The three-dimensional instability of strained vortices in a viscous fluid
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The recent theory describing 3-D exact solutions of the Navier—Stokes equations is applied to
the problem of stability of 2-D viscous flow with elliptical streamlines. An intrinsically inviscid
instability mechanism persists in all such flows provided the length scale of the disturbance is
sufficiently large. Evidence is presented that this mechanism may be responsible for 3-D
instabilities in high Reynolds number flows whose vortex structures can be locally described by

elliptical streamlines.

I. INTRODUCTION

Craik and Criminale’ recently presented a new class of
3-D exact solutions of the incompressible Navier—Stokes
equations, describing spatially periodic ‘“‘disturbances”
superimposed on an unbounded basic flow of uniform shear.
An important case covered is where the basic flow is one of
2-D strain and rotation and has uniform constant vorticity.
In this case the components of the basic flow, which has
elliptical streamlines, can be described by

0 —y—€ O
U=4x, A=|y—¢ 0 0}, (1)
0 0 0

where € is the strain defined by the maximum rate of exten-
sion, 2y is the vorticity, and |€| < |y|. The exact solutions
take the form

u=U+0vu,
where
u' = Re{v(¢)exp[ik(z)x]}. 2)

In their paper, Craik and Criminale' point out the possibility
of the unbounded growth of v(#) despite viscous dissipation
and explain this mechanism via vorticity dynamics for stag-
nation point flow (¥ = 0) which has hyperbolic streamlines
and can be solved exactly for v(¢). In the general elliptical
case, however, the solution must be performed numerically
by solving a Floquet problem to determine whether u’ grows
or decays in time.

Quite independently, Bayly” considered the instability
of the basic elliptical flow (1) in an inviscid fluid and also
noted that the disturbances of form (2) are exact solutions of
the Euler equations. Bayly’s study was prompted by the re-
cent work of Pierrehumbert,? who found a short-wave insta-
bility in a numerical stability calculation for the Euler equa-
tions linearized about a locally elliptical flow. This
instability led Pierrehumbert to propose that this mecha-
nism is responsible for the 3-D instability observed in many
shear flows containing 2-D coherent structures.

Bayly? solves the Floquet problem for v(¢) and finds
that for € #0 there is always a spatial mode with initial wave-
vector k(0) that exhibits exponential growth in time. Bay-
ly’s results agree very well with Pierrehumbert’s growth
rates. Bayly does not mention that his calculations can be
simply modified to include the effects of viscosity as de-
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scribed by Craik and Criminale; it is the purpose of this pa-
per to repeat Bayly’s calculations, taking into account vis-
cous dissipation.

The results that follow confirm that the inviscid instabil-
ity mechanism persists when the viscosity is nonzero. We
find a stability boundary in the Ekman number versus
streamline eccentricity plane, with the Ekman number a
measure of the ratio of viscous dissipation to vorticity in the
basic flow. At a given finite eccentricity the flow is found to
exhibit a 3-D instability, with a short wavelength cutoff
caused by the action of viscosity.

In Sec. IV we apply this result quantitatively to wake
and shear layer experiments and the numerical study of
plane channel flow. We find that typical vortex structures
appear to be large enough to support unstable disturbances
even when viscosity is present, thus suggesting that the invis-
cid mechanism leads to real vortex instability, as proposed

by Pierrehumbert.’

Il. FORMULATION

We consider the basic elliptical flow (1) with uniform
vorticity 2y and streamfunction

p=—Ly(’ +x7) — () —x7),
where without loss of generality 0<e < y. This is the same
basic flow considered by the investigators mentioned pre-
viously up to a rotation of coordinates. This flow is an exact
solution of the Navier-Stokes equations. The perturbation
velocity w’, which is at present not assumed to be small with
respect to the basic flow, satisfies

Cj;— +wVu +u'-Vu+u'-Vu = — L Vo' 4+ vWa,
¢ P

Vou' = 0.
Seeking solutions of the form
(w',p) = [¥(),p(1) lexplik(r)x], (3)

the continuity equation ensures that the nonlinear term van-
ishes, and on projecting out the pressure term we find

¥ = (2kk7/|k|> — I ) 4% — v[K|%¥, (4)
where k = k(¢) satisfies
k= —A"k. (5)
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Details leading to these equations are given in Craik and
Criminale! and in the inviscid form by Bayly.?
Equation (5) can be solved in closed form. Letting

Q=P —¢€, a=Jy+e)/(y—e)),

where a>>1 is the aspect ratio of the elliptical streamlines, the
solution may be written as

k = ky[sin 8 cos Q(¢ — 1,),a sin 8 sin (1 — t,),cos 8 ],
(6)

where the constants of integration are &, 6, and an arbitrary
shift in time f£,. The wave vector k is thus seen to precess
elliptically with the period 27/, with minimum inclination
angle to the z axis of § and arbitrary length scale determined
by k,.

Following Craik and Criminale,' the viscous decay term
in (4) is removed by the transformation

G:exp(—vf |k|2dt>v, (7
o

leaving the equation for the growth of the perturbation as
v=0()v, Q1) = (2kk"/|k|* —1)A. (8)

This is the inviscid equation solved by Bayly.? To find the
general solution of (8), we consider the Floquet problem

M=Q0()M, M) =1,

where M is the solution matrix associated with (8). The
eigenvalues of M(27/)) are the Floquet multipliers u;
which determine the growth rate of the solution. This is be-
cause the general solution for v is a superposition of modes of
the form

V(1) =e"'f, (1), o, = (Q/2m)logpu, (a,0),

where f; has period 27/(Q). The structure of the matrix Q
shows that one multiplier £, = 1 and that we need only solve
problem (8) for the x and y components. From conservation
and symmetry properties of the system one can show that
My, = 1, with the u; being complex conjugates of each oth-
er (all modes stable) or real positive reciprocals with
7 <1< 4, (there exists an unstable mode).> When the latter
occurs, we define the inviscid growth rate as

o= (Q2m)log . &)

To summarize Bayly’s® results for the Floquet problem
for fixed , there is a region of 8-a space for which unstable
modes exist, which emanates from the point of linear insta-
bility of perturbed solid body rotationata = 1, 8 = #/3. As
a increases, a larger range of wave vectors of angle 8 are
unstable, with the maximum inviscid growth rate over 6 a
monotonically increasing function of @ provided Q is fixed.

We now consider the effect of viscosity on this inviscid
instability. From Eqgs. (6) and (7), we can calculate the
time-averaged viscous decay rate as

Q 27/

Oy = —v—o
27 Jo

= —vk§[1+i(a®—1)sin® @ ].
We could now proceed to calculate the total growth rate

Or = 07 + 0y of the perturbation ¥. However, it is more
instructive to write the growth rate as a function of the origi-

(k| dt
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nal parameters ¥, proportional to the vorticity, and ¢, the
strain rate. This is because in the ¢ — ) formulation, )
tends to zero as the strain rate is increased (a — oo ) provided
the vorticity remains finite. In so doing, it is convenient to
define the dimensionless parameters

E,=2mvki/y, B=e/y=(a>—1)/(a®+1)

as the Ekman number based on vorticity and the streamline
eccentricity parameter, respectively. The dimensionless
growth rate based on y (half the vorticity), oy = &,/v is
thus

or = (1/2m) T =B log u,(B,0)

—E, [(1—fBcos’0)/(1-B)1}.

To find the curve of marginal stability in the 8- E,, plane, we
solve

GBE, 00)=0—0r(BE,0) =0 (10a)
for o = 0, subject to the constraint
Ge (ﬁ)Ey)U,B) = 07 ( IOb)

as we seek to maximize the growth rate over the inclination
angle 6. More generally, any one of the parameters {B,E, ,o'}
may be held fixed so that Eqs. (10) define a two-parameter
continuation problem.

lll. NUMERICAL RESULTS

In the solution of Egs. (10), the matrix M (27/Q) was
computed using a standard ODE solving package, giving u,
and thus o.. The continuation was performed using the soft-
ware package AUTO,* which is able to detect and follow the
fold in G with respect to 6 as required by the constraint
(10b).

First, we display the inviscid (E, = 0) growth rate
maximized over all inclination angles 6 as the eccentricity is
varied, as in Fig. 1. This was calculated by Bayly?; however,
Bayly took ) to be fixed, which means that as a— «
(8- 1), the vorticity and the strain tend to infinity. In this
way Bayly’s results are misleading and support Pierrehum-
bert’s conjecture® that the growth rate continues to increase
as the plane Couette limit is reached (e— ), which would
make the limit strongly singular. This is because inviscid
Couette flow is known to be stable, although a disturbance
can undergo an initial stage of growth before the ultimate
algebraic decay, as was shown by Lord Kelvin.> We believe
our calculation keeping the vorticity finite to be more physi-
cally relevant and shows that there is a maximum in the
growth rate at an aspect ratio of 3.1 (8 = 0.81). The growth
rate then decreases to zero as the Couette limit is reached
because of the rotation rate {2 in (9) tending to zero. Thus
the limit is essentially regular, but this conclusion is not in-
consistent with Pierrehumbert’s® numerical stability results
showing a monotonically increasing growth rate for 5<0.8.

On the introduction of viscosity, the stability boundary
in the B-E,, plane is calculated as described above and gives
the results shown in Fig. 2. Contours of constant growth rate
are also shown. The main result is that the introduction of
viscosity does not eliminate the instability, but produces a
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FIG. 1. Maximum inviscid growth rate o = o, as a function of the eccen-
tricity parameter 3.

short wavelength cutoff at all nonzero Ekman numbers. Be-
cause the inviscid instability is scale independent, the maxi-
mum growth rate occurs at the largest length scales possible
in the viscous problem (i.e., at the smallest Ekman number).
Note that whenever the flow is unstable, there is a range of
wavenumber inclinations 8 for which the disturbance wave
vector (6) grows. There is, however, an inclination angle
... at which the growth rate is a maximum, and Fig. 3 plots
0.max versus Ekman number for various aspect ratios.

The curve of marginal stability defines the relationship
E =E?} (BR) for the critical Ekman number as a function of
eccentricity. At a fixed viscosity v and vorticity 2y, a given
straining field determines 5 and thus from Fig. 2 and Eq. (6)
determines the length scale / = 277/ky/1 + @”sin @ at which
the instability mechanism operates. Moreover, from Fig. 3

we can deduce that 1 <1 + a7sin 8,,,, 2 for the range of
aspect ratios 1 <@ S3 (0<f50.8), so that / =2n/k, is a
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FIG. 2. Stability boundary in the beta (streamline eccentricity parameter)-
Ekman number plane; contours of the growth rate o = o are also shown.
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FIG. 3. Most unstable wavenumber inclination versus Ekman number for
various streamline eccentricities /3.

good measure of the length scale of the unstable modes in the
x-y plane of the basic flow. Note, also, that the correspond-
ing length scale of the instability in the z direction is 27/
k, cos 8=2] for moderate straining fields.

IV. COMPARISON WITH EXPERIMENTS

In applying the above results to the stability of a flow
whose local structure can be approximated by elliptical re-
gions of uniform vorticity, a disturbance will not in general
consist of a single mode (3), which is an exact solution of the
Navier-Stokes equations. It will, however, be a Fourier-type
superposition of such modes over k,, 8, and ¢, as described
by Bayly.? The disturbance can therefore be localized in
space and will satisfy the linearized perturbation equations,
so that the above analysis acts as a linear stability theory. An
unstable disturbance will have a minimum length scale
which is of the order of I * = 277/k ¥, where for a given flow
field k ¥ is determined by the critical Ekman number E . In
this way the length scale / of the instability is limited to lie
between that given by the critical Ekman number and that
determined by the macroscopic size L below which the flow
is well approximated by a uniform shear, ie., /*</<L,
where

l* — (27)3/2(V/’}/E;':)1/2.

We thus speculate that this instability will act within isolated
vortices which can be approximated locally by a region of
constant vorticity of size /, where the eccentricity of the
closed elliptical streamlines is determined by the external
strain caused by neighboring vortices. To test this hypothe-
sis, we apply it first to experimental data of a wake and shear
layer.

Davies® describes the array of vortices in the wake of a
bluff body in a wind tunnel. Approximating these as ellipti-
cal regions of uniform vorticity at a Reynolds number
Re~4x10% we find the vortex aspect ratio « is about 1.13
and ¥ =30 sec™ ', thus giving the values 8=0.12, E} =04,
so that the critical length scale / * =2 cm. This compares with
the macroscopic size of the regions of vorticity L ~15 cm,
suggesting that the vortices are large enough to support un-
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stable disturbances which may be the cause of 3-D instabili-
ties observed in the far wake. This mechanism would be dis-
tinct from the 3-D resonance instability of elliptical vortices,
where the axial wavelength is of the same order as the core
diameter, which has been analyzed for finite strain by Robin-
son and Saffman.”

In the planar mixing layer, vortices are observed to be
quite elliptical in shape. Examining the data of Browand and
Weidman,® who look at coherent structures in water devel-
oping in the layer, vortices at Re = 300 are found to have an
aspect ratio of about 1.8, with a core which we can approxi-
mate as being uniform with y =~ 1.5 sec™'. These figures yield
£=0.53 and thus E¥~1.0,s0 /*=1 cm. In this case the
scale of the vortices is L =4 cm. This measurement was made
on a vortex formed after a single pairing instability had taken
place. Further downstream, we can argue that the influence
of the 3-D instability becomes more important after the oc-
currence of multiple pairing instabilities in the shear layer
(which are essentially 2-D in nature). This is because in a
given shear layer w4 /d = const, where o is the (uniform)
vorticity of a single elliptical vortex, A4 is its area, and d is the
spacing between adjacent vortices. If we assume that the ec-
centricity of the vortices remains essentially constant and A
scales as d 2, then w and thus ¥ must decrease by a factor of 2
after each pairing. As the critical Ekman number is fixed for
a given eccentricity, the smallest unstable length scale / * of
the disturbance scales as / * ~ ¥~ !/2, so that / * increases by a

factor of only 2. Hence the ratio / */L decreases after each
pairing, allowing for a greater range of unstable distur-
bances. This scenario is consistent with experimental obser-
vations, where 3-D streaking instabilities only become domi-
nant after a succession of pairings have taken place.
Finally, we consider the secondary instability of 2-D
finite amplitude waves in plane Poiseuille flow, as studied
numerically by Orszag and Patera.” In a moving frame the
basic flow consists of roughly elliptical vortices, which un-
dergoa 3-D core instability. From Fig. | in their paper show-
ing a plot of the streamlines, at Re = 4000 the aspect ratio of
a basic 2-D vortex is approximately 2.2, so that 8~0.7. In
units nondimensionalized with respect to the channel half-
width and centerline velocity, the vortex diameter is approx-
imately 1.0. The vorticity in this region is approximately 0.5,
where the latter is estimated from the contour plot of vorti-
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city,® and we suppose that the shear stress at the wall is simi-
lar to that of laminar flow. Assuming the form of the basic
wave remains roughly the same over a wide range of Reyn-
olds numbers and over the streamwise wavenumber, Orszag
and Patera® find that the growth rate (which we double as
our growth rate is nondimensionalized by y, half the vorti-
city) approaches 0=0.3 as the Reynolds number increases,
which is to be compared with the inviscid growth rate from
Fig. 1 of about 0.32. At finite Reynolds number, from Fig. 2
we find a critical Ekman number of £¥~1.0 for f=0.7.
Given the above vortex properties, this corresponds to a
minimum unstable Reynolds number of about 1000. This
compares favorably with the findings of Orszag and Patera’
that weakly decaying 2-D waves exist exhibiting a 3-D insta-
bility down to Reynolds numbers near 1000, which is rough-
ly the threshold found in experiments. Finally, note that the
length scale of the instability in the cross-stream direction is
about two to three times that in the plane of the vortex core,
which is consistent with the magnitude of the most unstable
wavenumber found in the spanwise direction in numerical
simulation. The above evidence therefore supports the con-
jecture that the 3-D core instability of strained vortices is
responsible for secondary instability in shear flows.

ACKNOWLEDGMENTS

We wish to thank B. Bayly for helpful discussions and
for bringing to our attention the relevance of the work of
Orszag and Patera.

This work was supported by the Department of Energy
Office of Basic Energy Sciences (Contract No. DE-AS03-
76-ER72012) and the Office of Naval Research (Contract
No. N00014-85-K-0205).

'A. D. D. Craik and W. O. Criminale, Proc. R. Soc. London Ser. A 406, 13
(1986).

’B. J. Bayly, Phys. Rev. Lett. 57, 2160 (1986).

*R. T. Pierrehumbert, Phys. Rev. Lett. 57, 2157 (1986).

“D. Aronson, E. J. Doedel, and H. G. Othmer, Physica D 25, 20 (1987).

*Lord Kelvin, Philos. Mag. 24, 188 (1887).

SM. E. Davies, J. Fluid Mech. 75, 209 (1976).

A. C. Robinson and P. G. Saffman, J. Fluid Mech. 142, 451 (1984).

SF. K. Browand and P. D. Weidman, J. Fluid Mech. 76, 127 (1976).

°S. A. Orszag and A. T. Patera, J. Fluid Mech. 128, 347 (1983).

M. J. Landman and P. G. Saffman 2342

Downloaded 07 Sep 2006 to 131.215.225.158. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



