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Abstract

Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase
curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is
offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign
of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system
reaches a steady state in the reference frame of the moving forcing. The model is an extension of the well-studied
Matsuno–Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the
insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a
key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s
surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by
consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the
internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an
interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very
slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse
problem of constraining planetary rotation rate from an observed phase curve.

Key words: planets and satellites: atmospheres – planets and satellites: detection – planets and satellites: terrestrial
planets

1. Introduction

In 2007 the first thermal map of an exoplanet was obtained
from transit recordings of hot Jupiter HD 189733b (Knutson
et al. 2007), showing that the hottest point on the surface of the
planet was not at the substellar point, but offset eastward. These
observations were consistent with previous General Circulation
Model (GCM) studies of tidally locked “hot Jupiters,” in which
equatorial superrotating jets in the atmosphere provided zonally
asymmetric heat transport from dayside to nightside (Showman
& Guillot 2002). More recently, the super-Jupiter 2M1207b
became the first planet for which a rotation rate has been
constrained using direct imaging from an intense study with the
Hubble Space Telescope(Zhou et al. 2016). While direct
imaging is the optimal method for measuring the parameters of
an exoplanet, this is impractical for many small and close-in
planets (2M1207b is separated from its star by a distance of
41.2 au), where the brightness of the host star and variability in
stellar output preclude direct imaging.

Current resolution limits have restricted transit detection to
large, close-in, hot Jupiters across G-class stars (like our own
Sun); smaller rocky planets here remain undetectable. Still,
there has been interest in using the same techniques to observe
low-mass, cooler stars—dwarfs or “ultra-dwarfs,” around
which close-in rocky exoplanets of approximately one Earth
mass can be resolved (Gillon et al. 2016). With effective
temperatures of 200–400 K, such planets may well be capable
of supporting atmospheres similar to that of Earth or Venus;
characterizing the atmospheric dynamics prevailing on the
planet will help deduce whether a planet could be considered
“habitable” or not, and resolving the thermal phase curve of
this class of planets from transit observations gives us insight
into the prevailing conditions in the thermally emitting layer of
the planetary atmosphere.

By measuring the total infrared emission of a planetary system
at all points in a planet’s orbit and then subtracting the emission
of the star alone, the thermal phase curve of the planet can be
constructed. When a planet passes in front of its host star, the
primary eclipse is observed and a sharp reduction in light
intensity is recorded as the planet obscures part of the star. As
the observer is receiving both light from the star and light from
the planet, there is another smaller-amplitude secondary eclipse
as the planet goes behind the star and planetary emission and
reflected light are blocked by the star. The amplitude of the curve
can allow us to measure the day–night temperature difference;
the peak of the phase curve relative to the secondary eclipse
gives us information of the hottest face of the planet. In general
this is not the same as the face receiving the most stellar
insolation; for example, the phase curve of 55 Cancri e, a hot
super-Earth in a close orbit, shows 41°±12° eastward offset of
the hot spot from the substellar point (Demory et al. 2016). To
help in understanding such phase curves, it is often assumed that,
because of the strong tidal forces exerted by the host star, close-
in exoplanets should be tidally locked to the host star, and much
research has naturally focused on their properties. Thus, an
analytic theory for the day–night temperature difference on
tidally locked hot Jupiters has been developed (Perez-Becker
& Showman 2013), and, developing the ideas of hot Jupiter
heat distribution further, Zhang & Showman (2017, their
Appendix B) provided a theoretical model for the thermal phase
curve shift, demonstrating with the use of a GCM that for planets
with a superrotating equatorial jet the hot spot offset can be
parameterized by the ratio of radiative to zonal-jet advective
timescales.
However, thermal tides in an atmosphere can, in some cases,

be strong enough to force a planet out of a synchronous rotation;
this effect is seen in the case of Venus’s slow retrograde rotation
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(Ingersoll & Dobrovolskis 1978; Dobrovolskis 1980). Further-

more, recent GCM simulations (Leconte et al. 2015) demonstrate

that while tidal frictional forces slow the rotation rate of a planet,

as orbital radius increases, a thin atmosphere of merely 1 bar is

sufficient to generate thermal tides strong enough to maintain a
planet out of synchronous rotation. Also, although many planets

may be evolving toward a tidally locked state, they may not yet

be there. For all these reasons, the assumption that a rocky

terrestrial planet closely orbiting a low-mass star is tidally locked

may not always be valid, and as our detection methods improve

and we resolve planets in wider orbits, we may discover planets

that escape tidal locking altogether, like Earth. Certainly, for

large orbital radius the rotational rate of the planet may be

essentially independent of the orbital period and primarily

influenced by other factors such as the way the planet was

formed, satellites, or other nearby planets and stars.
In any planet that is not tidally locked the solar forcing will

appear, in the frame of reference of the planet’s surface, to be

moving, and this problem has been much less extensively

studied than the tidally locked counterpart, albeit with some

exceptions—notably the “moving-flame” rotating-tank labora-

tory experiments of Schubert & Whitehead (1969) and the

linearized shallow water study of Kato & Matsuda (1994). In

the latter, by varying the Lamb parameter a gH4 2 2 = W , the

strength of drag forces, and the velocity of the moving forcing,

the authors classified the steady-state solutions into four

categories: direct circulation between the day and night

hemispheres, “Gill pattern” circulations, zonally symmetric

flow, and finally a mode of resonant inertio-gravity waves. To a

large extent, the roles of drag and of rotation were found to be

interchangeable in the linear model, with the same flow

patterns emerging under fast rotation/high drag as for slow

rotation/low drag. The circulation regime observed in the

shallow water system with mobile forcing has a stronger

dependence on the frictional timescale than the radiative

timescale; the simplifying assumption chosen by Gill (1980)

and Matsuno (1966)—that Rayleigh friction and Newtonian

cooling timescales are equal—was shown to be appropriate

when the timescales are of the same orders of magnitude

(Kato 1997).
In this paper we further examine the consequences of

nontidal locking, and we specifically address the question of

how relaxing the assumption of tidal locking on a terrestrial

exoplanet affects the observed phase curve. As with a number

of earlier studies (e.g., Cho et al. 2003; Showman &

Polvani 2011, as well as those cited above), we use a shallow

water model, allowing us to unpack cause and effect in a way

that is not possible in more complex GCMs with parameter-

ized physics. Specifically, we adopt a similar model to Kato

(1997), extending it to an examination of the full nonlinear

equations on the sphere and a larger parameter range of

forcing velocity, moving both in a prograde and retrograde

direction, using the Matsuno–Gill approximation of equal
timescales for both radiative cooling and fictional drag. In the

case of a slowly moving forcing and slowly rotating planet,

the results are interpreted using a one-dimensional linearized

model along the equator, where we derive an analytic form for

the amplitude and offset of the phase curve. The outline of

the paper is as follows. In Section 2 we introduce the model

itself, the parameters we use, and the method of solution. In

Section 3 we describe the results, in Section 4 we discuss and

interpret those results, and in Section 5 we give some
concluding remarks.

2. Model

Starting with the primitive equations and expanding the
vertical structure into normal modes of height, we can derive a
set of horizontal shallow water equations with an associated
equivalent depthH (e.g., Vallis 2017; Schubert &Masarik 2006).
Here we examine the first baroclinic mode, that is, the first
vertical mode deviating from the barotropic mean.
We use a single layer shallow water model

u
u u f u

u

t
g h , 1

dragt
¶
¶
+  + ´ = -  -· ( )

u
h

t
h

h h
, 2

eq

radt
¶
¶
+  =

-
· ( ) ( )

where u is the horizontal velocity, f k2 sinf= W ˆ is the

Coriolis vector, g is the gravitational acceleration, and dragt and

radt are Rayleigh frictional drag and Newtonian radiative

cooling timescales, respectively. The equations are considered

on the surface of a sphere, with a spherical coordinate system

of latitude, f, and longitude, λ. The height of the fluid layer in

this model is a proxy to temperature—a thickening of the layer

corresponding to a higher temperature in the upper troposphere

and thus higher emission temperature (Figure 1).
The equations are forced by a relaxation to an equilibrium

profile heq, the height field corresponding to radiative equilibrium

h t H h, , cos max cos , 0 , 3eq 0l f f l l= + D -( ) ( ( )) ( )

parameterized by the substellar longitude 0l (Figure 2). H is the

reference fluid height in the absence of stellar forcing. In this

choice of forcing we are implying zero obliquity, eccentricity,

and procession. Rayleigh drag is employed as an approx-

imation to the large- and small-scale dissipative effects in the

atmosphere, while Newtonian cooling is employed to approx-

imate the radiative loss of heat to space. Quantifying the

appropriate value for the drag coefficients in the first baroclinic

mode is not a simple problem. Qualitatively, however,

Rayleigh drag can be considered as a linear approximation to

the sum of dissipative forces that affect the large-scale

Figure 1. Equilibrium profile heq represents the heating effect as a thickening

of the geopotential of the upper atmosphere. Where the stellar insolation
irradiates the dayside of the planet, the geopotential gh is forced toward a
deeper equilibrium depth. The rate at which the geopotential is forced toward
the equilibrium profile is determined by the radiative cooling timescale radt .
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circulation. This will vary significantly for different species of

planets; for example, terrestrial atmospheres have an under-

lying solid surface, inducing a solid-body drag on the

atmosphere. In comparison, the observed weather layer of a

gas giant that sits on a freely evolving gaseous deep layer will

experience less surface drag and may exhibit considerably

longer timescales of momentum dissipation as a result. To

constrain the problem to a manageable parameter space, in this

study we set the values of rad dragt t t= = . As has been

discussed elsewhere (Kato 1997; Showman & Polvani 2011),

the true ratio of these timescales in an exoplanet atmosphere

may be significantly different; future work will be to extend the

study to varying these parameters independently.
On a tidally locked exoplanet, the substellar point 0l remains

fixed in longitude. However, for an asynchronously rotating
planet with zero obliquity and eccentricity the substellar point
will travel along the equator with constant velocity, inducing a
regular planetary diurnal cycle. The diurnal period on a planet
is given by the difference between rotation rate and orbital rate

P
2

, 4sol
p

=
G - W

( )

where Γ is the orbital rate of the planet, P2 orbpG = for orbital

period Porb. The length of a stellar day on a planet is then

PTsol sol= ∣ ∣. The sign of Psol is important for determining the

longitude of the substellar point and its direction of travel

across the planet. At time t, the substellar point is located at

longitude

t
t

P
t2 . 50

sol

l p= = G - W( ) ( ) ( )

For Earth, which has positive 0W > G >Å Å (anticlockwise

rotation/orbit when viewed from the north pole), the subsolar

point tracks east–west across the surface of the planet,

i.e., d dt 00l < .
While the ratio of orbital to planetary rotation rates

determines whether a planet is in synchronous or asynchronous
rotation, from an atmospheric dynamics perspective and in the
context of our shallow water model, we are concerned only
with the manifestation of this rate differential: the length of the
diurnal cycle and the velocity of the substellar point as it
traverses the planetary surface.

The nondispersive Kelvin wave speed c gH= determines
the maximal information velocity in the shallow water equations
and provides a natural velocity scaling for the system. Let x0 be

the location along the equator, in m, of the substellar point from
the origin. Then x a0 0l= , where a is the radius of the planet,
here fixed at a 6371 km= . Substituting x0 into Equation (5)
and taking the time derivative, we obtain the velocity of the
substellar point (denoted s)

s
dx

dt
a c. 6

0 a= = G - W º( ) ( )

We define the nondimensional parameter s ca = , which will

be varied in our numerical simulations to set the velocity of the

substellar point in terms of the wave speed of the shallow water

layer. In this parameter scheme, 0a = for a tidally locked

planet. When 0a < , the substellar point moves retrograde (as

on Earth), and when 0a > , it is prograde, moving west to east

in the direction of planetary rotation.
Lastly, we introduce a new longitudinal coordinate with

origin at the substellar point c a tx l a= - ( ) , so that the
equations solved numerically are
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The model is parameterized by the nightside relaxation height

H, dayside forcing scale hD , rotation rate Ω, substellar velocity

ca , and frictional timescale τ.
Experiments were performed using a small-scale

( h H0.1D = ) and large-scale ( h HD = ) forcing. The final
steady-state solutions, normalized to the scale of hD , are
quantitatively similar for both large and small values of h;D all
results presented below are from the h H0.1D = experiments.
Equations (7)–(10) were integrated numerically using a

pseudospectral core at T85 (128× 256 in latitude–longitude)
resolution. To maintain numerical stability, a weak fourth-order
hyperdiffusivity term is included in both the vorticity and
divergence prognostic equations.

3. Results

A parameter sweep varying planetary rotation rate, Ω, from
1 10 s7 1´ - - to 5 10 s4 1´ - - and α from −2 to 2 was
performed. For a given value of Ω and α, the numerical model
described above was initialized in a quiescent state and
integrated forward in time until the solution converged to a
steady state in the ,x f( ) reference frame. We define a

planetary Rossby number gH aRo = W( ), which is the ratio

of the deformation radius L gHd = W to planetary radius a.
Associated with this, we define a timescale of global wave
propagation a gHwavet = .
Figure 3 shows steady states obtained by varying substellar

velocity and planetary rotation rate. From top to bottom, three
representative cases of Ω are given in the rows of slow
(Ro 15 ), medium (Ro 1.5 ), and fast (Ro 0.15 ) planetary
rotation. The central column, 0a = , corresponds to a tidally
locked planet with increasing rotation rate. Qualitatively, the

Figure 2. Contours of the equilibrium profile heq. It is stationary in latitude f

and substellar longitude ξ with chines at 2p corresponding to the dawn and
dusk terminators.
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tidally locked steady-state solutions in the central column appear

similar in structure to both the original work of Gill (1980) (in

the fast rotating case) and previously published tidally locked

shallow water (Showman & Polvani 2010) and hydrostatic three-

dimensional GCMs (e.g., Komacek & Showman (2016)).
For the slowly rotating system ( 3 10 s7 1W = ´ - - , top row)

planetary Rossby number is large and substellar velocity small,

drag forces balance the pressure gradient and geopotential
largely relaxes to the forcing profile. When the substellar point

is moving slowly in either a prograde or a retrograde direction

( 1a <∣ ∣ ), the maximum height perturbation can be seen to be

leading ahead of the substellar point. In the rapid rotating case

( 300 10 s7 1W = ´ - - , bottom row) Rossby number is small
and we observe a large influence of the differential rotation rate

between equator and midlatitudes; the geopotential anomalies

are centered away from the equator and have character similar

to the classic “Matsuno–Gill” pattern described by Matsuno

(1966) and Gill (1980).
In the extreme left and right columns the substellar point is

moving faster than the gravity wave speed; the geopotential

response can be seen to be lagging behind the motion of the
forcing, the peak at stasis downstream of the substellar point.

When the planet is rotating slower than a critical rate (top and

middle rows), the hottest point on the planet remains on the

equator and ahead of the substellar point, whether it is moving

prograde or retrograde. At the critical rotation rate the character
of the solution transitions into the Matsuno–Gill regime: the

hottest point splits into two and moves into a meridionally

symmetric pattern in the tropics. These are Rossby gyres,
equatorially trapped Rossby waves, propagating westward and
damped by the radiative and frictional forces introduced over
timescale τ.

3.1. Phase Curves

When observing a spherical planet from a distance, we see
only a single hemisphere at any one time. The total thermal
emission from the hemisphere is received as a single point
reading; as a planet orbits its host star, we can observe different
hemispheres and record different temperatures—once done for
all angles in the orbit, the thermal phase curve can be
calculated. With fluid height representing atmosphere geopo-
tential thickness—a proxy to temperature—we can calculate an
“emission phase curve” from the shallow water model by
performing disk integrals of the height field

I a h d d, cos cos , 11
2

2

2

2
2 2ò òd l f l f f l=

d p

d p

p

p

-

+

-
( ) ( ) ( )

where δ is the observational zenith longitude. The cos cosl f
factor comes from the projection of the curved surface of the

planet onto a flat observational disk-emission received is

proportional to the distance from the center of the disk.
The phase curve is normalized over the range of the

equilibrium profile, heq, by calculating the dayside and
nightside temperatures that the model is being forced toward.
Considering the the day (cos 0x ) and night (cos 0x < )

Figure 3. Steady-state solutions for varying Ω and α. Geopotential is shown in filled colored contours, rescaled for maximal contrast (each color map has a different
scale). White contour lines indicate the shape and position of the forcing, h ;eq the location and the direction of the substellar point at ( 0x = , 0f = ) are denoted by a

white arrowhead. Columns show experiments with increasing values of α, varying subsolar velocity from c2- ( 2a = - ) to c2 ( 2a = ). Rows from top to bottom

demonstrate increasing planetary rotation rate for three representative cases of slow, intermediate, and fast rotation. gH 1000 m s2 2= - , 5 dayst = .
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branches of Equation (9), we calculate bounds on the equilibrium
phase curve

I a H d d a Hcos cos , 12night,eq
2
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2 2 2ò ò f l f l p= =

p

p

p

p

- -
( )
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The normalized phase curve function is then given by
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where observational zenith longitude, δ, is relative to the

substellar point.
Normalized phase curves were calculated for the steady-state

solutions for the simulations varying both Ω and α. Figure 4
shows the height field h and the corresponding normalized
phase curve of three tidally locked ( 0a = ) runs with
increasing Ω. In the tidally locked case forcing is stationary
in both λ and ξ and the effect of increasing rotation rate is
isolated.

In the slowest-rotating case ( 3 10 s7 1W = ´ - - ) planetary-
scale divergent flow, damped over timescale τ, balances the
height gradient. Day–night temperature differences are mini-
mal; this response is similar to the weak temperature gradient
(WTG) solution of Bretherton & Sobel (2003) over a planetary
scale and the direct day–night circulation observed by Kato &
Matsuda (1994). The amplitude of the phase curve is small,
with a prograde offset induced in the tidally locked configura-
tion by a small-amplitude trapped-Kelvin wave.

As Ω increases, the Rossby deformation radius, Ld, decreases
and flow becomes dominated by rotational effects. In the
integrated phase curve, the change in character of the solution
results in a shift in the maximum from an easterly to westerly

offset from the substellar point—the contribution from trapped
Rossby waves in the subtropics to the west of the substellar
point becomes the major feature of the geopotential field. With
faster rotation the flow becomes more geostrophic; the
amplitude of the phase curve increases as a larger Coriolis
force balances a larger temperature gradient.
For the parameter space varying Ω and α we consider the

offset of the integrated phase curve from the substellar point.
The phase curve offset is defined as the longitudinal distance of
the maximum of the phase curve from the center of the forcing
function (Figure 5). Figure 6 shows the magnitude of the offset
for increasing substellar velocity, s, at increasing rotation rates.
In the slowly rotating limit, offsets converge to a curved

profile (see 1, 3, 10 10 s7 1W = ´ - - lines in Figure 6), with
the hot spot preceding the substellar point with a peak at

1 2a ∣ ∣ before lagging once 3 2a >∣ ∣ . In the fast-rotation
case, the hot spot lags behind the substellar point in all but the
slowest retrograde substellar motion.
For prograde substellar motion, 0 1 a , there is a smooth

transition from a leading to lagging hot spot as planetary rotation
rate increases. The fifth and sixth columns of Figure 3 show
corresponding global geopotential profiles—as the Ro number
decreases, the column planetary waves become more apparent in
the steady state and the latitudinally integrated peak response

Figure 4. Steady-state solutions for tidally locked ( 0a = ) forcing at increasing planetary rotation rate, with corresponding integrated phase curves. This subset
corresponds to a transpose of the central column of Figure 3. Lower panel surface plots show, as in Figure 3, heq in white contours and the steady-state h in the (ξ, f)

reference frame. Corresponding normalized phase curves are shown in the top panel for the steady-state height field h (red line) and the equilibrium field heq (gray

line). gH 1000 m s2 2= - , 5 dayst = .

Figure 5. Example normalized phase curve of the equilibrium profile heq (gray

line) and a steady-state height field (red line). The phase curve offset is the
longitudinal distance from the center of the forcing to the maximum of the
integrated phase curve, marked above.
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moves from being prograde (leading) to retrograde (lagging) the
substellar point.

Compare this to retrograde substellar motion, 1 0 a- < ,
where the offsets in fast- and slow-rotating experiments
separate into two distinct solutions. The prograde propagating
Kelvin waves and gravity waves move eastward with wave
speed c gH , while the wavenumber-1 westward-propagat-
ing planetary wave travels at 1/3 the velocity of the Kelvin
wave (Gill 1980). On slowly rotating planets (Ro 1 ) the
deformation radius is larger than the scale of forcing, and thus
planetary waves are not observed—the Coriolis gradient is
insufficient to support them. However, on fast-rotating planets
where planetary waves do occur, the difference in velocity of
the two wave modes results in phase curve offsets that are
distinct for a substellar point that propagates to the east or west.
For fast rotation with a stationary forcing the Rossby gyres lie
west of the center of the substellar point and the integrated
phase curve has a westerly offset. When the substellar point is
moving slowly retrograde ( 1 3 0a- < < ), the westerly offset
is maintained, but as the speed of the substellar point increases
beyond this, the planetary waves lag behind the forcing.

Figure 7 shows the steady-state geopotential and phase curves
for 0, 0.1, 0.5a = - - in a fast-rotating system, the Rossby
gyres clearly shifting from leading to lagging the substellar
point as retrograde substellar motion increases.
When the substellar point is moving prograde, the impact of

the planetary waves on the phase curve is less pronounced. As the
substellar prograde velocity transitions to being faster than the
Rossby wave group speed, the gyres become progressively more
longitudinally smoothed out across the domain, damped by the
radiative cooling process (see lower right of Figure 3). At high
eastward substellar velocity, 1 3a > , the hot spot returns to
being on the equator; the adjustment to balancing the moving
forcing dominates over the rotational dynamics. These results may
be compared with those of the slowly rotating experiments where
the deformation radius is larger than the scale of forcing and
planetary waves are not observed.

3.2. The Effect of Rayleigh and Newtonian Damping

In our dimensional results presented above we have made a
choice of Earth-like values 5 dayst = , gH 1000 m s2 2= - ,

Figure 6. Phase curve offset for varying substellar velocity. Increasing brightness lines show the magnitude of offset as rotation rate Ω is increased from1 10 s7 1´ - -

to 5 10 s4 1´ - - . The phase curve offset is measured from the substellar point at 0x = . The point at which the substellar point is moving at Kelvin wave speed,

c gH= ( 1a = ), in either the prograde and retrograde direction, is marked with a vertical line. Shaded regions mark where the hot spot lags behind the substellar

point, i.e., if the substellar point is moving in a prograde direction, 0l velocity 0> , the hot spot offset is negative. gH 1000 m s2 2= - , 5 days.t =

Figure 7. Steady-state geopotential and integrated phase curves of fast rotation and slow westward forcing propagation. The initially westward offset of the Rossby

gyres when 0.5a <∣ ∣ becomes eastward once the forcing speed becomes faster than the planetary wave speed. 300 10 s7 1W = ´ - - , gH 10 m s 1= - , 5 dayst = .
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and a 6317 km= . In studying exoplanets, we wish to expand
our investigation beyond the parameter regime of Earth, and so
we now consider varying both τ and H. Here we will show that
it is the nondimensional frictional timescale wavet t that
determines the influence of frictional forces on the offset of the
phase curve. Maintaining a constant τ and reducing fluid depth
H, hence slowing the wave speed in the system and decreasing

wavet t , means stronger damping relative to the wave motion
and thus a reduction in the magnitude of the hot spot offset
(Figure 8). If the frictional/radiative damping is scaled in
proportion, keeping wavet t constant and varying fluid height
H, an equivalent response is observed for the same Rossby
number (Figure 9).

Here we show for comparison the effect of varying H on the
offset of a tidally locked system; however, the qualitative
results extend to the full range of α values shown in Figure 6—
as wavet t gets smaller, the phase curve offset becomes smaller.
Shorter frictional timescales mean stronger relaxation toward
the forcing and stronger damping of advective fluid velocity,
resulting in a steady-state height field that is phase-aligned with
the forcing. The constancy of results for constant Ro and

wavet t shows that it is the scale of the frictional forces relative
to the wave speed of the atmosphere that influences the
observed phase curve, not the absolute value.

3.3. Substellar-motion-induced Offset in
the Slow Rotating Limit

To understand the offset in the slow limit, we can consider
an even simpler model, one that captures the fundamental
behavior of the hot spot preceding the motion of the substellar
point.
Consider the one-dimensional, nonrotating shallow water

equations linearized about a basic state u u0= + ¢, h =
H h+ ¢ and with a simple forcing analogous to Equation (9):

u

t
g

h

x
0, 16

¶ ¢
¶

+
¶ ¢
¶

= ( )

h

t
H

u

x

h h
, 17

eq

t
¶ ¢
¶

+
¶ ¢
¶

=
- ¢

( )

h h x stcos , 18eq = D -( ) ( )

where s is the speed of propagation of the forcing and hD is the

scale of a sinusoidal forcing. We do not include a Rayleigh

frictional term in the velocity evolution equation, as here we

intend to isolate the effect of the moving forcing from the other

balancing forces present in the system. This is equivalent to

taking a view along the equator of a nonrotating planet

Figure 8. Tidally locked hot spot offset with varying fluid depth and constant 5 dayst = , as a function of inverse planetary Rossby number. The curves show results
for different fluid depths, gH, with a constant frictional timescale 5 dayst = , such that the ratio wavet t increases with increasing fluid depth. As wavet t increases,
the magnitude of the tidally locked hot spot offset increases and the transition from eastward to westward offset occurs at a slower rotation rate, that is, at a smaller
inverse planetary Rossby number. Compare to Figure 9, where the ratio wavet t is kept constant at a value of 2.1.

Figure 9. Tidally locked hot spot offset with varying fluid depth and constant 2.1wavet t = as a function of inverse planetary Rossby number. The various curves

show results with different fluid depths, gH, but with drag timescale ratio kept constant, 2.1wavet t = (using gH 1000 m s2 2= - , 5 dayst = as a reference; black
line). The hot spot offset observed is consistent across all experiments with the same inverse planetary Rossby number.
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modeled by Equations (7)–(10). Since f 0= and the equations

are symmetric in latitude, at the equator y 0¶ ¶ º and we can

reduce the problem to the one-dimensional case. For simplicity

of exposition, here we use a full cosine wave rather than the

slightly more complex h x stmax cos , 0eq = -( ( ) ) that would

be a true one-dimensional equivalent to Equation (9).

Numerical modeling of this half-cosine wave one-dimensional

forcing provided offset results almost identical to the analytic

solution—see Figure 10 for comparison.
As for the rotating two-dimensional system, we again

introduce a coordinate system that moves with the forcing.
Defining x stx = - , we can consider the steady-state solutions
of Equations (16)–(17). Using the transform identities

x

d

d t
s
d

d
, 19

x x
¶
¶


¶
¶
 - ( )

and upon dropping primes, Equations (16)–(17) become

ordinary differential equations

s
du

d
g
dh

d
0, 20

x x
- + = ( )

s
dh

d
H
du

d

h hcos
0, 21

x x
x

t t
- + -

D
+ = ( )

that can be combined to give a single expression for h,

gH

s
s
dh

d

h h cos
0. 22

x t
x

t
- + -

D
=⎜ ⎟

⎛

⎝

⎞

⎠
( )

Using the same gravity wave speed established in the two-

dimensional case, c gH= , we write Equation (22) as

c s

s

dh

d

h h cos
0, 23

2 2

x t
x

t
-

+ -
D

=
( )

( )

which can be solved using an integration factor I ea= x, with

a s c s2 2t= -( ( )), to obtain an analytic solution

h
ha a

a

cos sin

1
. 24

2
x

x x
=
D +

+
( )

( )
( )

The one-dimensional peak offset px can be found from the

inflection point, where 0
dh

d px =
x

( ) . Taking the derivative of

Equation (24),

dh

d

ha a

a

cos sin

1
, 25

2x
x x

=
D -

+
( )

( )

and equating to zero, we can obtain an analytic solution for the

peak offset in the one-dimensional case,

a sin cos , 26p px x= ( )

c s

s
arctan . 27p

2 2

x
t

=
-⎛

⎝
⎜

⎞

⎠
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( )
( )

Figure 10 shows the peak offset given by Equation (27) as a
function of forcing velocity s, as well as numerical solutions of
the one-dimensional system using a nonsmooth forcing and
with nondimensional terms and a Rayleigh drag term included
on the zonal velocity. When the forcing is slow moving
( s c∣ ∣ ), the height field peaks ahead of the forcing by a factor
of 2p (since xarctan 2p ( ) as x  ¥), smoothly
transitioning to a lagging phase as forcing speed exceeds wave
speed. The lagging offset observed from a very fast moving
substellar point will also tend to a limit of 2p when
s c  . At s=0 there appears to be a sharp discontinuity in

the location of the peak as it transitions from a westward- to
eastward-propagating forcing. This discontinuity is not
observed; in the linear model the amplitude of the steady-state
fluid height goes to zero in the tidally locked case, as is clear
from Equation (24), where coefficient a 0 as s 0 . In our
more complex model that retains the nonlinear terms and
includes a Rayleigh drag term, the transition through the tidally
locked state is smooth, as shown in Figure 10. This can be
compared to the slowly rotating two-dimensional offsets in
Figure 6.

4. Discussion and Interpretation

4.1. Dynamical Balances

A gradient in the height field can only be maintained by
balancing forces, and by considering these balances, we can
interpret the results. In the linearized form of Equation (1), and
at steady state in the coordinate frame (f, ξ) (using Equation
(10) to perform a change of coordinates), we see that a gradient
in the height field could be maintained by three sources, being
the left-hand side terms of the momentum equation

u
f u

us

a
gh. 28

x t
-

¶
¶

+ ´ + = - ( )

Depending on the parameter regime, defined by planetary
Rossby number gH aRo = W , substellar velocity s, and the
influence of frictional forces wavet t , we consider the case
where each of the terms on the left is the dominant balancing
force.

Figure 10. Analytic and numerical phase curve offset in a one-dimensional
shallow water model. The thick black line is the analytic offset given by
Equation (27). The red line shows the numerical integration of Equations
(16)–(17) with h max cos , 0eq x= ( ), reducing the the amplitude of offset

compared to the full cosine forcing. When nonlinear terms and Rayleigh drag
are additionally included (green line), the velocity of zero offset becomes faster
than linear wave speed and the transition through the origin is smoothed,
producing a response that approximates the results of the slowly rotating
nonlinear two-dimensional model in Figure 6.
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1. Geostrophic balance: the gradient in height is maintained
by the Coriolis force

f u gh. 29´ = - ( )

In fast-rotating systems, Ro 1 , this balance will
dominate the flow. Figure 9 shows the onset of
geostrophic balance in the tidally locked case—as
Ro 11 >- , the influence of Rossby gyres moves the
offset westward of the forcing.

2. Frictional balance: the gradient is balanced by drag forces

u
gh. 30

t
= - ( )

As wavet t becomes smaller, this becomes the dominant
balance. Strong damping of the velocity field prevents
redistribution of momentum around the domain, and the
steady-state height field becomes phase-aligned with the
forcing, reducing the offset created by both Kelvin and
Rossby waves (Figure 8).

3. Dynamical balance: the gradient is balanced by motion in
the forcing

us

a
gh. 31

x
-

¶
¶

= - ( )

Most evident in slowly rotating planets (Ro 1 ), the
dynamical balance introduced by a moving forcing can
dominate the phase offset when s c<∣ ∣ . In this regime the
hot spot can precede the motion of the substellar point,
and the height field will be up to 2p out of phase with
the forcing to establish a steady-state solution
(Figure 10).

4.2. Celestial Mechanics

In the construction of the model, we divorced the motion of
the substellar point from the celestial mechanics that induce the
diurnal cycle; now here we would like to bring the results back
into the context of an orbiting exoplanet. Whether the substellar
point moves in a prograde or retrograde direction relative to
planetary rotation depends on both the direction and magnitude
of the rotation rate, Ω, and orbital rate, Γ, as given in
Equation (6).

Figures 11(a) and (b) are transformations of Figure 6,
showing the hot spot offset predicted by the model for an
observed exoplanet where the orbital rate is derived from
Equation (6),

c

a
. 32

a
G = - W ( )

Figure 11(c) maps the substellar point velocity over the (Ω,
Γ) parameter space; speed increases away from the tidally
locked diagonal where W = G. When the planet rotates in the
opposite direction to its orbit, the substellar motion is always
retrograde (regions A); when the planet and orbit move in the
same direction, there are two possible regimes. If the planet is
rotating faster than its orbital rate (regions B), then here too the
substellar point moves retrograde to the planetary rotation. This
is the regime in which Earth lies, 0W > G >Å Å , such that the
Sun appears to rise in the east and set in the west. Only when
G > W∣ ∣ ∣ ∣ and 0WG > (regions C) will the substellar point
move in the same direction as the rotation of the planet.

In this study, by varying α and with 0W > , we have
considered only the right-half plane of Figure 11(c). Due to the

longitudinal symmetry of Equations (7)–(10), the same
dynamics will hold true for planets rotating in the other
direction, appropriately reflected in the longitudinal direction to
account for the reversal of direction of the Coriolis vector, and
we can use our results to fill this space also, as shown in
Figure 11(d).
Using transit detections and the spin direction of the star, it

has been shown that we can constrain the direction and period
of the orbit of a planet (Queloz et al. 2000) and so calculate Γ.
The results presented above suggest that fully constraining the
rotation rate from a known orbital rate and the phase curve may
not be possible even when considering only a shallow water
model of the atmosphere, but some useful constraints never-
theless emerge. For example, as substellar velocity increases in
either direction over the planet, the hot spot tends to a lagging
limit. For exoplanets that exhibit very large hot spot offsets and
lie outside an orbital radius of certain tidal locking, it may be
possible to constrain the direction of rotation from the phase
curve offset. But for planets that are tidally locked or nearly
locked, as described for Figure 6 above, the hot spot can
potentially lie east or west of the substellar point. Thus,
zooming in around a gH 2G = on Figure 11(a), an observed
offset of 10°E (shown as a red contour on the figure) could be
attributed to three different rotation rates (Figure 12). However,
at this orbital and rotation rate the model does predict that a
tidally locked planet should have a small westward phase curve
offset, so although such an observation may not provide a tight
constraint on rotation rate, it can tell us that the planet is not
tidally locked.
As a sketch application of the theory, we could consider HD

189733b—an exoplanet with orbital period 3.28 10 s5 1G = ´ - -

and radius a 81,400 km= . Given a typical hot-Jupiter scale

height of gH 2 km s 1= - (Perez-Becker & Showman 2013),

this would provide a nondimensional orbital rate a gH 1.3G  .
Examining the map shown in Figure 11(a), the 16°E hot spot
offset observed for HD 189733b (Knutson et al. 2007) could
indeed be attributed to a nontidally locked configuration, with a
rotation rate that is either slightly faster or slower than the orbital
rate. With this sketch comes a significant number of cautionary
clauses—this assumes that frictional timescales are well defined,
and only considers the first baroclinic mode of the atmosphere,
without representation of superrotation, etc.
The model can also be considered with Earth’s orbital

parameters of a 1-day rotation period and 365-day orbital
period. Due to the relatively fast rotation rate of Earth, this
corresponds to a substellar velocity of 465 ms 1~- - , far faster
than the gravity wave speed of 30 ms 1~ - in the troposphere,
and puts Earth well off the left limit of the abscissa of Figure 6,
where the hot spot tends to a lagging limit. At this extreme

16a - ratio, and with an atmospheric radiative cooling
timescale of several days, the lag in the hottest time of day on
Earth from midday of approximately 3 hr (equivalent to 45°E)

is being strongly modulated by the thermal inertia of the
surface.
The magnitude of phase curve offset in the shallow water

model is highly dependent on the damping timescale wavet t
and the atmospheric wave speed gH . These parameters have
analogues in more complex three-dimensional treatments of a
planetary atmosphere—frictional diffusivity, thermal radiation
to space, and the Brünt–Vaisalla frequency. The properties of
the fluid will vary greatly depending on the chemical
composition and scale height of the atmosphere and are not
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easily determined from remote observations. Spectroscopic

measurement of atmospheric mass and composition could lead

to tighter constraints on the radiative timescale of an exoplanet

atmosphere, and potentially the scale height also, from which a
ratio could be established and inference made.

5. Conclusions

We have used a shallow water model to demonstrate that the
large-scale dynamics of exoplanetary atmospheres are sensitive
to both the rotation rate of the planet and the length of its
diurnal cycle. When considering this from the view of an
observer, these changes are manifested in the peak of the
thermal phase curve being offset from the point of maximal
stellar insolation. Even in the simplest case of a tidally locked
planet, the peak of the observed phase curve can be either east
or west of the substellar point, depending on the rotation rate
and scale height of the atmosphere, as has been previously
demonstrated. When the substellar point is moving across the
atmosphere of a planet, the effect on the atmospheric dynamics
additionally depends on the speed of the motion of the forcing

Figure 11. Regime diagrams of substellar point velocity and hot spot offset as a function of orbital rate, Γ, and rotation rate, Ω. A planet is tidally locked whenW = G—
marked by a black line along the diagonal. The top panels show the hot spot offset given by the shallow water model in either the reference frame of (a) prograde/
retrograde offset, relative to the rotation vector, or (b) leading/lagging offset, relative to the motion of the substellar point. Panel (c) plots substellar point velocity from
Equation (6). Panel (d) shows the hot spot location, relative to the substellar point, for the complete ,W G( ) space. The zero contour, when the hot spot is at the substellar
point, is shown with the dashed black line in panels (a), (b), and (d). Empty regions far from the diagonal are outside the range of substellar velocities tested.

Figure 12. Blow-up of Figure 11(a) around a gH 2G = . Given an observed

orbital rate a gH 2G = and phase curve offset of 10°E (red contour), the

shallow water model provides three possible rotation rates (vertical black
dotted lines).
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at the equator, s, compared with the internal wave speed of the
atmosphere, c. When s c>∣ ∣ , the hottest point of the
atmosphere lags behind the substellar point; in the reference
frame of a fixed point in the atmosphere of the planet this
means that it gets hottest after midday, once the stellar zenith
has passed.

For planets with a long diurnal cycle where the substellar point
moves slowly over the surface, s c<∣ ∣ , the speed of substellar
motion has a dominant impact on the phase curve, and the peak
can be ahead of the stellar zenith—the hottest point of the day
would be in the morning, before the point of maximal stellar
irradiation. This is potentially a pertinent area of parameter space
for terrestrial exoplanets, and Venus falls into this regime.

Due to the degeneracy of multiple balancing forces at play in
the maintenance of a global temperature gradient, the shallow
water model does not provide a tight constraint on the rotation
rate of a planet from the phase curve offset, and the model also
omits a number of effects associated with stratification that will
likely modulate the dynamics and thermal profile. However,
Kelvin wave and Rossby wave dynamics are very robust
phenomena that carry over into a fully stratified atmosphere,
and understanding the effect of asynchronous rotation on the
large-scale dynamics in a simple model such as this will in any
case provide insight into the more complex atmospheric
circulations observed in three-dimensional GCMs.

Perhaps the most significant limitation of the shallow water
model is its omission of baroclinic instability, for in fast-
rotating systems baroclinic dynamics are likely to play a
significant role in heat redistribution. The one-layer model of
itself also does not exhibit the superrotation seen in the

1.5-layer shallow water model of Showman & Polvani (2010),
and advective transport by a superrotating jet may be a
significant effect. Studies of this and the use of a stratified
three-dimensional model are topics we hope to present in a
future publication.
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