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ABSTRACT

Surface wave equations appropriate to three-dimensional ocean models apparently have not been presented
in the literature. It is the intent of this paper to correct that deficiency. Thus, expressions for vertically dependent
radiation stresses and a definition of the Doppler velocity for a vertically dependent current field are obtained.
Other quantities such as vertically dependent surface pressure forcing are derived for inclusion in the momentum
and wave energy equations. The equations include terms that represent the production of turbulence energy by
currents and waves. These results are a necessary precursor for three-dimensional ocean models that handle
surface waves together with wind- and buoyancy-driven currents. Although the third dimension has been added
here, the analysis is based on the assumption that the depth dependence of wave motions is provided by linear
theory, an assumption that is the basis of much of the wave literature.

1. Introduction

In the last several decades there has been significant
progress in the understanding and numerical modeling
of ocean surface waves (e.g., Longue-Higgins 1953;
Phillips 1977; WAMDI Group 1988; Komen et al. 1994)
and similar progress has been made in ocean circulation
modeling (e.g., Bryan and Cox 1968; Blumberg and
Mellor 1987; Bleck and Boudra 1986). However, the
two streams are separate. More often than not, wave
models do not recognize vertical current structure and
ocean circulation models do not recognize surface
waves as having any influence on the ocean.

In the wave modeling literature, before derivation of
the surface wave equations, the equations are generally
integrated from the bottom, z 5 2h, to the wave surface,
z 5 h, and then are phase averaged. Furthermore, the
slow (wind-, tide-, and density-driven) horizontal ve-
locities are often stipulated to be independent of z a
priori. The result is a mismatch between the wave mod-
els and three-dimensional circulation ocean models,
which necessarily involve z-dependent horizontal ve-
locities and other properties. For example, a recent paper
by Xie et al. (2001) suggests including the conventional
vertically integrated stress radiation terms from waves
as forcing terms in the vertically dependent momentum
equations, a strategy that is obviously incorrect. Dolata
and Rosenthal (1984) did attempt to derive three-di-
mensional radiation stress terms but left out effects from
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pressure so that their results differ from mine and, after
vertical integration, differ from the corresponding terms
in Phillips (1977). They did not address three-dimen-
sional effects on the wave energy equation.

To contrast the developments in this paper with con-
ventional logic and to simplify discussion, I will tem-
porarily address deep water (kh k 1) propagating waves
such that h(x, t, c) 5 a(x, t) cosc, where c 5 kx 2
st; k is the wavenumber, s is the frequency, c [ s/k
is the phase speed, and a is wave amplitude. The as-
sociated horizontal and vertical velocities are ũ 5 kacekz

cosc and w̃ 5 kacekz sinc. Reviewing conventional log-
ic, I define the phase-averaging operator

2p1
( ) 5 ( ) dc. (1)E2p 0

Whereas 5 0, vertical integrals such asũ

h h

M [ ũ dz 5 ũ dz (2)E E
2h 0

are nontrivial; thus, approximately,
2ka c

kz hM 5 ac |e | cosc 5 (3)0 2

is the Stokes transport. This is said to be an Eulerian result.
One can alternately obtain the lowest-order Lagrang-

ian velocity according to

]ũ ]ũ ]ũ ]ũ
u 5 ũ 1 x̃ 1 z̃ 5 x̃ 1 z̃, (4)L ]x ]z ]x ]z

where the particle displacement (x̃, z̃) 5 #0 (ũ, w̃) dt 5
aekz(2sinc, cosc), so that the Stokes drift is
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FIG. 1. Comparison of the wind-driven, mixed layer velocity com-
ponents for a water side friction velocity of utw 5 0.02 m s21 and
the Stokes drift velocity from integrals of the Pierson–Moskowitz
spectrum for a wind, U10 5 14.6 m s21; also shown are the rms wave
orbital velocity ( 1 )1/2 divided by 10. The friction velocity and2 2ũ w̃
wind are related according to U10 /uta 5 k21 ln(10 m/z0), where Char-
nock’s wave roughness is taken to be z0 5 0.012 /g, k 5 0.40, and2uta

5 860 . The wind stress was initially ramped up from rest to2 2u ura tw

the value over one inertial period and then was held constant for2utw

5 days. The initial temperature profile was linear with a vertical
gradient of 0.05 K21.

2 2 2kzu 5 k a ceL (5)

and, in a similar way, wL 5 0. When (5) is integrated
from 2h (where kh k 1) to 0, the result is identical to
(3).

a. An alternate procedure

However, in this paper, I do not wish to first integrate
vertically, because I seek z-dependent equations to com-
plement the z-dependent circulation equations of three-
dimensional ocean models. Furthermore, Lagrangian
formulations are awkward when they involve equations
more complicated than (4). Instead, let ũ[x, z 1 z̃(t), t]
5 ũ(x, z, t) 1 z̃]ũ /]z; then multiply ũ by 1 1 ]z̃ /]z,
which is the wave-distorted, normal flow area relative
to the undistorted flow area. Thus,

]z̃ ]ũ ]z̃
ũ(x, z 1 z̃, t) 1 1 5 ũ 1 z̃ 1 11 2 1 21 2]z ]z ]z

]z̃ ]ũ
5 ũ 1 z̃ . (6)

]z ]z

The first term on the right is due to the velocity–flow
area correlation, and the second term is due to particle
wave motion–velocity gradient correlation and is the
same as the second term in (4). Thus, the Stokes drift
velocity is

]z̃ũ
2 2 2kzu (x, z, t) 5 5 k a ce , (7)S ]z

a result identical to (5). The Stokes transport, M [
us dz, can be obtained directly from0#21

0 2]z̃ũ ka c
M 5 dz 5 u(0)z̃(0) 5 . (8)E ]z 2

2h

The correspondence between uL and uS is not accidental
because, using the continuity equation, it can be shown
that 5 .x̃]ũ /]x ũ]z̃/]z

A more formal procedure will be pursued below, but
the essence is the same. I will obtain the above results
along with other relations that are useful when incor-
porating wave effects into the three-dimensional, phase-
averaged equations of motion; this is done by trans-
forming the basic equations to a sigma-coordinate sys-
tem. The motivation is not to obtain final sigma-coor-
dinate equations. Rather it is a helpful first step in the
process of deriving the three-dimensional wave inter-
action terms in the equations of motion. If one wishes
final equations in Cartesian coordinates, the reverse
transformation on the final equation set, derived later
in this paper, is straightforward.

Note the fact that, in much of the literature, the mean
wave momentum is conceptually thought to be trapped
at the surface in consequence of (2) and the third term
in (8). However, it is my opinion that it is more useful
to conceive of the wave momentum as distributed con-

tinuously down into the water column according to (7).
Similar reasoning will be found in the paper by Longuet-
Higgins (1969).

In Fig. 1, I show velocity profiles calculated from a
one-dimensional turbulence closure model (Mellor and
Yamada 1982) for a specific wind speed of 14.6 m s21

(and kinematic stress of 0.33 m2 s22) and the Stokes
drift velocity and wave orbital velocity corresponding
to the same wind speed using the equilibrium wave
spectrum according to Pierson and Moskowitz (1964).
In the direction of the wind stress, the rms orbital ve-
locities are an order of magnitude larger than the wind-
driven velocity and the Stokes velocity. Following es-
tablished convention, I refer to the wind-, baroclinic-,
and Coriolis-driven velocities as ‘‘currents’’ that are dis-
tinct from the ‘‘Stokes drift.’’ Figure 1 illustrates the
point that, in general, the currents are not vertically
constant—a seemingly trivial statement were it not for
the fact that it is a requirement of present-day wave
models. Although the relative magnitudes of the dif-
ferent velocity components are probably correct, the cal-
culation of currents and Stokes drift, independent of
each other as in Fig. 1, is not valid, as will be dem-
onstrated in this paper.

b. This paper

In this paper, I specialize to monochromatic waves.
Later extensions will undoubtedly generalize to a spec-
trum of waves for use in models.
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The plan of this paper is to present the governing
equations for the slowly changing variables, the wave
variables, and the turbulence variables in section 2. The
transformation to sigma coordinates is done in section
3. The well-known linear wave solutions are given in
section 4. All terms appropriate to the continuity and
momentum equations are obtained in section 5, and the
wave energy equation is derived in section 6. The con-
tinuity and momentum equations are vertically depen-
dent, whereas, by virtue of assuming the linear wave
solutions to be valid to lowest order, one needs only the
vertically integrated wave energy equation. Section 7
establishes the correspondence between the present re-
sults and the conventional momentum and energy equa-
tions. In section 8, additional terms that result from wind
pressure processes are derived. The results are sum-
marized in section 9 together with the equations for
scalars and the turbulent kinetic energy. Appendix A
considers interactions between the momentum and wave
energy equations and appendix B defines the nomen-
clature of the velocities and scalars used in this paper.

2. The basic equations

The equations of motion are

]Uj
5 0 and (9)

]xj

]U U]U ]P rgj ii 1 1 e f U 1 5 2 d , (10)i jk j k iz]t ]x ]x ri i o

where Ui 5 (U, V, W ), xi 5 (x, y, z), and Ui 5 Ui(xi,
t). Here, P 5 P (xi, t) is the kinematic pressure—that is,
the dynamic pressure divided by a reference density
r0—and f j is the Coriolis parameter. The coordinate z
and velocity w are vertically upward. We have omitted
viscous terms, but they can be reclaimed where they
may be important locally such as next to a smooth bot-
tom surface. The tensor e ijk is nil if any of the indices
are repeated, is equal to 1 when i, j, and k are any triplet
in the sequence xyzxy, and is 21 in any other sequence.

We now decompose Ui into three velocity compo-
nents: a ‘‘slow’’ component ûi, whose time- and space
scales are L and T, respectively; a wave component ũi,
whose smaller time- and space scales are k21 and v21,
respectively; and a random turbulence component, úi,
such that

U 5 û 1 ũ 1 ú and (11a)i i i i

P 5 p̂ 1 p̃ 1 ṕ . (11b)i i i

The density is split into a slow and fluctuating turbu-
lence component

r 5 r̂ 1 ŕ, (11c)

therefore filtering out baroclinic interaction with surface
waves. Using the above definitions, (10) may be written

]
(û 1 ũ 1 ú )i i i]t

]
1 (û û 1 û ũ 1 û ú 1 û ũ 1 û ú 1 ũ ũj i j i j i i j i j j i]xj

1 ũ ú 1 ú ũ 1 ú ú )j i j i i i

]
1 e f (û 1 ũ 1 ú ) 1 ( p̂ 1 p̃ 1 ṕ)i jk i k k k ]xi

r̂ ŕ
5 2 1 gd . (12)iz1 2r ro o

It is possible to write equations for the three com-
ponents, and I have done so. However, as will be seen
in appendix A, the slow and phase-averaged wave com-
ponents interact in a somewhat complicated way. I there-
fore write the equations for ui [ ûi 1 ũi and p [ p̂ 1
p̃ such that

]ui 5 0 and (13)
]xi

]u u]u ]p r̂ ]i ji 1 1 e f u 1 5 2 gd 2 ^ú ú &.i jk j k iz i j]t ]x ]x r ]xj i o j

(14)

The Reynolds stresses are ^úiúj&, and so it is assumed
that úi can be extracted from ui, a process simpler in
laboratory experiments than in field experiments for
which the waves are cyclic (Jensen et al. 1989; Cheung
and Street 1988) and ui 5 ^Ui(t)& [ N21 Ui(t 1 jtp)

NSj51

is a phase-conditioned average, where tp is the wave
period and N is a large number; other dependent vari-
ables are similarly processed. Field observations present
a greater challenge in separating wave and turbulence
properties.

The equations governing turbulence are

]úk 5 0 and (15)
]xk

] ]
ú 1 (u ú 1 u ú 1 ú ú 2 ^ú ú &)i j i i j j i j i]t ]xj

]ṕ ŕ
21 1 gd 5 n¹ ú . (16)iz i]x ri o

Notice that ^úi& 5 0 and that the averages of all terms
in (16) are nil. I have added the viscous term (n is
kinematic viscosity) because, when (16) is converted to
an energy equation, the term becomes the important
turbulence kinetic energy dissipation.

3. A transformation

There is need for separate nomenclature for the hor-
izontal and vertical coordinates; thus, xa [ (x, y), xi [
(xa, z), and ui [ (ua, w). Next transform the dependent
variables in (13) and (14) according to
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FIG. 2. An instantaneous sketch of wave particle position in (top)
x, z space and (bottom) as transformed to x, z space according to
(23) for 5 0.ĥ

f(x , z, t) 5 f*(x *, z, t*)a a (17)

and the independent variables such that

x 5 x*, (18a)a a

t 5 t*, and (18b)

z 5 s(x*, z, t*), (18c)a

where z and s are general but will be constrained shortly;
see (23a,b). From (17), one has

]f ]f* ]f* ]z ]f ]f* ]z
5 1 , 5 ,

]x ]x* ]z ]x ]z ]z ]za a a

]f ]f* ]f* ]z
5 1 ,

]t ]t* ]z ]t

and from ]z /]xa 5 (]s /]x )(]x /]xa) 1 (]s /]z )(]z /]xa)* *a a

5 0, I obtain ]z /]xa 5 2sa /sz; in a similar way, ]z /]z
5 1/sz and ]z/]t 5 2st/sz, where I define sa [ ]s/]x ,*a
st [ ]s /]t*, and sz [ ]s /]z. Putting these relations to-
gether yields

]f ]f* ]f* sa5 2 , (19a)
]x ]x* ]z sa a z

]f ]f* 1
5 , and (19b)

]z ]z sz

]f ]f* ]f* st5 2 . (19c)
]t ]t* ]z sz

Using (19a,b), I now transform (13) (written as ]ua /
]xa 1 ]w /]z 5 0) and, at the same time, drop the
asterisks so that

]u ]u s ]w 1a a a2 1 5 0.
]x ]z s ]z sa z z

Next define

w 5 v̊ 1 u s 1 sa a t (20)

so that, after some rearrangement,

]s u ]s]v̊z a z
1 1 5 0. (21)

]x ]z ]ta

Equation (21) could have been derived from a control
volume formulation (visualized with help from the top
panel of Fig. 2); then is the component of (the nearlyv̊
vertical) velocity normal to surfaces of constant z.

Equation (14), for the horizontal velocity compo-
nents, can be similarly manipulated and transforms to

] ] ]
(s u ) 1 (s u u ) 1 (v̊u ) 2 e f s uz a z a b a abz z z b]t ]x ]zb

] ]
1 (s p) 2 (s p)z a]x ]za

] ] ]
5 2 (s ^ú ú &) 1 (s ^ú ú &) 2 ^ẃú &. (22)z a b b a b a]x ]z ]zb

The transformation thus far is general. Now, however,
(anticipating the linear wave solutions in the next sec-
tion) define

s(x, y, z, t) [ ĥ 1 zD 1 s̃ and (23a)

sinhkD(1 1 z )
s̃ [ a cosc. (23b)

sinhkD

The mean elevation is (x, y); h(x, y) is the bottomĥ
depth, and D [ 1 h is the mean water column depth;ĥ

, a, k, and D are slow functions of x, y, and t that varyĥ
on length scales and timescales of L and T, respectively,
and c [ kaxa 2 vt, where ka and v are large in com-
parison with L21 and T21. The ‘‘sigma’’ variable z rang-
es from 21 where s 5 2h to 0 where s 5 h 5 1ĥ

. Figure 2 illustrates the transformation process forh̃
cases in which 5 0 and there is zero atmosphericĥ
pressure.

The vertical derivatives of (23a,b) are

]s
s 5 5 D 1 s̃ and (24a)z z]z

coshkD(1 1 z )
s̃ 5 kDa cosc, (24b)z sinhkD

and, in consequence of (20) at z 5 0 or s 5 h, (0)v̊
5 0 so that w(0) 5 ua(0)]h /]xa 1 ]h /]t and, at z 5 0
or s 5 2h, (21) 5 0 so that w(2h) 5 2ua(2h)]h /v̊
]xa.

4. The linear wave relations

The well-known linear relations are obtained from
solutions of ]ũ j /]xj 5 0 and ]ũ i /]t 1 ûa]ũ i /]xa 1
] /]xi(p 1 gz) 5 0 wherein only the fast terms of order
kL or vT are retained in (13) and (14). The turbulence
terms are assumed to be small. Solutions whose z-
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dependent arguments are k(h 1 z) transform to kD(1
1 z 1 s̃ /D ) in accordance with (17), (18c) and (23a).
The mean sea surface is at z 5 . Thus, the waveĥ
velocities are

coshkD(1 1 z 1 s̃/D)
ũ (x , z, t, c) 5 k ac cosc (25a)a a a sinhkD

and

sinhkD(1 1 z 1 s̃/D)
w̃(x , z, t, c) 5 kac sinc. (25b)a sinhkD

Notice that w̃ 5 0 where z 5 21.
The phase is defined as

c [ k x 2 vt.a a (26)

The dispersion relation and intrinsic frequency are

v 5 s 1 k û and (27a)a Aa

2s 5 gk tanhkD. (27b)

The ‘‘Doppler velocity’’ ûAa is, according to the anal-
ysis of Kirby and Chen (1989; and see other references
in their paper), a weighted average of the vertically
nonuniform current:

0 kD cosh2kD(1 1 z )
û 5 2 û dz. (27c)Aa E a sinh2kD

21

The intrinsic phase speed and group speed are

s g
c [ 5 tanhkD and (28a)!k k

ds c 2kD
c [ 5 1 1 . (28b)g 1 2dk 2 sinh2kD

The surface elevation and pressure from waves are

h̃(x , t, c) 5 a(x , t) cosc and (29a)a a

coshkD(1 1 z )
2p̃ 1 gs̃ 5 kac cosc

sinhkD

coshkD(1 1 z )
5 ga cosc. (29b)

coshkD

The last term on the right is obtained using (27b).
Note that, whereas the wave velocities in (25) have

been ‘‘corrected’’ to include the small term s̃ /D, the
wave pressure in (29b) does not include this term be-
cause its omission cancels an equal and opposite small
error in the linear solution. Notice that (29b) satisfies
the condition that p̃ 5 0 at z 5 0. I will use the condition
p̃(0) 5 p̂(0) 5 0 to simplify the following analyses as
did Phillips (1977) but will, in section 8, separately
consider the consequences of nonzero atmospheric pres-
sure.

Although equations for ka will not be needed in this
paper, they are included here for completeness. Thus,
from (26), one has ka [ ]c /]xa and v [ 2]c /]t, from

which we obtain ]ka /]t 1 ]v /]xa 5 0 and ]ka /]xb 2
]kb /]xa 5 0 so that the wave number vector is irrota-
tional. These equations and ]s /]xa 5 (]s /]k)(]k /]xa)
1 (]s /]xa)k yield the well-known relation

]û]k ]k ]s Aba a1 (c 1 û ) 5 2 2 k ,gb Ab b1 2]t ]x ]x ]xb a ak

where cgb 5 (]s /]k)(kb /k). If the right side were nil
(depth and Doppler velocity are constant), then the wave
number vector is invariant along a trajectory prescribed
by the combined group velocity and Doppler velocity.

5. The transformed continuity and momentum
equations

The next step is to phase average the terms in (21)
and (22) and to define a mean velocity Ua such that

DU [ s u 5 (D 1 s̃ )(û 1 ũ )a z a z a a

5 Dû 1 Du , (30a)a Sa

where usa [ /D is the Stokes drift velocity.(D 1 s̃ )ũz a

Referring to (25a) and ũa 5 ũa(x, y, 1 1 z 1 s̃ /D) 5
ũa(x, y, 1 1 z) 1 s̃(]ũa/]z)/D, we obtain (see section 1)

1 ]s̃ũau 5 (1 1 s̃ /D)ũ 5Sa z a D ]z

2k (ka) cosh2kD(1 1 z )a5 c
2k 2 sinh kD

2k E cosh2kD(1 1 z )a5 . (30b)
c sinh2kD

Note that usa /c is of order (ka)2. Here and throughout
the paper, I use the fact that phase averages of odd
powers of cosc and products of cosc and sinc are nil.
The expression on the right of (30b) uses (27b) and the
definition, E [ ga2 /2; E will later be shown to be the
sum of the kinetic and potential wave energies.

The product, szuaub in (22), when averaged, is al-
gebraically complicated. Thus,

s u u 5 s (û 1 ũ )(û 1 ũ )z a b z a a b b

5 Dû û 1 û (D 1 s̃ )ũa b a z b

1 û (D 1 s̃ )ũ 1 Dũ ũb z a a b

5 DU U 1 Dũ ũ , (31)a b a b

where the terms 2D 21 5(D 1 s̃ )ũ (D 1 s̃ )ũz a z b

Dusausb are of order (ka)4 and are neglected.
Next define 5 V(1 1 s̃z /D) so thatv̊

v̊ 5 V and (32a)

v̊u 5 VU , (32b)a a

where V(21) 5 V(0) 5 0. Using (30), (31), and (32),
(21) and (22), after phase averaging, may be written
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]DU ]V ]ĥa 1 1 5 0 and (33)
]x ]z ]ta

] ] ]
(DU ) 1 (DU U ) 1 (VU ) 1 e f DUa a b a abz z b]t ]x ]zb

]ĥ ] ] ]D
1 gD 1 (Dp̂) 2 z p̂1 2]x ]x ]z ]xa a a

]S ]s̃ p̃ ]ab a5 2 1 2 ^ẃú &, (34a)a]x ]z ]zb

wherein we invoke the boundary layer approximation
and neglect horizontal gradients of the Reynolds stress-
es. From the hydrostatic relation ]p̂ /]z 5 2Dg /ro, wer̂
obtain

0 r̂ 2 rop̂ 5 2gDz 2 dz. (34b)E ro

The first term on the right of (34a) is

S [ Dũ ũ 1 d s̃ p̃, (34c)ab a b ab z

where

2 2 2 2k k k a c cosh kD(1 1 z )a bDũ ũ 5 Da b 2 2k 2 sinh kD

2k k cosh kD(1 1 z )a b
5 DkE (34d)

2k sinhkD coshkD

using (25a) and (27b). From (24b) and (29b), we obtain

2cosh kD(1 1 z )
s̃ p̃ 5 kDEz [ sinhkD coshkD

sinhkD(1 1 z ) coshkD(1 1 z )
2 . (34e)

2 ]sinh kD

In a similar way from (23b) and (29b),

coshkD(1 1 z ) sinhkD(1 1 z )
1/2s̃ p̃ 5 E 2a [ ]coshkD sinhkD

] sinhkD(1 1 z )
1/23 E . (34f)[ ]]x sinhkDa

Equations (34d) and (34e) after insertion into (34c) are
the so-called stress radiation terms derived in their ver-
tically integrated form by Longuet-Higgins and Stewart
(1961). The term ] /]z, using (34f ), is an additionals̃ p̃a

radiation term that vertically integrates to zero.

6. The wave energy equation

To close the momentum equation derived in section
5, one needs to know E(xa, t) which is the vertically
integrated or two-dimensional wave energy. Obtaining
an equation for E(xa, t) involves complicated algebra,
and I have followed Phillips (1977) but also utilized the

method developed above. Thus, multiply (14) by ui to
form a kinetic energy equation:

2 2] u ] ui i1 gz 1 u 1 p 1 gzb1 2 1 2]t 2 ]x 2b

2] u ]i1 w 1 p 1 gz 5 2u ^ú ú &. (35)i j i1 2]z 2 ]xj

The buoyancy term is excluded from (14) because I
assume that buoyancy does not affect the near surface
wave motion. Now transform (35) according to (17),
(19), and (20) and phase average so that

2 2] u ] ui is 1 gs 1 s u 1 p 1 gsz z b1 2 1 2]t 2 ]x 2b

2] u ] ]i1 v̊ 1 p 1 gs 1 s p 5 2u ^ẃú &.t i i1 2]z 2 ]z ]z
(36a)

Because it is known that the Reynolds stress tensor com-
ponents are of the same order, we have used the bound-
ary layer approximation in the last term in (36a). Next,
expand

2 2 2s u /2 5 s (û /2 1 ũ û 1 ũ /2)z i z a a a i

2 25 D(û /2 1 u û 1 ũ /2)a sa a i

and use ûa 5 Ua 2 ũsa to obtain

2 2 2 2s u /2 5 D(U /2 2 u /2 1 ũ /2)z i a sa i

2 25 D(U /2 1 ũ /2). (36b)a i

The deleted term is of order (ka)4. In a similar way,

2 2 2s u u /2 5 DU U /2 1 DU ũ /2 1 DU ũ ũ (36c)z b i b a b i a b a

and
2 2 2v̊u /2 5 V(U /2 1 ũ /2). (36d)i i i

Neglecting buoyancy terms, one has p 5 p̂ 1 p̃ 5
2zgD 1 p̃ and, of course, s 5 1 zD 1 s̃ so that pĥ
1 gs 5 p̃ 1 gs̃ 1 g . Completing the operations in-ĥ
volving these terms in (36a) yields

gs s 5 gD(ĥ 1 zD) 1 gs̃ s̃, (36e)z z

s u (p 1 gs) 5 DU gĥ 1 U s̃ ( p̃ 1 gs̃ )z b b b z

1 Dũ ( p̃ 1 gs̃ ), and (36f)b

v̊(p 1 gs) 5 V[gĥ 1 s̃ ( p̃ 1 gs̃ )/D]. (36g)z

Inserting (36b–g) into (36a) yields

2 2] DU ũa i1 1 gD(ĥ 1 zD) 1 gs̃ s̃z[ ]]t 2 2
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2 2DU U U Dũ] b a b i
1 1 DU ũ ũ 1a b a[]x 2 2b

1 û s̃ ( p̃ 1 gs̃ ) 1 U gĥ 1 Dũ ( p̃ 1 gs̃ )b z a b ]
2 2 s̃ ( p̃ 1 gs̃ )] U ũ ]za i1 V 1 1 gĥ 1 1 s pt5 6[ ]]z 2 2 D ]z

]
5 2u ^ẃú &. (37)i i]z

Now from (37), subtract Ua times (34a) and add /22U a

2 g times (33). After complicated but straightforwardĥ
algebra, one obtains

2 2] ũ gĥi 1 gD(ĥ 1 zD) 1 gs̃ s̃ 2z[ ]]t 2 2

2] DU ũ ]Ub i a1 1 U s̃ s̃ 1 Dũ ( p̃ 1 gs̃ ) 1 Sb z b ab[ ]]x 2 ]xb b

2 s̃ ( p̃ 1 gs̃ )] ũ ]zi1 V 1 1 s pt5 6[ ]]z 2 D ]z

] ] ]
5 2û s̃ p̂ 2 u ^ẃú & 1 û ^ẃú &.a a i i a a]z ]z ]z

A term, 2usa] /]z, on the right is of order (ka)4 ands̃ p̃a

has been discarded.
Next integrate from z 5 21 to 0 and obtain

0 2]E ] Dũ i1 c E 1 û 1 gs̃ s̃ dzgb E b z1 2[ ]]t ]x 2b 21

0 0]U ]a 05 2 S dz 2 û s̃ p̃ dz 2 |s p|E ab E a a t 21]x ]zb21 21

0 0] ]
1 u ^ẃú & dz 2 ũ ^ẃú & dz, (38)E Sa a E i i]z ]z

21 21

where the wave energy is defined according to
0

2E [ [D(ũ /2) 1 gs̃ s̃ ] dzE i z

21

0

2 25 D(ũ /2) dz 1 gh̃ /2. (39)E i

21

Using (25) and (29), both terms on the right of (39)
may be shown to be equal to ga2 /4 and their sum, E 5
ga2 /2. The term | 5 0, but it is left as a place0s p |t 21

holder, useful in section 8. To obtain (38), I have also
used

0 2] ] ga ]
Dũ ( p̃ 1 gs̃ ) dz 5 c 5 (c E ),E b gb gb1 2]x ]x 2 ]xb b b2

where cgb 5 kbcg /k is the group velocity and

0 2 2] g ]ĥ g ]h
gD (ĥ 1 zD) dz 2 5 2 5 0.E[ ]]t 2 ]t 2 ]t

21

7. Correspondence with conventional equations

To compare with formulas in Phillips (1977) and oth-
ers, neglect baroclinicity, so that p̂ 5 2gDz, and tur-
bulence terms; then integrate (33) and (34a) from z 5
21 to z 5 0 and obtain

]M]ĥ b
1 5 0 and (40)

]t ]xb

M] ] b(M ) 1 M 1 S 1 e f Ma a ab abz z b1 2]t ]x Db

]ĥ
1 gD 5 0, (41)

]xa

where the transport is

0

M [ D U dz and (42)E a

21

c k k c 1g a b gS [ E 1 d E 2 . (43)ab ab2 1 2c k c 2

The conventional simplification of (38) requires that
ûa be independent of z, in which case (38) reduces to

] ] ]UaE 1 [(c 1 û )E ] 5 2S . (44)ga a ab]t ]x ]xa b

Phillips had ûa in place of Ua, but the difference is a
term of order (ak)4.

Except for the fact that I include the Coriolis terms
in (41), I recover the depth-independent results obtained
by Phillips (1977) and others.

8. Wind pressure forcing

Heretofore, to simplify and to check some of the der-
ivations, I have assumed that the atmospheric pressure
is nil; that is, p̂(0) 5 p̃(0) 5 0. Waves can be driven
by wind pressure fluctuations acting on the sloping sea
surface, however (Miles 1954; Phillips 1954; Donelan
1999; etc.).

I will continue to represent the free wave pressure
field by p̃(x, z, t) to which I now add the pressure field
driven by atmospheric pressure forcing. This pressure
field may be written

coshkD(1 1 z )
p 5 p̂ 1 p̃ ; p̃ 5 a sinc,w atm w w w coshkD

where p̂atm is the slowly varying atmospheric imposed
pressure and p̃w is the solution for imposed surface fluc-
tuation for the Fourier constituent in phase with ] /]xa.h̃
Therefore,
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]h̃ coshkD(1 1 z ) sinhkD(1 1 z )
s̃ p̃ 5 p̃ ,a w wh ]x coshkD sinhkDa

where p̃wh 5 aw sinc is the wind pressure at the surface.
Differentiation yields

]s̃ p̃ ]h̃ 2kD cosh2kD(1 1 z )a w 5 p̃ , (45)wh]z ]x sinh2kDa

which in the next section is a term that will be added
to ] /]z in (34a).s̃ p̃a

In a similar way,
0 ]s̃ p̃a w 0û dz 1 |s p |E a t w 21]z

21

0]h̃ 2kD cosh2kD(1 1 z ) ]h̃
5 p̃ û dz 1 p̃wh E a wh]x sinh2kD ]t

21

]h̃ ]h̃
5 p̃ û 1 p̃ . (46)wh Aa wh]x ]t

Last, because 5 (kav /k2) and usingp̃ ]h̃ /]t p̃ ]h̃ /]xwh wh a

(27a)
0 ]s̃ p̃ k ]h̃a w a0û dz 1 |s p | 5 2 cp̃ , (47)E a t w 21 wh]z k ]xa21

which is a term that will be added to the corresponding
free wave pressure terms in (38).

In potential flow over a solid wavy wall, Donelan
(1999) reminds us that the pressure and wall slope are
in antiphase so that, at the wave surface, the existence
of a correlation between the two quantities depends on
the existence of a nonzero relative phase shift. He ad-
vances specific laboratory-derived relations for

as a function of the ‘‘wave age’’ defined asp̃ ]h̃ /]xwh a

the ratio of wind speed to dominant phase speed, which,
when considering only monochromatic waves, is equal
to c 5 s /k.

9. Summary and final comments

Here I summarize the final equations for which it is
useful to define

sinhkD(1 1 z )
F 5 , (48a)SS sinhkD

coshkD(1 1 z )
F 5 , (48b)CS sinhkD

sinhkD(1 1 z )
F 5 , and (48c)SC coshkD

coshkD(1 1 z )
F 5 , (48d)CC coshkD

after which (30b) may be written

k E ]F Fa SS CCu 5 . (49)Sa k cD ]z

The functions in (48) are plotted in Fig. 3. (The product
kDFCS is plotted because it is finite in the shallow water
limit, kD → 0.) The factor ]FSSFCC/]z is plotted in Fig.
4.

In summary, I first repeat (33):

]DU ]V ]ĥa 1 1 5 0. (50)
]x ]z ]ta

Equation (34a), after addition of (45) may be written

] ] ]
(DU ) 1 (DU U ) 1 (VU ) 1 e f DUa a b a abz z b]t ]x ]zb

0] ]b ]D ]b
21 D (gĥ 1 p̂ ) 1 D 2 z dzatm E 1 2]x ]x ]x ]za a a

]S ]s̃ p̃ ]h̃ ]F F ]ab a SS CC5 2 1 1 p̃ 2 ^ẃú &,wh a]x ]z ]x ]z ]zb a

(51a)

and, from (34c,d,e),

k ka bS [ kDE F F 1 d (F F 2 F F ) .ab CS CC ab CS CC SS CS2[ ]k

(51b)

From (34f ),

]
1/2 1/2s̃ p̃ 5 (F 2 F )E (E F ). (51c)a CC SS SS]xa

In (51a) I have used (34b) and defined the buoyancy

r̂ 2 rob [ 2g .
ro

An important result is that the third term on the right
of (51a), the wind pressure forcing term, has the same
vertical structure as the Stokes drift velocity in (49).
Also, the third and fourth terms on the right of (51a)
have regularly been lumped together in mixed layer
modeling, which would seem to be a questionable strat-
egy in view of the above results.

Upon insertion of (47), the surface wind pressure
terms, the wave energy equation (38) becomes

]E ]
1 [(c 1 û )E ]ga A2a]t ]xa

0 0]U ]Ua a5 2 S dz 2 s̃ p̃ dzE ab E a]x ]zb21 21

k ]h̃a1 cp̃ 2 ũ ^ẃú & 1 (ũ ^ẃú &)wh ih i h Sa a hk ]xa

0 0]ũ ]ui Sa1 ^ẃú & dz 2 ^ẃú & dz. (52a)E i E a]z ]z
21 21

In (52a) we have defined
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FIG. 3. Plots of the functions (48a–d). The labels on each curve are kD values. As kD → 0,
FSS ; 1 1 z, FSC ; 0, kDFCS ; 1, and FCC ; 1, and, as kD → `, FSS, FSC, FCS, and FCC ;
exp(kDz ).

FIG. 4. Plots of the functions F1 [ ]FSSFCC/]z 5 kD(FCSFCC 1 FSSFSC) in (49) and (53) and
F2 [ kD[(FCSFCC 1 FSSFSC) /2 1 FCSFSS] in (52b). Note that ũsa } F1. The labels on each curve
are kD values. As kD → 0, F1 ; 1 and F2 ; 2(1 1 z ). As kD → `, F1 and F2 ; kD exp(2kDz ).
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0

21 2û [ û E (Dũ /2 1 gs̃s̃ ) dzA2a E a i z

21

0

5 kD û [(F F 1 F F )/2 1 F F ] dz.E a CS CC SS SC CS SS

21

(52b)

The phase and group speeds are as in (28a,b) and the
Doppler velocity may be written

0

û 5 kD û (F F 1 F F ) dz. (53)Aa E a CS CC SS SC

21

The weighting factors in (52b) and (53) are similar. They
both integrate to unity cum sole and are identical in the
short-wave limit but differ in the long-wave limit as
shown in Fig. 4. Nevertheless, in the interest of sim-
plicity, the approximation ûA2a . ûAa is suggested. Fur-
thermore, ûA2a . ûAa . Ua is also an acceptable ap-
proximation because the difference usa is of order (ka)2

relative to the group velocity in (52a).
In (52a), the third, fourth, and fifth terms on the right

are surface wind work terms, one from pressure and the
others from turbulence. The sixth term is wave dissi-
pation; any eddy viscosity model will yield a negative
value.

Appendix A provides further discussion, useful for
understanding interaction of the momentum and wave
energy equations.

To model an ocean with interacting waves and cur-
rents, one needs (50), (51), and (52). To solve for any
scalar Q (such as temperature and salinity after which
an equation of state will yield b), one can write

] ] ] ]
(DQ) 1 (DU Q) 1 (vQ) 5 (2ẃú), (54)a]t ]x ]z ]zb

which neglects interaction between the scalar properties
and surface waves.

To complete the set of equations initiated in section
2, I write the turbulence kinetic energy equation

2 2 2] q ] q ] q
D 1 DU 1 Va1 2 1 2 1 2]t 2 ]x 2 ]z 2a

] ]u ^ŕẃ&i25 2 (^ẃú & 1 ^ẃṕ&) 2 ^ẃú & 2 Dg 2 De,i i]z ]z ro

(55)

which is derived from (16) after multiplication of every
term by úi; then, the terms are operated on by ^ &, trans-
formed to sigma coordinates, and phase averaged. Thus,
q2 [ is 2 times the turbulence kinetic energy, and2^ú &i

the terms on the right are turbulence diffusion, shear
production, buoyancy production, and dissipation; the
first and last terms need to be modeled. The turbulence
energy equation is the common basis of many current
turbulence closure models. The turbulence dissipation

represents the final conversion of wind work into ther-
mal (or internal) energy.

Left for the future are prescriptions for the Reynolds
flux, wind pressure forcing, and turbulence energy pro-
duction. There is a large literature on empirical ways
of determining the Reynolds stresses and fluxes where
surface waves are neglected. And, utilizing the turbu-
lence kinetic equation, there are beginning attempts to
include the effects of wave breaking on current structure
(e.g., Craig and Banner 1994; Terray et al. 1996). Now,
however, there is a need to scrutinize the existing em-
pirical knowledge base and to enter into new research
framed by the continuity, momentum, wave energy, and
turbulence energy equations derived in this paper.
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APPENDIX A

Some Applications

Associated with a given wave energy E is a Stokes
drift velocity given by (49b). However, how does a giv-
en velocity field develop and do (51) and (52) produce
compatible results?

Consider a thought experiment in which, initially, ûa

5 0, turbulence and Coriolis terms are nil, and the wave
field is horizontally homogeneous (infinite fetch). Let
the wave field be given by ka 5 (kx, 0) and define Px

[ so that (51) and (52) reduce top̃ ]h̃ /]xwh

] ]F FSS CC(DU ) 5 P and (A1a)x x]t ]z

]E
5 cP . (A1b)x]t

Notice that the Ux profile has the same vertical distri-
bution as the Stokes profile in (30b). Let Px 5 0 for t
, 0 and Px . 0 for t $ 0. Now, define

0

ˆM [ D U dz 5 M 1 M ,x E x x Sx

21

and because, from (49), MSx [ uSx dz 5 E /c, the0#21

momentum and energy equations result in the same ver-
tically integrated Stokes transport such that MSx . 0 and
M̂x 5 0. We conclude that the wind pressure forcing
creates a pure Stokes velocity response. In particular, if
Px 5 constant for t $ 0, then

ˆ ˆM 5 0, M 5 0, M 5 P t, and M 5 0.x y Sx x Sy



1988 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

The situation changes if one includes Coriolis terms.
The same wind forcing is invoked, so that

](M , M )x y
1 f (2M , M ) 5 [P (t), 0] and (A2a)y x x]t

](M , M )Sx Sy
5 [P (t), 0]. (A2b)x]t

For zero forcing and steady state, (Mx, My) 5 (0, 0),
and, if a Stokes drift exists, the current transport M̂x just
cancels the Stokes drift; this was first demonstrated by
Ursell (1950) using a vorticity/circulation argument.
This has been said to be a paradox (Huang 1970; Xu
and Bowen 1994) because there seems to be a discon-
tinuity in solution form between f 5 0 and f . 0 no
matter how small the value f . But let us now set up a
specific example flow that is steady and with a Stokes
drift. Set M [ Mx 1 iMy; then (A2a,b) may be written

]M ]MSx1 i fM 5 P and 5 P .x x]t ]t

For Px 5 0 when t # 0 and Px 5 constant for t . 0,
the solutions for M and MSx are

t iPxi f (t92t) 2i f tM 5 P (t9)e dt9 5 2 (1 2 e ), (A3a)E x f0

M 5 P t, and (A3b)Sx x

M 5 0. (A3c)Sy

If we create a top hat forcing such that Px 5 0 for
t . T, where T 5 2p / f is the inertial period, then
M 5 0 or

ˆ ˆM 5 2M , M 5 0,x Sx y

M 5 P T, and M 5 0.Sx x Sy

This is just one of many ways to generate a steady state
with a Stokes drift and an equal and opposite current.
Similar results have been obtained by Hasselman (1970)
and Xu and Bowen (1994) but from a specialized and
different analytical route, whereas here the same results
are imbedded in (51) and (52).

For small ft, (A3a) yields M 5 Pxt so that now

ˆ ˆM 5 0, M 5 0, M 5 P t, and M 5 0x y Sx x Sy

as in the case of no Coriolis term, thus resolving the
aforementioned paradox because the solution evolves
smoothly as ft increases from small to large values.

In all of the above, it is evident that all components
ûa and uSa have the same z-dependent, Stokes-like pro-
file shape.

These examples and others (e.g., the progression of
dissipating waves on a shore) also illustrate how the
current and Stokes drift may be coupled, as discussed
in section 2.

APPENDIX B

Nomenclature

5ûi current velocity, slowly varying in space and
time, 5 (û, , ŵ) 5 ŵ)ŷ (û ,a

5ûa (û, )ŷ
p̂ 5 pressure, slowly varying

5ĥ surface elevation, slowly varying
5ũi wave velocity 5 (ũ, , w̃)ỹ

p̃ 5 wave pressure
5h̃ surface wave elevation
5ui 1û ũi i

p 5 p̂ 1 p̃
5úi turbulence velocity
5uSa Stokes drift velocity, derived from ũi

5Ua 1û ũa Sa

z 5 transformed vertical coordinate such that
z 5 21 when z 5 2h and z 5 0 when
z 5 1ĥ h̃

z 5 2h, the ocean bottom; D [ h 1 ĥ
[M̂a D dz0# û21 a

[MSa D dz0# u21 Sa

[Ma 1M̂ Ma Sa

5ûAa weighted vertical average of equal toûa

dz, where r(z ) dz 5 10 0# r(z )û #21 a 21

E [ g 5 where g is the gravity constant2 2h̃ ga /2,
and a is wave elevation amplitude
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