
Shock and Vibration 12 (2005) 283–291 283
IOS Press

The thermoelastic dynamic response of thick

closed laminated shell

Ke Wei Ding
Department of Civil Engineering, Anhui Institute of Architecture and Industry, Hefei 230022, Anhui, P.R. China

Tel.: +86 551 3519737; Fax: +86 551 3517457; E-mail: dingkw@yahoo.com

Received 16 April 2004

Revised 29 June 2004

Abstract. Giving up any assumptions about displacement models and stress distribution, weak formulation of mixed state

equations including boundary conditions of laminated cylindrical shell are presented. Thermal stresses mixed Hamilton equation

of closed cylindrical shell is established. The analytical solutions are obtained for the thermoelastic dynamic response of a thick

closed laminated shell subjected to temperature variation. Every equation of elasticity can be satisfied, and all elastic constants

can be taken into account. Arbitrary precision of a desired order can be obtained.
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1. Introduction

The thermal stresses of cylindrical structure exposed to rapidly changing thermal environments can be of prime
importance in the design of many industrial facilities. The thermoelastic analysis of cylindrical shells have received
wide spread attention in recent years [1–7]. But most of theories are established on some hypotheses. For example,
assume that the mechanical quantities are the polynomials of a certain coordinate variable. We have proved that
the true solution for each mechanical quantity cannot be a polynomial of any coordinate variable [8]. If the form
of a polynomial is adopted, the incompatibility among the fundamental equations must appear in the deductive
process, and only some of elastic constants can be taken into account. This contradiction results in errors in all
of the current theories, especially in thicker plates and shells. Analytical solution to three-dimensional elasticity
theory are valuable not only in their own right, but also as useful benchmarks for verifying mathematical procedures

leading to approximate solutions, and for providing exact structure design to achieve high performance structural
objectives. This is even more important. Recently, three-dimensional static, dynamic, thermoelastic and buckling
analysis of homogeneous and laminated composite cylinders have been studied by Soldatos and Ye [9]. Huang
and Tauchert [10] examined the thermal stresses in double-curved cross-ply laminates. Thermal stresses in an
axisymmetric double-layer annular circular cylinder with interlayer thermal resistance were analyzed by Chen and
Lee [11]. Khdeir [12] investigated thermal deformations and stresses in cross-ply laminated circular cylindrical
shells by means of state space approach. Ding and Tang [13,14] developed the method of state space, and gave
the exact solution for axisymmetric vibration and buckling of laminated cylindrical shells having simply supported
edge boundary and clamped edges, respectively. Exact thermoelastic solution for an axisymmetric problem of thick
closed laminated shells has also been studied by Ding and Tang [15].

The analytical thermoelastic dynamic response analysis for the quite thick laminated cylindrical shell, to the
author’s knowledge, it is so difficult that few references have been found. In this paper, however, weak formula-
tion of mixed state equations including boundary conditions of laminated cylindrical shell are presented, thermal

stresses mixed Hamilton equation of closed cylindrical shell is established. Furthermore, for applying state space
approach [16,17], the analytical solution is expressed for the thermoelastic dynamic response of the thick laminated
closed cylindrical shells subjected to temperature variation.
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Fig. 1. The cylindrical shell.

2. Weak formulation of mixed state equations

A cylindrical shell is shown in Fig. 1. The principal elastic directions of the shell coincide with the coordinate

axes. Let u, v and w be the displacement in the x−, θ− and r-directions, respectively. Also, let V, S and f i be

volume, boundary surface and body forces, respectively. p x, pθ and pr are the surface forces in the x−, θ− and

r-directions, respectively. ρü is force of inertia, ρ is the mass density. The equilibrium equation in the x− direction

for δV can be written as
∫∫

δS

pxds +

∫∫∫

δV

fxdV −

∫∫∫

δV

ρüdV = 0

Sσ denote the portion of the edge boundary where tractions p̄ x is prescribed, for all shell we have
∫∫

S

pxds +

∫∫

Sσ

(px − px)ds +

∫∫∫

V

fxdV −

∫∫∫

V

ρüdV = 0

By means of Green-formulation we can obtain
∫∫∫

V

(

∂σx

∂x
+

1

r

∂τxθ

∂θ
+

∂τrx

∂r
+

τrx

r
+ fx − ρü

)

dV +

∫∫

Sσ

(px − px) ds = 0 (1a)

The equilibrium equation in the θ− direction for δV can be written as
∫∫

δS

pθds +

∫∫∫

δV

fθdV −

∫∫∫

δV

ρv̈dV = 0

for all shell we have
∫∫

S

pθds +

∫∫

Sσ

(pθ − pθ)ds +

∫∫∫

V

fθdV −

∫∫∫

V

ρv̈dV = 0

By means of Green-formulation we can obtain
∫∫∫

V

(

∂τxθ

∂x
+

1

r

∂σθ

∂θ
+

∂τrθ

∂r
+

2τrθ

r
+ fθ − ρv̈

)

dV +

∫∫

Sσ

(pθ − pθ) ds = 0 (1b)

the same as above, we have
∫∫∫

V

(

∂τrx

∂x
+

1

r

∂τrθ

∂θ
+

∂σr

∂r
+

σr − σθ

r
+ fr − ρẅ

)

dV +

∫∫

Sσ

(pr − pr) ds = 0 (1c)

In the light of definition of strain εx, we have
∫∫∫

δV

εxdx =

∫∫∫

δV

∂u

∂x
dx =

∫∫

δS

unxds
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Let u is known displacement on Su, for all shell we have
∫∫∫

V

εxdx =

∫∫

S−Su

unxds +

∫∫

Su

unxds =

∫∫

S

unxds +

∫∫

Su

(u − u)nxds

By means of Green-formulation we can obtain
∫∫∫

V

(

∂u

∂x
− εx

)

dV +

∫∫

Su

(u − u)nxds = 0 (2a)

the same as Eq. (2a), we have
∫∫∫

V

(

∂v

∂θ
− εθ

)

dV +

∫∫

Su

(v − v) nθds = 0 (2b)

. . . . . . . . . . . .

. . . . . . . . . . . .
∫∫∫

V

(

1

r

∂u

∂θ
+

∂v

∂x
− γxθ

)

dV +

∫∫

Su

(u − u)nθds+

∫∫

Su

(v − v)nxds = 0 (2f)

in which the usual index notation is used. The stress-strain relations of orthotropy is

{σ} = [C] {ε + εT } (3)

where

{σ} = [σx σθ σr τrθ τrx τxθ]
T

{ε + εT } =

{

∂u

∂x
− αxT

1

r

∂v

∂θ
+

w

r
− αθT

∂w

∂r
− αrT

1

r

∂w

∂θ
+

∂v

∂r
−

v

r

∂u

∂r
+

∂w

∂x

1

r

∂u

∂θ
+

∂v

∂x

}T

αx, αθ and αr are the coefficients of thermal expansion, T is the temperature rise from the stress-free state, the
matrix [C] is the elastic stiffness matrix, for an orthotropic body, one has

[C] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, [S] = [C]−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Substituting Eq. (3) into Eq. (2a)–(2f), then integrating by the weight function, i.e. multiply Eq. (1a)–(1c)
by δu, δv, δw and multiply Eq. (2a)–(2f) by δσx, . . . , δτxθ , respectively. One denotes q = (u v w)T , p =
(τrx τrθ σr)

T , p1 = (σx σθ τxθ)
T , F = (p q)T , weak formulation of mixed state equation including boundary

conditions of cylindrical shell can be obtained
∫∫∫

V

δF ·
∂

∂r
F dV =

∫∫∫

V

δF · (HF + T F + Dp)dV +

∫∫

S

δF · S1ds (4)

∫∫∫

V

δp · (D2F + T p + Bp1)dV +

∫∫

S

δp · S2ds = 0 (5)

where (ξ2 = ρ∂2/∂t2)

δF =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δu
δv [0]

δw
δτrx

[0] δτrθ

δσr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

px − px

pθ − pθ

pr − pr

(w − w)nx + (u − u)nr

(w − w)nθ + (v − v)nr

(w − w)nr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
r

0 0 ξ2 0 0
0 − 2

r
0 0 ξ2 0

− ∂
∂x

− 1
r

∂
∂θ

− 1
r

0 0 ξ2

S55 0 0 0 0 − ∂
∂x

0 S44 0 0 − 1
r

− 1
r

∂
∂θ

0 0 S33 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− ∂
∂x

0 − 1
r

∂
∂θ

0 − 1
r

∂
∂θ

− ∂
∂x

0 1
r

0
0 0 0
0 0 0

S31 S32 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

S2 =

⎡

⎣

(u − u)nx

(v − v)nθ

(u − u)nθ + (v − v)nx

⎤

⎦ , B =

⎡

⎣

S11 S12 0
S21 S22 0
0 0 S66

⎤

⎦ , δp =

⎡

⎣

δσx 0 0
0 δσθ 0
0 0 δτxθ

⎤

⎦

D2 =

⎡

⎣

0 0 S13 − ∂
∂x

0 0
0 0 S23 0 − 1

r
∂
∂θ

− 1
r

0 0 0 − 1
r

∂
∂θ

− ∂
∂x

0

⎤

⎦ ,
T F =

(

−fx −fθ −fr 0 0 αrT
)T

T p =
(

αxT αθT 0 0 0 0
)T

3. Mixed state hamilton equation and its solution

An orthotropic thick closed cylindrical shell is investigated, and selecting (ζ = mπ/l)

u =
∑

m

∑

n

umn(r) cos ζx cos(nθ)eiωmnt, τrx =
∑

m

∑

n

τrx,mn(r) cos ζx cos(nθ)eiωmnt

v =
∑

m

∑

n

vmn(r) sin ζx sin(nθ)eiωmnt, τrθ =
∑

m

∑

n

τrθ,mn(r) sin ζx sin(nθ)eiωmnt (6)

w =
∑

m

∑

n

wmn(r) sin ζx cos(nθ)eiωmnt, σr =
∑

m

∑

n

σr,mn(r) sin ζx cos(nθ)eiωmnt

T =
∑

m

∑

n

Tmn(r) sin ζx cos(nθ)eiωmnt (7)

Substituting Eqs (6) and (7) into Eqs (4) and (5), and letting

ω = ωmn, C1 = −C13/C33, C2 = C11 − C2
13/C33, C3 = C12 − C13C23/C33

C4 = C22 − C2
23/C33, C5 = −C23/C33, C7 = 1/C33, C8 = 1/C55, C9 = 1/C44

C6 = C66, Ca = C3αx + C4αθ, Cb = C2αx + C3αθ, Cd = C1αx + C5αθ − αr

Then we obtain the mixed state Hamilton equation of thermal stresses for the cylindrical shell for each combination

of m and n

d

dr
F (r) = M (r)F (r) + B(r) (8)

where

F (r) = [rumn(r) rvmn(r) rwmn(r) τrx,mn(r) τrθ,mn(r) σr,mn(r)]T

M(r) =

[

AT D

E −A

]

(9)
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AT =

⎡

⎣

1
r

0 −ζ
0 2

r
n
r

−C1ζ
C5n

r
C5+1

r

⎤

⎦ , −A =

⎡

⎣

− 1
r

0 C1ζ
0 − 2

r
−C5n

r

ζ −n
r

−C5+1
r

⎤

⎦

E = ET =

⎡

⎢

⎣

C2

r
ζ2 + C6

r3 n2 − ρω2

r
−C3+C6

r2 ζn −C3

r2 ζ

−C3+C6

r2 ζn C6

r
ζ2 + C4

r3 n2 − ρω2

r
C4

r3 n

−C3

r2 ζ C4

r3 n C4

r3 − ρω2

r

⎤

⎥

⎦

D = DT =

⎡

⎣

C8r 0 0
0 C9r 0
0 0 C7r

⎤

⎦

B(r) =

[

0 0 − CdrTmn(r) ζCbTmn(r) −
nCaTmn(r)

r
−

CaTmn(r)

r

]T

(10)

In order to solve Eq. (8), thick shell should be divided into some thin plies. If we find, from calculation, that the

needful effective digits hardly change, it can be said that the results obtained with certain thin plies are exact within

the prescribed accuracy limits. For the first ply, the solution of Eq. (8) is

F (r) = G(r − a)F (a) + C(r − a) (11)

in which

G(r − a) = exp[M · (r − a)], C(r − a) =

∫

r

exp[M · (r − τ)]B(τ)dτ (12)

Equation (9) is Hamiltonian matrix. The present result is exactly analogous to the Hamiltonian mechanics for a

dynamic system. In order to calculate the matrix function G(r − a), C(r − a), the eigenvalues of the matrix M

must be considered. Let λ1, λ2, · · · , λ6 be the eigenvalues of the matrix M and J 1, J2, · · · , J6 are the eigenvectors,

respectively. We know, from linear algebra, that there must be a matrix R = [J 1, J1, · · · , J6] and its inverse matrix

R−1, which can change M into a diagonal matrix, and has

G(r − a) = exp[M · (r − a)]

= R ·

⎡

⎢

⎢

⎢

⎣

eλ1(r−a) 0

eλ2(r−a)

. . .

0 eλ61(r−a)

⎤

⎥

⎥

⎥

⎦

· R−1

Therefore

C(r − a) =

∫ r

a

R ·

⎡

⎢

⎢

⎢

⎣

eλ1(r−τ) 0
eλ2(r−τ)

. . .

0 eλ6(r−τ)

⎤

⎥

⎥

⎥

⎦

· R−1B(τ)dτ

In order to calculate multiple shell, we can apply transfer matrix method, for the first ply we have (h 1-thickness

of first ply)

F (r1) = G(−h1)F (a) + C(−h1)

By virtue of the continuity conditions for displacements and stresses between the first and second ply, there must

be

F (r2) = G(−h2)G(−h1)F (a) + G(−h2)C(−h1) + C(−h2)
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Fig. 2. Thermoelastic response of a three-ply shell.

On the analogy of this, the mechanical quantities of the interior surface and outer surfaces for the entire laminated

shell can be linked together to be of the form (k-the number of layers):

F (b) = ΠF (a) + Π (13)

in which

Π = G(−hk)G(−hk−1)G(−hk−2) · · ·G(−h2)G(−h1)
(14)

Π = G(−hk)

k−1
∑

j=1

[

j+1
∏

i=k−1

G(−hi)C(−hj)

]

+ C(−hk)

Actually, Eq. (13) is a matrix equation for six displacements of the outer and interior surfaces of a shell. Π is a

(6×6) constant matrix. Π is a (6 × 1) column matrix. In the calculation of the thermoelastic dynamic response,

considering boundary condition of interior and outer surfaces of shell, one has

σr,mn(a) = τrx,mn(a) = τrθ,mn(a) = σr,mn(b) = τrx,mn(b) = τrθ,mn(b) = 0 (15)
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Fig. 3. Thermoelastic dynamic response of a three-ply laminated shell.

Selecting of the fourth, fifth and sixth rows of matrix Eq. (13) gives

⎧

⎨

⎩

aumn(a)
avmn(a)
awmn(a)

⎫

⎬

⎭

= −

⎡

⎣

Π41 Π42 Π43

Π51 Π52 Π53

Π61 Π62 Π63

⎤

⎦

−1

·

⎧

⎨

⎩

Π4

Π5

Π6

⎫

⎬

⎭

(16)

umn(a), vmn(a) and wmn(a) can be determined by Eq. (16). After finding these quantities, Eq. (14) is employed,

other unknowns coefficients can be solved. After the unknowns are determined, the F (a) can be found by using

Eq. (16) and the entire shell can be solved.

4. Numerical example

Example 1. Consider the thermoelastic response of a 3-plied laminated shell to the temperature variation T =
T1 sin πx

l
cos θ. The materials for the first and third layers are identical. Each layer has the same thermoelastic

constants:
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C12/C11 = 0.246269 C13/C11 = 0.0831715 C22/C11 = 0.543103

C23/C11 = 0.115017 C33/C11 = 0.530172 C44/C11 = 0.266810

C55/C11 = 0.159914, C66/C11 = 0.262931, C
(1)
11 /C

(2)
11 = 5, αx = αr = 3.0σθ

where C
(1)
11 and C

(2)
11 denote C11 of the materials corresponding to the first and second layer, respectively. The

densities for the outer and middle layers are denoted by ρ 1 and ρ2 (ρ1 = 3, ρ2 = 3), respectively. The laminated

shell has the following geometry parameters:

h1 = h3 = 0.1h h2 = 0.8h l = s = 2πR◦

where l = the length of the shell, s = the arc length of middle surface and R ◦ = the radius of middle surface. Some

numerical results are obtained and we shown in Fig. 2(a–d) the variations of the displacement (w ∗ = wC
(2)
11 /(T1αθh))

and stresses (σ∗

x = σx/(T1αθ), σ∗

θ = σθ/(T1αθ), σ∗

r = σr/(T1αθ)) through the thickness at x = l/2, θ = 0 of

thick laminated shells with different ratios h/R0 = 0.6, 0.8 and 1.0, respectively. The results for three-dimensional

finite element method (FEM) using SAP5 (Structural Analysis Program 5) are also given in Fig. 2. Because of the

symmetry, 128 three-dimensional isoparametric elements (for 1/2 shell) with 20 nodes are employed in calculation.

The average errors of present results and those of SAP5 are 3.67%.

Example 2. Consider the thermpelastic dynamic response of above shell to the temperature variation T =
T1 sin πx

l
cos θei2πt. Maximum values of σ∗

x, σ∗

θ , σ∗

r distributions in the thickness direction are shown in Fig. 3(a–c).

5. Conclusion

The analytical solution for the thermoelastic dynamic response of thick laminated closed cylindrical shells is

investigated. The average errors of present results and those of SAP5 are 3.67%. The principle and method suggested

here have clear physical concepts and overcome the contradictions and limitations that arise from incompatibility

among the fundamental equations in various theories of plates and shells. Numerical results denote that the methods

of dividing the layer into several thin plies has the characteristics of fast convergence rate, satisfactory precision, and

controlled error. The present study satisfies the continuity conditions of stresses and displacements at the interfaces.

Solutions and method such as this have value for designing laminated composite structures in naval, aerospace and

other engineering applications.
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