overall criterion expected average overlap (EAO), see Fig. 4, confirms
the top-performance of SRDCFir, EBT, and TCNN. The EAO curves show
that SRDCFir is consistently better than EBT in the range of typical sequence
lengths. Hence, SRDCFir gives the best overall performance exactly as in the
previous challenge [11]. Still, EBT is the best performing tracker submitted to
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Fig. 2. The AR rank plots and AR raw plots generated by sequence pooling (upper)
and by attribute normalization (below).

VOT-TIR2016. Regarding the EAO measure, TCNN is clearly inferior to the
two top-ranked methods. The fact that EBT is better than TCNN regarding the
EAO measure despite that it is inferior regarding accuracy (c.f. Fig. 2), underpins
the importance of robustness for the expected average overlap measure.

Apart from tracking accuracy A, robustness R, and expected average overlap
EAO, the tracking speed is also crucial in many realistic tracking applications.
We therefore also visualize the EAO values with respect to the tracking speed
measured in EFO units in Fig. 4. The vertical dashed line indicates the real-
time speed (equivalent to approximately 20fps). Among the three top-performing
trackers, SRDCFir comes closest to real-time performance. The top-performing
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Table 1. The table shows the expected average overlap (EAO), the accuracy and
robustness (S = 100) pooled values (A, R), the ranks for A and R, the tracking speed
(EFO), and implementation details (M is Matlab, C is C or C++, M/C means Matlab
with mex). Trackers marked with * have been verified by the committee.

Tracker EAO A R Arank Rrank EFO Impl.

1. SRDCFir* 0.364 0.63 0.82 1 1 2.48 D M/C

2. EBT* 0.340 0.43 0.81 21 1 1.99 D C

3. TCNN* 0.287 0.62 0.69 6 3 0.76 S M/C

4. Staple-TIR* 0.264 0.63 0.60 1 6 14.25 D M/C

5. SHCT* 0.263 0.59 0.61 6 4 0.91 D M/C

6. MDNet-N* 0.243 0.65 0.63 1 4 0.61 S M/C

7. STAPLE+* 0.241 0.59 0.58 6 7 16.70 D M/C

8. DSST2014* 0.236 0.60 0.53 6 13 11.29 D M

9. MvCF* 0.231 0.55 0.57 15 9 27.83 D M

10. DPT* 0.219 0.53 0.57 15 10 11.40 D M/C

11. deepMKCF 0.213 0.62 0.57 5 8 2.36 S M/C

12. MAD* 0.211 0.56 0.54 12 11 12.54 D C

13. GGTv2* 0.197 0.57 0.49 6 14 0.93 S M/C

14. NSAMF* 0.192 0.57 0.44 12 19 26.27 D M/C

15. DPCF* 0.191 0.54 0.47 15 15 2.73 D M/C

16. sKCF* 0.188 0.55 0.46 14 18 135.64 D C

17. FCT* 0.186 0.43 0.53 21 11 116.33 D C

18. LT-FLO 0.163 0.52 0.33 15 23 2.16 S M/C

19. DAT* 0.162 0.57 0.46 11 15 15.71 D M

20. NCC* 0.160 0.63 0.26 1 23 59.49 D M

21. BDF* 0.147 0.41 0.38 21 21 189.41 D C

22. PKLTF* 0.141 0.47 0.42 15 19 45.99 D C

23. BST* 0.140 0.51 0.46 15 15 9.66 S C

24. LoFT-Lite* 0.107 0.26 0.36 21 22 1.30 D M/C

tracker in terms of EAO among the trackers that exceed the real-time threshold
is MvCF (A.6).

4.3 TIR-Specific Analysis and Results

Likewise VOT-TIR2015, we analyze the effect of the differences between RGB
sequences and TIR sequences on the ranking of the trackers [11]. For this pur-
pose, the joint ranking for VOT and VOT-TIR is generated for all VOT-TIR
trackers (see Footnote 3), c.f. Fig. 5. The dashed lines are the margin of a rank-
change by more than three positions. Any change of rank within this margin is
considered insignificant and only eight trackers change their rank by more than
three positions.

The most dramatic change occurs for BST (A.14), which ranks 23 in VOT-
TIR, but 35 (out of 70) in VOT, corresponding to rank 14 within the set of 24
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Fig. 3. Robustness plots with respect to the visual attributes. See Fig. 2 for legend.

trackers. Other trackers that perform significantly worse in VOT-TIR are DAT
(A.8, 19 vs. 31/12) and GGTv2 (A.7, 13 vs. 19/8).

On the other hand, DSST2014 (A.22, 8 vs. 43/16), MvCF (A.6, 9 vs. 42/15),
SRDCF(ir) (A.24, 1 vs. 17/7), LT-FLO (A.19, 18 vs. 62/22), and NCC (A.23,
20 vs. 70/24) perform significantly better on VOT-TIR than on VOT according
to the relative ranking.

Similar as for the overall performance, it is difficult to identify a system-
atic correlation between improvement and type of tracking methods. Tracking
methods that do not rely on color (e.g. DSST2014, SRDCFir, NCC) are likely to
perform better on TIR sequences than color-based methods (e.g. DAT, GGTv2).

Also the size of targets differ between VOT (larger) and VOT-TIR (smaller)
and scale variations need to be modeled (e.g. DSST2014, MvCF, SRDCFir). It
is also believed that the tuning of input features is highly relevant for changes of
performance. Methods that are highly tuned for VOT2016 and applied to VOT-
TIR2016 as they are, are more likely to perform inferior compared to methods
that use specific TIR-suited features, e.g. SRDCFir (A.24). In general, HOG
features seem to be highly suitable for TIR.

Finally, the dramatic difference in ranking for BST need to be investigated
further, as it cannot be explained by previous arguments.

One limitation of VOT-TIR2015 has been the saturation of results: several
of the LTIR sequences are so simple to track that hardly any of the participating
methods failed on them [11]. Therefore, the three easiest sequences have been
removed and eight new sequences have been added, c.f. Sect. 2. In the difficulty
analysis 2015, only three sequences were considered challenging and twelve were
easy.
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Fig. 4. Expected average overlap curve (above), expected average overlap graph (below
left) with trackers ranked from right to left, and expected average overlap scores w.r.t.
the tracking speed in EFO units (below right). The right-most tracker in the EAO-
graph is the top-performing according to the VOT-TIR2016 expected average overlap
values. See Fig. 2 for legend. The vertical lines in the upper plot show the range of
typical sequence lengths. The dashed vertical line in the lower right plot denotes the
estimated real-time performance threshold of 20 EFO units.

If Af is the average number of trackers that failed per frame and Mf is
the maximum number of trackers that failed at a single frame, sequences with
Af ≤ 0.04 and Mf ≤ 7 are considered easy and sequences with Af ≥ 0.06 and
Mf ≥ 14 are considered challenging. In the extended dataset, eight sequences
are challenging and nine are easy (c.f. Table 2). The average difficulty score
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Fig. 5. Comparison of relative ranking of the 24 VOT-TIR trackers in VOT. See Fig. 2
for legend

(1.0 hardest, 5.0 easiest) is reduced from 4.0 (easy) to 3.3 (intermediate), which
means that the new dataset is significantly more challenging than LTIR. This
also shows in the EAO score of SRDCFir, which has been significantly higher in
VOT-TIR2015 (0.70 vs. 0.364) [11].

Table 2. Difficulty analysis of sequences from VOT-TIR2015 and 2016. A score smaller
than 3 means challenging, a score larger or equal four means easy. Mean difficulty VOT-
TIR2015: 4.0, VOT-TIR2016: 3.3.
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2015 2.0 2.5 2.5 3.0 3.0 3.5 3.5 3.5 4.0 4.0 4.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 – – – – – – – –

2016 2.0 2.5 1.5 2.0 3.5 4.5 3.5 3.5 4.5 3.5 4.0 5.0 4.5 – 5.0 – – 4.5 4.5 3.5 1.5 4.0 3.0 2.0 3.5 3.0 2.5 1.5

A major limitation of the current evaluation methodology used in VOT-
TIR2016 is caused by the criterion of a failure: A failure is reported if the ground
truth bounding box and the predicted bounding box do not overlap [5]. As a
result, trackers that systematically overestimate the size of the tracked target in
case of low confidence, are highly likely to never drop the target at the cost of a
low accuracy A, c.f. Fig. 6.
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Fig. 6. Example from sequence Boat2 : A report of failure is avoided by increasing the
predicted bounding box to the whole image.

If a tracker succeeds to estimate the confidence for successful tracking well
and increases the bounding box only in those cases, a very low failure rate can be
obtained at the cost of still acceptable accuracy. The joint measure of EAO score
will then be superior to methods that have much better accuracy, but slightly
more failures.

In order to limit the effect of arbitrarily large bounding boxes, we suggest
to modify the failure test in the following way: We require the overlap to be
above the quantization level if we rescale the intersection with the ratio of the
bounding boxes. Let AG

t and AT
t be the ground truth and predicted bounding

boxes, respectively. Let further |At| be the size of the bounding box in pixels.
The criterion for successful tracking currently used is

|AG
t ∩ AT

t |

|AG
t ∪ AT

t |
> 0 (1)

and the suggested new criterion reads

|AG
t ∩ A

T
t |

|AG
t |

|AT
t |

>
1

2
. (2)

Since the rules of VOT-TIR2016 cannot be changed retrospectively, we will
not provide any results according to the new criterion within VOT-TIR2016.

5 Conclusions

The VOT-TIR2016 challenge has received 21 submissions and compared in total
24 trackers, which is a successful continuation of the first challenge. The extended
dataset is significantly more challenging such that the results of the challenge give
a better guidance to future research within TIR tracking than VOT-TIR2015.

The best overall performance has been achieved by SRDCFir, followed
by EBT, as best performing submitted method, and TCNN. The analysis of
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results shows that the performance of some trackers differ significantly between
VOT2016 and VOT-TIR2016. However, to be top-ranked in VOT-TIR2016
requires a strong result in VOT2016. Modeling of scale-variations and suitable
features are necessary to achieve top results. The strongest two tracking method-
ologies within the benchmark are CNN-based and DCF-based trackers, where
several trackers are among the top-performers.

For future challenges, the annotation and evaluation need to be adapted to
the current VOT standard: multiple annotations and rotating bounding boxes.
The failure criterion might need to be modified as suggested. Also challenges
with mixed sequences (RGB and TIR) might be interesting to perform.
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A Submitted Trackers

This appendix contains short descriptions of all trackers from the challenge.

A.1 Deformable Part-based Tracking by Coupled Global and Local
Correlation Filters (DPCF)

O. Akin, E. Erdem, A. Erdem, K. Mikolajczyk

oakin25@gmail.com, {erkut, aykut}@cs.hacettepe.edu.tr,

k.mikolajczyk@imperial.ac.uk

DPCF is a deformable part-based correlation filter tracking approach which
depends on coupled interactions between a global filter and several part filters.
Specifically, local filters provide an initial estimate, which is then used by the
global filter as a reference to determine the final result. Then, the global filter
provides a feedback to the part filters regarding their updates and the related
deformation parameters. In this way, DPCF handles not only partial occlusion
but also scale changes. The reader is referred to [24] for details.

A.2 Edge Box Tracker (EBT)

G. Zhu, F. Porikli, H. Li

{gao.zhu, fatih.porikli, hongdong.li}@anu.edu.au
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EBT tracker is not limited to a local search window and has ability to probe
efficiently the entire frame. It generates a small number of ‘high-quality’ propos-
als by a novel instance-specific objectness measure and evaluates them against
the object model that can be adopted from an existing tracking-by-detection
approach as a core tracker. During the tracking process, it updates the object
model concentrating on hard false-positives supplied by the proposals, which help
suppressing distractors caused by difficult background clutters, and learns how
to re-rank proposals according to the object model. Since the number of hypothe-
ses the core tracker evaluates is reduced significantly, richer object descriptors
and stronger detectors can be used. More details can be found in [25].

A.3 Best Displacement Flow (BDF)

M. Maresca, A. Petrosino

mariomaresca@hotmail.it, petrosino@uniparthenope.it

Best Displacement Flow (BDF) is a short-term tracking algorithm based on
the same idea of Flock of Trackers [26] in which a set of local tracker responses
are robustly combined to track the object. Firstly, BDF performs a clustering
to identify the best displacement vector which is used to update the object’s
bounding box. Secondly, BDF performs a procedure named Consensus-Based
Reinitialization used to reinitialize candidates which were previously classified
as outliers. Interested readers are referred to [27] for details.

A.4 Median Absolute Deviation Tracker (MAD)

S. Becker, S. Krah, W. Hübner, M. Arens

{stefan.becker, sebastian.krah, wolfgang.huebner, michael.arens}@iosb.fraun

hofer.de

The key idea of the MAD tracker [28] is to combine several independent and
heterogeneous tracking approaches and to robustly identify an outlier subset
based on the Median Absolute Deviation (MAD) measure. The MAD fusion
strategy is very generic and it only requires frame-based target bounding boxes as
input and thus can work with arbitrary tracking algorithms. The overall median
bounding box is calculated from all trackers and the deviation or distance of a
sub-tracker to the median bounding box is calculated using the Jaccard-Index.
Further, the MAD fusion strategy can also be applied for combining several
instances of the same tracker to form a more robust swarm for tracking a single
target. For this experiments the MAD tracker is set-up with a swarm of KCF
[23] trackers in combination with the DSST [29] scale estimation scheme. The
reader is referred to [28] for details.

A.5 Point-Based Kanade Lukas Tomasi Colour-Filter (PKLTF)

R. Martin-Nieto, A. Garcia-Martin, J. M. Martinez

{rafael.martinn, alvaro.garcia, josem.martinez}@uam.es
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PKLTF [30] is a single-object long-term tracker that supports high appear-
ance changes in the target, occlusions, and is also capable of recovering a target
lost during the tracking process. PKLTF consists of two phases: The first one
uses the Kanade Lukas Tomasi approach (KLT) [31] to choose the object fea-
tures (using colour and motion coherence), while the second phase is based on
mean shift gradient descent [32] to place the bounding box into the position of
the object. The object model is based on the RGB colour and the luminance
gradient and it consists of a histogram including the quantized values of the
colour components, and an edge binary flag. The interested reader is referred to
[30] for details.

A.6 A multi-view model for visual tracking via correlation
filters (MvCF)

Z. He, X. Li, N. Fan

zyhe@hitsz.edu.cn, hitlixin@126.com, nanafanhit@gmail.com

The multi-view correlation filter tracker (MvCF tracker) fuses several fea-
tures and selects the more discriminative features to enhance the robustness.
More specifically, for the VOT-TIR dataset, the histogram of oriented gra-
dients (HOG) and gray value features play more important roles in tracking
than color features. The combination of the multiple views is conducted by
the Kullback-Leibler (KL) divergences. In addition, a simple but effective scale-
variation detection mechanism is provided, which strengthens the stability of
scale variation tracking.

A.7 Geometric Structure Hyper-Graph based Tracker Version
2 (GGTv2)

T. Hu, D. Du, L. Wen, W. Li, H. Qi, S. Lyu

{yihouxiang, cvdaviddo, lywen.cv.workbox, wbli.app, honggangqi.cas, heizi.

lyu}@gmail.com

GGTv2 is an improvement of GGT [33] by combining the scale adaptive
kernel correlation filter [34] and the geometric structure hyper-graph searching
framework to complete the object tracking task. The target object is represented
by a geometric structure hyper-graph that encodes the local appearance of the
target with higher-order geometric structure correlations among target parts and
a bounding box template that represents the global appearance of the target. The
tracker use HSV colour histogram and LBP texture to calculate the appearance
similarity between associations in the hyper-graph. The templates of correlation
filter is calculated by HOG and colour name according to [34].

A.8 Distractor Aware Tracker (DAT)

H. Possegger, T. Mauthner, H. Bischof

{possegger, mauthner, bischof }@icg.tugraz.at
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The Distractor Aware Tracker is an appearance-based tracking-by-detection
approach. To demonstrate its performance on the VOT-TIR dataset, DAT learns
a discriminative model from the grey scale image to distinguish the object from
its surrounding region. Additionally, a distractor-aware model term suppresses
visually distracting regions whenever they appear within the field-of-view, thus
reducing tracker drift. The reader is referred to [35] for details.

A.9 Deep Multi-kernelized Correlation Filter (deepMKCF)

J. Feng, F. Zhao, M. Tang

{jiayi.feng, fei.zhao, tangm}@nlpr.ia.ac.cn

deepMKCF tracker is the MKCF [36] with deep features extracted by
using VGG-Net [37]. deepMKCF tracker combines the multiple kernel learn-
ing and correlation filter techniques and it explores diverse features simulta-
neously to improve tracking performance. In addition, an optimal search tech-
nique is also applied to estimate object scales. The multi-kernel training process
of deepMKCF is tailored accordingly to ensure tracking efficiency with deep
features.

A.10 NSAMF (NSAMF)

Y. Li, J. Zhu

{liyang89, jkzhu}@zju.edu.cn

NSAMF is an improved version of the previous method SAMF [34]. To further
exploit color information, NSAMF employs color probability map, instead of
color name, as color based feature to achieve more robust tracking results. In
addition, multi-models based on different features are integrated to vote the final
position of the tracked target.

A.11 An Improved STAPLE Tracker with Multiple Feature
Integration (STAPLE+)

Z. Xu, Y. Li, J. Zhu

xuzhan2012@whu.edu.cn, {liyang89, jkzhu}@zju.edu.cn

An improved version of STAPLE tracker [38] by integrating multiple features
is presented. Besides extracting HOG feature from merely gray-scale image, we
also extract HOG feature from color probability map, which can exploit color
information better. The final response map is thus a fusion of different features.

A.12 Structure Hyper-graph Based Correlation Filter
Tracker (SHCT)

L. Wen, D. Du, S. Li, C.-M. Chang, S. Lyu, Q. Huang

{lywen.cv.workbox, cvdaviddo, shengkunliluo, mingching, heizi.lyu}@gmail.

com, qmhuang@jdl.ac.cn
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SHCT tracker constructs a structure hyper-graph model similar to [39] to
extract the motion coherence of target parts. The tracker also computes a part
confidence map based on the extracted dense subgraphs on the constructed struc-
ture hyper-graph, which indicates the confidence score of the part belonging to
the target. SHCT uses HSV colour histogram and LBP feature to calculate
the appearance similarity between associations in the hyper-graph. Finally, the
tracker combines the response maps of correlation filter and structure hyper-
graph in a linear way to find the optimal target state (i.e., target scale and
location). The templates of correlation filter are calculated by HOG and colour
name according to [34]. The appearance models of correlation filter and structure
hyper-graph are updated to ensure the tracking performance.

A.13 Sum of Template and Pixel-wise LEarners TIR (Staple-TIR)

L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P. H. S. Torr

{luca, jvlmdr}@robots.ox.ac.uk, stuart.golodetz@ndcn.ox.ac.uk, {ondrej.mi-

ksik, philip.torr}@eng.ox.ac.uk

Staple is a tracker that combines two image patch representations that are
sensitive to complementary factors to learn a model that is inherently robust
to both intensity changes and deformations. To maintain real-time speed, two
independent ridge-regression problems are solved, exploiting the inherent struc-
ture of each representation. Staple combines the scores of two models in a dense
translation search, enabling greater accuracy. A critical property of the two mod-
els is that their scores are similar in magnitude and indicative of their reliability,
so that the prediction is dominated by the more confident. Staple-TIR uses one-
dimensional instead of three-dimensional histograms and has different hyperpa-
rameters as Staple Tracker. For more details, we refer the reader to [40].

A.14 Best Structured Tracker (BST)

F. Battistone, A. Petrosino, V. Santopietro

{battistone.francesco, vinsantopietro}@gmail.com, petrosino@uniparthenope.

it

BST is based on the idea of Flock of Trackers [41]: a set of local trackers
tracks a little patch of the original target and then the tracker combines their
information in order to estimate the resulting bounding box. Each local tracker
separately analyzes the features extracted from a set of samples and then classi-
fies them using a structured Support Vector Machine as Struck [41]. Once having
predicted local target candidates, an outlier detection process is computed by
analyzing the displacements of local trackers. Trackers that have been labeled
as outliers are reinitialized. At the end of this process, the new bounding box is
calculated using the Convex Hull technique.

A.15 Optical flow clustering tracker (FCT)

A. Varfolomieiev

a.varfolomieiev@kpi.ua
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FCT is based on the same idea as the best displacement tracker (BDF)
[27]. It uses pyramidal Lucas-Kanade optical flow algorithm to track individual
points of an object at several pyramid levels. The results of the point tracking
are clustered in the same way as in the BDF [27] to estimate the best object
displacement. The initial point locations are generated by the FAST detector
[42]. The tracker estimates a scale and an in-plane rotation of the object. These
procedures are similar to the scale calculation of the median flow tracker [43],
except that the clustering is used instead of median. In case of rotation calcula-
tion angles between the respective point pairs are clustered. In contrast to BDF,
the FCT does not use consensus-based reinitialization. The current implementa-
tion of FCT calculates the optical flow only in the objects region, which is four
times larger than the initial bounding box of the object, and thus speeds up the
tracker with respect to its previous version [7].

A.16 Likelihood of Features Tracking-Lite (LoFT-Lite)

M. Poostchi, K. Palaniappan, F. Bunyak, G. Seetharaman, R. Pelapur, K. Gao,

S. Yao, N. Al-Shakarji

mpoostchi@mail.missouri.edu, {pal, bunyak}@missouri.edu, guna@ieee.org

{rvpnc4, kg954, syyh4, nmahyd}@missouri.edu,

LoFT (Likelihood of Features Tracking)-Lite [44] is an appearance based
single object tracker that employs a rich set of low level image feature descrip-
tors that account for intensity, edge, shape and motion properties of the target.
The feature likelihood maps are computed using sliding window search com-
paring target and reference feature histograms of intensity, gradient magnitude,
gradient orientation, and shape information based on the eigenvalues of the
Hessian matrix. Intensity and gradient magnitude normalized cross-correlation
likelihood maps are also used to incorporate spatial information. Moreover, for
stationary cameras LoFT can take advantage of its flux tensor motion module
to robustly estimate the location of moving objects [45]. A parts-based target
model is added into LoFT to provide a set of patch-based maximum likelihood
maps. This increases tracking robustness to partial occlusions and compensates
for orderless nature of histogram-based features. The integral histogram method
accelerates computation of the parts-based sliding window histograms [46]. LoFT
performs feature fusion using a foreground-background model by comparing the
current target appearance with the model inside the search region [47]. LOFT-
Lite also incorporates an adaptive orientation-based Kalman prediction update
to restrict the search region which reduces sensitivity to abrupt motion changes
and decreases computational cost [48].

A.17 Scalable Kernel Correlation Filter with Sparse Feature
Integration (sKCF)

A. Soĺıs Montero, J. Lang, R. Laganière

asolismo@uottawa.ca, {jlang, laganier}@eecs.uottawa.ca



844 M. Felsberg et al.

sKCF [49] extends the Kernalized Correlation Filter (KCF) framework by
introducing an adjustable Gaussian window function and keypoint-based model
for scale estimation to deal with the fixed size limitation in the Kernelized Cor-
relation Filter along with some performace enhancements. In the submission, a
model learning strategy is introduced to the original sKCF [49] which updates
the model only for highly similar KCF responses of the tracked region as to
the model. This potentially limits model drift due to temporary disturbances or
occlusions. The original sKCF always updates the model in each frame.

A.18 Multi-Domain Convolutional Neural Network
Tracker (MDNet-N)

H. Nam, M. Baek, B. Han

{namhs09, mooyeol, bhhan}@postech.ac.kr

This algorithm is a variation of MDNet [50], which does not pre-train CNNs
with other tracking datasets. The network is initialised using the ImageNet [51].
The new classification layer and the fully connected layers within the shared lay-
ers are then fine-tuned online during tracking to adapt to the new domain. The
online update is conducted to model long-term and short-term appearance vari-
ations of a target for robustness and adaptiveness, respectively, and an effective
and efficient hard negative mining technique is incorporated in the learning pro-
cedure. This experiment result shows that the online tracking framework scheme
of MDNet is still effective without multi-domain training.

A.19 Long Term Featureless Object Tracker (LT-FLO)

K. Lebeda, S. Hadfield, J. Matas, R. Bowden

{k.lebeda, s.hadfield}@surrey.ac.uk, matas@cmp.felk.cvut.cz,

r.bowden@surrey.ac.uk

The tracker is based on and extends previous work of the authors on tracking
of texture-less objects [52]. It significantly decreases reliance on texture by using
edge-points instead of point features. LT-FLO uses correspondences of lines tan-
gent to the edges and candidates for a correspondence are all local maxima of
gradient magnitude. An estimate of the frame-to-frame transformation similar-
ity is obtained via RANSAC. When the confidence is high, the current state
is learnt for future corrections. On the other hand, when a low confidence is
achieved, the tracker corrects its position estimate restarting the tracking from
previously stored states. LT-FLO tracker also has a mechanism to detect dis-
appearance of the object, based on the stability of the gradient in the area of
projected edge-points. The interested reader is referred to [53] for details.

A.20 Deformable Part Correlation Filter Tracker (DPT)

A. Lukežič, L. Čehovin, M. Kristan

alan.lukezic@fri.uni-lj.si, luka.cehovin@fri.uni-lj.si, matej.kristan@fri.

uni-lj.si
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DPT is a part-based correlation filter composed of a coarse and mid-level tar-
get representations. Coarse representation is responsible for approximate target
localization and uses HOG as well as colour features. The mid-level representa-
tion is a deformable parts correlation filter with fully-connected parts topology
and applies a novel formulation that threats geometric and visual properties
within a single convex optimization function. The mid level as well as coarse
level representations are based on the kernelized correlation filter from [23]. The
reader is referred to [54] for details.

A.21 Tree-Structured Convolutional Neural Network
Tracker (TCNN)

H. Nam, M. Baek, B. Han

{namhs09, mooyeol, bhhan}@postech.ac.kr

TCNN maintains multiple target appearance models based on CNNs in a tree
structure to preserve model consistency and handle appearance multi-modality
effectively. TCNN tracker consists of two main components, state estimation
and model update. When a new frame is given, candidate samples around the
target state estimated in the previous frame are drawn, and the likelihood of
each sample based on the weighted average of the scores from multiple CNNs is
computed. The weight of each CNN is determined by the reliability of the path
along which the CNN has been updated in the tree structure. The target state
in the current frame is estimated by finding the candidate with the maximum
likelihood. After tracking a predefined number of frames, a new CNN is derived
from an existing one, which has the highest weight among the contributing CNNs
to target state estimation. Interested readers are referred to [55] for details.

A.22 Discriminative Scale Space Tracker (DSST2014)

Authors implementation. Submitted by VOT Committee

The Discriminative Scale Space Tracker (DSST) [29] extends the Minimum
Output Sum of Squared Errors (MOSSE) tracker [22] with robust scale estima-
tion. The DSST additionally learns a one-dimensional discriminative scale filter,
that is used to estimate the target size. For the translation filter, the inten-
sity features employed in the MOSSE tracker is combined with a pixel-dense
representation of HOG-features.

A.23 Normalized Cross-Correlation (NCC)

Submitted by VOT Committee

The NCC tracker is a VOT2016 baseline tracker and follows the very basic
idea of tracking by searching for the best match between a static grayscale tem-
plate and the image using normalized cross-correlation.
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A.24 Spatially Regularized Discriminative Correlation Filter
Tracker for IR (SRDCFir)

Authors implementation. Submitted by VOT Committee

SRDCFir adapts the SRDCF approach proposed in [56] to thermal infrared
data. Standard Discriminative Correlation Filter (DCF) based trackers such as
[23,29,57] suffer from the inherent periodic assumption when using circular cor-
relation. The resulting periodic boundary effects leads to inaccurate training
samples and a restricted search region. The SRDCF mitigates these problems
by introducing a spatial regularization function that penalizes filter coefficients
residing outside the target region. This allows the size of the training and detec-
tion samples to be increased without affecting the effective filter size. By selecting
the spatial regularization function to have a sparse Discrete Fourier Spectrum,
the filter is efficiently optimized directly in the Fourier domain. Instead of solving
for an approximate filter, as in previous DCF based trackers (e.g. [23,29,57]), the
SRDCF employs an iterative optimization based on Gauss-Seidel that converges
to the exact filter. The detection step employs a sub-grid location estimation. In
addition to the HOG features used in [56], SRDCFir also employs channel coded
intensity features. SRDCFir also employs a motion feature channel, computed by
thresholding the difference between the current and previous frame. The result
is a binary image that indicates if a pixel has changed its value compared to the
previous frame. The intensity and motion features are averaged over the 4 × 4
HOG cells and then concatenated, giving a 43 dimensional feature vector at each
cell.
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14. Čehovin, L., Leonardis, A., Kristan, M.: Visual object tracking performance mea-
sures revisited arXiv:1502.05803 [cs.CV] (2013)

15. Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Cehovin, L.,
Nebehay, G., Fernandez, G., Vojir, T.: The vot2013 challenge: overview and addi-
tional results. In: Computer Vision Winter Workshop (2014)

16. Berg, A., Ahlberg, J., Felsberg, M.: A thermal object tracking benchmark. In: 12th
IEEE International Conference on Advanced Video- and Signal-based Surveillance,
Karlsruhe, Germany, 25–28 August 2015. IEEE (2015)

17. Berg, A., Ahlberg, J., Felsberg, M.: Channel coded distribution field tracking for
thermal infrared imagery. In: IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance (PETS) (2016)

18. Felsberg, M.: Enhanced distribution field tracking using channel representations.
In: Visual Object Tracking Challenge VOT 2013, In conjunction with ICCV 2013
(2013)

19. Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Čehovin, L.,
Nebehay, G., Fernandez, G., Vojir, T., Gatt, A., Khajenezhad, A., Salahledin, A.,
Soltani-Farani, A., Zarezade, A., Petrosino, A., Milton, A., Bozorgtabar, B., Li,
B., Chan, C.S., Heng, C., Ward, D., Kearney, D., Monekosso, D., Karaimer, H.C.,
Rabiee, H.R., Zhu, J., Gao, J., Xiao, J., Zhang, J., Xing, J., Huang, K., Lebeda,
K., Cao, L., Maresca, M.E., Lim, M.K., Helw, M.E., Felsberg, M., Remagnino,
P., Bowden, R., Goecke, R., Stolkin, R., Lim, S.Y., Maher, S., Poullot, S., Wong,
S., Satoh, S., Chen, W., Hu, W., Zhang, X., Li, Y., Niu, Z.: The Visual Object
Tracking VOT2013 challenge results. In: ICCV Workshops, pp. 98–111 (2013)

20. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8693, pp. 391–405. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1 26

21. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans.
Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)

22. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using
adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2010)

23. Henriques, J., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with ker-
nelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596
(2015)

http://arxiv.org/abs/1502.05803
http://dx.doi.org/10.1007/978-3-319-10602-1_26


848 M. Felsberg et al.

24. Akin, O., Erdem, E., Erdem, A., Mikolajczyk, K.: Deformable part-based tracking
by coupled global and local correlation filters. J. Vis. Commun. Image Represent.
38, 763–774 (2016)

25. Zhu, G., Porikli, F., Li, H.: Beyond local search: tracking objects everywhere with
instance-specific proposals. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

26. Vojir, T., Matas, J.: Robustifying the flock of trackers. In: Computer Vision Winter
Workshop, pp. 91–97. IEEE (2011)

27. Maresca, M., Petrosino, A.: Clustering local motion estimates for robust and effi-
cient object tracking. In: Agapito, L., et al. (eds.) ECCV 2014 Workshops. LNCS,
vol. 8926, pp. 244–253. Springer, Heidelberg (2014)
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29. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for
robust visual tracking. In: Proceedings of the British Machine Vision Conference
(2014)
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56. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Learning spatially regularized
correlation filters for visual tracking. In: International Conference on Computer
Vision (2015)

57. Danelljan, M., Khan, F.S., Felsberg, M., Van de Weijer, J.: Adaptive color
attributes for real-time visual tracking. In: Computer Vision Pattern Recognition
(2014)


	The Thermal Infrared Visual Object Tracking VOT-TIR2016 Challenge Results
	1 Introduction
	1.1 Related Work
	1.2 The VOT-TIR2016 Challenge

	2 The VOT-TIR2016 Dataset
	3 Performance Measures and Evaluation Methodology
	4 Analysis and Results
	4.1 Submitted Trackers
	4.2 Results
	4.3 TIR-Specific Analysis and Results

	5 Conclusions
	A Submitted Trackers
	A.1 Deformable Part-based Tracking by Coupled Global and Local Correlation Filters (DPCF)
	A.2 Edge Box Tracker (EBT)
	A.3 Best Displacement Flow (BDF)
	A.4 Median Absolute Deviation Tracker (MAD)
	A.5 Point-Based Kanade Lukas Tomasi Colour-Filter (PKLTF)
	A.6 A multi-view model for visual tracking via correlation filters (MvCF)
	A.7 Geometric Structure Hyper-Graph based Tracker Version 2 (GGTv2)
	A.8 Distractor Aware Tracker (DAT)
	A.9 Deep Multi-kernelized Correlation Filter (deepMKCF)
	A.10 NSAMF (NSAMF)
	A.11 An Improved STAPLE Tracker with Multiple Feature Integration (STAPLE+)
	A.12 Structure Hyper-graph Based Correlation Filter Tracker (SHCT)
	A.13 Sum of Template and Pixel-wise LEarners TIR (Staple-TIR)
	A.14 Best Structured Tracker (BST)
	A.15 Optical flow clustering tracker (FCT)
	A.16 Likelihood of Features Tracking-Lite (LoFT-Lite)
	A.17 Scalable Kernel Correlation Filter with Sparse Feature Integration (sKCF)
	A.18 Multi-Domain Convolutional Neural Network Tracker (MDNet-N)
	A.19 Long Term Featureless Object Tracker (LT-FLO)
	A.20 Deformable Part Correlation Filter Tracker (DPT)
	A.21 Tree-Structured Convolutional Neural Network Tracker (TCNN)
	A.22 Discriminative Scale Space Tracker (DSST2014)
	A.23 Normalized Cross-Correlation (NCC)
	A.24 Spatially Regularized Discriminative Correlation Filter Tracker for IR (SRDCFir)

	References


