The expanding light echoes surrounding SN 1987A have been studied photographically over a period exceeding 3 yr , sufficiently long that a view of the threedimensional nature of the reflecting material can now be derived. We present two different projections of the dust distribution. We find a number of discrete clouds, a
 N 157 C , but not with the supergiant shell that forms part of the N157C complex,
 major echoes to the front and rear faces of a single, uncatalogued supergiant shell, we

 with absorption features and recommend further observations that can clarify the
structure of this region of the LMC .
Key words: supernovae: individual: SN 1987A - ISM: general - Magellanic Clouds.

2 OBSERVATIONS AND DATA REDUCTION The field of SN 1987A was photographed at the $f / 3.3$ prime
 given in Table 1. The observing technique was identical to
that described in CAM. From all images, we photographithat described in CAM. From all images, we photographi3 yr prior to the explosion of SN 1987A (see CAM). This photographic subtraction was described in CAM, although
improvements have been made by the use of unsharp masking (Malin 1977). All images have been reconstructed at a scale of $5 \mathrm{arcsec} \mathrm{mm}^{-1}$. The images are reproduced in plates A, B, D, E, F, G, I, J and K (Figs 1-3, opposite p. 258). The
digitized data are available from the AAO archive.

The subtracted images were digitized using the AAO PDS and the same technique as CAM with pixels 0.25 arcsec
square. The data were further reduced using software desquare. The data were further reduced using software de-
veloped within the figaro data reduction package (Short-
 of the intersecting material, the coordinate system of our
observations (angular size, position angle and epoch of observation) was converted to a conventional Cartesian coordinate system with the supernova at the origin and the z -

The light echoes at any given epoch lie where the ellip-
soidal surface of equal light traveltime to the observer inter-

vide is then examined in Sect 5
results can be found in Section 5

INTRODUCTION

 Supernova 1987A has provided a unique opportunity to derive the three-dimensional structure of the foregroundinterstellar medium (ISM) in the LMC. The reflection of light emitted from the supernova by material away from the line of ight was observed as early as 1 yr after the explosion (Crotts
1988; Gouiffes et al. 1988; Suntzeff et al. 1988). These light 1988; Gouiffes et al. 1988; Suntzeff et al. 1988). These light echoes were initially seen as arcs in CCD images of the region surrounding the supernova. Spectra of the arcs connova at the time of its maximum brightness, approximately

Photographic observations from the AAT taken in 1988 July first demonstrated that the observed arcs, ~ 40 and ~ 65 arcsec from the supernova, were in fact complete rings centred approximately on the supernova (Couch, Allen \&
Malin 1990; hereinafter CAM). Those observations were the first of a programme to monitor the light echoes and investigate the three-dimensional structure of the ISM in the fore-
ground to SN 1987A. Here we report further observations of ground to SN 1987A. Here we report further observations of Section 3 and the three-dimensional information they provide is then examined in Section 4. A discussion of our
chosen; these are marked on Fig. 4. In the text below we use the numbers on that figure (in bold face) to identify features.
We note that, although they appear in our images, we have chosen to ignore the inner echoes seen by Bond et al. (1990)
since these have already been discussed extensively by other authors.
We emphasize the arbitrary nature of our pixel selection.
In particular, we have tried to give separate identities to all unequivocal cases of splitting of echoes. Where echoes were broad but not split with any certainty, we chose pixels to
cover the full range of radius present. Broad sections of echoes therefore appear more prominent. So, too, do isolated but repeatable features $(3,4,5$ and part of 8$)$, where
again we have selected more pixels.
 some contribution to the apparent width of the rings is pro-
duced by the spread of values of t in equation (1). For an infinitely thin sheet perpendicular to the line of sight, a range of 30 d in t (approximately the FWHM of the peak in the
light curve) corresponds typically $(z=250$ pcand $t=1000 \mathrm{~d}$) to an angular extent of less than 1.3 arcsec . For the same typical values a sheet 30 light days wide along the line of
sight would result in a 3.3-arcsec echo. The size of the echo
 inclined sheets
The narrowest echoes seen on Figs 1-3 are of order
1-arcsec FWHM and may result from very thin sheets

THE THREE-DIMENSIONAL STRUCTURE OF THE ECHOES

4.1 The view from outside the echoes

We now consider the echoes in a Cartesian coordinate sys tem x, y and z, where the supernova lies at the origin, x
increases to the west and y to the north on the sky, and z is
 are in light days. To measure orientations we use the angle ϕ
defined in the usual Cartesian sense $(\tan \phi=y / x)$, so that the astronomical definition of position angle is given by $270+\phi$

 sects matter capable of scattering the light towards the

$I=\frac{\nabla /\left(z_{z}+\downarrow G Z\right)}{z^{1}}+\frac{\nabla / z(1+G)}{z_{z}[z-(z / a)]}$

where D is the distance to the supernova (in units of light days), t is the elapsed time between the maximum light epoch and the observation of the light echo (in d), and both the
physical radius of the ring, r and the z coordinate are measured in light days. We also have $r=(D-z) \tan \theta$, where θ is the angular size of the ring in rad. For the angular sizes
considered here we may use \qquad The light scattered by the ISM left the supernova during the period of maximum light. Following Gouiffes et al. (1988)
and Suntzeff et al. (1988), we deem the maximum to have occurred on 1987 May 22, and hence derive the values of the age, t, given in Table 1.

3 CONVERSION TO SPATIAL MAPS

 We sought to explore the three-dimensional structure of the cattering material. As Figs 1-3 (opposite p. 258) illustrate, the structures are too complex to be analysed using Couwe have identified pixels within each image that can be attributed to reflecting material, and from the x and y coordihence z, using equations (1) and (2). This procedure cannot, unfortunately, be performed auto-matically. It is impossible to convolve different photographs to the same seeing prior to subtraction, and hence residual tar images remain. These are easily differentiated from real echoes by eye, since they remain fixed on the plates. Thus we
have had to select representative pixels manually at each
poch.
Although the echoes appear to represent complete rings,
the interruption caused by the superposition of residual star images upon the echoes has produced instead a series of unconnected points in space. We found it helpful to group these points into what we believe to be connected structures.
We did so on the basis of repeatability of features over successive epochs, and angular extent. Eight groupings were

Figure 5. The echoes as seen from within the plane of the sky. A
sequence of increasing orientation angles (ϕ) is shown, from

 direction is small compared to the separation of the sheets, we might expect them to approximate to planes even if they
have spherical surfaces created by isotropic outflows from a central source. Hence we can determine the plane of each sheet by rotating the data until the echo appears as a linear
feature.
In Fig. 5 we display all observations of all echoes for all epochs, as viewed from within the plane of the sky. We do so
at a range of values of ϕ from -90° to $+90^{\circ}$. The algebraic representation of this rotation is given in Appendix A1. It is immediately apparent that, contrary to previous claims, no structure is perpendicular to the line of sight to the super-
nova. The two major families of echoes both show inclina-
 maximum inclination, ϕ, differs for the two. The inner set,
echoes 1 and 2 , are seen edge-on when $\phi \sim 40^{\circ}$, whereas the
 compact, though often elongated, clouds. The outermost

 appear to form a plane that is seen edge-on at $\phi \sim 20^{\circ}$. The
plane so defined is very steeply inclined to the line of sight, plane so defined is very steeply inclined to the line of sight,
lying almost parallel to it. We suspect that this may indeed be

 -əコejuns .

To the north and west, substantial nebulosity can be seen
 $2044=$ LH 90 (Lortet \& Testor 1984). N157C contains

 the echoes to date (see also Malin \& Allen 1990 for images
showing the nebulosity associated with this region). It was suggested by Crotts (1988) and CAM that the two principal echoes arise in the front and rear surfaces of the large, wind-
blown bubble that Lortet \& Testor associated with N157C.
 and Georgelin et al. (1983). The N157C bubble is defined

 Lortet \& Testor is not the source of the echoes.
Echo 6 , however, is significantly brighter in the north, sugEcho 6, however, is significantly brighter in the north, sug-
gesting an association between it and the bright, diffuse portion of N 157 C , as suggested by Crotts (1988). The
 perfect. In particular, the NNW portion of the echo has faded
even though it continued to intersect both of the obvious ridges of emission in that location. In the NE the echo
remained bright, implying a stronger correlation there

 N 157 C , but recognizes that additiona
sity exists along the same line of sight.
 the bright $\mathrm{H}_{\text {II }}$ region to the west, and that the latter is respon-
sible for echo 6 .
 unlikely configurations and that each echo forms part of a

Fig. 5 clearly shows that the normals to the two major
echoes, $1+2$ and 6 , drawn through the areas sampled, can-

 However, spherical bubbles are not the norm. The

If, indeed, the major echoes $1+2$ and 6 form coherent surfaces on the scale of the supergiant shells, then two dif-
 While Fig. 5 gives a clear picture of the basic structure of the

 centre of an echo $(z=\bar{z})$ and define spherical coordinates
with z as the vector joining the poles. To project this to two dimensions we ignore radius, and consider latitude as a function of longitude (see Appendix A2). On such a plot, an
inclined plane is mapped to a sine curve whose amplitude corresponds to the inclination of the plane. If the echo expands with time along a true plane, data from different epochs will lie on top of one another. If we now rotate the
spherical coordinate system, we can bring an inclined plane on to the equator, whereupon it will appear as a straight line on the plot, allowing a precise representation of any warps.
Figs $6-8$ display echoes 1,2 and 6 in this format, respectively. In each diagram the upper panel has the polar vector along the line of sight while the lower sets it to our best estimate of the normal to the echo.
Echoes 1 and 2 (collectively r

Echoes 1 and 2 (collectively referred to in other works as
the inner ring) are reasonably parallel and can be interpreted as a split in a common sheet. We treat them as part of the

In Figs 6-8 each selected pixel for each epoch is displayed. A different symbol is used for each epoch. The posi-
tional uncertamties in identifying a pixel as a member of a particular echo are about 1 arcsec. The spread of the points displayed is much greater than those positional errors. The upper panels allow a simple three-dimensional visualization
of each echo. We encourage readers to replicate the figures on to transparencies and roll them into cylinders so that the sides of the rectangular box meet. The axis of the cylinder thus generated lies along the sight line to the supernova.
The lower panels show the result of rotating the the lower panels show the result of rotating the polar
vector of the spherical coordinates to lie normal to the plane. The angular rotation required can be determined from either
the geometry used in Fig. 5 or that used in Figs 6-8, and the the geometry used in Fig. 5 or that used in Figs 6-8, and the
best-fitting values for each echo are listed in Table 2. 5ISCUSSION
5.1 Correspondence to emission nebulosity Can we identify features of the Large Magellanic Cloud $(\mathbf{L M C})$ that might correspond to the echoes? In general, bright rims. Viewed face-on they appear as diffuse clouds, giving no clue to their depth along the line of sight, and may

Some of the nebulous features of this region can be specifically excluded by the absence of intensity enhancements where the echoes cross them. A large arc seen to the south of
and concave towards SN 1987A (also visible in image K) is now internal to the echoes, as is most of the honeycomb structure first noticed by Wang (1992). We can therefore position the honeycomb behind the outer echo. Assuming the fact that the outer echo has overtaken the bubble places the entire structure behind the supernova. As the echoes expand, more information about the position of these structures will be obtained.
260 J. Spyromilio et al.

The structure of the ISM in front of SN 1987A 261

The structure of the ISM in front of SN 1987A 263
$+280 \mathrm{~km} \mathrm{~s}^{-1}$ component is observed towards the other two stars, which lie a few arcsec from SN 1987A, but at quite unknown distances along the line of sight.
We would very much like to assign
features to the two major echoes. If w
features to the two major echoes. If we do not make this assignment, then we must invoke two dust-rich gas clouds
producing echoes but no Na I absorption, and two separate producing echoes but no Na absorption, and two separate
gas-rich clouds producing absorption and no echoes, an unlikely situation. For our preferred configuration of a single,
expanding supergiant shell, the 220 km s expanding supergiant shell, the $220 \mathrm{~km} \mathrm{~s}^{-1}$ absorption
would originate in the nearer surface (echo 6). Such an assignment would imply an expansion speed of $30 \mathrm{~km} \mathrm{~s}^{-1}$, and a minimum age for the shell of 4×10^{6} yr. Velocities
higher than this have been recorded in some supergiant
 incompatibility.
What inhibits
What inhibits this interpretation is the absence of the 220
$\mathrm{~m} \mathrm{~s}^{-1}$ feature in absorption in the spectra of the two com-
 thin portions of the shell are aligned with the companion
stars but not the supernova, so that the companions lie in front of the $220 \mathrm{~km} \mathrm{~s}^{-1}$ echo and are aligned so closely with
 The latter configuration also implies that the $280 \mathrm{~km} \mathrm{~s}^{-1}$ gas
lies to the front, and that the two echoes are not formed by a ingle expanding shell.
D'Odorico et al. sug
D'Odorico et al. suggest that the $220 \mathrm{~km} \mathrm{~s}^{-1}$ absorption
arises in an innermost echo, dubbed Napoleon's hat (Wang \&

 identified with the two absorption features.
There is clearly a need to examine more thoroughly the absorption spectra towards not only the companion stars,
but also a number of other stars in the region. A velocity map but also a number of other stars in the region. A velocity map
of N157C is also of particular interest.
Gas at coronal temperatures has been recorded through
absorption in $[\mathrm{Fe} \times]$ (Pettini et al. 1989). Their interpreta its absorption in $[\mathrm{Fex}]$ (Pettini et al. 1989). Their interpreta-
tion strongly favoured a supergiant shell ionized by ancient

克
 echoes to the front and rear faces of that shell.

5.4 Location of SN 1987A in the LMC

The scaleheight of the old stellar population of the LMC is
500 pc (Freeman, Illingworth \& Oemler 1983), while that of
the younger population, from which the progenitor of SN
1987 A would have originated, may well be a factor of 2
smaller. We have argued that the N157C bubble lies behind
the supernova. In the echoes we are seeing material extend-
ing in front of SN 1987 A by a large fraction of the depth of
the LMC. It follows that SN 1987A probably lies close to the
mean plane of the LMC and is therefore a reliable distance
indicator for the galaxy.
APPENDIX A1: COORDINATE SYSTEM USED
IN FIG. 5

then about the newly created y axis by the angle ψ. Suppose we consider a point with initial coordinates $\left(x_{0}, y_{0}, z_{0}\right)$. Then,
following these manipulations, its coordinates $\left(y_{1}, z_{1}\right)$ will be following these manipulations, its coordinates $\left(y_{1}, z_{1}\right)$ will be
given by
$y_{1}=x_{0} \sin \phi+y_{0} \cos \phi$,
In Fig. 5, $\psi=0, z_{1}$ is plotted along the abscissa and y_{1} along
APPENDIX A 2: COORDINATE SYSTEM USED
The coordinate system is rotated about the z axis by angle ϕ :
$x_{1}=x_{0} \cos \phi-y_{0} \sin \phi$,
$y_{1}=x_{0} \sin \phi+y_{0} \cos \phi$,
$z_{1}=z_{0}-z_{\text {ave }}$.
The new coordinate system is then rotated about the new
x axis (θ) giving the new coordinate system $\left(x_{2}, y_{2}, z_{2}\right)$: $x_{2}=x_{1}$,
$y_{2}=z_{1} \sin \theta+y_{1} \cos \theta$,
$z_{2}=z_{1} \cos \theta-y_{1} \sin \theta$,
On the abscissae of Figs $6-8$ we display angle α, where
$\alpha=\tan ^{-1} \frac{x_{2}}{y_{2}}$,
and, along the ordinates, angle β, where $\beta=\tan ^{-1} \frac{z_{2}}{\sqrt{x_{2}^{2}+y_{2}^{2}}}$.

