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Abstract. The thermistor problem is modeled as a coupled system of nonlinear el-
liptic equations. When the conductivity coefficient a(u) vanishes (u = temperature)
one of the equations becomes degenerate; this situation is considered in the present
paper. We establish the existence of a weak solution and, under some special Dirich-
let and Neumann boundary conditions, analyze the structure of the set {a(u) = 0}
and also prove uniqueness.

1. Introduction. A thermistor is an electric circuit device made of ceramic material
whose electrical conductivity a(u) decreases several orders of magnitude as the tem-
perature u increases beyond a critical temperature u . Denote by Q the domain
in occupied by the thermistor, by cp the electric potential, and by k — k(u) the
thermal conductivity. Then

J — electric current density = -a{u)Vcp ,
q = heat flux = —k{u)Vu, E = -Vtp = electric field.

The conservation of current V • J = 0 and of energy V • q = J • E can then be
written in the form

V(<r(K)Vp) = 0 infi (1.1)
and

V(/c(m)Vm) = -o{u)V(p -V<p = -V{a{u)(pV(p) in Q (1. la)
where equation (1.1) was used in deriving the last equation in (l.la). Since k(u)
varies only slightly with u, we shall assume in the sequel that k(u) = 1 ; all our
results, however, extend to general k = k(u). Equation (l.la) then becomes

V(Vm + a(u)(p^7tp) — 0 in Q, (1.2)

or
V2» + ct(w)|V^|2 = 0 inQ. (1.3)

For the physical background of the thermistor problem and some explicit solutions
we refer to [1], [9], [10], [11], and the references therein. There has been recent
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mathematical interest in the problem in case o(u) is uniformly positive; see [2], [3],
[4], [7], [8]. Cimatti and Prodi in [2] and Cimatti in [3] considered the Dirichlet
boundary conditions for both (p and u and proved existence of a solution. In [4]
Cimatti extended the existence result to the case where

cp = <p°, u — u° onrD, r^cdQ,
d1> n du n r -in\r— = 0, ^-=o onryv = dQ\ro.dn dn N 1

An important observation by Diesselhorst [5] that the function

1 2 fu ds1"2*+LW) °'5)
satisfies the equation

V(it(«)V^) = 0 inQ, (1.6)
plays a crucial role in the papers [3], [4],

In the special case

td = r, u r2, <p = <p,, u = on r(,
(pi and ut are constants and F( fl P2 = 0, ^ j

5^ = 0, p = 0 on rN = dQ\TD,dn dn
Cimatti also proved uniqueness; but, in general, uniqueness is still an open problem.

More recently Howison, Rodrigues, and Shillor [8] have extended the existence
result to more general boundary conditions, such as

o -l dip<p = <p onTD, — = 0 on<9Q\ro,dn (1.8)
0 j->2 OU ar,,r2u = u on rD, — + yu = g0 on dQ\ro .

In this paper we are interested in the case where o(u) vanishes for large u, i.e.,

a{u) > 0 if u < u*, ct(m) = 0 if u > u* (1-9)

for some constant u*. This provides a good approximation to the actual engineering
model of thermistors, whereby the conductivity o(u) drops to nearly 0 beyond some
critical temperature u*. We shall be working with the boundary conditions (1.4).

In Sec. 2 we approximate a{u) by a family of uniformly positive functions o£(u)
and review the existence proof of a solution (<p u ). We also derive a priori esti-
mates independent of e . In particular, we prove that

ivc.wi' < c (U0»
provided

\a'(u)\ < C{\u -u\'a+ 1), ae(o'). (1.11)

L
In Sec. 3 we define the concept of a weak solution (<p, u) for (1.1), (1.2), (1.4)

and prove that a subsequence of (tp , ue) converges to a weak solution.
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In Sec. 4 we specialize to the boundary conditions (1.7) and prove additional
properties of (<p, u). In particular, a(u(x)) is a continuous function, the level
surface

S = {x£fl; a{u{x)) = 0}
is piecewise analytic (analytic if N = 2), and (p{x) is continuous in Q\S with jump
discontinuity across S. We also prove uniqueness.

Finally, in Sec. 5 we consider special solutions with boundary conditions of the
form (1.8) for which the set {a(u(x)) — 0} has nonempty interior.

2. The approximating problem. For simplicity we take u = 0 in (1.9). We shall
assume that

0 < a(u) < M if u < 0,

and
o{u) = 0 ifw>0, a € C°(-oo, oo),

cr e C1 (~~oo, 0),

(2.1)

|<t'(m)| < Mq( 1 + |«|~a) if u < 0, for some a e ^0, ; (2.2)

this implies that for u < 0,

a(u) < c\u\" , a = (1 - a) 6 ^ , 1^ .

We introduce a family of smooth functions er£(w) (0 < £ < 1) which approximate
a(u) as e —> 0, each uniformly positive:

e < olu) < 2M Vw,
_ co (2.3)

oE{u) = e ifw>0, ae e C (-00,00),

and
ae(u) —* o(u) as e —> 0 , uniformly in u in bounded intervals. (2.4)

We also take the tr£ to satisfy

l<7e'(w)| < 2M0(1 + \u\~a) Vw, (2.5)

with the same a as in (2.2).
We assume that d£l is piecewise Cl+<5 for some 0 < S < 1 , and that dTD is

piecewise Cl+S . We also assume that the boundary data <p°, u° can be extended
into Q so that

H^°llz.00(n) < 00' ^|v/|2<oc, (2.6)

L |Vw°|2 < 00. (2.7)
• 0 * * * ^ •Finally we assume that u |r is smaller than the critical temperature u (= 0), i.e.,1 D

u\r <-C <0. (2.8)
D
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If we choose the extension of w°|r to be such that1 D

r) 0
Au° = 0 in Q, -#- = 0 on T,, (2.9)dn n

then (2.7) is of course again satisfied and further, by the maximum principle,

u° < -ct <0 in Q. (2.10)

Consider the elliptic system

V(<t£(«£)VPj) = 0 in £2, (2.11)

Am + a (u )|Vp |2 = 0 inQ, (2.12)
o r- dip ...<pe = <p onrD, = 0 on fv, (2.13)

u^u onro, ^ = 0 onT„, (2.14)

where YN = d£l\TD .

Lemma 2.1. There exists a solution (<pe,ue) of (2.11)—(2.14) in L°°(Q) n Hl(Q.),
having the following properties:

(i) <pe and ue belong to C°°(Q), and
(ii) if dQ e Cm+S , (p° e C'n+S(TD), u° e Cm+S(TD) then <pe and u£ belong to

Cm+<5(Q\(F0 nf^)) (m = 1,2,...).
The proof given below is essentially due to Cimatti [4],
Proof. Introducing the change of variables

1 2, r dt io
¥-~2r-+J_, wr ( 5)

we can rewrite (2.11)—(2.14) in the form

V (fl« ~ V^£) = ° mQ' (2'16)

inn, (2.17)

.0 __ r djPc
dn

(pE = <p onrD, -^7 = 0 on (2.18)

o 1 02 f" dt _ dy/
= + 0nr'- ¥n=0 on r»' <2I9>

where
a,(s) = o,(Fr '(*)) (2.20)

and u = F '(51) is the inverse function of

ru dt
=F-M=bw



THE THERMISTOR PROBLEM FOR CONDUCTIVITY 105

Define a mapping T\ L2(Q) x L2(Q) —► //'(Q) x //'(Q) by {q>, y/) = T{(p, i//)
where ($?, is the solution of (2.16)—(2.19) with a£(y/E - <pl/2) replaced by

~ Ve/2). By the standard theory for elliptic equations in divergence form
we know that T(0, yjr) is well defined and

— \\*P IIZ,°°(O) ' II vllz.°°(n) — II IIZ,°°(£2) • (2.22)
Further, multiplying the equations for tp and y/ by (p-cp° and y/ - y/® respectively,
and integrating over Q, we find that

IIH//1 (O) — CE > II H//1 (£2) — Ce >

where C£ is a constant independent of (p , y/ . It follows that T maps L2(Q)xL2(Q)
into a compact set, and one can easily verify that T is also continuous. Hence, by
Schauder's fixed point theorem, T has a fixed point (<pE, y/e), which yields via (2.15)
a solution {<pe, ue) to (2.11)—(2.14). By elliptic estimates (see, for instance, [6]) we
have that <pe, y/e belong to Cp(£i) for some p e (0, 1) and therefore uE is also in
the same Cp class. Using this fact we can deduce from (2.16), (2.17) that (p , y/f.
belong to C'+/,(f2), and then also u£ e Cl+/,(£2). By the same bootstrap argument
one can proceed to show that (pe and ue belong to C°°(Q). The proof of the last
assertion of the lemma is obtained by a similar argument.

Remark 2.1. The assumption (2.5) was not used in the proof of Lemma 2.1.

Lemma 2.2. The solution ((pe,ue) satisfies:

IIIIZ,°°(12) + IIWell/.°°(£2) — ̂ ' (2.23)

[ |V«/<C, (2.24)Jq

[ oe{ue)\V9f<C, (2.25)
J Q

IVcrf (w£)|2 < Cp for any —— < p < 1, (2.26)

where C, C^ are constants independent of e .

Proof. The estimate (2.23) follows from the proof of Lemma 2.1 since ||ys0||L°° <
C0, where C0 is independent of e (by (2.10) and (2.3), (2.4)). Next,

[ ct£K)IvpJ2 = , inf „ [ aMe)\v?r
JQ. (peH (Q),<p=a> on rnJQ

L

0,2 < c< lk£(«£)llL- [ Iv<phi
since 0 < a£(t) < 2M ; thus (2.25) holds

To prove (2.24) and (2.26) we multipl
integrate over Q . After integrating by parts we get

[ f\u£)\Vuf < [ f\u)Vu£-Vu+ [ (f(u )-f(u°))(j {u )\V<p
jq Jo. Jn

To prove (2.24) and (2.26) we multiply both sides of (2.12) by f{u ) - f{u°) and

2
£' '
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Using the Schwarz inequality on the first integral on the right-hand side, we obtain
n'/..0\2

V7,/°I2 _i_ rii ft,, \ _ ,[ f'(uc)\Vu/< f L^±\Vu°\2 + C\\f(uc)-f(u°)\\roo(Cl), (2.27)
Jn h2 J ("J

where (2.25) was used.
Taking f(s) = s, (2.24) follows. To prove (2.26) we take

2

f(s) = fJ 0
d p, ,
5».(I) + 1 A;

the condition (2.5) implies that the integrand is integrable. We then get from (2.27)
-/, 0-.2

J IV^K)|2</=y^-|V«°|2 + C,./a Jq J (u )

and |f'(u )| < C since u < -ct < 0. Since f\u£) > 1, the assertion (2.26)
follows.

3. Existence of a weak solution. Consider (1.1), (1.3). Using the formula o{u)V<p
= V(a(u)<p) - tpVa , we can rewrite these equations formally as

A(a(u)<p)-V(<pVa(u)) = 0 in H~\Q), (3.1)

A + ^ct(m)^2^ - ^V(^2Vct(w)) = 0 in H '(Q) (3.2)

provided

^eL°°(Q), ueHl(£l), (3.3)

o(u), o(u)<p , a{u)<p2 £ H\Q). (3.4)

Equations (3.1), (3.2) mean that

[ (V(ct(u)<p)
J n

VC-pV<7(M)-VC) = 0, (3.5)

(m + ^a(u)<p2^j ■ VC - ^<p2Va(u) • Vf) = 0 (3.6)

for every £ e //0'(£2) • Denote by (Q) the class of all functions in H\Q) such
that £ = 0 on rD .

Definition 3.1. A pair (q>, u) is called a weak solution of the thermistor problem
(1.1), (1.3), (1.4) if (3.3), (3.4) hold; if (3.5), (3.6) hold for any £ € Hi (Q); and if1 D

u-u = 0 on ro, a(u)<p - a{u°)(p° = 0 on rfl. (3.7)

Remark 3.1. By the trace theorem, all the functions in (3.7) are well defined. The
trace of <p may not be defined, so we have used the trace of a(u)<p instead.

Remark 3.2. Equations (3.5), (3.6) for all £ e mean the same thing as
the equations (3.1), (3.2) (which are a weak form of (1.1), (1.3)). The additional
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freedom of choosing £ in the larger class Hi (Q) accounts for a weak form of the1 D

Neumann conditions

= = 0 on d£l\TD.dn dn u

Theorem 3.1. Assume that dQ and 8TD are piecewise in C1+<5 and that (2.1),
(2.2) and (2.6)-(2.8) are satisfied. Then there exists a weak solution of the thermistor
problem (1.1), (1.3), (1.4).

Proof. By Lemma 2.2 there exists a sequence e —> 0 and functions

<p e L°°(Q), u e L°°(Q) n//'(Q), <r0, h, and £ in J/1 (£2)
such that

?>£ —> <p weakly in (L°°(fi))*, (3.8)

ue —> m weakly in//'(Q) and a.e. in Q, (3.9)

cr£(w£) —►(70 weakly in//'(Q) and a.e. in Q, (3.10)

0e{uE)VE—>h weakly in h\Q.) and a.e. in Q, (3.11)

ff£(w£)^£ —> g weakly in h\d.) and a.e. in Q. (3.12)

Recalling (2.4) we conclude from (3.9), (3.10) that
cr0(x) = a(u(x)) a.e. in Q .

Set
Q0 = {x e Q; o(u(x)) = 0} (= {x e Q.; w(x) > 0}).

Then (3.11) implies that
ce(uF)'Pc h .

Ve = t ^ ^ a-e-in Q\Qo •ae(u£) a[u) 0

On the other hand, from (3.11) and the uniform boundedness of the <pE we have
that h = 0 a.e. in Q0 , and so h = ocp a.e. on Q0 . Thus

h = o(u)<p a.e. in Q (3.13)
and similarly

g = a(u)cp2 a.e. in Q. (3.14)
Clearly (by the trace theorem) also

u - u° = 0 onQfl, h - a(u°)<p° = 0 onro.
To complete the proof of the theorem it remains to show that (<p, u) satisfies

(3.5), (3.6). These equations of course hold for (<pg, ue), so that it only remains
to justify the passage to the limit. Since a(u) —> o(u) and <pko(u) —► (pko(u)

Go O o C

(Ac =1,2) weakly in HX(Q) ,

[ V(7£(m£)-VC- [ Vff(u)-VC,
JQ J Q

j ?(?&(«,)) • vc - I V(/<t(m)) • VC
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as e —» 0 . Thus it remains to show that

/ ^VCT£("£)-VC- [ <pVa(u)-Vt (3.15)
J n Jn

and

Jn J <p2Vo(u) ■ vc. (3.16)
2 2Since Ver£ —> Vex weakly in L~(Q) and (pe —► <p strongly in L"(Q\Q0) (since

<pe —> <p a.e. in Q\Q0 and weakly (L°°(Q))*), we easily find that

[ 9»eV<7e(Me) • VC-» [ tpVa(u) • VC • (3.17)
Mo0 •/a\"o

Next, choose /? = 1 - (5 (^ > 0) such that (2.26) holds. Then

[ l?eV(7e(«e). VCI < c f \vae(ue)\ = J f aSE(ue)\Va^(ue)\
Jq0 Jq0 P Jq0

<cyE(ue)wLhQo)

by (2.26). By the Lebesgue dominated convergence theorem, the right-hand side
converges to zero as e —► 0 since oc(uc) —> ct(m) = 0 a.e. on £20 , whereas I^K)! ^
2Af. Thus

[ ^£Vc£(w£) • VC -+ 0 = f <pVo{u) • VC •
•'"o ■/"o

Combining this with (3.17), the assertion (3.15) follows. The proof of (3.16) is
similar.

Theorem 3.2. The weak solution (q>, u) established in Theorem 3.1 satisfies:

Au < 0 in 3t'(Q.), (3.18)
u° < u < 0 a.e. in Q. (3.19)

2 0Proof. The assertion (3.18) follows from Au£ — — °"e () IV | ̂  < 0 . Since u£>u
in Q , also a > u° a.e. in Q . Finally, from the uniform boundedness of the functions
yy defined in (2.15) it follows that

lim sup w (x) < 0 VxgQ,
£ —>0

so that u < 0 a.e.

4. Additional properties of weak solutions. In this section we specialize to the
boundary conditions (1.7) (with < 0, u2< 0) and derive more specific properties
of the weak solution; we shall also prove a uniqueness theorem. Except for the proof
of uniqueness we shall not actually need the assumption (2.2).
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For simplicity we choose the o8{s) such that aE(s) = a(s) if s < max{w,, w,} .
One can determine uniquely constants a, b such that

1 2 f' dt , „ ,,
29i +J j a\i) =a</)i + b (' = 1,2). (4.1)

It then follows that
= a<pE + b inQ, (4.2)

since both sides satisfy the same elliptic equation div(o-(,(wg)u)) = 0, the same Dirich-
let data on Y D , and both have zero normal derivatives on rv .

It follows (recalling (2.16)) that

V(fie(¥>e)Vpe) = 0 in Q (4.3)
where

ae{<p) = a(--<p2 + a<p + b) (4.4)2
and ae is defined in (2.20).

Setting

A/s) = [ ~aM)dt (4-5)
Jo

we deduce that the function
WM) = (4-6)

satisfies
V2w£ = 0 in Q, we = ■Ae(<pi) on T(. (i = 1,2),

dw   (4-7)
—— = 0 on dQ\r. u r,.an

In the sequel we shall assume that
r-O

the case
r° dt

b°sLw)<°°-' (48»

d (4.9)[ —J-1 <t(0
will be discussed in Remark 4.4.

Observe that, as e —> 0,

F(u) if M < 0, (^(") = /, 4?))
oo if u > 0,

F'(u) > 0 if w < 0, F(0-) = b0,
where (4.8) was used. Also

F(u)

/ —OO

dt
-l ff(0

F (s)<0, —F (5) > 0 if -s0<s<b0,

(4.10)

1/ > - ~ ^ n „ u (4-HI
ds

F '(5) = 0 if s > bQ.
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Write
-^52 + as + b - b0 = - 5,)(j - S2). (4.12)

2Clearly, when Sj, s2 are real, if s, < s < s2 then -5 /2 + as + b > bQ ; and if s < 5,
or s > s2 then -s /2 + as + b < b0 .

It follows that if
, s2 are real and < s2 , (4.13)

then the function

a(s) = a 1 + as + ^a(s) = lima^s)^ (4.14)

satisfies
a (s) < 0 if 5 < s, , a (s) > 0 if s > s2, (4 15)

a(s) = 0 if 5j < 5 < s2.
2If j, = s, then (4.15) remains valid, whereas if 5,, s2 are complex then s /2 - as -

b > b0 for all 5 and thus

a(s) > 0 if 5,, 5., are complex. (4.16)

We shall first consider the case (4.13). Then, as e —► 0 ,

^(s)-^(s) (4-17)

uniformly on bounded sets,

A (5) > 0 if 5 < 5, or s>s2,

A(s) — At = [ a(t)dt if 5, < 5 < s2 .
J 0

The harmonic function

= [ ' de{s)ds (4.19)
Jo

then satisfies
we —* w (4.20)

uniformly in compact subsets of Q\(ro n T^), where

Aw = 0 in Q,
w = A{<pt) on T (/' = 1,2), (4 2))
dW A r
^ = 0

Introduce the inverse function A~' of A ; clearly,

4~A \t) > 0 if I < A or if / > A ,dt y ' * * (4.22)
A~l(AJ is the interval {s. < 5 < s^}.

(4.18)

From (4.19), (4.20), (4.22) we deduce that

<PF(x) = A \w (x)) —> A \w{x)) in Q\S, (4.23)
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where
S-{xeQ;w(i) = ^}. (4.24)

From (2.15), (4.2) we also deduce that

ue(x) —► u(x) inO\5', (4.25)
u(x) < 0, (4.26)

and

further

f" ds
Jo o(s)']r<p2 + a<p + b-b0= I (4.27)

Vw-a(u)V<p inQ\S. (4.28)
The set S is a level surface of the harmonic function w , and it is therefore

piecewise analytic; in case N = 2, S is actually an analytic curve. We are assuming
here that

At lies between the number A((px), A(<p2); (4.29)

otherwise S is empty.
Set

Q+ = {xefl,w(x)>^}, Q_ = {x € Q, w(x) < At}; (4.30)

each set is a connected open set. Then

<p(x) = A~l(w(x)) in Q+U Q_ . (4.31)

Since ^_1(w(x)) is continuous in Q+ and in £2 with

lim A~l(w(x)) — s2, lim „ A \w(x)) = S 1

for any x0 e S, it follows that

(p £ C°(Q+), (p € C°(Q_) with
lim (p{x) = S-., lim <p(x) = s, Vxn £ S.

x—x0,x€Sl+ - .r—>x0, a€H_ 1 U
(4.32)

Recalling (4.27) we also deduce that
Mx)
/ —T->0 if x e Cl\S, h.leS,

Jo CT(5) 0

so that
u(x) is continuous across S. (4.33)

From (4.27) we also deduce that u < 0 in Q.\S and u = 0 on S \ thus

S is the set {xeO; a(u(x)) = 0}. (4.34)

Theorem 4.1. Assume that dD. and dYD are piecewise in Cx+S and that (2.1),
(1.7) hold with m, <0, u2 < 0. Then the limit (<p, u) of (<p£, ue) exists and is
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independent of the choice of the family er,, and it has the following properties:

(p and u are related by (4.27), (4.35)
u(x) and a(u(x)) are continuous in Q, (4.36)
tp(x) is continuous in f2\.S with limits s2 , 5, from the respective (4.37)
sides Q+ , of S,

where

S is the ^-level surface of the harmonic function w defined by (4.21), (4.38)

o(u)V<p e Ll(Q\S), (4.39)
Vw € C(Q), (4.40)

and, finally,

f <j(u)Vcp ■ VC = 0 V£ e Hl(Q), C = 0 onr,ur2. (4.41)
JQ\S

Proof. We have already proved (4.35)-(4.39) ((4.39) follows from (4.28)). From
(4.27),

Vm = {-(p + a)o(u)W<p = ^- (p^j Vw , (4.42)

and since Vw € L,^c(Q), (4.40) follows. It remains to prove (4.41). But this follows
from (4.28):

/ ct(m)V^-VC= I Vui -VC = I Vw -VC = /
Jo.\s Jn\s Jq Jan °n

Remark 4.1. From (4.42) we deduce the jump relations

^c = o.

du dw= ' ~ d(p
a(Pir-dn (4.43)dn

This implies that equation (1.3) holds in the following sense:

Am + ct(w)|V^|2^5 + [<?]s(Vk; • n)8s = 0,

where is the Dirac function with uniform mass distribution 1 on S.
Remark 4.2. In establishing Theorem 4.1 we have not used condition (2.2).
Remark 4.3. Theorem 4.1 extends to the case where (4.13) holds with = s2;

in this case (p(x) is continuous across S. If 5, , s2 are complex, then (because of
(4.16)) the assertions of Theorem 4.1 hold with 5 the empty set.

Remark 4.4. So far we have assumed that (4.8) holds. Since (pE and y/e are
uniformly bounded, we also have

dS
/: °^s)

<c.

If (4.9) holds then the last inequality implies that ut(x) < -S , where 8 is a posi-
tive constant independent of e . It follows that for the limiting (cp , u), o(u(x)) is
uniformly positive in Q .
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From now on we shall assume, in addition to the assumptions of Theorem 4.1,
that a satisfies (2.2). Then, by Theorem 3.1, (<p, u) is a weak solution, as defined
in Sec. 3. Therefore (3.5), (3.6) hold.

We wish to prove (under some assumptions) uniqueness of the weak solution. In
general, a weak solution may not be unique. For instance, if o{u) vanishes on a
nonempty open set (examples will be given in Sec. 5), then by modifying (p in this
set we get another weak solution.

Let {<p, iy) be a weak solution of (1.1), (1.3), (1.7). We shall make several as-
sumptions:

o(u) is continuous in Q, (4.44)
meas{cx(w) = 0} = 0, (4.45)

and

each component of {a(u) > 0} is connected to TD (= Tj U T2); (4.46)

further, setting

\ + f ~T~\ in ^ °}'y, = ^ 2 Jo o(s) (4.47)
1 \(p2 in Q0 - {<7{u) = 0} ,

and
r\ = i// - a<p - b, (4.48)

where a, b are constants such that t] = 0 on (see (4.1)), we assume that

t] e H (Q.). (4.49)
Theorem 4.2. Let the assumptions of Theorem 4.1 and (2.2) hold. Then there exists
at most one weak solution of the thermistor problem (1.1), (1.3), (1.7) satisfying
(4.44)-(4.46), (4.49).

Of course, the existence of such a solution and additional properties of it were
established in Theorem 4.1.

Proof. Since atp and t] belong to Hx (Q), the same is true of ay . One can easily
verify that erVif/ = a<pVcp + Vu a.e. in both e{(t(h)>0} and ClQ . Using (3.5),
(3.6) we then deduce that (// satisfies the same equation (3.5) as (p , and therefore

[ (V(ff(M)f/) • VC - tjVa(u) ■ VC) = 0 VC € Hxr (Q).
Jq d

Since i| = 0 on Ffl (in the trace class), we can take £ = rj:

[ (V(ct(m)//) • Vrj - rjVa(u) • Vtj) = 0, or j ct(m)|V^|2 = 0.
Jq Jq

Recalling (4.46) we conclude that 77 = 0 a.e. in Q, , and consequently, by (4.45),
>7 = 0 a.e. in Q.

One can now proceed as in the proof of Theorem 4.1, and derive for cp a nonlinear
elliptic equation: V(a{tp)V(p) = 0 with a(<p) defined as in (4.14). But then tp
must coincide with the function (p which was obtained in Theorem 4.1. Since (p is
uniquely determined, also u is uniquely determined.
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Remark 4.5. Without the assumption (4.49) one can construct infinitely many
weak solutions. They are obtained by taking

i// = a <p + b' + cXq' , c an arbitrary constant.

Here Q' is a subdomain of Q (to be determined such that Q' D rt , fi' fl T2 = 0)
and a', b' are constants determined by boundary conditions similar to (4.1), namely,
aq>j + b is replaced by a'rp + b' + c for i = 1 and by a'rp + b' for i = 2. The function
u is defined by (4.47), and <9Q' n Q is the set {a(u) = 0}.

5. Examples. We try a solution, in K , of the form

<p = a<$>(y) + fix, u=U{y). (5.1)
Then (1.1), (1.3) become

(tr(C/)0')' = 0,
U" + a

so that

and

U" + a(U)(a(Q>')2 + p2) = 0,
(5.2)

crC>' = const = C, , (5.3)

2C2
U" + a{U)fi2 + ^ = 0 in {cr(U) > 0}. (5.4)

The last equation can be reduced to

1/2 r n2 , , a C,2U^ + J ^/^(s) + J ds = const = C2, (5.5)

or
U' = F(U, C,, C2). (5.6)

Take for example a = 0 , /? = 1 and assume that

f c|5|7 if s < 0,
a(s) = \ (5.7)I 0 if j > 0,

where 0 < 7 < 1 and c is a positive constant. Then a solution to (5.4) is given by

r -/ if v > o,
u0(y) = | o if — n < y < 0, (5.8)

1 ~ y)S if V < ~M
for any n > 0, provided

<5 = —?—, c = S(d - 1).
1 - y

One may perceive (x, u0(y)) as a weak solution in a rectangle £2, with boundary
conditions

^ = 0 on the horizontal edges of <9Q,
on

—— — 0 on the vertical edges of <9Q,dn
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and <p = <p0, u = uQ (suitable functions) on the remaining edges.
In the above example

the set {a{u) = 0} is a strip {-/i < y < 0}; (5.9)

the boundary conditions are of course not of the form (1.7) (or even (1.4)).
In case a ± 0, for the corresponding solution of (5.2) the set {o(u) = 0} has

measure zero, in general.
Let

f{z) = fx{x, y) + if2{x, y) (z = x + iy)
be any holomorphic function. It was observed by Howison [8] that solutions to
the thermistor problem are invariant under conformal mappings of the independent
variable. Thus, in particular, the pair

<p = f\{x,y), u = U0{f2(x, y)),

where uQ is defined by (5.8), is a solution of the thermistor problem, and {a{u) = 0}
has nonempty interior.
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