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Abstract. The thermistor problem is modeled as a coupled system of nonlinear el-
liptic equations. When the conductivity coefficient g(u) vanishes (# = temperature)
one of the equations becomes degenerate; this situation is considered in the present
paper. We establish the existence of a weak solution and, under some special Dirich-
let and Neumann boundary conditions, analyze the structure of the set {g(u) = 0}
and also prove uniqueness.

1. Introduction. A thermistor is an electric circuit device made of ceramic material
whose electrical conductivity o(u) decreases several orders of magnitude as the tem-
perature u increases beyond a critical temperature u*. Denote by Q the domain
in RY occupied by the thermistor, by ¢ the electric potential, and by k = k(u) the
thermal conductivity. Then

J = electric current density = —o(u)Ve,
g = heat flux = —k(u)Vu, E = —V¢ = electric field.

The conservation of current V-J = 0 and of energy V-¢g = J - E can then be
written in the form
Vie(u)Ve)=0 in Q (1.1)

and

Vk(u)Vu) = —a(u)Ve - Vo = —V(a(u)pVe) in Q (1.1,)
where equation (1.1) was used in deriving the last equation in (1.1,). Since k(u)
varies only slightly with u, we shall assume in the sequel that k(u) = 1; all our
results, however, extend to general k = k(u). Equation (1.1,) then becomes

V(Vu+o(u)pVe)=0 1nQ, (1.2)

or
Vu+ o)Vl =0 inQ. (1.3)
For the physical background of the thermistor problem and some explicit solutions
we refer to [1], [9], [10], [11}, and the references therein. There has been recent

Received April 1, 1991.
1991 Mathematics Subject Classification. Primary 35J60, 3570, 35R35, 78A99, 80A99.

©1993 Brown University
101



102 XINFU CHEN aNp AVNER FRIEDMAN

mathematical interest in the problem in case o(u) is uniformly positive; see [2], [3],
[4], [7], [8]- Cimatti and Prodi in [2] and Cimatti in [3] considered the Dirichlet
boundary conditions for both ¢ and u and proved existence of a solution. In [4]
Cimatti extended the existence result to the case where

p=9¢". u=u" onl,,  T,coQ,
o9 ou . (1.4)
8_n_0’ %—0 onT', =9Q\l,.
An important observation by Diesselhorst [5] that the function
1 2 “ ds
. bl I.
v=30"+ | (1)
satisfies the equation
Vie(u)Vy)=0 in Q, (1.6)

plays a crucial role in the papers [3], [4].
In the special case
I',=T,ul,, ¢=¢,, u=u, onl,,
¢, and u, are constants and ', N T, = @, (1.7)
ae ou -
%: s %IO OHFN:()Q\FD,
Cimatti also proved uniqueness; but, in general, uniqueness is still an open problem.
More recently Howison, Rodrigues, and Shillor [8] have extended the existence
result to more general boundary conditions, such as

(p:(po onFi), gi—o on(?Q\F_l,

- =
ou e (1.8)
5, t7Uu=8 on oOQ\I'y, .

In this paper we are interested in the case where ¢(u) vanishes for large u, i.e.,

0 2
u=u onl},

ou)>0 ifu<u", ow)=0 ifu>u" (1.9)

for some constant u* . This provides a good approximation to the actual engineering
model of thermistors, whereby the conductivity o(u) drops to nearly 0 beyond some
critical temperature u* . We shall be working with the boundary conditions (1.4).

In Sec. 2 we approximate o(u) by a family of uniformly positive functions o, (u)
and review the existence proof of a solution (¢, , u,). We also derive a priori esti-
mates independent of &. In particular, we prove that

B . |
[ < .
/Q|VO’6(u£)| <C 1f2(1_a)<ﬂ_l (1.10)
provided
|a;(u)|§C(|u*—u|“*+1), a € (0,%) ) (1.11)

In Sec. 3 we define the concept of a weak solution (¢, u) for (1.1), (1.2), (1.4)
and prove that a subsequence of (¢, , u,) converges to a weak solution.
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In Sec. 4 we specialize to the boundary conditions (1.7) and prove additional
properties of (¢, u). In particular, a(u(x)) is a continuous function, the level
surface

S={xe€Q;a(u(x)) =0}

is piecewise analytic (analytic if N = 2), and ¢(x) is continuous in Q\S with jump
discontinuity across S. We also prove uniqueness.

Finally, in Sec. 5 we consider special solutions with boundary conditions of the
form (1.8) for which the set {g(u(x)) = 0} has nonempty interior.

2. The approximating problem. For simplicity we take u* = 0 in (1.9). We shall

assume that )
O<o(uy<M ifu<0,

. A (2.1)
ouy=0 ifu>0, geC(—oc, ),
and
geC(-x,0),
o' ()] < My(1+ |u|™™) if u <0, for some a € (0, %) : (2.2)

this implies that for u < 0,
o) <clu®*, o=(1-a)e€ <% 1) .

We introduce a family of smooth functions o () (0 <& < 1) which approximate
o(u) as ¢ — 0, each uniformly positive:

¢<o,(u)<2M Vu,

. 00 (2.3)
o(u)y=¢ ifu>0, g, € C (—oc, 00),
and
o,(u) — o(u) as ¢ — 0, uniformly in u in bounded intervals. (2.4)
We also take the o, to satisfy
o, (u)] < 2My(1+|u|™") Vu, (2.5)

with the same o as in (2.2).
We assume that 6 is piecewise C'*’ for some 0 < 6 < 1 , and that 0T, is

piecewise C 1+ We also assume that the boundary data q)o, 4° can be extended

into Q so that
10w <00 [ 199 <. (2.6)
]| e gy < 0, /Q[Vu0|2 <. (2.7)
Finally we assume that u0|FD is smaller than the critical temperature " (= 0), i.e.,

u0|rD <-c <0. (2.8)
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. 0
If we choose the extension of u |- to be such that
D

ou°

A’ =0 inQ, Z-=0 onT,, (2.9)
then (2.7) is of course again satisfied and further, by the maximum principle,
< —c, <0 inQ. (2.10)
Consider the elliptic system

V(o,(u,)Vp,)=0 inQ, (2.11)
Au, +0,(u)|Ve,’ =0 inQ, (2.12)
9,=¢° onT,, %“”; =0 onT,, (2.13)
uezu0 onl,, ddl:: =0 onl,, (2.14)

where Iy = BQ\I_"D.

LEMMA 2.1. There exists a solution (¢, , u,) of (2.11)-(2.14) in L™(Q) N HI(Q) ,
having the following properties:

(i) ¢, and u, belong to C*(Q), and

(i) if 9Q € €™, ¢° e C™(T,), u® e C"™*’(T',) then ¢, and u, belong to
C"P@\T,nT,) m=1,2,...).

The proof given below is essentially due to Cimatti [4].

Proof. Introducing the change of variables

1 2 Yoo dt
=~ 15
A 2¢8+/.1 08 (2.15)
we can rewrite (2.11)-(2.14) in the form
1 .
\Y (ae (we — §¢:) V(p8> =0 inQ, (2.16)
| .
V(as(we—i(pj) v%) =0 inQ, (2.17)
0 op
p,=¢ onl,, 0—;:0 onl,, (2.18)
(]
o _ 1w “odt oy,
Ve =V, =59 +/—1 o () onl,, an =0 onl,, (2.19)
where
a,(s)=a,(F () (2.20)

and u = F_l(s) is the inverse function of

s:F(u)z/u at_ (2.21)
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Define a mapping 7: L*(Q) x L}(Q) — H'(Q) x H'(Q) by (¢, v) = T(¢, @)
where (¢, y) is the solution of (2.16)-(2.19) with a,(y, — (p£2/2) replaced by
a, (¥, — ¢£2/2). By the standard theory for elliptic equations in divergence form
we know that 7(¢, ) 1s well defined and

0 0
T [P 77 Y 170 (2.22)

Further, multiplying the equations for ¢ and y by (p—(po and y— l//so respectively,
and integrating over ), we find that

”(peuyl(g) < CE P “‘/’EHH'(Q) < Ce s

where C, is a constant independent of @, 7 . It follows that 7" maps Lz(Q)xLz(Q)
into a compact set, and one can easily verify that T is also continuous. Hence, by
Schauder’s fixed point theorem, 7 has a fixed point (¢, , v,), which yields via (2.15)
a solution (¢,, u,) to (2.11)-(2.14). By elliptic estimates (see, for instance, [6]) we
have that ¢, , y, belong to C’(Q) for some p € (0, 1) and therefore u, is also in
the same C” class. Using this fact we can deduce from (2.16), (2.17) that 0., ¥,
belong to C'**(Q), and then also u, € C'*”(Q). By the same bootstrap argument
one can proceed to show that ¢, and u, belong to C™(Q). The proof of the last
assertion of the lemma is obtained by a similar argument.
REMARK 2.1. The assumption (2.5) was not used in the proof of Lemma 2.1.

LEMMA 2.2. The solution (¢, , u,) satisfies:

9,11y + 14l o) < C, (2.23)
/ vu,)’ < C, (2.24)
Q
2
[ owivef<c, (2.25)

Q
B 2 1
Q|VU€ (u)|" < C, for any =) <p<l, (2.26)

where C, C s are constants independent of ¢.

Proof. The estimate (2.23) follows from the proof of Lemma 2.1 since H'//gOHLx <
C,, where C; is independent of ¢ (by (2.10) and (2.3), (2.4)). Next,

2 . 2
/Qas<u€>|wg| - inf /Qa€<ue>|vm

1 4]
pEH (Q),9p=¢p" on T,

0,2
sllae(ue)HLoc/QIVwI <c

since 0 < 0,(1) < 2M ; thus (2.25) holds.

To prove (2.24) and (2.26) we multiply both sides of (2.12) by f(u,) - f(uo) and
integrate over . After integrating by parts we get

/ £lu)vu,)? < / £V, vl + / (Fu) — Fu*)a, () Vo | .
Q Q Q
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Using the Schwarz inequality on the first integral on the right-hand side, we obtain

: 1)
/Q £ < Qmm%%cuﬂug)—f<u°>||Loo(Q), (2.27)

where (2.25) was used.
Taking f(s) = s, (2.24) follows. To prove (2.26) we take

f<s>=/os{ 9 5h(s)

2

+ 1| ds;

—_—0
ds ¢

the condition (2.5) implies that the integrand is integrable. We then get from (2.27)
1,042
B2 fw) o 02
Vo (u )| < / Vu |+ C,
[ 1va ) N

and |f’(u0)| < C since ¥° < —c, < 0. Since f’(us) > 1, the assertion (2.26)
follows.

3. Existence of a weak solution. Consider (1.1), (1.3). Using the formula o(«)Ve
=V(o(u)p) — ¢Vao, we can rewrite these equations formally as

1

Alo(w)p) —V(pVo(u)) =0 in H (Q), (3.1)
A <u + %a(u)(p2> . %V((/Va(u)) =0 in H'(Q) (3.2)
provided

0 e LTQ), ueH(Q), (3.3)
ou), aup, aue’ e H'(Q). (3.4)

Equations (3.1), (3.2) mean that
/waww)-vc — pVe(u)- V) =0, (3.5)

1 2 1 » _

/Q (V (u + Ea(u)(p ) -V - 59 Va(u)- VC) =0 (3.6)

for every { € HOI(Q). Denote by Hll (Q) the class of all functions in Hl(Q) such
that { =0 on I'j,. ’

DEFINITION 3.1. A pair (¢, u) is called a weak solution of the thermistor problem
(1.1), (1.3), (1.4) if (3.3), (3.4) hold; if (3.5), (3.6) hold for any ({ € HrlD(Q) ; and if

u—u’=0 on r,, o(u)p — a(u0)¢0 =0 onl,. (3.7)

REMARK 3.1. By the trace theorem, all the functions in (3.7) are well defined. The
trace of ¢ may not be defined, so we have used the trace of o(u)p instead.

REMARK 3.2. Equations (3.5), (3.6) for all { € HOI(Q) mean the same thing as
the equations (3.1), (3.2) (which are a weak form of (1.1), (1.3)). The additional
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freedom of choosing { in the larger class HIED(Q) accounts for a weak form of the

Neumann conditions

op ou =

%—0, 8n_0 on Q\I',.
THEOREM 3.1. Assume that 0Q and OI', are piecewise in C '*% and that (2.1),
(2.2) and (2.6)—(2.8) are satisfied. Then there exists a weak solution of the thermistor
problem (1.1), (1.3), (1.4).

Proof. By Lemma 2.2 there exists a sequence ¢ — 0 and functions
pel®Q), wuel®QnH(Q), a,, h, and g in H'(Q)
such that

P, = ¢ weakly in (L%(Q))", (3.8)
U, — u weakly in HI(Q) and a.e. in Q, (3.9
o,(u,) — 6, weaklyin H (Q) and a.e. in Q, (3.10)
o,(u,)p, — h weakly in HI(Q) and a.e. in Q, (3.11)
o,(u,)p. — g weakly in H'(Q) and a.c. in Q. (3.12)

Recalling (2.4) we conclude from (3.9), (3.10) that
oy(x) = a(u(x)) a.e.in Q.
Set . .
Q, ={x €Q; o(u(x)) =0} (={x € Q; u(x)>0}).
Then (3.11) implies that
_ 0, (u)e,
¢ o) o
On the other hand, from (3.11) and the uniform boundedness of the ¢, we have
that 2 =0 a.e.in Q;,and so h =o¢ ae. on Q,. Thus

a.e. in Q\Q,.

h=o0(u)p a.e. inQ (3.13)
and similarly
g= cr(u)(p2 a.e. in Q. (3.14)
Clearly (by the trace theorem) also
u—u' =0 on Q,, h—a(u0)¢0:0 onl,.

To complete the proof of the theorem it remains to show that (¢, u) satisfies
(3.5), (3.6). These equations of course hold for (¢,, u,), so that it only remains

to justify the passage to the limit. Since o,(u,) — o(u) and q)fae(ue) - (pka(u)
(k=1,2) weakly in H'(Q),

/Vas(us)-VC—»/Va(u)~V£,

Q Q

/ V(oka, (1) VE - / V(o o(w) - Ve
Q Q
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as ¢ — 0. Thus it remains to show that
/Q%Vog(uﬂ)-vc - /Q(/)Va(u)-VC (3.15)

and

/‘/’fvﬂe(uc)-VC~/ 9’ Va(u)-ve. (3.16)
Q Q

Since Vo, — Vo weakly in LZ(Q) and ¢, — ¢ strongly in Lz(Q\QO) (since
9, — ¢ ae. in Q\Q, and weakly (L™(Q))"), we easily find that

/ 9. Vo, (u,)-V{— oVa(u)-VE. (3.17)
Q\Q, Q\Q,

Next, choose f=1-6J (J > 0) such that (2.26) holds. Then

/ lo,Va,( VC|<C/ Vo, (u ﬂ/ |Vo u,)l

< _E”ag (ME)HL:(QU)”VGE (ug)HLZ(Q )

< o} ()l 2 g

by (2.26). By the Lebesgue dominated convergence theorem, the right-hand side
converges to zero as ¢ — 0 since o,(u,) — o(u) =0 a.e. on Q;, whereas |o,(u,)| <
2M . Thus

/(I’CV%(“C)'VC—*O:/Q(pVU(u)-VC.

0
Combining this with (3.17), the assertion (3.15) follows. The proof of (3.16) is
similar.

THEOREM 3.2. The weak solution (¢, u) established in Theorem 3.1 satisfies:

Au<0 inZ'(Q)), (3.18)
W<u<0 ae inQ. (3.19)

Proof. The assertion (3.18) follows from Au, = —as(ue)[V(p8|2 <0. Since u, > u°

in , also u > W ae.in Q. Finally, from the uniform boundedness of the functions
y, defined in (2.15) it follows that

limsupu,(x) <0 Vxe€Q,

e—0
so that u <0 a.e.

4. Additional properties of weak solutions. In this section we specialize to the
boundary conditions (1.7) (with u, <0, u, < 0) and derive more specific properties
of the weak solution; we shall also prove a uniqueness theorem. Except for the proof
of uniqueness we shall not actually need the assumption (2.2).
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For simplicity we choose the o, (s) such that o, (s) = o(s) if s <max{u,, u,}.

One can determine uniquely constants a, b such that
1 > “i dt .
—@; — =qag, =1,2).
59, +/_l o Santh (i=1.2)

It then follows that
y,=ap,+b inQ,

(4.1)

(4.2)

since both sides satisfy the same elliptic equation div(g,(u,)w) = 0, the same Dirich-

let data on I';,, and both have zero normal derivatives on T’ .
It follows (recalling (2.16)) that
V(a,(9,)Vp,)=0 inQ

where

and q, is defined in (2.20).
Setting

A(s) = /05 a,(rdt

we deduce that the function
w,(x) = 4,(p.(x))
satisfies ,
Vw, =0 inQQ, w, =A(p;) onT, (i=1,2),

ow -
8n‘ =0 onoQ\I'UT,.

In the sequel we shall assume that
O dt
b, = / — < 0]
0 -1 0()

° di _
Lo

the case

will be discussed in Remark 4.4.
Observe that, as ¢ — 0,

Fg(u)_){F(u) ifu<0, (F(u):/_ul %)

00 ifu>0,
Fluy>0 ifu<0,  F(0-)=b,,
where (4.8) was used. Also

-1 -1 . _ [T dt
F, ()= F (5) if —s5;<s<o0, —so—/_l (D)
d

Fls)<0, SF's)>0 if —s,<s<b,,
dS 0 0

-1 .
F (5)=0 ifs>b,.

El

(4.10)

(4.11)
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Write

—%sz+as+b—b0:—%(s—sl)(s—sz). (4.12)

Clearly, when s, , s, are real, if s, <s <5, then ~s*/2+as+b>b ;andif s<s
1252 1 2 0 1

or s > s, then —sz/2+as-+-b<b0.
It follows that if
s, 5, arereal and 5, <s,, (4.13)

then the function
as)=o (F_l <—

a(s)<0 ifs<s, a(s)>0 ifs>s,,
a(s)=0 ifs, <s5<s,.

o] —

s’ +as+b)> <a(s) = lilr})ag(s>> (4.14)

satisfies
(4.15)

If s, =s, then (4.15) remains valid, whereas if s, , 5, are complex then 32/2 —as—
b > b, forall s and thus
a(s) >0 ifs,, s, are complex. (4.16)
We shall first consider the case (4.13). Then, as ¢ — 0,
A (s) — A(s) (4.17)

uniformly on bounded sets,

! .
A(s)>0 ifs<s or s>s,,

5 ) (4.18)
A(s) = A, E/ a(yde ifs <s<s,.
0
The harmonic function
9.(x)
w,(x) = A, (9, (x)) = /0 a.(s)ds (4.19)
then satisfies
w, — W (4.20)
uniformly in compact subsets of Q\(I', T ), where
Aw =0 in Q,
w=A(p,) onT, (i=1,2), (4.21)
ow
5”— =0 on FN .
Introduce the inverse function 4~ of A4 ; clearly,
440 >0 ift<d orift>A,
dt (4.22)

A_l(A ) is the interval {5, <5 <s,}.

*

From (4.19), (4.20), (4.22) we deduce that
9,(x) = A (w,(x)) = 4" (w(x)) in Q\S, (4.23)
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where
S={xeQ;w(x)=A4,}.
From (2.15), (4.2) we also deduce that

U, (x) = u(x) inQ\S,
u(x) <0,

and ‘g
1 2 s
—5¢ +a¢+b—b0— o ;(_S—S’
further

Vw =c(u)Ve in Q\S.

11

(4.27)

(4.28)

The set S is a level surface of the harmonic function w, and it is therefore
piecewise analytic; in case N = 2, S is actually an analytic curve. We are assuming

here that
A, lies between the number A(g,), A(¢,);

otherwise S is empty.
Set

Q ={xeQ,wx) >4}, Q_ ={xeQ,wx)<A4};

each set is a connected open set. Then

1

p(x)=A4 (w(x)) inQ UQ_.

Since A™'(w(x)) is continuous in Q_ and in Q_ with

lim A

= i A
i, (w(x)) =s,, lim

X —=Xq LXEQ
for any x, € §, it follows that

peC’Q,), ¢eC’Q.) with

lim X)=s,, lim x)=3s Vx,eS.
x—»xo,x€§2+¢( ) 2 X=Xy, XEQ_ (P( ) ! 0

Recalling (4.27) we also deduce that
“x) ds
— =0 ifxeQ\S, x—-x,€9,
L e ! 0
so that
u(x) is continuous across .

From (4.27) we also deduce that ¥ < 0 in Q\S and ¥ =0 on §S; thus

S is the set {x € Q; a(u(x)) = 0}.

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

THEOREM 4.1. Assume that 9Q and 0@, are piecewise in C'*’ and that (2.1),
(1.7) hold with u, < 0, u, < 0. Then the limit (¢, u) of (¢,, u,) exists and is
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independent of the choice of the family g, , and it has the following properties:
¢ and u are related by (4.27), (4.35)

u(x) and o(u(x)) are continuous in €2, (4.36)
@(x) is continuous in Q\S with limits s, , s, from the respective ~ (4.37)
sides Q_, Q_ of S,

where

S is the A_-level surface of the harmonic function w defined by (4.21), (4.38)

o)V € L'(Q\S), (4.39)
VuelL, (Q), (4.40)
and, finally,
/ oWV -V{=0 Y eH (Q), (=0 onT,uT,. (4.41)
Q\S

Proof. We have already proved (4.35)-(4.39) ((4.39) follows from (4.28)). From

(4.27),
Vu=(—p+a)a(u)Ve = (u - ¢> Vw, (4.42)

and since Vw € L (Q), (4.40) follows. It remains to prove (4.41). But this follows

loc
from (4.28):

o
/ o(u)Ve-V{= Vw-VC=/Vw~V§= 9Wr_o.
S Q\s Q a0 On
REMARK 4.1. From (4.42) we deduce the jump relations
ou ow ¢
a,l = o= — - 4.43
[8nL l9ls 50 [a“’anL (4.43)

This implies that equation (1.3) holds in the following sense:
2
Au+o(W)|Vo| xg s + lols(Vw - n)dg = 0,

where J is the Dirac function with uniform mass distribution 1 on S'.

REMARK 4.2. In establishing Theorem 4.1 we have not used condition (2.2).

REMARK 4.3. Theorem 4.1 extends to the case where (4.13) holds with 5, = s,
in this case ¢(x) is continuous across S. If s, s, are complex, then (because of
(4.16)) the assertions of Theorem 4.1 hold with S the empty set.

REMARK 4.4. So far we have assumed that (4.8) holds. Since ¢, and y, are
uniformly bounded, we also have

/ME(X) ds <c
—1 Ue(s)

If (4.9) holds then the last inequality implies that u,(x) < —J, where ¢ is a posi-
tive constant independent of ¢. It follows that for the limiting (¢, u), o(u(x)) is
uniformly positive in Q.
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From now on we shall assume, in addition to the assumptions of Theorem 4.1,
that o satisfies (2.2). Then, by Theorem 3.1, (¢, u) is a weak solution, as defined
in Sec. 3. Therefore (3.5), (3.6) hold.

We wish to prove (under some assumptions) uniqueness of the weak solution. In
general, a weak solution may not be unique. For instance, if o(u) vanishes on a
nonempty open set (examples will be given in Sec. 5), then by modifying ¢ in this
set we get another weak solution.

Let (¢, ) be a weak solution of (1.1), (1.3}, (1.7). We shall make several as-
sumptions:

o(u) is continuous in (4.44)
meas{o(u) =0} =0, (4.45)
and
each component of {o(u) > 0} is connected to I', (=T, UT}); (4.46)
further, setting X -
W= { 20 +/0 o Mo #0h (4.47)
1o? inQ, = {o(u) =0},
and
n=y-—ap->, (4.48)
where a, b are constants such that 7 =0 on I';, (see (4.1)), we assume that
ne H(Q). (4.49)

THEOREM 4.2. Let the assumptions of Theorem 4.1 and (2.2) hold. Then there exists
at most one weak solution of the thermistor problem (1.1), (1.3), (1.7) satisfying
(4.44)-(4.46), (4.49).

Of course, the existence of such a solution and additional properties of it were
established in Theorem 4.1.

Proof. Since g and n belongto H I(Q) , the same is true of oy . One can easily
verify that oVy = g¢Ve + Vu a.e. in both Q, = {g(u) > 0} and Q. Using (3.5),
(3.6) we then deduce that y satisfies the same equation (3.5) as ¢, and therefore

(Ve - 9= n¥o)-v0) =0 Ve e H (@),

Since 7 =0 on I'; (in the trace class), we can take { =7:

/ (V(o()n) - V- n¥o(u)-Vn) =0, or /a(u)IV'ﬂz:O.
Q Q

Recalling (4.46) we conclude that 7 = 0 a.e. in Q,, and consequently, by (4.45),
n=0 ae. in Q.

One can now proceed as in the proof of Theorem 4.1, and derive for ¢ a nonlinear
elliptic equation: V{a(¢)Ve) = 0 with a(¢) defined as in (4.14). But then ¢
must coincide with the function ¢ which was obtained in Theorem 4.1. Since ¢ is
uniquely determined, also u# is uniquely determined.
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REMARK 4.5. Without the assumption (4.49) one can construct infinitely many
weak solutions. They are obtained by taking
w=dp+b + ey > ¢ an arbitrary constant.
Here Q' is a subdomain of Q (to be determined such that Q> r,, Q'n I, =0)
and a', b’ are constants determined by boundary conditions similar to (4.1), namely,

ap,+b isreplaced by a'p+b +c for i =1 and by a'p+b’ for i = 2. The function
u is defined by (4.47), and 9Q' N Q is the set {g(u) = 0}.

5. Examples. We try a solution, in R? , of the form
9 =ad(y) + Bx, u=U(y). (5.1)
Then (1.1), (1.3) become

(e(U)®) =0,
" 2 1.2 2 (52)
U +o(U)a (®) +p7)=0,
so that
o® = const = c,, (5.3)
and
" 2 (12C12 .
U +o(U)p +m=0 in {a(U) > 0}. (5.4)
The last equation can be reduced to
1.1 u 2 o’ C?
U I - —
2U +/0 (ﬁ’ o(s) + o05) ) ds = const = C,, (5.5)
or
U'=FU,C,,GC,). (5.6)
Take for example « =0, B =1 and assume that
) { cls|” ifs <0, (5.7)
o(s) = .
0 if s >0,

where 0 < y < 1 and c¢ is a positive constant. Then a solution to (5.4) is given by

—y’S ify>0,

u,(y) =<0 if —u<y<o, (5.8)
5 .
—(-u-y) ify<-u
for any u > 0, provided
2
5—m, C—é(&—l)
One may perceive (x, u,(y)) as a weak solution in a rectangle Q, with boundary
conditions 5
% =0 on the horizontal edges of 9Q2,
ou . ,
e 0 on the vertical edges of H€2,
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and ¢ = ¢,, u = u, (suitable functions) on the remaining edges.
In the above example

the set {o(u) =0} isastrip {-u <y <0}; (5.9)

the boundary conditions are of course not of the form (1.7) (or even (1.4)).
In case o # 0, for the corresponding solution of (5.2) the set {o(u) = 0} has
measure zero, in general.
Let
f(2)=filx,y)+ify(x,p)  (z=x+1iy)
be any holomorphic function. It was observed by Howison [8] that solutions to

the thermistor problem are invariant under conformal mappings of the independent
variable. Thus, in particular, the pair

¢ =5y, u=u(f(x,y),

where u, is defined by (5.8), is a solution of the thermistor problem, and {o(u) = 0}
has nonempty interior.
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