THE THERMISTOR PROBLEM FOR CONDUCTIVITY WHICH VANISHES AT LARGE TEMPERATURE

By
XINFU CHEN AND AVNER FRIEDMAN
University of Minnesota, Minneapolis, Minnesota

Abstract

The thermistor problem is modeled as a coupled system of nonlinear elliptic equations. When the conductivity coefficient $\sigma(u)$ vanishes ($u=$ temperature) one of the equations becomes degenerate; this situation is considered in the present paper. We establish the existence of a weak solution and, under some special Dirichlet and Neumann boundary conditions, analyze the structure of the set $\{\sigma(u)=0\}$ and also prove uniqueness.

1. Introduction. A thermistor is an electric circuit device made of ceramic material whose electrical conductivity $\sigma(u)$ decreases several orders of magnitude as the temperature u increases beyond a critical temperature u^{*}. Denote by Ω the domain in \mathbb{R}^{N} occupied by the thermistor, by φ the electric potential, and by $k=k(u)$ the thermal conductivity. Then

$$
\begin{aligned}
& J=\text { electric current density }=-\sigma(u) \nabla \varphi \\
& q=\text { heat flux }=-k(u) \nabla u, \quad E=-\nabla \varphi=\text { electric field. }
\end{aligned}
$$

The conservation of current $\nabla \cdot J=0$ and of energy $\nabla \cdot q=J \cdot E$ can then be written in the form

$$
\begin{equation*}
\nabla(\sigma(u) \nabla \varphi)=0 \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla(k(u) \nabla u)=-\sigma(u) \nabla \varphi \cdot \nabla \varphi=-\nabla(\sigma(u) \varphi \nabla \varphi) \quad \text { in } \Omega \tag{a}
\end{equation*}
$$

where equation (1.1) was used in deriving the last equation in (1.1_{a}). Since $k(u)$ varies only slightly with u, we shall assume in the sequel that $k(u) \equiv 1$; all our results, however, extend to general $k=k(u)$. Equation (1.1 ${ }_{\mathrm{a}}$) then becomes

$$
\begin{equation*}
\nabla(\nabla u+\sigma(u) \varphi \nabla \varphi)=0 \quad \text { in } \Omega \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla^{2} u+\sigma(u)|\nabla \varphi|^{2}=0 \quad \text { in } \Omega \tag{1.3}
\end{equation*}
$$

For the physical background of the thermistor problem and some explicit solutions we refer to [1], [9], [10], [11], and the references therein. There has been recent
mathematical interest in the problem in case $\sigma(u)$ is uniformly positive; see [2], [3], [4], [7], [8]. Cimatti and Prodi in [2] and Cimatti in [3] considered the Dirichlet boundary conditions for both φ and u and proved existence of a solution. In [4] Cimatti extended the existence result to the case where

$$
\begin{gather*}
\varphi=\varphi^{0}, \quad u=u^{0} \quad \text { on } \Gamma_{D}, \quad \Gamma_{D} \subset \partial \Omega \\
\frac{\partial \varphi}{\partial n}=0, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \Gamma_{N}=\partial \Omega \backslash \bar{\Gamma}_{D} \tag{1.4}
\end{gather*}
$$

An important observation by Diesselhorst [5] that the function

$$
\begin{equation*}
\psi=\frac{1}{2} \varphi^{2}+\int_{0}^{u} \frac{d s}{\sigma(s)} \tag{1.5}
\end{equation*}
$$

satisfies the equation

$$
\begin{equation*}
\nabla(\sigma(u) \nabla \psi)=0 \quad \text { in } \Omega, \tag{1.6}
\end{equation*}
$$

plays a crucial role in the papers [3], [4].
In the special case

$$
\begin{align*}
& \Gamma_{D}=\Gamma_{1} \cup \Gamma_{2}, \quad \varphi=\varphi_{i}, \quad u=u_{i} \quad \text { on } \Gamma_{i}, \\
& \varphi_{i} \text { and } u_{i} \text { are constants and } \bar{\Gamma}_{1} \cap \bar{\Gamma}_{2}=\varnothing, \tag{1.7}\\
& \frac{\partial \varphi}{\partial n}=0, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \Gamma_{N} \equiv \partial \Omega \backslash \bar{\Gamma}_{D},
\end{align*}
$$

Cimatti also proved uniqueness; but, in general, uniqueness is still an open problem.
More recently Howison, Rodrigues, and Shillor [8] have extended the existence result to more general boundary conditions, such as

$$
\begin{gather*}
\varphi=\varphi^{0} \quad \text { on } \Gamma_{D}^{1}, \quad \frac{\partial \varphi}{\partial n}=0 \quad \text { on } \partial \Omega \backslash \overline{\Gamma_{D}^{1}}, \\
u=u^{0} \quad \text { on } \Gamma_{D}^{2}, \quad \frac{\partial u}{\partial n}+\gamma u=g_{0} \quad \text { on } \partial \Omega \backslash \overline{\Gamma_{D}^{2}} . \tag{1.8}
\end{gather*}
$$

In this paper we are interested in the case where $\sigma(u)$ vanishes for large u, i.e.,

$$
\begin{equation*}
\sigma(u)>0 \quad \text { if } u<u^{*}, \quad \sigma(u)=0 \quad \text { if } u>u^{*} \tag{1.9}
\end{equation*}
$$

for some constant u^{*}. This provides a good approximation to the actual engineering model of thermistors, whereby the conductivity $\sigma(u)$ drops to nearly 0 beyond some critical temperature u^{*}. We shall be working with the boundary conditions (1.4).

In Sec. 2 we approximate $\sigma(u)$ by a family of uniformly positive functions $\sigma_{\varepsilon}(u)$ and review the existence proof of a solution $\left(\varphi_{\varepsilon}, u_{\varepsilon}\right)$. We also derive a priori estimates independent of ε. In particular, we prove that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right)\right|^{\beta} \leq C \quad \text { if } \frac{1}{2(1-\alpha)}<\beta \leq 1 \tag{1.10}
\end{equation*}
$$

provided

$$
\begin{equation*}
\left|\sigma_{\varepsilon}^{\prime}(u)\right| \leq C\left(\left|u^{*}-u\right|^{-\alpha}+1\right), \quad \alpha \in\left(0, \frac{1}{2}\right) . \tag{1.11}
\end{equation*}
$$

In Sec. 3 we define the concept of a weak solution (φ, u) for (1.1), (1.2), (1.4) and prove that a subsequence of $\left(\varphi_{\varepsilon}, u_{\varepsilon}\right)$ converges to a weak solution.

In Sec. 4 we specialize to the boundary conditions (1.7) and prove additional properties of (φ, u). In particular, $\sigma(u(x))$ is a continuous function, the level surface

$$
S=\{x \in \Omega ; \sigma(u(x))=0\}
$$

is piecewise analytic (analytic if $N=2$), and $\varphi(x)$ is continuous in $\Omega \backslash S$ with jump discontinuity across S. We also prove uniqueness.

Finally, in Sec. 5 we consider special solutions with boundary conditions of the form (1.8) for which the set $\{\sigma(u(x))=0\}$ has nonempty interior.
2. The approximating problem. For simplicity we take $u^{*}=0$ in (1.9). We shall assume that

$$
\begin{array}{ll}
0<\sigma(u)<M & \text { if } u<0 \\
\sigma(u)=0 & \text { if } u>0, \tag{2.1}\\
\sigma \in C^{0}(-\infty, \infty)
\end{array}
$$

and

$$
\begin{gather*}
\sigma \in C^{1}(-\infty, 0) \\
\left|\sigma^{\prime}(u)\right| \leq M_{0}\left(1+|u|^{-\alpha}\right) \quad \text { if } u<0, \text { for some } \alpha \in\left(0, \frac{1}{2}\right) \tag{2.2}
\end{gather*}
$$

this implies that for $u<0$,

$$
\sigma(u) \leq c|u|^{\alpha^{\prime}}, \quad \alpha^{\prime}=(1-\alpha) \in\left(\frac{1}{2}, 1\right)
$$

We introduce a family of smooth functions $\sigma_{\varepsilon}(u)(0<\varepsilon<1)$ which approximate $\sigma(u)$ as $\varepsilon \rightarrow 0$, each uniformly positive:

$$
\begin{array}{ll}
\varepsilon \leq \sigma_{\varepsilon}(u) \leq 2 M \quad \forall u \\
\sigma_{\varepsilon}(u)=\varepsilon & \text { if } u>0, \quad \sigma_{\varepsilon} \in C^{\infty}(-\infty, \infty) \tag{2.3}
\end{array}
$$

and

$$
\begin{equation*}
\sigma_{\varepsilon}(u) \rightarrow \sigma(u) \text { as } \varepsilon \rightarrow 0, \text { uniformly in } u \text { in bounded intervals. } \tag{2.4}
\end{equation*}
$$

We also take the σ_{ε} to satisfy

$$
\begin{equation*}
\left|\sigma_{\varepsilon}^{\prime}(u)\right| \leq 2 M_{0}\left(1+|u|^{-\alpha}\right) \quad \forall u \tag{2.5}
\end{equation*}
$$

with the same α as in (2.2).
We assume that $\partial \Omega$ is piecewise $C^{1+\delta}$ for some $0<\delta<1$, and that $\partial \Gamma_{D}$ is piecewise $C^{1+\delta}$. We also assume that the boundary data φ^{0}, u^{0} can be extended into Ω so that

$$
\begin{array}{ll}
\left\|\varphi^{0}\right\|_{L^{\infty}(\Omega)}<\infty, & \int_{\Omega}\left|\nabla \varphi^{0}\right|^{2}<\infty \\
\left\|u^{0}\right\|_{L^{\infty}(\Omega)}<\infty, & \int_{\Omega}\left|\nabla u^{0}\right|^{2}<\infty \tag{2.7}
\end{array}
$$

Finally we assume that $\left.u^{0}\right|_{\Gamma_{D}}$ is smaller than the critical temperature $u^{*}(=0)$, i.e.,

$$
\begin{equation*}
\left.u^{0}\right|_{\Gamma_{D}} \leq-c_{*}<0 \tag{2.8}
\end{equation*}
$$

If we choose the extension of $\left.u^{0}\right|_{\Gamma_{D}}$ to be such that

$$
\begin{equation*}
\Delta u^{0}=0 \quad \text { in } \Omega, \quad \frac{\partial u^{0}}{\partial n}=0 \quad \text { on } \Gamma_{N} \tag{2.9}
\end{equation*}
$$

then (2.7) is of course again satisfied and further, by the maximum principle,

$$
\begin{equation*}
u^{0} \leq-c_{*}<0 \quad \text { in } \bar{\Omega} \tag{2.10}
\end{equation*}
$$

Consider the elliptic system

$$
\begin{align*}
& \nabla\left(\sigma_{\varepsilon}\left(u_{\varepsilon}\right) \nabla \varphi_{\varepsilon}\right)=0 \quad \text { in } \Omega, \tag{2.11}\\
& \Delta u_{\varepsilon}+\sigma_{\varepsilon}\left(u_{\varepsilon}\right)\left|\nabla \varphi_{\varepsilon}\right|^{2}=0 \quad \text { in } \Omega, \tag{2.12}\\
& \varphi_{\varepsilon}=\varphi^{0} \quad \text { on } \Gamma_{D}, \quad \frac{\partial \varphi_{\varepsilon}}{\partial n}=0 \quad \text { on } \Gamma_{N}, \tag{2.13}\\
& u_{\varepsilon}=u^{0} \quad \text { on } \Gamma_{D}, \quad \frac{\partial u_{\varepsilon}}{\partial n}=0 \quad \text { on } \Gamma_{N}, \tag{2.14}
\end{align*}
$$

where $\Gamma_{N}=\partial \Omega \backslash \bar{\Gamma}_{D}$.
Lemma 2.1. There exists a solution $\left(\varphi_{\varepsilon}, u_{\varepsilon}\right)$ of (2.11)-(2.14) in $L^{\infty}(\Omega) \cap H^{1}(\Omega)$, having the following properties:
(i) φ_{ε} and u_{ε} belong to $C^{\infty}(\Omega)$, and
(ii) if $\partial \Omega \in C^{m+\delta}, \varphi^{0} \in C^{m+\delta}\left(\Gamma_{D}\right), u^{0} \in C^{m+\delta}\left(\Gamma_{D}\right)$ then φ_{ε} and u_{ε} belong to $C^{m+\delta}\left(\bar{\Omega} \backslash\left(\bar{\Gamma}_{D} \cap \bar{\Gamma}_{N}\right)\right) \quad(m=1,2, \ldots)$.

The proof given below is essentially due to Cimatti [4].
Proof. Introducing the change of variables

$$
\begin{equation*}
\psi_{\varepsilon}=\frac{1}{2} \varphi_{\varepsilon}^{2}+\int_{-1}^{u_{\varepsilon}} \frac{d t}{\sigma_{\varepsilon}(t)} \tag{2.15}
\end{equation*}
$$

we can rewrite (2.11)-(2.14) in the form

$$
\begin{align*}
& \nabla\left(a_{\varepsilon}\left(\psi_{\varepsilon}-\frac{1}{2} \varphi_{\varepsilon}^{2}\right) \nabla \varphi_{\varepsilon}\right)=0 \text { in } \Omega, \tag{2.16}\\
& \nabla\left(a_{\varepsilon}\left(\psi_{\varepsilon}-\frac{1}{2} \varphi_{\varepsilon}^{2}\right) \nabla \psi_{\varepsilon}\right)=0 \text { in } \Omega, \tag{2.17}\\
& \varphi_{\varepsilon}=\varphi^{0} \text { on } \Gamma_{D}, \quad \frac{\partial \varphi_{\varepsilon}}{\partial n}=0 \text { on } \Gamma_{N}, \tag{2.18}\\
& \psi_{\varepsilon}=\psi_{\varepsilon}^{0} \equiv \frac{1}{2} \varphi^{02}+\int_{-1}^{u^{0}} \frac{d t}{\sigma_{\varepsilon}(t)} \quad \text { on } \Gamma_{D}, \quad \frac{\partial \psi_{\varepsilon}}{\partial n}=0 \text { on } \Gamma_{N}, \tag{2.19}
\end{align*}
$$

where

$$
\begin{equation*}
a_{\varepsilon}(s)=\sigma_{\varepsilon}\left(F_{\varepsilon}^{-1}(s)\right) \tag{2.20}
\end{equation*}
$$

and $u=F_{\varepsilon}^{-1}(s)$ is the inverse function of

$$
\begin{equation*}
s=F_{\varepsilon}(u)=\int_{-1}^{u} \frac{d t}{\sigma_{\varepsilon}(t)} \tag{2.21}
\end{equation*}
$$

Define a mapping $T: L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow H^{1}(\Omega) \times H^{1}(\Omega)$ by $(\varphi, \psi)=T(\tilde{\varphi}, \tilde{\psi})$ where (φ, ψ) is the solution of $(2.16)-(2.19)$ with $a_{\varepsilon}\left(\psi_{\varepsilon}-\varphi_{\varepsilon}^{2} / 2\right)$ replaced by $a_{\varepsilon}\left(\tilde{\psi}_{\varepsilon}-\tilde{\varphi}_{\varepsilon}^{2} / 2\right)$. By the standard theory for elliptic equations in divergence form we know that $T(\tilde{\varphi}, \tilde{\psi})$ is well defined and

$$
\begin{equation*}
\|\varphi\|_{L^{\infty}(\Omega)} \leq\left\|\varphi^{0}\right\|_{L^{\infty}(\Omega)}, \quad\|\psi\|_{L^{\infty}(\Omega)} \leq\left\|\psi_{\varepsilon}^{0}\right\|_{L^{\infty}(\Omega)} \tag{2.22}
\end{equation*}
$$

Further, multiplying the equations for φ and ψ by $\varphi-\varphi^{0}$ and $\psi-\psi_{\varepsilon}^{0}$ respectively, and integrating over Ω, we find that

$$
\left\|\varphi_{\varepsilon}\right\|_{H^{1}(\Omega)} \leq C_{\varepsilon}, \quad\left\|\psi_{\varepsilon}\right\|_{H^{\prime}(\Omega)} \leq C_{\varepsilon},
$$

where C_{ε} is a constant independent of $\tilde{\varphi}, \tilde{\psi}$. It follows that T maps $L^{2}(\Omega) \times L^{2}(\Omega)$ into a compact set, and one can easily verify that T is also continuous. Hence, by Schauder's fixed point theorem, T has a fixed point $\left(\varphi_{\varepsilon}, \psi_{\varepsilon}\right)$, which yields via (2.15) a solution $\left(\varphi_{\varepsilon}, u_{\varepsilon}\right)$ to (2.11)-(2.14). By elliptic estimates (see, for instance, [6]) we have that $\varphi_{\varepsilon}, \psi_{\varepsilon}$ belong to $C^{\rho}(\Omega)$ for some $\rho \in(0,1)$ and therefore u_{ε} is also in the same C^{ρ} class. Using this fact we can deduce from (2.16), (2.17) that $\varphi_{\varepsilon}, \psi_{\varepsilon}$ belong to $C^{1+\rho}(\Omega)$, and then also $u_{\varepsilon} \in C^{1+\rho}(\Omega)$. By the same bootstrap argument one can proceed to show that φ_{ε} and u_{ε} belong to $C^{\infty}(\Omega)$. The proof of the last assertion of the lemma is obtained by a similar argument.

Remark 2.1. The assumption (2.5) was not used in the proof of Lemma 2.1.
Lemma 2.2. The solution $\left(\varphi_{\varepsilon}, u_{\varepsilon}\right)$ satisfies:

$$
\begin{align*}
& \left\|\varphi_{\varepsilon}\right\|_{L^{\infty}(\Omega)}+\left\|u_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq C \tag{2.23}\\
& \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \leq C \tag{2.24}\\
& \int_{\Omega} \sigma_{\varepsilon}\left(u_{\varepsilon}\right)\left|\nabla \varphi_{\varepsilon}\right|^{2} \leq C \tag{2.25}\\
& \int_{\Omega}\left|\nabla \sigma_{\varepsilon}^{\beta}\left(u_{\varepsilon}\right)\right|^{2} \leq C_{\beta} \quad \text { for any } \frac{1}{2(1-\alpha)}<\beta \leq 1 \tag{2.26}
\end{align*}
$$

where C, C_{β} are constants independent of ε.
Proof. The estimate (2.23) follows from the proof of Lemma 2.1 since $\left\|\psi_{\varepsilon}^{0}\right\|_{L^{\infty}} \leq$ C_{0}, where C_{0} is independent of ε (by (2.10) and (2.3), (2.4)). Next,

$$
\begin{aligned}
\int_{\Omega} \sigma_{\varepsilon}\left(u_{\varepsilon}\right)\left|\nabla \varphi_{\varepsilon}\right|^{2} & =\inf _{\varphi \in H^{1}(\Omega), \varphi=\varphi^{0} \text { on } \Gamma_{D}} \int_{\Omega} \sigma_{\varepsilon}\left(u_{\varepsilon}\right)|\nabla \varphi|^{2} \\
& \leq\left\|\sigma_{\varepsilon}\left(u_{\varepsilon}\right)\right\|_{L^{\infty}} \int_{\Omega}\left|\nabla \varphi^{0}\right|^{2} \leq C
\end{aligned}
$$

since $0<\sigma_{\varepsilon}(t) \leq 2 M$; thus (2.25) holds.
To prove (2.24) and (2.26) we multiply both sides of (2.12) by $f\left(u_{\varepsilon}\right)-f\left(u^{0}\right)$ and integrate over Ω. After integrating by parts we get

$$
\int_{\Omega} f^{\prime}\left(u_{\varepsilon}\right)\left|\nabla u_{\varepsilon}\right|^{2} \leq \int_{\Omega} f^{\prime}\left(u^{0}\right) \nabla u_{\varepsilon} \cdot \nabla u^{0}+\int_{\Omega}\left(f\left(u_{\varepsilon}\right)-f\left(u^{0}\right)\right) \sigma_{\varepsilon}\left(u_{\varepsilon}\right)\left|\nabla \varphi_{\varepsilon}\right|^{2}
$$

Using the Schwarz inequality on the first integral on the right-hand side, we obtain

$$
\begin{equation*}
\int_{\Omega} f^{\prime}\left(u_{\varepsilon}\right)\left|\nabla u_{\varepsilon}\right|^{2} \leq \int_{\Omega} \frac{f^{\prime}\left(u^{0}\right)^{2}}{f^{\prime}\left(u_{\varepsilon}\right)}\left|\nabla u^{0}\right|^{2}+C\left\|f\left(u_{\varepsilon}\right)-f\left(u^{0}\right)\right\|_{L^{\infty}(\Omega)}, \tag{2.27}
\end{equation*}
$$

where (2.25) was used.
Taking $f(s)=s,(2.24)$ follows. To prove (2.26) we take

$$
f(s)=\int_{0}^{s}\left[\left|\frac{d}{d s} \sigma_{\varepsilon}^{\beta}(s)\right|^{2}+1\right] d s
$$

the condition (2.5) implies that the integrand is integrable. We then get from (2.27)

$$
\int_{\Omega}\left|\nabla \sigma_{\varepsilon}^{\beta}\left(u_{\varepsilon}\right)\right|^{2} \leq \int_{\Omega} \frac{f^{\prime}\left(u^{0}\right)^{2}}{f^{\prime}\left(u_{\varepsilon}\right)}\left|\nabla u^{0}\right|^{2}+C,
$$

and $\left|f^{\prime}\left(u^{0}\right)\right| \leq C$ since $u^{0} \leq-c_{*}<0$. Since $f^{\prime}\left(u_{\varepsilon}\right) \geq 1$, the assertion (2.26) follows.
3. Existence of a weak solution. Consider (1.1), (1.3). Using the formula $\sigma(u) \nabla \varphi$ $=\nabla(\sigma(u) \varphi)-\varphi \nabla \sigma$, we can rewrite these equations formally as

$$
\begin{align*}
& \Delta(\sigma(u) \varphi)-\nabla(\varphi \nabla \sigma(u))=0 \text { in } H^{-1}(\Omega), \tag{3.1}\\
& \Delta\left(u+\frac{1}{2} \sigma(u) \varphi^{2}\right)-\frac{1}{2} \nabla\left(\varphi^{2} \nabla \sigma(u)\right)=0 \quad \text { in } H^{-1}(\Omega) \tag{3.2}
\end{align*}
$$

provided

$$
\begin{gather*}
\varphi \in L^{\infty}(\Omega), \quad u \in H^{1}(\Omega), \tag{3.3}\\
\sigma(u), \sigma(u) \varphi, \sigma(u) \varphi^{2} \in H^{1}(\Omega) \tag{3.4}
\end{gather*}
$$

Equations (3.1), (3.2) mean that

$$
\begin{gather*}
\int_{\Omega}(\nabla(\sigma(u) \varphi) \cdot \nabla \zeta-\varphi \nabla \sigma(u) \cdot \nabla \zeta)=0, \tag{3.5}\\
\int_{\Omega}\left(\nabla\left(u+\frac{1}{2} \sigma(u) \varphi^{2}\right) \cdot \nabla \zeta-\frac{1}{2} \varphi^{2} \nabla \sigma(u) \cdot \nabla \zeta\right)=0 \tag{3.6}
\end{gather*}
$$

for every $\zeta \in H_{0}^{1}(\Omega)$. Denote by $H_{\Gamma_{D}}^{1}(\Omega)$ the class of all functions in $H^{1}(\Omega)$ such that $\zeta=0$ on Γ_{D}.

Definition 3.1. A pair (φ, u) is called a weak solution of the thermistor problem (1.1), (1.3), (1.4) if (3.3), (3.4) hold; if (3.5), (3.6) hold for any $\zeta \in H_{\Gamma_{D}}^{1}(\Omega)$; and if

$$
\begin{equation*}
u-u^{0}=0 \quad \text { on } \Gamma_{D}, \quad \sigma(u) \varphi-\sigma\left(u^{0}\right) \varphi^{0}=0 \quad \text { on } \Gamma_{D} . \tag{3.7}
\end{equation*}
$$

Remark 3.1. By the trace theorem, all the functions in (3.7) are well defined. The trace of φ may not be defined, so we have used the trace of $\sigma(u) \varphi$ instead.

Remark 3.2. Equations (3.5), (3.6) for all $\zeta \in H_{0}^{1}(\Omega)$ mean the same thing as the equations (3.1), (3.2) (which are a weak form of (1.1), (1.3)). The additional
freedom of choosing ζ in the larger class $H_{\Gamma_{D}}^{1}(\Omega)$ accounts for a weak form of the Neumann conditions

$$
\frac{\partial \varphi}{\partial n}=0, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega \backslash \bar{\Gamma}_{D} .
$$

Theorem 3.1. Assume that $\partial \Omega$ and $\partial \Gamma_{D}$ are piecewise in $C^{1+\delta}$ and that (2.1), (2.2) and (2.6)-(2.8) are satisfied. Then there exists a weak solution of the thermistor problem (1.1), (1.3), (1.4).

Proof. By Lemma 2.2 there exists a sequence $\varepsilon \rightarrow 0$ and functions

$$
\varphi \in L^{\infty}(\Omega), \quad u \in L^{\infty}(\Omega) \cap H^{1}(\Omega), \quad \sigma_{0}, h, \text { and } g \text { in } H^{1}(\Omega)
$$

such that

$$
\begin{array}{ll}
\varphi_{\varepsilon} \rightarrow \varphi & \text { weakly in }\left(L^{\infty}(\Omega)\right)^{*}, \\
u_{\varepsilon} \rightarrow u & \text { weakly in } H^{1}(\Omega) \text { and a.e. in } \Omega, \\
\sigma_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow \sigma_{0} & \text { weakly in } H^{1}(\Omega) \text { and a.e. in } \Omega, \\
\sigma_{\varepsilon}\left(u_{\varepsilon}\right) \varphi_{\varepsilon} \rightarrow h & \text { weakly in } H^{1}(\Omega) \text { and a.e. in } \Omega, \\
\sigma_{\varepsilon}\left(u_{\varepsilon}\right) \varphi_{\varepsilon}^{2} \rightarrow g & \text { weakly in } H^{1}(\Omega) \text { and a.e. in } \Omega . \tag{3.12}
\end{array}
$$

Recalling (2.4) we conclude from (3.9), (3.10) that

$$
\sigma_{0}(x)=\sigma(u(x)) \quad \text { a.e. in } \Omega .
$$

Set

$$
\Omega_{0}=\{x \in \bar{\Omega} ; \sigma(u(x))=0\} \quad(=\{x \in \bar{\Omega} ; u(x) \geq 0\}) .
$$

Then (3.11) implies that

$$
\varphi_{\varepsilon}=\frac{\sigma_{\varepsilon}\left(u_{\varepsilon}\right) \varphi_{\varepsilon}}{\sigma_{\varepsilon}\left(u_{\varepsilon}\right)} \rightarrow \frac{h}{\sigma(u)} \quad \text { a.e. in } \Omega \backslash \Omega_{0} .
$$

On the other hand, from (3.11) and the uniform boundedness of the φ_{ε} we have that $h=0$ a.e. in Ω_{0}, and so $h=\sigma \varphi$ a.e. on Ω_{0}. Thus

$$
\begin{equation*}
h=\sigma(u) \varphi \quad \text { a.e. in } \Omega \tag{3.13}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
g=\sigma(u) \varphi^{2} \quad \text { a.e. in } \Omega . \tag{3.14}
\end{equation*}
$$

Clearly (by the trace theorem) also

$$
u-u^{0}=0 \quad \text { on } \Omega_{D}, \quad h-\sigma\left(u^{0}\right) \varphi^{0}=0 \quad \text { on } \Gamma_{D} .
$$

To complete the proof of the theorem it remains to show that (φ, u) satisfies (3.5), (3.6). These equations of course hold for ($\varphi_{\varepsilon}, u_{\varepsilon}$), so that it only remains to justify the passage to the limit. Since $\sigma_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow \sigma(u)$ and $\varphi_{\varepsilon}^{k} \sigma_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow \varphi^{k} \sigma(u)$ $(k=1,2)$ weakly in $H^{1}(\Omega)$,

$$
\begin{gathered}
\int_{\Omega} \nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla \zeta \rightarrow \int_{\Omega} \nabla \sigma(u) \cdot \nabla \zeta, \\
\int_{\Omega} \nabla\left(\varphi_{\varepsilon}^{k} \sigma_{\varepsilon}\left(u_{\varepsilon}\right)\right) \cdot \nabla \zeta \rightarrow \int_{\Omega} \nabla\left(\varphi^{k} \sigma(u)\right) \cdot \nabla \zeta
\end{gathered}
$$

as $\varepsilon \rightarrow 0$. Thus it remains to show that

$$
\begin{equation*}
\int_{\Omega} \varphi_{\varepsilon} \nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla \zeta \rightarrow \int_{\Omega} \varphi \nabla \sigma(u) \cdot \nabla \zeta \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} \varphi_{\varepsilon}^{2} \nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla \zeta \rightarrow \int_{\Omega} \varphi^{2} \nabla \sigma(u) \cdot \nabla \zeta \tag{3.16}
\end{equation*}
$$

Since $\nabla \sigma_{\varepsilon} \rightarrow \nabla \sigma$ weakly in $L^{2}(\Omega)$ and $\varphi_{\varepsilon} \rightarrow \varphi$ strongly in $L^{2}\left(\Omega \backslash \Omega_{0}\right)$ (since $\varphi_{\varepsilon} \rightarrow \varphi$ a.e. in $\Omega \backslash \Omega_{0}$ and weakly $\left.\left(L^{\infty}(\Omega)\right)^{*}\right)$, we easily find that

$$
\begin{equation*}
\int_{\Omega \backslash \Omega_{0}} \varphi_{\varepsilon} \nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla \zeta \rightarrow \int_{\Omega \backslash \Omega_{0}} \varphi \nabla \sigma(u) \cdot \nabla \zeta \tag{3.17}
\end{equation*}
$$

Next, choose $\beta=1-\delta(\delta>0)$ such that (2.26) holds. Then

$$
\begin{aligned}
\int_{\Omega_{0}}\left|\varphi_{\varepsilon} \nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla \zeta\right| & \leq C \int_{\Omega_{0}}\left|\nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right)\right|=\frac{C}{\beta} \int_{\Omega_{0}} \sigma_{\varepsilon}^{\delta}\left(u_{\varepsilon}\right)\left|\nabla \sigma_{\varepsilon}^{\beta}\left(u_{\varepsilon}\right)\right| \\
& \leq \frac{C}{\beta}\left\|\sigma_{\varepsilon}^{\delta}\left(u_{\varepsilon}\right)\right\|_{L^{2}\left(\Omega_{0}\right)}\left\|\nabla \sigma_{\varepsilon}^{\beta}\left(u_{\varepsilon}\right)\right\|_{L^{2}\left(\Omega_{0}\right)} \\
& \leq C_{1}\left\|\sigma_{\varepsilon}^{\delta}\left(u_{\varepsilon}\right)\right\|_{L^{2}\left(\Omega_{0}\right)}
\end{aligned}
$$

by (2.26). By the Lebesgue dominated convergence theorem, the right-hand side converges to zero as $\varepsilon \rightarrow 0$ since $\sigma_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow \sigma(u)=0$ a.e. on Ω_{0}, whereas $\left|\sigma_{\varepsilon}\left(u_{\varepsilon}\right)\right| \leq$ $2 M$. Thus

$$
\int_{\Omega_{0}} \varphi_{\varepsilon} \nabla \sigma_{\varepsilon}\left(u_{\varepsilon}\right) \cdot \nabla \zeta \rightarrow 0=\int_{\Omega_{0}} \varphi \nabla \sigma(u) \cdot \nabla \zeta
$$

Combining this with (3.17), the assertion (3.15) follows. The proof of (3.16) is similar.

Theorem 3.2. The weak solution (φ, u) established in Theorem 3.1 satisfies:

$$
\begin{gather*}
\Delta u \leq 0 \quad \text { in } \mathscr{D}^{\prime}(\Omega) \tag{3.18}\\
u^{0} \leq u \leq 0 \quad \text { a.e. in } \Omega \tag{3.19}
\end{gather*}
$$

Proof. The assertion (3.18) follows from $\Delta u_{\varepsilon}=-\sigma_{\varepsilon}\left(u_{\varepsilon}\right)\left|\nabla \varphi_{\varepsilon}\right|^{2} \leq 0$. Since $u_{\varepsilon} \geq u^{0}$ in Ω, also $u \geq u^{0}$ a.e. in Ω. Finally, from the uniform boundedness of the functions ψ_{ε} defined in (2.15) it follows that

$$
\limsup _{\varepsilon \rightarrow 0} u_{\varepsilon}(x) \leq 0 \quad \forall x \in \Omega
$$

so that $u \leq 0$ a.e.
4. Additional properties of weak solutions. In this section we specialize to the boundary conditions (1.7) (with $u_{1}<0, u_{2}<0$) and derive more specific properties of the weak solution; we shall also prove a uniqueness theorem. Except for the proof of uniqueness we shall not actually need the assumption (2.2).

For simplicity we choose the $\sigma_{\varepsilon}(s)$ such that $\sigma_{\varepsilon}(s)=\sigma(s)$ if $s \leq \max \left\{u_{1}, u_{2}\right\}$. One can determine uniquely constants a, b such that

$$
\begin{equation*}
\frac{1}{2} \varphi_{i}^{2}+\int_{-1}^{u_{i}} \frac{d t}{\sigma(t)}=a \varphi_{i}+b \quad(i=1,2) \tag{4.1}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\psi_{\varepsilon}=a \varphi_{\varepsilon}+b \text { in } \Omega, \tag{4.2}
\end{equation*}
$$

since both sides satisfy the same elliptic equation $\operatorname{div}\left(\sigma_{\varepsilon}\left(u_{\varepsilon}\right) w\right)=0$, the same Dirichlet data on Γ_{D}, and both have zero normal derivatives on Γ_{N}.

It follows (recalling (2.16)) that

$$
\begin{equation*}
\nabla\left(\tilde{a}_{\varepsilon}\left(\varphi_{\varepsilon}\right) \nabla \varphi_{\varepsilon}\right)=0 \quad \text { in } \Omega \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{a}_{\varepsilon}(\varphi)=a_{\varepsilon}\left(-\frac{1}{2} \varphi^{2}+a \varphi+b\right) \tag{4.4}
\end{equation*}
$$

and a_{ε} is defined in (2.20).
Setting

$$
\begin{equation*}
A_{\varepsilon}(s)=\int_{0}^{s} \tilde{a}_{\varepsilon}(t) d t \tag{4.5}
\end{equation*}
$$

we deduce that the function

$$
\begin{equation*}
w_{\varepsilon}(x)=A_{\varepsilon}\left(\varphi_{\varepsilon}(x)\right) \tag{4.6}
\end{equation*}
$$

satisfies

$$
\begin{gather*}
\nabla^{2} w_{\varepsilon}=0 \text { in } \Omega, \quad w_{\varepsilon}=A_{\varepsilon}\left(\varphi_{i}\right) \text { on } \Gamma_{i} \quad(i=1,2), \\
\frac{\partial w_{\varepsilon}}{\partial n}=0 \quad \text { on } \partial \Omega \backslash \overline{\Gamma_{1} \cup \Gamma_{2}} . \tag{4.7}
\end{gather*}
$$

In the sequel we shall assume that

$$
\begin{equation*}
b_{0} \equiv \int_{-1}^{0} \frac{d t}{\sigma(t)}<\infty ; \tag{4.8}
\end{equation*}
$$

the case

$$
\begin{equation*}
\int_{-1}^{0} \frac{d t}{\sigma(t)}=\infty \tag{4.9}
\end{equation*}
$$

will be discussed in Remark 4.4.
Observe that, as $\varepsilon \rightarrow 0$,

$$
\begin{align*}
& F_{\varepsilon}(u) \rightarrow\left\{\begin{array}{ll}
F(u) & \text { if } u<0, \\
\infty & \text { if } u>0,
\end{array} \quad\left(F(u)=\int_{-1}^{u} \frac{d t}{\sigma(t)}\right),\right. \tag{4.10}\\
& F^{\prime}(u)>0 \quad \text { if } u<0, \quad F(0-)=b_{0},
\end{align*}
$$

where (4.8) was used. Also

$$
\begin{align*}
& F_{\varepsilon}^{-1}(s) \rightarrow F^{-1}(s) \quad \text { if }-s_{0}<s<\infty,-s_{0}=\int_{-1}^{-\infty} \frac{d t}{\sigma(t)}, \\
& F^{-1}(s)<0, \quad \frac{d}{d s} F^{-1}(s)>0 \quad \text { if }-s_{0}<s<b_{0}, \tag{4.11}\\
& F^{-1}(s)=0 \quad \text { if } s>b_{0} .
\end{align*}
$$

Write

$$
\begin{equation*}
-\frac{1}{2} s^{2}+a s+b-b_{0}=-\frac{1}{2}\left(s-s_{1}\right)\left(s-s_{2}\right) . \tag{4.12}
\end{equation*}
$$

Clearly, when s_{1}, s_{2} are real, if $s_{1}<s<s_{2}$ then $-s^{2} / 2+a s+b>b_{0}$; and if $s<s_{1}$ or $s>s_{2}$ then $-s^{2} / 2+a s+b<b_{0}$.

It follows that if

$$
\begin{equation*}
s_{1}, s_{2} \text { are real and } s_{1}<s_{2} \tag{4.13}
\end{equation*}
$$

then the function

$$
\begin{equation*}
\tilde{a}(s)=\sigma\left(F^{-1}\left(-\frac{1}{2} s^{2}+a s+b\right)\right) \quad\left(\tilde{a}(s)=\lim _{\varepsilon \rightarrow 0} \tilde{a}_{\varepsilon}(s)\right) \tag{4.14}
\end{equation*}
$$

satisfies

$$
\begin{array}{cl}
\tilde{a}^{\prime}(s)<0 & \text { if } s<s_{1}, \quad \tilde{a}^{\prime}(s)>0 \quad \text { if } s>s_{2}, \tag{4.15}\\
& \tilde{a}(s)=0 \quad \text { if } s_{1} \leq s \leq s_{2} .
\end{array}
$$

If $s_{1}=s_{2}$ then (4.15) remains valid, whereas if s_{1}, s_{2} are complex then $s^{2} / 2-a s-$ $b>b_{0}$ for all s and thus

$$
\begin{equation*}
\tilde{a}(s)>0 \quad \text { if } s_{1}, s_{2} \text { are complex. } \tag{4.16}
\end{equation*}
$$

We shall first consider the case (4.13). Then, as $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
A_{\varepsilon}(s) \rightarrow A(s) \tag{4.17}
\end{equation*}
$$

uniformly on bounded sets,

$$
\begin{gather*}
A^{\prime}(s)>0 \quad \text { if } s<s_{1} \quad \text { or } \quad s>s_{2} \\
A(s)=A_{*} \equiv \int_{0}^{s_{1}} \tilde{a}(t) d t \quad \text { if } s_{1}<s<s_{2} \tag{4.18}
\end{gather*}
$$

The harmonic function

$$
\begin{equation*}
w_{\varepsilon}(x)=A_{\varepsilon}\left(\varphi_{\varepsilon}(x)\right)=\int_{0}^{\varphi_{\varepsilon}(x)} \tilde{a}_{\varepsilon}(s) d s \tag{4.19}
\end{equation*}
$$

then satisfies

$$
\begin{equation*}
w_{\varepsilon} \rightarrow w \tag{4.20}
\end{equation*}
$$

uniformly in compact subsets of $\bar{\Omega} \backslash\left(\bar{\Gamma}_{D} \cap \bar{\Gamma}_{N}\right)$, where

$$
\begin{align*}
& \Delta w=0 \quad \text { in } \Omega \\
& w=A\left(\varphi_{i}\right) \text { on } \Gamma_{i} \quad(i=1,2), \tag{4.21}\\
& \frac{\partial w}{\partial n}=0 \text { on } \Gamma_{N}
\end{align*}
$$

Introduce the inverse function A^{-1} of A; clearly,

$$
\begin{align*}
& \frac{d}{d t} A^{-1}(t)>0 \text { if } t<A_{*} \quad \text { or if } t>A_{*} \tag{4.22}\\
& A^{-1}\left(A_{*}\right) \text { is the interval }\left\{s_{1}<s<s_{2}\right\} .
\end{align*}
$$

From (4.19), (4.20), (4.22) we deduce that

$$
\begin{equation*}
\varphi_{\varepsilon}(x)=A_{\varepsilon}^{-1}\left(w_{\varepsilon}(x)\right) \rightarrow A^{-1}(w(x)) \quad \text { in } \Omega \backslash S \tag{4.23}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\left\{x \in \Omega ; w(x)=A_{*}\right\} \tag{4.24}
\end{equation*}
$$

From (2.15), (4.2) we also deduce that

$$
\begin{align*}
& u_{\varepsilon}(x) \rightarrow u(x) \quad \text { in } \Omega \backslash S \tag{4.25}\\
& u(x) \leq 0 \tag{4.26}
\end{align*}
$$

and

$$
\begin{equation*}
-\frac{1}{2} \varphi^{2}+a \varphi+b-b_{0}=\int_{0}^{u} \frac{d s}{\sigma(s)} \tag{4.27}
\end{equation*}
$$

further

$$
\begin{equation*}
\nabla w=\sigma(u) \nabla \varphi \quad \text { in } \Omega \backslash S \tag{4.28}
\end{equation*}
$$

The set S is a level surface of the harmonic function w, and it is therefore piecewise analytic; in case $N=2, S$ is actually an analytic curve. We are assuming here that

$$
\begin{equation*}
A_{*} \text { lies between the number } A\left(\varphi_{1}\right), A\left(\varphi_{2}\right) \tag{4.29}
\end{equation*}
$$

otherwise S is empty.
Set

$$
\begin{equation*}
\Omega_{+}=\left\{x \in \Omega, w(x)>A_{*}\right\}, \quad \Omega_{-}=\left\{x \in \Omega, w(x)<A_{*}\right\} \tag{4.30}
\end{equation*}
$$

each set is a connected open set. Then

$$
\begin{equation*}
\varphi(x)=A^{-1}(w(x)) \quad \text { in } \Omega_{+} \cup \Omega_{-} . \tag{4.31}
\end{equation*}
$$

Since $A^{-1}(w(x))$ is continuous in $\bar{\Omega}_{+}$and in $\bar{\Omega}_{-}$with

$$
\lim _{x \rightarrow x_{0}, x \in \Omega_{+}} A^{-1}(w(x))=s_{2}, \quad \lim _{x \rightarrow x_{0}, x \in \Omega_{-}} A^{-1}(w(x))=s_{1}
$$

for any $x_{0} \in S$, it follows that

$$
\begin{gather*}
\varphi \in C^{0}\left(\Omega_{+}\right), \quad \varphi \in C^{0}\left(\Omega_{-}\right) \text {with } \\
\lim _{x \rightarrow x_{0}, x \in \Omega_{+}} \varphi(x)=s_{2}, \quad \lim _{x \rightarrow x_{0}, x \in \Omega_{-}} \varphi(x)=s_{1} \quad \forall x_{0} \in S . \tag{4.32}
\end{gather*}
$$

Recalling (4.27) we also deduce that

$$
\int_{0}^{u(x)} \frac{d s}{\sigma(s)} \rightarrow 0 \quad \text { if } x \in \Omega \backslash S, \quad x \rightarrow x_{0} \in S
$$

so that

$$
\begin{equation*}
u(x) \text { is continuous across } S \tag{4.33}
\end{equation*}
$$

From (4.27) we also deduce that $u<0$ in $\Omega \backslash S$ and $u=0$ on S; thus

$$
\begin{equation*}
S \text { is the set }\{x \in \Omega ; \sigma(u(x))=0\} \tag{4.34}
\end{equation*}
$$

Theorem 4.1. Assume that $\partial \Omega$ and $\partial \Gamma_{D}$ are piecewise in $C^{1+\delta}$ and that (2.1), (1.7) hold with $u_{1}<0, u_{2}<0$. Then the limit (φ, u) of $\left(\varphi_{\varepsilon}, u_{\varepsilon}\right)$ exists and is
independent of the choice of the family σ_{ε}, and it has the following properties:
φ and u are related by (4.27),
$u(x)$ and $\sigma(u(x))$ are continuous in Ω,
$\varphi(x)$ is continuous in $\Omega \backslash S$ with limits s_{2}, s_{1} from the respective sides Ω_{+}, Ω_{-}of S,
where
S is the A_{*}-level surface of the harmonic function w defined by (4.21),

$$
\begin{gather*}
\sigma(u) \nabla \varphi \in L^{1}(\Omega \backslash S) \tag{4.39}\\
\nabla u \in L_{\mathrm{loc}}^{\infty}(\Omega)
\end{gather*}
$$

and, finally,

$$
\begin{equation*}
\int_{\Omega \backslash S} \sigma(u) \nabla \varphi \cdot \nabla \zeta=0 \quad \forall \zeta \in H^{1}(\Omega), \quad \zeta=0 \quad \text { on } \Gamma_{1} \cup \Gamma_{2} \tag{4.41}
\end{equation*}
$$

Proof. We have already proved (4.35)-(4.39) ((4.39) follows from (4.28)). From (4.27),

$$
\begin{equation*}
\nabla u=(-\varphi+a) \sigma(u) \nabla \varphi=\left(\frac{s_{1}+s_{2}}{2}-\varphi\right) \nabla w \tag{4.42}
\end{equation*}
$$

and since $\nabla w \in L_{\mathrm{loc}}^{\infty}(\Omega),(4.40)$ follows. It remains to prove (4.41). But this follows from (4.28):

$$
\int_{\Omega \backslash S} \sigma(u) \nabla \varphi \cdot \nabla \zeta=\int_{\Omega \backslash S} \nabla w \cdot \nabla \zeta=\int_{\Omega} \nabla w \cdot \nabla \zeta=\int_{\partial \Omega} \frac{\partial w}{\partial n} \zeta=0 .
$$

Remark 4.1. From (4.42) we deduce the jump relations

$$
\begin{equation*}
\left[\frac{\partial u}{\partial n}\right]_{S}=-[\varphi]_{S} \frac{\partial w}{\partial n}=-\left[a \varphi \frac{\partial \varphi}{\partial n}\right]_{S} \tag{4.43}
\end{equation*}
$$

This implies that equation (1.3) holds in the following sense:

$$
\Delta u+\sigma(u)|\nabla \varphi|^{2} \chi_{\Omega \backslash S}+[\varphi]_{S}(\nabla w \cdot n) \delta_{S}=0
$$

where δ_{S} is the Dirac function with uniform mass distribution 1 on S.
Remark 4.2. In establishing Theorem 4.1 we have not used condition (2.2).
Remark 4.3. Theorem 4.1 extends to the case where (4.13) holds with $s_{1}=s_{2}$; in this case $\varphi(x)$ is continuous across S. If s_{1}, s_{2} are complex, then (because of (4.16)) the assertions of Theorem 4.1 hold with S the empty set.

Remark 4.4. So far we have assumed that (4.8) holds. Since φ_{ε} and ψ_{ε} are uniformly bounded, we also have

$$
\left|\int_{-1}^{u_{\varepsilon}(x)} \frac{d s}{\sigma_{\varepsilon}(s)}\right| \leq C .
$$

If (4.9) holds then the last inequality implies that $u_{\varepsilon}(x) \leq-\delta$, where δ is a positive constant independent of ε. It follows that for the limiting $(\varphi, u), \sigma(u(x))$ is uniformly positive in Ω.

From now on we shall assume, in addition to the assumptions of Theorem 4.1, that σ satisfies (2.2). Then, by Theorem 3.1, (φ, u) is a weak solution, as defined in Sec. 3. Therefore (3.5), (3.6) hold.

We wish to prove (under some assumptions) uniqueness of the weak solution. In general, a weak solution may not be unique. For instance, if $\sigma(u)$ vanishes on a nonempty open set (examples will be given in Sec. 5), then by modifying φ in this set we get another weak solution.

Let (φ, ψ) be a weak solution of (1.1), (1.3), (1.7). We shall make several assumptions:

$$
\begin{align*}
& \sigma(u) \text { is continuous in } \Omega, \tag{4.4}\\
& \operatorname{meas}\{\sigma(u)=0\}=0, \tag{4.45}
\end{align*}
$$

and

$$
\begin{equation*}
\text { each component of }\{\sigma(u)>0\} \text { is connected to } \Gamma_{D}\left(=\Gamma_{1} \cup \Gamma_{2}\right) ; \tag{4.46}
\end{equation*}
$$

further, setting

$$
\psi=\left\{\begin{array}{l}
\frac{1}{2} \varphi^{2}+\int_{0}^{u} \frac{d s}{\sigma(s)} \text { in }\{\sigma(u) \neq 0\}, \tag{4.47}\\
\frac{1}{2} \varphi^{2} \text { in } \Omega_{0} \equiv\{\sigma(u)=0\},
\end{array}\right.
$$

and

$$
\begin{equation*}
\eta=\psi-a \varphi-b \tag{4.48}
\end{equation*}
$$

where a, b are constants such that $\eta=0$ on Γ_{D} (see (4.1)), we assume that

$$
\begin{equation*}
\eta \in H^{1}(\Omega) . \tag{4.49}
\end{equation*}
$$

Theorem 4.2. Let the assumptions of Theorem 4.1 and (2.2) hold. Then there exists at most one weak solution of the thermistor problem (1.1), (1.3), (1.7) satisfying (4.44)-(4.46), (4.49).

Of course, the existence of such a solution and additional properties of it were established in Theorem 4.1.

Proof. Since $\sigma \varphi$ and η belong to $H^{1}(\Omega)$, the same is true of $\sigma \psi$. One can easily verify that $\sigma \nabla \psi=\sigma \varphi \nabla \varphi+\nabla u$ a.e. in both $\Omega_{1} \equiv\{\sigma(u)>0\}$ and Ω_{0}. Using (3.5), (3.6) we then deduce that ψ satisfies the same equation (3.5) as φ, and therefore

$$
\int_{\Omega}(\nabla(\sigma(u) \eta) \cdot \nabla \zeta-\eta \nabla \sigma(u) \cdot \nabla \zeta)=0 \quad \forall \zeta \in H_{\Gamma_{D}}^{1}(\Omega) .
$$

Since $\eta=0$ on Γ_{D} (in the trace class), we can take $\zeta=\eta$:

$$
\int_{\Omega}(\nabla(\sigma(u) \eta) \cdot \nabla \eta-\eta \nabla \sigma(u) \cdot \nabla \eta)=0, \quad \text { or } \quad \int_{\Omega} \sigma(u)|\nabla \eta|^{2}=0 .
$$

Recalling (4.46) we conclude that $\eta=0$ a.e. in Ω_{1}, and consequently, by (4.45), $\eta=0$ a.e. in Ω.

One can now proceed as in the proof of Theorem 4.1, and derive for φ a nonlinear elliptic equation: $\nabla(\tilde{a}(\varphi) \nabla \varphi)=0$ with $\tilde{a}(\varphi)$ defined as in (4.14). But then φ must coincide with the function φ which was obtained in Theorem 4.1. Since φ is uniquely determined, also u is uniquely determined.

Remark 4.5. Without the assumption (4.49) one can construct infinitely many weak solutions. They are obtained by taking

$$
\psi=a^{\prime} \varphi+b^{\prime}+c \chi_{\Omega^{\prime}}, \quad c \text { an arbitrary constant. }
$$

Here Ω^{\prime} is a subdomain of Ω (to be determined such that $\overline{\Omega^{\prime}} \supset \Gamma_{1}, \overline{\Omega^{\prime}} \cap \Gamma_{2}=\varnothing$) and a^{\prime}, b^{\prime} are constants determined by boundary conditions similar to (4.1), namely, $a \varphi_{i}+b$ is replaced by $a^{\prime} \varphi+b^{\prime}+c$ for $i=1$ and by $a^{\prime} \varphi+b^{\prime}$ for $i=2$. The function u is defined by (4.47), and $\partial \Omega^{\prime} \cap \Omega$ is the set $\{\sigma(u)=0\}$.
5. Examples. We try a solution, in \mathbb{R}^{2}, of the form

$$
\begin{equation*}
\varphi=\alpha \Phi(y)+\beta x, \quad u=U(y) \tag{5.1}
\end{equation*}
$$

Then (1.1), (1.3) become

$$
\begin{gather*}
\left(\sigma(U) \Phi^{\prime}\right)^{\prime}=0 \\
U^{\prime \prime}+\sigma(U)\left(\alpha^{2}\left(\Phi^{\prime}\right)^{2}+\beta^{2}\right)=0 \tag{5.2}
\end{gather*}
$$

so that

$$
\begin{equation*}
\sigma \Phi^{\prime}=\mathrm{const}=C_{1} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
U^{\prime \prime}+\sigma(U) \beta^{2}+\frac{\alpha^{2} C_{1}^{2}}{\sigma(U)}=0 \quad \text { in }\{\sigma(U)>0\} \tag{5.4}
\end{equation*}
$$

The last equation can be reduced to

$$
\begin{equation*}
\frac{1}{2} U^{\prime 2}+\int_{0}^{u}\left(\beta^{2} \sigma(s)+\frac{\alpha^{2} C_{1}^{2}}{\sigma(s)}\right) d s=\mathrm{const}=C_{2} \tag{5.5}
\end{equation*}
$$

or

$$
\begin{equation*}
U^{\prime}=F\left(U, C_{1}, C_{2}\right) \tag{5.6}
\end{equation*}
$$

Take for example $\alpha=0, \beta=1$ and assume that

$$
\sigma(s)= \begin{cases}c|s|^{\gamma} & \text { if } s<0 \tag{5.7}\\ 0 & \text { if } s>0\end{cases}
$$

where $0<\gamma<1$ and c is a positive constant. Then a solution to (5.4) is given by

$$
u_{0}(y)= \begin{cases}-y^{\delta} & \text { if } y>0 \tag{5.8}\\ 0 & \text { if }-\mu<y<0 \\ -(-\mu-y)^{\delta} & \text { if } y<-\mu\end{cases}
$$

for any $\mu>0$, provided

$$
\delta=\frac{2}{1-\gamma}, \quad c=\delta(\delta-1)
$$

One may perceive $\left(x, u_{0}(y)\right)$ as a weak solution in a rectangle Ω, with boundary conditions

$$
\begin{array}{ll}
\frac{\partial \varphi}{\partial n}=0 \quad \text { on the horizontal edges of } \partial \Omega \\
\frac{\partial u}{\partial n}=0 \quad \text { on the vertical edges of } \partial \Omega
\end{array}
$$

and $\varphi=\varphi_{0}, u=u_{0}$ (suitable functions) on the remaining edges.
In the above example

$$
\begin{equation*}
\text { the set }\{\sigma(u)=0\} \text { is a strip }\{-\mu<y<0\} \text {; } \tag{5.9}
\end{equation*}
$$

the boundary conditions are of course not of the form (1.7) (or even (1.4)).
In case $\alpha \neq 0$, for the corresponding solution of (5.2) the set $\{\sigma(u)=0\}$ has measure zero, in general.

Let

$$
f(z)=f_{1}(x, y)+i f_{2}(x, y) \quad(z=x+i y)
$$

be any holomorphic function. It was observed by Howison [8] that solutions to the thermistor problem are invariant under conformal mappings of the independent variable. Thus, in particular, the pair

$$
\varphi=f_{1}(x, y), \quad u=u_{0}\left(f_{2}(x, y)\right),
$$

where u_{0} is defined by (5.8), is a solution of the thermistor problem, and $\{\sigma(u)=0\}$ has nonempty interior.

Acknowledgment. The first author is supported by Alfred P. Sloan Doctoral Dissertation Fellowship No. DD-318. The second author is partially supported by the National Science Foundation Grant DMS-86-12880.

References

[1] J. Bass, Thermoelasticity, McGraw-Hill Encyclopedia of Physics (S. P. Parker, ed.), McGraw-Hill, New York, 1982
[2] G. Cimatti and G. Prodi, Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor, Ann. Math. Pure Appl. 152, 227-236 (1988)
[3] G. Cimatti, A bound for the temperature in the thermistor problem, IMA J. Appl. Math. 40, 15-22 (1988)
[4] _, Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions, Quart. Appl. Math. 47, 117-121 (1989)
[5] H. Diesselhorst, Ueber das Probleme eines elektrisch erwärmten Leiters, Ann. Physics 1, 312-325 (1900)
[6] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983
[7] S. Howison, A note on the thermistor problem in two space dimensions, Quart. Appl. Math. 47, 509-512 (1989)
[8] S. D. Howison, J. F. Rodrigues, and M. Shillor, Existence results for the problems of Joule heating of a resistor, to appear
[9] F. J. Hyde, Thermistors, Iliffe Books, London, 1971
[10] J. F. Llewellyn, The Physics of Electrical Contacts, Clarendon Press, Oxford, 1957
[11] J. M. Young, Steady state Joule heating with temperature dependent conductivities, Appl. Sci. Res. 43, 55-65 (1986)

