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The three-dimensional interaction of a vortex pair with a wall

J. Alan Luton and Saad A. Ragaba)

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0219

~Received 4 September 1996; accepted 19 June 1997!

The interaction of vortices passing near a solid surface has been examined using direct numerical

simulation. The configuration studied is a counter-rotating vortex pair approaching a wall in an

otherwise quiescent fluid. The focus of these simulations is on the three-dimensional effects, of

which little is known. To the authors’ knowledge, this is the first three-dimensional simulation that

lends support to the short-wavelength instability of the secondary vortex. It has been shown how this

Crow-type instability leads to three dimensionality after the rebound of a vortex pair. The growth of

the instability of the secondary vortex in the presence of the stronger primary vortex leads to the

turning and intense stretching of the secondary vortex. As the instability grows the secondary vortex

is bent, stretched, and wrapped around the stronger primary. During this process reconnection was

observed between the two secondary vortices. Reconnection also begins between the primary and

secondary vortices but the weaker secondary vortex dissipates before the primary, leaving

reconnection incomplete. Evidence is presented for a new type of energy cascade based on the

short-wavelength instability and the formation of continual smaller vortices at the wall. Ultimately

the secondary vortex is destroyed by stretching and dissipation leaving the primary vortex with a

permanently distorted shape but relatively unaffected strength compared to an isolated vortex.

© 1997 American Institute of Physics. @S1070-6631~97!03110-3#

I. INTRODUCTION

The interaction of vortices with surfaces is an important

phenomenon in many engineering applications. For instance,

trailing vortices from aircraft which interact with the ground

can present a danger to following aircraft.1 In assessing the

danger it is important to understand the motion, structure,

and decay of the vortices. These characteristics could be

strongly influenced by three-dimensional effects. Vortices

shed from the aircraft body and leading edge extension of

delta wings pass over the wing thereby affecting the lift,

drag, and possible control of the aircraft. Similarly in sepa-

rating flows, vortical structures can form which later interact

with the solid surface downstream of reattachment.2,3 These

vortical structures can induce secondary separation and pres-

sure fluctuations along the solid surface. Also, in helicopter

aerodynamics the wakes from upstream blades can interact

with blades downstream, possibly leading to undesirable

vibrations.4,5

There are many studies which focus on either vortex

rings or pairs impinging on a no-slip wall in an otherwise

stagnant fluid. A recent review of vortex/wall interactions

can be found in Doligalski et al.6 A vortex moving toward a

wall is often observed to reverse course and move away from

the wall. This movement is known as vortex rebound and has

been observed in free-flight studies for wing tip vortices near

the ground ~see, for instance, Dee and Nicholas7!. An expla-

nation for the rebound phenomenon was given by Harvey

and Perry8 who experimentally studied the motion of a single

wing tip vortex near a moving wall. The primary vortex cre-

ates a layer of vorticity of opposite sense next to the wall.

This vortex sheet becomes unstable, separates, and rolls up

to form a secondary vortex. The secondary vortex induces an

upward motion to the primary vortex in an inviscid-like fash-

ion. Boldes and Ferreri9 examined a vortex ring approaching

a wall. The ring was created by a drop of colored water

impacting the free surface of a quiescent body of water. They

reported the rebound of the vortex from the wall, and in

some cases, multiple rebounds. In their two-dimensional

Navier–Stokes calculations, Peace and Riley10 demonstrated

the rebounding phenomenon of a vortex pair from a no-slip

boundary. Their simulations were for low Reynolds number

~up to ReG5G/n5150). Flow separation was not observed.

In their detailed experimental study of vortex rings, Walker

et al.11 ~also see Cerra and Smith12 for related earlier work!

created vortex rings by the sudden ejection of fluid through a

sharp edged orifice. As the ring approached a wall, the for-

mation of secondary and tertiary vortex rings was observed.

The secondary ring moves around the primary ring and into

its center. The secondary ring not only causes the primary

ring to rebound, but arrests the radial expansion of the ring.

For a sufficiently strong vortex, the diameter of the primary

ring will shrink, a process known as reversal. As the second-

ary ring moves into the center of the primary ring, azimuthal

waves develop on the secondary ring, but not the primary

ring. Walker et al. showed that these fluctuations are associ-

ated with the compression of the secondary ring. They also

observed the ejection of the secondary vortex ring from the

center of the primary ring. Orlandi,13 in his two-dimensional

Navier–Stokes simulations, observed the formation of sec-

ondary and tertiary vortices for a vortex pair impacting a

no-slip wall. His simulations were for Reynolds number up

to ReG53200. He also observed the formation of a second-

ary vortex pair that moved far from the wall, similar to the

secondary ring ejection in the experiments of Walker et al.

a!Corresponding author. Telephone: ~540! 231-5950; Electronic mail:
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In a subsequent study Orlandi and Verzicco14 observed the

multiple formation of vortices for the case of a vortex ring.

They concluded that vortex pairing was the mechanism for

the ejection of the secondary ring from the center of the

primary ring. The results also showed the growth of azi-

muthal instabilities in the secondary ring, similar to the ex-

perimental results of Walker et al. The stability of the sec-

ondary vortex ring was investigated by Swearingen et al.15

using numerical simulations and a localized stability analy-

sis. In the simulations the secondary vortex ring developed

azimuthal perturbations similar to those seen by Walker

et al.,11 Orlandi and Verzicco,14 and others. The stability

analysis followed the approach of Widnall and Sullivan16

who showed that an isolated vortex ring is stable to long-

wavelength disturbances ~but unstable to short-wavelength

ones!. However, the analysis of Swearingen et al. showed

that the presence of another vortex ring causes the long-

wavelength disturbances to grow. Their analysis gave results

in good agreement with the simulations in the early stages of

development of the instability.

Most numerical studies of vortex pairs near a wall have

been two-dimensional. However, in three dimensions the

pair is subject to instabilities, in particular, those named after

Crow. Crow17 modeled a pair of trailing vortices as sinusoi-

dally perturbed vortex filaments. The mode shape is a sinu-

soidal perturbation of each filament that is confined to a

plane inclined at approximately 45° to the plane in which the

undisturbed vortices lie. The configuration is symmetric

about a plane that bisects the distance between the vortices.

The analysis predicts two groups of unstable waves with one

set having long wavelengths and the other having short

wavelengths ~comparable to the core diameter!. Crow gives

the maximum dimensionless growth rate (ā52pb2a/G) as

0.8 for the long waves and 1.0 for the short waves. Here b is

the distance between the vortices and G is the circulation of

each vortex. Widnall et al.18 showed that the short-

wavelength instability found by Crow is spurious since its

predicted wavelength violates the assumptions of the model.

The analysis of Widnall et al. is valid for slender vortices

(a/b!1, where a is the core diameter! and ka5O(1),

where k is the wavenumber. This analysis is therefore appro-

priate for short-wavelength disturbances, as opposed to the

analysis of Crow which requires ka!1. Although the short-

wavelength instability predicted by Crow does not exist,

Widnall et al. showed that for vortices of finite core size

there exists higher radial bending modes which are unstable.

Recently Thomas and Auerbach19 observed the formation of

both the long- and short-wavelength instabilities for a vortex

pair. The pair was composed of the starting and stopping

vortices that formed on the edge of a rotated plate. Both long

and short-wavelength instabilities have been seen in the cur-

rent simulations.

The disturbances grow until portions of each vortex

come into close contact with one another. At these points

vortex reconnection occurs which transforms the pair into a

series of rings. While vortex reconnection has received much

attention, especially in recent years, it is still a poorly under-

stood phenomenon. A central concept is the dissipation ~or

‘‘cancellation’’! of vorticity in regions where antiparallel

vorticity lines are close together. The vortex lines then un-

dergo a cross linking, or bridging, process which connects

the two vortices. The cross linked vorticity is amplified by

vorticity stretching. Common configurations for the study of

vortex reconnection are the collision of two vortex rings20,21

and a sinusoidally perturbed vortex pair.22,23 An extensive

discussion of the reconnection process is given by Kida and

Takaoka.24

Recently Dommermuth presented three-dimensional

simulations of vortex pairs interacting with free-slip and no-

slip walls25 as well as free surfaces.26 The primary motiva-

tion for this work was to understand the formation of free

surface features such as striations and scars that can form

when a rising vortex pair approaches a free surface. These

features were observed in the experiments of Sarpkaya and

Suthon27 and Sarpkaya.28 Since Dommermuth was con-

cerned with the reconnection process and not the mechanism

by which the primary vortex is deformed, a sinusoidal per-

turbation was initially imposed on the core position of the

vortex. Sheets of helical vorticity were observed spiraling off

of the vortex before interaction with the surface. The author

suggests that the vorticity sheets originated from an inviscid

instability caused by large changes in the curvature of the

vortex along its axis. The helical vorticity sheets evolved

into ‘‘beads’’ of cross-axis vorticity as they revolved around

the primary vortex. For no-slip wall interactions, the helical

vorticity sheets merged with the secondary vorticity sheet at

the wall to form U-shaped vortices wrapped around the pri-

mary vortex. For free surface interactions, the cross-axis vor-

ticity reconnected at the free surface. The cross-axis vortices

appear to be responsible for the formation of the striations

and scars observed in the experiments.

In Dommermuth’s work the axial length of the compu-

tational domain was chosen to be too short to permit the

long-wavelength Crow instability to form. The short-

wavelength Crow–Widnall instability was not addressed. In

the current work the Crow–Widnall instability and the inter-

action between the primary and secondary vortices are key

features of the flowfield. Instead of an initial sinusoidal dis-

turbance of the primary vortex core a random disturbance is

used which allows any instabilities present to develop natu-

rally. Because of this form of the initial disturbance the he-

lical sheets of vorticity which played a fundamental role in

the vorticity dynamics of Dommermuth’s simulations are not

present. The instabilities seen in the current work occur after

the primary vortex interacts with the wall and the subsequent

formation of a secondary vortex.

In the current study we consider the case of a counter-

rotating vortex pair approaching a solid surface. Our object

is to reveal the three-dimensional characteristics of the inter-

action of the pair of vortices with the wall. The full three-

dimensional, unsteady, incompressible Navier–Stokes equa-

tions are solved. In Section II the numerical scheme is

outlined as well as initial and boundary conditions. The re-

sults are presented in Section III while the conclusions are

discussed in Section IV.
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II. METHOD OF SOLUTION

A. Numerical scheme

The incompressible Navier–Stokes equations are given

by

]u i

]t
1

]

]x j

u iu j52

]p

]x i

1

1

Re

]

]x j

]

]x j

u i , ~1!

]u i

]x i

50, ~2!

where all variables have been nondimensionalized by a char-

acteristic velocity and length. The equations are solved by a

scheme first proposed by Kim and Moin29 and later modified

by Le and Moin.30 The scheme is described in detail in these

references so a mere overview is given herein. The scheme

consists of a fractional-step ~time-splitting! method com-

bined with the approximate factorization technique. The mo-

mentum equation is advanced in time in two steps, first ap-

plying the convection and diffusion operators and then the

pressure operator. Finding the pressure consists of solving

Poisson’s equation, which is equivalent to satisfying the con-

tinuity equation. Solving Poisson’s equation is by far the

most computationally expensive step. Le and Moin proposed

a modification to the Kim and Moin method to increase the

CFL while reducing the computational effort. Their method

employs a three-stage Runge–Kutta scheme in which the

convective terms are advanced explicitly and the viscous

terms implicitly. The stability limit is CFL5A3 for the one-

dimensional convection-diffusion equation. The Kim and

Moin time splitting is applied at each stage, yet the Le and

Moin modification permits Poisson’s equation to be solved

only at the end of the time step, rather than at each of the

three stages. This results in a substantial reduction in the

CPU time. Le and Moin estimated the CPU time savings to

be 68% over the Kim and Moin scheme for their simulations

of flow over a backward facing step. In the current work a

multigrid method is used to solve Poisson’s equation. This

implementation of the multigrid method uses Gauss–Seidel

line relaxation and semi-coarsening on uniform or stretched

meshes. The scheme provides a very efficient solution to

Poisson’s equation which is critical to reducing the compu-

tational time. The accuracy of the code has been thoroughly

examined by Luton.31

B. Initial and boundary conditions

Now we consider the initial and boundary conditions for

a vortex pair approaching a wall. The computational domain

is shown in Fig. 1. The two primary vortices are initially

parallel to the z-axis and extend from z52` to z51` .

The x50 plane bisects the distance between the vortices and

is assumed to be a plane of symmetry throughout the simu-

lation. For the boundary conditions, which are only needed

for the velocity, the no-slip and no-penetration conditions are

applied at the wall (y50 plane!. Due to symmetry only one

vortex of the pair is simulated. Thus symmetry boundary

conditions are applied along the center (x50) plane of the

vortex pair. Symmetry conditions are also specified on the

boundaries opposite the wall ~top! and opposite the center

plane ~right!. These boundaries are much further away and

do not affect the flowfield substantially as will be discussed

in Section III D ~also see Luton31!. Periodic conditions are

used in the axial (z) direction. The velocity field is initialized

using a Lamb–Oseen vortex which has a velocity profile

given by

vu5

Avc

r/rc

@12e2Br2/r
c
2

# , ~3!

where vu is the tangential velocity, vc is the maximum tan-

gential velocity, r is the distance in the radial direction, rc is

the core radius, and A and B are constants given by A

51.39795 and B51.25643.

The vortex images across the center plane and wall are

included as well. The images across the other two symmetry

boundaries are also taken into account, but since they are

further away they have little effect. While these initial con-

ditions are divergence free and satisfy the no-penetration

boundary condition on the wall, they violate the no-slip con-

dition. However, the vortex is sufficiently far away from the

wall that the resulting disturbance is negligible.

In addition to this basic state, a random disturbance is

added to the initial velocity field at all points in the compu-

tation domain. All possible modes are excited randomly to

ensure that all, if any, instabilities of the flow are affected.

The disturbance is subject to certain restrictions. The first is

that the disturbance must have a periodicity of Lz ~the length

of the domain in the axial direction! in order to be compat-

ible with the boundary conditions. Thus the form of

x-component of the disturbance velocity is taken to be

u8~x ,y ,z !5RealF (
m51

Nz/2

ûm~x ,y !e ikzG , ~4!

where ûm is the complex amplitude, k52pm/Lz is the wave

number, Nz is the number of points in the z-direction, m is

the mode number, and i5A21. The other velocity compo-

nents have a similar form. Since all incompressible flows

must have a divergence free velocity field the amplitudes

FIG. 1. The computational domain.
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cannot be specified independently. If ûm and v̂m are given

then ŵm must be found from the discrete form of the conti-

nuity equation. Two methods have been used to determine

ûm and v̂m . Both rely on calls to a random number genera-

tor. The first method, denoted here as Rand, assigns random

numbers between 21/2 and 1/2 to the real and imaginary

parts of the complex amplitude. This is done at every point

in the cross (xy) plane and for every mode number m . Thus

the only structure to the disturbance field is that it is periodic

in z . The second method, denoted by RandB, assigns random

numbers in the range of 0 to 1. Consequently the velocity

field has some structure in the cross plane, while the Rand

disturbance does not. The RandB disturbance is more repre-

sentative of a flow that is being forced. For instance, let us

consider the trailing vortex of a wing. Time varying pertur-

bations could be introduced at the wing tip. These distur-

bances would be wrapped up into the vortex and create varia-

tions along its axis. This has been done experimentally32 and

during flight33 to excite the Crow instability between trailing

vortices. The current simulations, however, are applicable to

instabilities that occur between a trailing vortex and the sec-

ondary vortex that is created as the trailing vortex interacts

with the ground. The RandB disturbance could give one an

idea as to the potential of affecting the long time character-

istics of the flow by forcing.

A variation of the RandB disturbance, denoted by

RandC, was also used. This disturbance is identical to RandB

except that ûm5 v̂m . Thus the cross plane velocity lies in the

directions defined by the line that is 45° from the positive x-

and y-axes. This was used in order to more strongly excite

the Crow instability.

III. RESULTS

A. The long-wavelength Crow instability

As an introduction to some of the three-dimensional ef-

fects of a vortex pair impinging on a wall we shall briefly

examine one type of instability exhibited by an isolated vor-

tex pair. The instability is named after Crow who laid the

theoretical foundation.17 The initial and boundary conditions

are the same as those in Section II B with the exception that

the wall is replaced with symmetry conditions. Thus the

boundaries parallel to the vortex axis are in conflict with the

configuration as given by Crow for an isolated vortex pair.

The boundary conditions were selected so that a small do-

main could be used. Thus the vortex follows a circuit along

the inside edges of the domain instead of traveling long dis-

tances in a straight line ~as an isolated pair would!. In any

case, we are not concerned here with a detailed analysis of

the Crow instability but merely a demonstration of its prop-

erties.

Let us first consider a vortex initially located at x52,

y55 with a Reynolds number based on the circulation of

ReG58784. In the cross plane the domain extends from x

50 to x510 and y50 to y510. The length of the domain in

the z-direction is 28. All quantities have been nondimension-

alized by the initial core radius, rc , and maximum tangential

velocity, vc . The grid is uniform with a size of 64364

332. The vortex has positive vorticity and therefore initially

moves in the negative y-direction due to the influence of its

image across the symmetry plane at x50. A RandB distur-

bance of magnitude U rms8 50.04vc was added to the initial

velocity field. Only the second mode (lz514) was excited.

A surface of constant vorticity at time t5167 reveals the

undulations of the vortex that have arisen due to the long-

wavelength Crow instability @Fig. 2~a!#. The disturbance

continues to grow until parts of the vortex approach a sym-

metry plane, that is, the image vortex. The process of recon-

nection then begins which transforms the vortex pair into a

series of rings. In Fig. 2~b! the vortex is beginning to recon-

nect as evident by the formation of half-ring structures—the

other halves are the images. After this point in time the cor-

ner of the domain begins to significantly alter the flow. Nev-

ertheless, the simulation illustrates the nature of the Crow

instability. The characteristic 45° angle of the Crow instabil-

ity can be seen by projecting the isovorticity surface onto an

xy-plane. This has been done at time t5167 ~Fig. 3!. The

vortex is moving in the clockwise direction. The slight bend

at one end is most likely due to the interaction at the corners.

The wavelength of the instability seen in the previous

simulation is 14rc . However, for this vortex pair Crow pre-

dicts that the most unstable wave has a wavelength of 21rc .

In order to compare with the theory another simulation was

run with a 6436438 grid and Lz521. Only the first mode

(lz5Lz) was excited with a RandC disturbance of U rms8

50.20vc . The growth rate was found by taking a fast Fou-

rier transform in the z-direction of the total kinetic energy.

After an initial decay the energy in the first mode grows

exponentially at a rate of 0.071. When nondimensionalized

as defined by Crow the growth rate is ā50.81. The growth

rate predicted by Crow for this mode is ā50.80. This com-

pares very well, especially considering the very coarse grid

in the z-direction. Later in time the corners of the domain

cause interactions that alter the growth rate. A systematic

FIG. 2. Surfaces of constant vorticity V51.0. ~a! t5167, ~b! t5196.
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study of the Crow instability would require more appropriate

boundary conditions. The features illustrated here, however,

are ones that will be seen in simulations of a vortex pair

impinging on wall.

B. The strucutre of the short-wavelength instability

Let us now turn our attention to the problem of a vortex

pair impinging on a wall. The initial and boundary condi-

tions are the same as those discussed in Section II B. The

vortex is initially located at x52, y55 and has a Reynolds

number of ReG52196. The size of the domain is Lx5Ly

510 and Lz54. A uniform grid of size 96396348 is used

resulting in 19 grid points in the vortex core. The reason for

choosing Lz54 will become apparent later. In order to excite

all possible modes of instability a Rand-type disturbance is

used with U rms8 50.20vc . Only the first mode (lz5Lz) is

excited. Simulations which were run without an initial ran-

dom disturbance showed three dimensionality after long

times.

Let us first turn our attention to the distribution of vor-

ticity on horizontal planes. In Fig. 4 are shown contour plots

of vz in the mid and top planes at time t543.2. In the mid

plane the cross sectional shape of the secondary vortex is

noncircular—more so than the primary. Between the oppo-

site signed vortices a large vorticity gradient exists. Conse-

quently this is a high dissipation region. In the top plane the

vortices are further apart showing that the flow has become

three dimensional. It is also apparent that the structure of the

secondary vortex ~SV! varies in the z-direction depending on

its proximity to the primary vortex ~PV!. The ‘‘offset’’ of the

vortex center indicates that this is not the first radial mode

but a higher one. For the first radial mode the vortex core

bends as one unit whereas the second radial mode has a more

complex structure.18

In Fig. 5 are shown the trajectories of each vortex for a

similar simulation on a coarser grid (64364316). While the

path of the primary vortex is very similar to what is seen in

two-dimensional studies, the trajectory of the secondary vor-

tex is dramatically different. Two curves are shown for the

SV corresponding to the mid plane (SVmp) and top plane

(SVtp) of the domain. Shortly after the SV forms the curves

are coincident indicating that ~most likely! the SV is straight

in the z-direction. Before long, however, the curves begin to

diverge. The symbols on the curves allow one to see the

relative position of the vortices. For the position of the vor-

tices marked by the last two sets of symbols, the angle of the

SV to the SVmp2PV line is approximately 49°. This is rather

suggestive since the angle predicted by Crow is approxi-

mately 45°. However, this situation is different in that the

vortices are of unequal strength and are close together. In-

stead of the symmetric Crow-type instability the SV is dis-

torted by the strong PV but the weaker SV is unable to sig-

nificantly bend the PV.

A time series of isovorticity surfaces is shown in Fig. 6.

FIG. 3. Projection of an isovorticity surface onto an xy-plane. t5167, V

51.0.

FIG. 4. Vorticity contours of vz on two different horizontal planes at t

543.2. The contour levels range from 22 to 2 by 0.2. ~a! Mid plane, ~b! top

plane.
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At time t543.2 the secondary vortex has already formed and

completed one half of a circuit around the primary vortex. It

is about to enter the region between the PV and the center

symmetry plane. The SV is already bent significantly yet the

PV remains straight. The cross sectional diameter of the SV

is no longer constant but is larger in the region closest to the

PV. As the SV moves toward the wall its instability grows

very rapidly. By time t550.9 the SV has assumed a hairpin

shape. We shall refer to the two horizontal portions of the

SV as ‘‘legs’’ and the vertical portion near the PV as the

‘‘head.’’ Due to the periodic boundary conditions there is

half of a head at the top and bottom of the domain near the

center plane. These heads have moved toward the center

plane and become highly elongated in the cross plane due to

the close proximity of the image. The central section of the

SV is very close to the PV. A hump on the isovorticity sur-

face appears on the PV in this region. This is better seen in

Fig. 6~c! which is a view in the opposite direction at t

557.3. At this vorticity level the isovorticity surfaces of the

secondary and primary vortices have merged in the region of

closest contact. This region has a strong vorticity gradientFIG. 5. The trajectories of the vortices.

FIG. 6. Surfaces of constant vorticity magnitude V50.7. ~a! t543.2, ~b! t550.9, ~c! t557.3, ~d! t564.8, ~e! t5100.0.
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and therefore high dissipation. As the axial vorticity is dissi-

pated the remaining vorticity lines of each vortex can link

with one another thus ‘‘bridging’’ the gap. This is the gen-

eral process by which reconnection occurs. The reconnection

region is therefore known as a ‘‘bridge.’’24 Although it is

unclear whether any bridging has taken place, the PV is

showing significant deformation now. At the center plane the

SV continues to distort. Only a thin region extends in the

z-direction. Reconnection here appears imminent.

The legs of the SV now lie almost entirely in the hori-

zontal plane and have moved close to the wall. As with any

vortex that approaches a wall, opposite signed vorticity is

created at the surface. The wall vorticity layer can be seen in

the early stages of formation in Fig. 6~c!. The sign of vortic-

ity in the SV is such that the legs induce a flow near the wall

that is in the positive y-direction between the legs. At the top

and bottom of the domain the flow is toward the wall. The

vorticity layer induced by the SV has begun to lift away from

the wall. This is more apparent at time t564.8. Each uplifted

layer created by a SV leg can roll up to form an even smaller

tertiary vortex ~TV!. It is likely that viscous effects prevent

this from happening in this simulation. At higher Reynolds

numbers tertiary vortices would form from the uplifted vor-

ticity layers. Also the SV has now wrapped even further

around the PV. This stretches the secondary vortex resulting

in a smaller cross sectional diameter. At the center symmetry

plane a portion of the SV has connected with its image. This

event will be discussed in more detail shortly.

In order to gain insight into the fate of the vortices the

vorticity distribution at t5100.0 is presented in Fig. 6~e!. At

this large time numerical dissipation might have some effect

in redistributing the vorticity. In any case we can draw some

important conclusions from the general features of the flow.

Foremost is the fact that the primary vortex has remained

strong while the SV has been nearly destroyed by the stretch-

ing due to the PV and viscous dissipation. Two weak por-

tions of the SV remain near the wall. At the center plane the

legs have finished reconnecting. Reconnection between the

primary and secondary vortices, however, did not occur.

Soon only the primary vortex will remain. The eventual out-

come is similar to the initial flow but the primary vortex

retains a permanent distortion due to its interaction with the

wall.

Examining isovorticity surfaces at different magnitudes

is helpful in discerning details in the flow. The reconnection

between the SV and SV8 is clearly seen at time t564.8, V

51.0 ~Fig. 7!. At this time part of the SV has reconnected

with its image while the other ~vertical! portion, sometimes

called a ‘‘thread,’’23 remains as it was. The thread is highly

stretched by the legs of the SV and quickly disappears, leav-

ing the vortex fully reconnected. Normally the thread bows

in the negative y-direction due to the influence of the legs

but the nearness of the wall prevents this. The bending of the

thread was observed in other simulations in which reconnec-

tion occurs earlier. This process has been seen in other stud-

ies that concentrate on reconnection ~see, for example, Me-

lander and Hussain23!. The primary and secondary vortices,

however, do not appear to reconnect. The head of the SV is

destroyed by dissipation while the PV remains @see Fig.

6~e!#. Since the SV is weaker than the PV its vorticity in the

bridge will dissipate first. If the bridge still contains signifi-

cant vorticity ~due to the PV! then reconnection cannot oc-

cur. The primary vortex will continue to stretch the second-

ary with the resulting increased dissipation hastening its

destruction.

An energy cascade based on the previous observations

can be described as follows. Initially, if we consider only one

member of the pair, there is a single vortex ~the primary!. As

the primary vortex approaches the wall a smaller opposite-

signed secondary vortex is created. The secondary vortex is

unstable to the short-wavelength Crow–Widnall ~CW! insta-

bility due to the influence of the primary. As the instability

grows the secondary vortex is bent, stretched, and wrapped

around the stronger primary. Thus the vorticity of the sec-

ondary vortex which was originally in the axial (z-! direction

now lies mostly in the cross plane. The configuration re-

sembles a continuous series of hairpin vortices. The heads,

which are short sections of the secondary vortex with axes

parallel to the primary’s, connect the legs of the secondary

vortex. The legs lie primarily in the cross plane and are

longer than the heads because of stretching. These legs form

a series of counter-rotating vortices in the z-direction. As the

secondary vortex approaches the wall each leg creates its

own vorticity layer on the wall which can roll up to form an

even smaller tertiary vortex. The CW instability can grow in

the tertiary vortices as well as they revolve around the legs of

the secondary vortex and approach the wall. Since the TV

cores are smaller than those of the SV the resulting wave-

length of the instability is smaller. Thus energy is transferred

to continually finer scales by the creation of smaller and

smaller vortices. Dissipation, of course, controls the finest

scale of the flow.

C. The growth of the kinetic energy of the
disturbance

It is desirable to discover the most unstable wave since

this is the wave that would naturally dominate under general

disturbances. To do this it is necessary to quantify the growth

of the instability. This has been done by taking a fast Fourier

transform ~FFT! in the z-direction of the energy at regular

intervals in time. The energy q is defined as twice the kinetic

energy per unit of mass. On a uniform grid q5( i , j ,k(u2

1v
2
1w2). In Fig. 8 the FFT coefficients are shown for the

first three modes ( q̂1, q̂2, and q̂3) as functions of time. Ini-

FIG. 7. Surfaces of constant vorticity magnitude V51.0 at t564.8.
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tially the energy in the first mode decays but it slows as the

primary vortex nears the wall. Between times 12.2 and 19.7

the secondary vortex is developing on the wall. During this

time the kinetic energy begins to grow. After t519.7 the SV

is fully formed and both vortices begin to move away from

the wall. The kinetic energy begins to grow exponentially at

a rate of 0.41. The energy of the second mode is also grow-

ing exponentially, but at a higher rate (a250.76) while the

growth rate for the third mode is even higher (a351.17). By

t550 the energy level of the second mode is much closer to

that of the first, though it is still an order of magnitude less.

Also the growth rates of both modes have begun to decrease,

indicating that nonlinear effects are becoming important and

a cascade of energy to higher modes has begun. Viscous

dissipation is not responsible since the spectrum ~not shown

here but see Fig. 16 for related results! shows a buildup of

energy for high wave numbers. In addition, the SV is nearing

the center plane so the effect of the images is becoming

important as well.

Also shown in Fig. 8 is the decomposition of the energy

for each mode into two components labeled PV and SV.

These are an approximation of the energy in the primary and

secondary vortices. They are computed as follows. At each

point in the cross plane compute the kinetic energy FFT

coefficients q̂1(x ,y) and q̂2(x ,y). If vz(x ,y ,zmid),0 ~that is,

the z-component of vorticity at the mid plane has the same

sign as that of the SV! then the kinetic energies contribute to

the secondary vortex components q̂1,SV and q̂2,SV . Otherwise

they contribute to the primary vortex components.

These components should be treated with care. First of

all, the SV label is somewhat misleading since the secondary

vortex does not exist initially despite the nonzero values of

q̂1,SV for small times. This merely represents the part of the

disturbance that happens to give vz,0 on the horizontal mid

plane. Secondly, it is improper to think of the flow as divided

into parts corresponding to the two vortices only. There are

regions of the flow far from both vortices. However, the

energy of the disturbance in these regions is dissipated by

viscous effects since there is no mechanism by which it can

extract energy from the mean flow. The energy q̂SV,1 has a

component due to the wall vorticity layer but its contribution

is small since q̂SV,1 does not increase until after the second-

ary vortex forms. The most important consideration is that

there is some ambiguity to the relationship between the en-

ergy in the secondary vortex and q̂1,SV after the vortex bends

significantly. In the region between the primary and second-

ary vortices vz can change sign along a z line. This raises the

question of whether the energy for this line should be

counted as part of the PV or SV. Consequently these com-

ponents are approximate and are not valid for large times.

This being said, some useful insights can be gained by

this decomposition. Initially q̂1,SV decays to a lower level so

that more of the first mode energy in the flow resides in the

primary vortex. As the secondary vortex forms q̂1,SV begins

to grow rapidly while q̂1,PV continues to decrease. During

this time the first mode SV energy surpasses that of the PV.

By the time the secondary vortex is fully formed it contains

most of the first mode energy of the flow. Later q̂1,PV begins

to grow but almost all of the first mode energy remains in the

secondary vortex. The energy of the second mode behaves in

a similar fashion but its value is much less.

In order to determine the wavelength of the most un-

stable wave a series of ten simulations were performed. Each

varies from another only in the value of Lz . The size of the

domain in the cross plane is Lx510, Ly510 while Lz varies

from 1 to 12. Each case is initialized by a RandB disturbance

of the first mode (lz5Lz). The level of disturbance is U rms8

50.02vc . As before, the Reynolds number is ReG52196

and the vortex is initially located at x52, y55. For each

case the growth rate of q̂1 was determined in the exponential

growth period between t530 and t537. The results are

shown in Fig. 9 as a function of the wave number. The maxi-

mum growth rate is a150.41 and occurs at k51.57 (lz

54.0). Because the curve is rather flat near the maximum it

is difficult to obtain an accurate value for the most amplified

k . For comparison we can use the theoretical predictions of

the Widnall et al. short-wavelength instability of a vortex

pair. However, there are some important differences between

the Widnall et al. analysis and the current flow simulations.

Their analysis assumes that the vortices are identical and the

separation distance is large compared to the core diameter.

Neither is true here. The secondary vortex is smaller and

weaker than the primary vortex and they are very close to-

gether. In fact, the cross sectional shape of the vortices, es-

pecially for the SV, is distorted. Nevertheless, the work of

Widnall et al. is the most appropriate that exists for compari-

son. Widnall et al. predict that the first radial mode is stable.

For the second radial mode the most unstable wave is pre-

dicted to have a wavelength of 3.22rc . This compares rea-

sonably well with the value of approximately 4rc obtained

by the current simulations, especially considering the differ-

ences mentioned above and the difficulty of obtaining an

accurate value from the simulations. The agreement with the

Widnall et al. predictions improves considerably when the

FIG. 8. The temporal development of the kinetic energy in the first three

modes.
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domain is lengthened in the axial direction ~see Section

III E!.

D. Grid independence study

To demonstrate grid independence the simulation de-

scribed in Section III B was repeated with a grid refined in

the cross plane. A uniform grid of size 1443144348 was

used resulting in 29 grid points in the vortex core. The time

step was determined by the Courant–Friedrichs–Lewy con-

dition. For both cases, as well as all simulations described

herein, CFL50.5. This is well below the stability limit of

CFL5A3 for the one-dimensional convection-diffusion

equation. The time step for the simulation with the 96396

348 grid is Dt'0.030 for small times. Figure 10 shows the

vorticity distribution on a horizontal plane through the center

of the domain for each simulation at t'64. The contour

levels are identical in each case. The secondary vortex is

seen as a concentrated region of negative vorticity appearing

above the larger, more distorted primary vortex. Only small

changes are evident in the vortices between the simulations.

In particular, the size and strength of the SV is not affected

by numerical dissipation. On the wall the finer grid simula-

tion shows a stronger and slightly larger vorticity layer.

However, it is apparent that the incomplete resolution of the

wall vorticity layer does not affect the motion or structure of

the vortices. The same observation was noted by Orlandi and

Verzicco14 who concluded that the complete resolution of the

very thin wall vorticity layer is not necessary for accurate

computation of the large scales. In addition, surfaces of con-

stant vorticity ~not shown here! reveal that the core position

of both vortices and the reconnection region are nearly iden-

tical to the coarser grid results. For both cases the growth

rate of the kinetic energy between times 30 and 37 is 0.42.

Two more simulations were also run in order to deter-

mine the effect of the cross plane domain size. In the first a

domain size of Lx5Ly510 and Lz52.5 was used with a

uniform grid of size 64364316. In the second simulation

the length of the domain and the number of points in the x-

and y-directions was doubled. The smaller domain affects

the trajectories of the vortices somewhat, shifting them in the

negative x-direction by approximately half of a core radius

and downward slightly. The form of the instability and its

growth rate remain unchanged.

E. Unbiased disturbance

Until now simulations have been presented for cases in

which the initial random disturbance consists of only one

mode in the z-direction. Let us now consider a case in which

all modes are seeded by an initial random disturbance. As

before the Reynolds number is ReG52196. A Rand distur-

bance of amplitude U rms8 50.20vc is used so that there is no

FIG. 9. The growth rate of the first mode of kinetic energy as a function of

the wave number.

FIG. 10. Vorticity contours of vz on a horizontal plane through the center of

the domain at t'64. The contour levels range from 23 to 2 by 0.25.

Dashed lines represent negative vorticity while solid lines represent positive

vorticity. ~a! 96396348 grid; ~b! 1443144348 grid.
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structure to the disturbance in the cross plane. The length of

the domain in the axial direction has been increased to Lz

516 so that longer wavelengths can be seen. A uniform grid

of size 643643128 is used which gives 13 grid points in the

vortex core. A time series of isovorticity surfaces is shown in

Fig. 11. The general features of the flow are similar to the

ones of the simulation described in Section III B. At time t

543.0 significant perturbations have already appeared.

There is clearly more than one wavelength involved. As be-

fore the secondary vortex disturbance grows very rapidly and

begins to wrap around the PV @Fig. 11~b!#. As the SV be-

comes highly distorted its diameter increases significantly.

The dominant wave here appears to have a wavelength of

3.2rc . Unlike the previous case, however, the secondary vor-

tex is not in contact with the symmetry plane so the SV

cannot reconnect with its image. At time t562.4 the SV has

wrapped even further around the PV. Vorticity stretching has

greatly decreased the cross sectional diameter of the SV. The

horizontal legs of the secondary vortex have moved in the

z-direction such that they are grouped in pairs. The mecha-

nism behind this pairing will be explained shortly. As in the

previous simulation, the SV is also generating vorticity at the

wall. By time t575.2 the heads of the secondary vortex have

been destroyed leaving the legs which are now disorganized.

The legs are destroyed by stretching and dissipation, leaving

only the now distorted primary vortex @Fig. 11~e!#.

The shape of the secondary vortex at t562.4 is more

easily seen in Fig. 12 which shows the isovorticity surfaces

at t562.4 for a higher vorticity level and a different viewing

angle. The structure of the SV in the z-direction is quite

regular with the exception of a region near the top of the

domain where the vortex is less organized. The vertical

‘‘heads’’ of the secondary vortex can just be seen immedi-

ately to the left of the primary. Unlike the previous simula-

tion, the secondary vortex does not reconnect with its image

across the center plane but rather forms a series of ‘‘hairpin’’

bends. Whether or not the SV reconnects with its image de-

pends in part on the characteristics of the initial disturbance.

As the SV moves between the PV and the symmetry plane,

reconnection can occur only if the instability has grown suf-

ficiently such that parts of the SV are in close contact with

the symmetry plane. Otherwise, reconnection cannot occur.

Another consideration is the effect of the symmetry assump-

tion. Physically the flow could develop asymmetries which

are not permitted in these simulations. The asymmetries

could produce significant changes in the flowfield, particu-

larly for reconnection. Yet regardless of whether reconnec-

tion occurs the other general features of the flow such as the

hairpin shape of the secondary vortex and the generation of

vorticity on the wall due to the secondary vortex remain

unchanged.

Plotting the pressure and vorticity on various planes can

also yield valuable insights. Let us first examine the pressure

on the wall at t562.4 as shown in Fig. 13. There are five

high pressure regions. The high pressure is due to the legs of

the secondary vortex forcing fluid toward the wall. The low

pressure regions correspond to the areas where the legs move

fluid away from the wall. This can be clearly seen by exam-

ining the contours of vx on the plane x52.97 which cuts

through the high pressure regions ~see Fig. 14!. The legs of

the SV appear as a series of counter-rotating vortices. They

were originally uniformly spaced in z but have now grouped

into pairs. This is a direct result of the influence of the im-

ages across the wall. Each positive vortex ~the upper member

of each pair! has a negative image which induces a down-

ward motion. The opposite is true for the negative vortices.

Thus the vortices are grouped such that the flow between

them is away from the wall while the flow between the pairs

is toward the wall. By comparing Figs. 13 and 14 it can be

seen that the high pressure areas on the wall lie in the ‘‘stag-

nation’’ region between the vortex pairs.

Let us also consider a vertical plane at y53.44 which

passes through the primary vortex center ~see Fig. 15!. The

vorticity magnitude is plotted in order that both the primary

and secondary vortices are visible. Once again the legs of the

SV have paired but a comparison with Fig. 14 shows that the

pairs are offset from the ones near the wall. Two legs that are

close together at the PV are far apart at the wall. Between the

members of each pair fluid is pumped away from the primary

vortex. Between the pairs fluid is moved toward the PV. This

appears to be the primary mechanism by which the PV is

bent. The core of the primary vortex has also developed axial

variations in the pressure which leads to a periodic axial

velocity along its core.

Identifying the important wavelengths of the flow can be

accomplished by applying a FFT in the z-direction. This has

been done for the total kinetic energy at nine different times.

The spectra at these times are presented in Fig. 16. It is

evident that the flow is well resolved since the spectrum at

the small scales shows the characteristic slope of 27 for

dissipation ~a consequence of Heisenberg’s hypothesis34!. By

time t520.5 the spectrum has begun to show variations.

Peaks emerge at the fifth and ninth modes. This time is after

the SV forms but well before it interacts with its image or the

wall. Between times 20.5 and 53.4 the energy grows rapidly,

while the fundamental shape of the spectrum does not

change. In this time period the secondary vortex disturbance

becomes large @see Fig. 11~b!#. After time 53.4 the energy

decays slowly. By the end of the simulation the spectrum is

quite smooth. The peaks have disappeared and the energy at

the smaller scales has decreased appreciably.

The peak for the fifth mode (lz53.20rc) corresponds to

the second radial mode of the short-wavelength instability

seen earlier ~see Fig. 9!. For a vortex with a vorticity distri-

bution of (r2
2rc

2/4)2 Widnall et al. found the wavelength of

the most amplified wave to be 3.22rc . The agreement is

excellent. According to Widnall et al. the third radial mode

has a wavelength of 1.80rc for the most unstable wave. This

also agrees closely with the current simulation which pre-

dicts the second peak to occur at the ninth mode (lz

51.78rc). These results confirm that the instability of the

secondary vortex is the short-wavelength CW instability. To

the authors’ knowledge, this is the first three-dimensional

simulation that lends support to the short-wavelength insta-

bility on interacting vortices. It has been shown how this

instability leads to three dimensionality after the rebound of

a vortex pair.
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IV. CONCLUSIONS

DNS results have been obtained for a three-dimensional

counter-rotating vortex pair impinging on a wall. The current

simulations reveal the mechanism by which three-

dimensionality is introduced into the initially two-

dimensional flow. This mechanism is a short-wavelength

Crow–Widnall instability of the secondary vortex. To the

authors’ knowledge, this is the first three-dimensional simu-

FIG. 11. Surfaces of constant vorticity magnitude V50.7. ~a! t543.0, ~b!

t553.4, ~c! t562.4, ~d! t575.2, ~e! t5109.4.
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lation to reveal this instability of the secondary vortex. The

most preferred wavelength of the secondary vortex was

found to be 3.20rc . This value agrees extremely well with

the analysis of Widnall et al.18 which predicts lz53.22rc for

the second radial mode. In the current simulations a higher

mode of wavelength 1.78rc was also seen. Its wavelength

compares very well with the one for the third radial mode of

Widnall et al. (lz51.80rc). These waves were found to

emerge naturally from an unbiased random disturbance.

FIG. 12. Surfaces of constant vorticity magnitude V51.0 at t562.4.

FIG. 13. The pressure on the wall at t562.4.

FIG. 14. Contours of vx on the plane x52.97 at t562.4. The contour levels

range from 26 to 6 by 0.5.

FIG. 15. Contours of vorticity magnitude on a vertical plane through the

primary vortex (y53.44) at t562.4. The contour levels range from 23 to

3 by 0.25.
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The growth of the instability of the secondary vortex in

the presence of the stronger primary leads to the turning and

intense stretching of the secondary. The undulations of the

secondary vortex were observed to reconnect with its image

at the center plane, thus forming a series of elongated loops.

Reconnection does not occur between the primary and sec-

ondary vortices. The secondary vortex is destroyed by

stretching and dissipation leaving the primary vortex with a

permanently distorted shape but relatively unaffected

strength compared to an isolated vortex.

A new type of energy cascade based on the growth of

the Crow–Widnall instability has been proposed. It can be

described as follows. As the primary vortex initially ap-

proaches the wall a smaller opposite-signed secondary vortex

is created. The secondary vortex is unstable to the short-

wavelength Crow–Widnall instability. As the instability

grows the secondary vortex is bent, stretched, and wrapped

around the stronger primary. Thus the vorticity of the sec-

ondary vortex which was originally in the axial (z-! direction

now lies mostly in the cross plane. The configuration re-

sembles a continuous series of hairpin vortices. The legs,

which are the longer sections of the secondary vortex lying

primarily in the cross plane, form a series of counter-rotating

vortices in the z-direction. As the secondary vortex ap-

proaches the wall each leg creates its own vorticity layer on

the wall which can roll up to form an even smaller tertiary

vortex. The Crow–Widnall instability can grow in the ter-

tiary vortices as well as they revolve around the legs of the

secondary vortex and approach the wall. Since the cores are

smaller than those of the secondary vortex the resulting

wavelength of the instability is smaller. Thus energy is trans-

ferred to continually finer scales by the creation of smaller

and smaller vortices.
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