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We show here the global, in time, regularity of the three dimensional viscous

Camassa–Holm (Navier–Stokes-alpha) (NS-a) equations. We also provide esti-

mates, in terms of the physical parameters of the equations, for the Hausdorff

and fractal dimensions of their global attractor. In analogy with the Kolmogorov

theory of turbulence, we define a small spatial scale, aE, as the scale at which the
balance occurs in the mean rates of nonlinear transport of energy and viscous

dissipation of energy. Furthermore, we show that the number of degrees of

freedom in the long-time behavior of the solutions to these equations is bounded

from above by (L/aE)3, where L is a typical large spatial scale (e.g., the size of the
domain). This estimate suggests that the Landau–Lifshitz classical theory of

turbulence is suitable for interpreting the solutions of the NS-a equations.

Hence, one may consider these equations as a closure model for the Reynolds

averaged Navier–Stokes equations (NSE). We study this approach, further, in

other related papers. Finally, we discuss the relation of the NS-a model to the

NSE by proving a convergence theorem, that as the length scale a1 tends to



zero a subsequence of solutions of the NS-a equations converges to a weak

solution of the three dimensional NSE.

KEY WORDS: Navier–Stokes-a model; Camassa–Holm equations; Lagrangian

averaged Navier–Stokes equations; second grad fluid; attractors.

1. INTRODUCTION

Proving global regularity for the 3D Navier–Stokes equations (NSE) is one

of the most challenging outstanding problems in nonlinear analysis. The

main difficulty in establishing this result lies in controlling certain norms of

vorticity. More specifically, the vorticity stretching term in the 3D vorticity

equation forms the main obstacle to achieving this control.

In this paper we consider a similar partial differential equation, the

so-called viscous Camassa–Holm, or Navier–Stokes-alpha (NS-a) equations.

The inviscid NS-a equations (Euler-a) were introduced in [25] as a natural

mathematical generalization of the integrable inviscid 1D Camassa–Holm

equation discovered in [3] through a variational formulation. Our studies

in [5]–[7] indicated that there is a connection between the solutions of the

NS-a and turbulence. Specifically, the explicit steady analytical solution of

the NS-a equations were found to compare successfully with empirical and

numerical experimental data for mean velocity and Reynolds stresses for

turbulent flows in pipes and channels. These comparisons led us to identify

the NS-a equations with the Reynolds averaged Navier–Stokes equations.

These comparisons also led us to suggest the NS-a equations could be used

as a closure model for the mean effects of subgrid excitations. Numerical

tests that tend to justify this intuition were reported in [8].

An alternative more ‘‘physical’’ derivation for the inviscid NS-a equa-

tions (Euler-a), was introduced in [26] and [27] (see also [6]). This alter-

native derivation was based on substituting in Hamilton’s principle the

decomposition of the Lagrangian fluid-parcel trajectory into its mean and

fluctuating components. This was followed by truncating a Taylor series

approximation and averaging at constant Lagrangian coordinate, before

taking variations. A variant of this approach was also elaborated consid-

erably in [32]. See also [33] for the geometry and analysis of the Euler-a

equations. For more information and a brief guide to the previous litera-

ture specifically about the NS-a model, see paper [20]. The latter paper

also discusses connections to standard concepts and scaling laws in tur-

bulence modeling, including the relationship of the NS-a model to large

eddy simulation (LES) models. Results interpreting the NS-a model as an

extension of scale similarity LES models of turbulence are reported in [17].
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It is worth mentioning that another approach connecting the Lagrangian

and Eulerian formulations for the Navier–Stokes equations was recently

presented in [11]. This exact connection between the Lagrangian and

Eulerian formulations adds perspective to the relationship between the

Navier–Stokes equations and the Navier–Stokes-a model.

Equations similar to the NS-a equation, but with different dissipative

terms, were considered previously in the theory of second grade fluids [18]

and were treated recently in the mathematical literature [9, 10]. Second

grade fluid models are derived from continuum mechanical principles of

objectivity and material frame indifference, after which thermodynamic

principles such as the Clausius–Duhem relation and stability of stationary

equilibrium states are imposed that restrict the allowed values of the

parameters in these models. In contrast, as mentioned earlier, the NS-a

equation is derived by applying asymptotic expansions, Lagrangian means,

and an assumption of isotropy of fluctuations in Hamilton’s principle for

an ideal incompressible fluid. Their different derivations also provide the

different interpretations of the parameter a1, namely, as a flow regime

quantity for the NS-a equation, and as a fixed material property for the

second grade fluid.

The aim of this paper is to establish the global regularity of solutions

of the NS-a, subject to periodic boundary conditions. We also provide

estimates of the fractal and Hausdorff dimensions of their global attractors.

In particular, we identify the dimension of the attractor with the number of

degrees of freedom governing the permanent regime of these equations and

find a remarkable compatibility between these estimates and the number of

degrees of freedom in turbulence a la Landau and Lifshitz [30]. This leads

us to regard the NS-a equations as a suitable closure model for turbulence,

thought of as an averaged theory rather than an individual realization,

cf. [5]–[7], [26] and [27]. Finally, we relate the solutions of the viscous

Camassa–Holm (NS-a) equations to those of the 3D NSE as the length

scale a1 tends to zero. Specifically, we prove that a subsequence of solutions

to the NS-a model converges as a1 Q 0 to a weak solution of the 3D NSE.

2. FUNCTIONAL SETTING AND PRELIMINARIES

We consider the following viscous version of the three dimensional

Camassa–Holm equations in the periodic box W=[0, L]3:

“
“t
(a2

0u−a
2
1 Du)− n D(a

2
0u−a

2
1 Du)−u×(N×(a

2
0u−a

2
1 Du))+

1

r0

Np=f

(1a)

The Three Dimensional Viscous Camassa–Holm Equations 3



N · u=0 (1b)

u(x, 0)=u in(x) (1c)

where
p
r0
= p
r0
+a2

0 |u|
2−a2

1(u ·Du) is the modified pressure, while p is the
pressure, n > 0 is the constant viscosity and r0 > 0 is a constant density.
The function f is a given body forcing a0 > 0 and a1 \ 0 are scale param-
eters. Notice a0 is dimensionless while a1 has units of length. Also observe

that at the limit a0=1, a1=0 we obtain the three dimensional Navier–
Stokes equations with periodic boundary conditions.

For simplicity we will assume the forcing term to be time independent,

i.e., f(x, t) — f(x).
From (1) one can easily see, after integration by parts, that

d

dt
F
W

(a2
0u−a

2
1 Du) dx=F

W

f dx

On the other hand, because of the spatial periodicity of the solution,

we have >W Du dx=0. As a result, we have d
dt >W a2

0u dx=>W f dx; that is,
the mean of the solution is invariant provided the mean of the forcing term

is zero. In this paper we will consider forcing terms and initial values with

spatial means that are zero; i.e., we will assume >W u in dx=> f dx=0 and
hence >W u dx=0.

Next, let us introduce some notation and background.

(i) Let X be a linear subspace of integrable functions defined on the
domain W, we denote

Ẋ :=3j ¥X : F
W

j(x) dx=04
(ii) We denote V={j: j is a vector valued trigonometric poly-

nomial defined on W, such that N ·j=0 and >W j(x) dx=0},
and let H and V be the closures of V in L2(W)3 and in H1(W)3

respectively; observe that H+, the orthogonal complement of H
in L2(W)3 is {Np: p ¥H1(W)} (cf. [13] or [35]).

(iii) We denote Ps: L̇
2(W)3

QH the L2 orthogonal projection, usually

referred as Helmholtz–Leray projector, and by A=−PsD the
Stokes operator with domain D(A)=(H2(W))3 5 V. Notice that
in the case of periodic boundary condition A=−D|D(A) is a self-

adjoint positive operator with compact inverse. Hence the space

H has an orthonormal basis {wj}
.

j=1 of eigenfunctions of A, i.e.,
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Awj=ljwj, with 0 < l1 [ l2 [ · · · [ lj Q.; in fact these eigen-
values have the form |k|2 4p

2

L
2 with k ¥ Z30{0}.

(iv) We denote ( · , · ) the L2-inner product and by | · | the correspond-
ing L2-norm. By virtue of Poincaré inequality one can show that

there is a constant c > 0, such that

C |Aw| [ ||w||H2 [ c−1 |Aw| for every w ¥ D(A)

and that

c |A1/2w| [ ||w||H1 [ c−1 |A1/2w| for every w ¥ V

Moreover, one can show that V=D(A1/2), (cf. [13] and [35]).
We denote (( · , · ))=(A1/2 · , A1/2 · ) and || · ||=|A1/2 · | the inner
product and norm on V, respectively. Notice that, based on the
above, the inner product (( · , · )), restricted to V, is equivalent to
the H1 inner product

[u, v]=a2
0(u, v)+a

2
1((u, v)) for u, v ¥ V (2)

provided a1 > 0.
Hereafter c will denote a generic scale invariant positive

constant which is independent of the physical parameters in the

equation.

(v) Following the notation for the Navier–Stokes equations we

denote B(u, v)=Ps[(u ·N) v], and we set B(v) u=B(u, v) for
every u, v ¥ V. That is, for ever fixed v ¥ V, B(v) is a linear
operator acting on u. Notice that

(B(u, v), w)=−(B(u, w), v) for every u, v, w ¥ V (3)

We also denote B̃(u, v)=−Ps(u×(N×v)) for every u, v ¥ V.
Using the identity

(b ·N) a+C
3

j=1

aj Nbj=−b×(N×a)+N(a · b)

one can easily show that

(B̃(u, v), w)=(B(u, v), w)−(B(w, v), u)

=(B(v) u−B*(v) u, w) (4)
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for every u, v, w ¥ V, where B*(v) denotes the adjoint operator of
the linear operator B(v) defined above. As a result we have

B̃(u, v)=(B(v)−B*(v)) u for every u, v ¥ V (5)

In the next lemma, we show that the bilinear operator B̃ can be

extended continuously to a larger class of functions.

Lemma 1.

(i) The operator A can be extended continuously to be defined on

V=D(A1/2) with values in VŒ=D(A−1/2) such that

OAu, vPVŒ=(A1/2u, A1/2v)=F
W

(Nu : Nv) dx

for every u, v ¥ V.

(ii) Similarly, the operator A2 can be extended continuously to be

defined on D(A) with valves in D(A)Œ, the dual space of the

Hilbert space D(A), such that

OA2u, vPD(A)Œ=(Au, Av), for every u, v ¥ D(A)

(iii) The operator B̃ can be extended continuously from V×V with

valves in VŒ, and in particular it satisfies

|OB̃(u, v), wPVŒ | [ c |u|
1/2 ||u||1/2 ||v|| ||w||

|OB̃(u, v), wPVŒ | [ c ||u|| ||v|| |w|
1/2 ||w||1/2

for every u, v, w ¥ V. Moreover,

OB̃(u, v), wPVŒ=−OB̃(w, v), uPVŒ, for every u, v, w ¥ V

and in particular,

OB̃(u, v), uPVŒ — 0 for every u, v ¥ V

(iv) Furthermore, we have

|OB̃(u, v), wPD(A)Œ | [ c |u| ||v|| ||w||
1/2 |Aw|1/2
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for every u ¥H, v ¥ V and w ¥ D(A), and by symmetry we have

|(B̃(u, v), w)| [ c ||u||1/2 |Au|1/2 ||v|| |w|

for every u ¥ D(A), v ¥ V and w ¥H.

(v) Also,

|OB̃(u, v), wPD(A)Œ | [ c(|u|
1/2 ||u||1/2 |v| |Aw|+|v| ||u|| ||w||1/2 |Aw|1/2)

for every u ¥ V, v ¥H, w ¥ D(A).

(vi) In addition,

|OB̃(u, v), wPVŒ | [ c(||u||
1/2 ||Au||1/2 |v| ||w||+|Au| |v| |w|1/2 ||w||1/2)

for every u ¥ D(A), v ¥H, w ¥ V.

Proof. The proof of (i) can be found in [13] or in [35]. The proof of

(ii) is a straight forward extension of that of (i).

To prove (iii), let us first consider the case when u, v, w ¥V. Then we

have

|OB̃(u, v), wPVŒ |=:F
W

u×(N×v) ·w dx :
[ c ||u||L3 ||Nv||L2 ||w||L6

Recall the following Sobolev inequalities in R3

||j||L4 [ c ||j||1/4

L
2 ||j||3/4

H
1 (6a)

||j||L3 [ c ||j||1/2

L
2 ||j||1/2

H
1 and (6b)

||j||L6 [ ||j||H1, for every j ¥H1(W) (6c)

Then by the above inequalities we have:

|OB̃(u, v), wPVŒ | [ c |u|
1/2 ||u||1/2 ||v|| ||w||

Moreover, it is clear that for u, v, w ¥V

OB̃(u, v), wPVŒ=−OB̃(w, v), uPVŒ

SinceV is dense in V we conclude the proof of (iii).
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Let us now prove (iv). Again we consider first the case where

u, v, w ¥V

|OB̃(u, v), wPD(A)Œ |=:F
W

[u×(N×v)] ·w dx :
[ c ||u||L2 ||Nv||L2 ||w||L.

Recall Agmon’s inequality in R3:

||j||L. [ c ||j||
1/2

H
1 ||j||1/2

H
2 (7)

The above gives

|OB̃(u, v), wPD(A)Œ | [ c |u| ||v|| ||w||
1/2 ||Aw||1/2

To prove (v) we again take u, v, w ¥V and we use (4) to find

|OB̃(u, v), wPD(A)Œ | [ :F
W

((u ·N) v) ·w dx :+:F
W

((w ·N) u) · v dx :
[ :F

W

((u ·N) w · v) dx :+||v||L2 ||Nu||L2 ||w||L.

[ c ||u||L3 ||Nw||L6 |v|+c |v| ||u|| ||w||L.

By (6b–c) and (7) inequalities we finish our proof.

The proof of (vi) is similar to (v). From (4) we have

|OB̃(u, v), wPVŒ | [ :F
W

((u ·N) v) w dx :+:F
W

((w ·N) u) · v dx :
[ :F

W

((u ·N) w) · v dx :+c ||w||L3 ||Nu||L6 |v|

[ c(||u||L. ||w|| |v|+||w||L3 ||Nu||L6 |v|)

By (6a) and (7) inequalities we finish our proof. i

We apply Ps to (1) and use the above notation to obtain the equivalent
system of equations

d

dt
(a2

0u+a
2
1Au)+nA(a

2
0+a

2
1A) u+B̃(u, a

2
0+a

2
1Au)=Psf (8a)

u(0)=u in (8b)
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Alternatively, if we denote

v=a2
0u+a

2
1Au (9)

the system (8) can be written as

dv

dt
+nAv+B(v) u−B*(v) u=Psf (10a)

u(0)=u in (10b)

We will assume that Psf=f, otherwise we add the gradient part of f to
the modified pressure and rename Psf by f.

Definition 2 (Regular Solution). Let f ¥H, and let T > 0. A function
u ¥ C([0, T); V) 5 L2([0, T); D(A)) with du

dt ¥ L2([0, T); H) is said to be a
regular solution to (8) in the interval [0, T) if it satisfies

7 d
dt
(a2

0u+a
2
1Au), w8

D(A)Œ

+nOA(a2
0u+a

2
1Au), wPD(A)Œ

+OB̃(u, a2
0u+a

2
1Au), wPD(A)Œ=(f, w) (11)

for every w ¥ D(A) and for almost every t ¥ [0, T). Moreover, u(0)=u in

in V. Here, the equation (11) is understood in the following sense: For
every t0, t ¥ [0, T) we have

(a2
0u(t)+a

2
1Au(t), w)−(a

2
0u(t0)+a

2
1Au(t0), w)+n F

t

t0

(a2
0u(s)+a

2
1Au(s), w) ds

+F t

t0

OB̃(u(s), a2
0u(s)+a

2
1Au(s)), wPD(A)Œ ds=F t

t0

(f, w) ds (12)

3. GLOBAL EXISTENCE AND UNIQUENESS

In this section we prove global existence and uniqueness of regular

solutions to Eq. (8), provided a1 > 0. In fact, from now on we will always
assume that a1 > 0.

Theorem 3 (Global existence and uniqueness). Let f ¥H and u in ¥ V.
Then for any T > 0, Eq. (8) has a unique regular solution u on [0, T).
Moreover, this solution satisfies:
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(i) u ¥ L.loc((0, T]; H
3(W)).

(ii) There are constants Rk, for k=0, 1, 2, 3, which depend only on n,

a0, a1 and f, but not on u in, such that

lim sup
t Q.

(a2
0 |A

k
2u|2+a2

1 |A
k+1

2 u|2)=R2
k

for k=0, 1, 2, 3. In particular, we have

R2
0=

1

nl1

min 3 |A−1/2f|2

na2
0

,
|A−1/2f|2

na2
1

4 [min 3 |f|2
n2l2

1a
2
0

,
|f|2

n2l3
1a

2
0

4
(13)

that is:

R2
0 [

G2n2

l1/2
1

min 3 1
a2

0

,
1

a2
1l1

4=G2n2

cl1/2
1

where G= |f|

n
2
l

3/4
1

is the Grashoff number, and c−1=min{ 1

a
2
0

, 1

a
2
1l1
}.

Furthermore,

lim sup
T Q.

n

T
F t+T

t
(a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds [ nl1R

2
0 [

G2nl1/2
1

c

(14)

for all t \ 0.

Proof. We use the Galerkin procedure to prove global existence and

to establish the necessary a priori estimates.

Let {wj}
.

j=1 be an orthonormal basis of H consisting of eigenfunctions
of the operator A. Denote Hm=span{w1,..., wm} and let Pm be the

L2-orthogonal projection from H onto Hm. The Galerkin procedure for

Eq. (8) is the ordinary differential system

d

dt
(a2

0um+a
2
1Aum)+nA(a

2
0um+a

2
1Aum)+PmB̃(um, a

2
0um+a

2
1Aum)=Pmf

(15a)

um(0)=Pmu
in (15b)

Since the nonlinear term is quadratic in um, then by the classical theory of

ordinary differential equations, the system (15) has a unique solution for a
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short interval of time (−ym, Tm). Our goal is to show that the solutions of
(15) remains finite for all positive times which implies that Tm=..

H1-Estimates

We take the inner product of (15) with um and use (4) to obtain

1

2

d

dt
(a2

0 |um |
2+a2

1 ||um ||
2)+n(a2

0 ||um ||
2+a2

1 |Aum |
2)=(Pmf, um)

Notice that

|(Pmf, um)| [ ˛ |A−1f| |Aum |

|A−1/2f| ||um ||

and by Young’s inequality we have

|(Pmf, um)| [ ˛ |A−1f|2

2na2
1

+
n

2
a2

1 |Aum |
2

|A−1/2f|2

2na2
0

+
n

2
a2

0 ||um ||
2

Denoting by K1=min{
|A

−1/2
f|

2

na
2
0

, |A
−1

f|
2

na
2
1

}, from the above inequalities we get:

d

dt
(a2

0 |um |
2+a2

1 ||um ||
2)+n(a2

0 ||um ||
2+a2

1 |Aum |
2) [K1 (16)

By Poincaré’s inequality we obtain

d

dt
(a2

0 |um |
2+a2

1 ||um ||
2)+nl1(a

2
0 |um |

2+a2
1 ||um ||

2) [K1

and then by Gronwall’s inequality we reach

a2
0 |um(t)|

2+a2
1 ||um(t)||

2 [ e−nl1t(a2
0 |um(0)|

2+a2
1 ||um(0)||

2)+
K1

nl1

(1−e−nl1t)

That is

a2
0 |um(t)|

2+a2
1 ||um(t)||

2 [ k1 :=a
2
0 |u

in|2+a2
1 ||u

in||2+
K1

nl1

(17)

The Three Dimensional Viscous Camassa–Holm Equations 11



H2-Estimates

Integrating (16) over the interval (t, t+y)

n F t+y

t
(a2

0 ||um(s)||
2+a2

1 |Aum(s)|
2) ds [ yK1+(a

2
0 |um(t)|

2+a2
1 ||um(t)||

2)

[ yK1+k1=: k̄2(y) (18)

Now, take the inner product of (15) with Aum to obtain

1

2

d

dt
(a2

0 ||um ||
2+a2

1 |Aum |
2)+n(a2

0 |Aum |
2+a2

1 |A
3/2um |

2)

+(B̃(um, a
2
0um+a

2
1Aum), Aum)=(Pmf, Aum)

Notice that

|(Pmf, Aum)| [ ˛ |A−1/2f| |A3/2um |

|f| |Aum |
[ ˛ |A−1/2f|2

na2
1

+
n

4
a2

1 |A
3/2um |

2

|f|2

na2
0

+
n

4
a2

0 |Aum |
2

We denote K2=min{
|A

−1/2
f|

2

na
2
1

, |f|
2

na
2
0

}. Then we have

1

2

d

dt
(a2

0 ||um ||
2+a2

1 |Aum |
2)+

3n

4
(a2

0 |Aum |
2+a2

1 |A
3/4um |

2)

+(B̃(um, a
2
0um+a

2
1Aum), Aum) [K2

We use part (iii) of Lemma 1 to obtain

1

2

d

dt
(a2

0 ||um ||
2+a2

1 |Aum |
2)+

3

4
n(a2

0 |Aum |
2+a2

1 |A
3/2um |

2)

[ c ||um ||(a
2
0 ||um ||+a

2
1 |A

3/2um |) |Aum |
1/2 |A3/2um |

1/2+K2

[ c ||um ||(a
2
0l

−1
1 +a

2
1) |A

3/2um |
3/2 |Aum |

1/2+K2

By Young’s inequality we have

1

2

d

dt
(a2

0 ||um ||
2+a2

1 |Aum |
2)+
n

2
(a2

0 |Aum |
2+a2

1 |A
3/2um |

2)

[ c ||um ||
4 (a2

0l
−1
1 +a

2
1)

4 (na2
1)

−3 |Aum |
2+K2 (19)
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We integrate the above equation over (s, t) and use (17) and (18) to obtain:

a2
0 ||um(t)||

2+a2
1 |Aum(t)|

2 [ a2
0 ||um(s)||

2+a2
1 |Aum(s)|

2+2(t−s) K2

+
2ck12

(na2
1)

4 a4
1

(a2
0l

−1
1 +a

2
1)

4 [(t−s) K1+k1]

Now, we integrate with respect to s over (0, t) and use (18) to get

t(a2
0 ||um(t)||

2+a2
1 |Aum(t)|

2)

[
1

n
(tK1+k1)+t

2K2+
2ck2

1

(na2
1)

4 a4
1

(a2
0l

−1
1 +a

2
1)

4 5t2K1

2
+tk1
6 (20)

for all t \ 0.
For t \ 1

nl1
we integrate with respect to s over the interval (t− 1

nl1
, t)

1

nl1

(a2
0 ||um(t)||

2+a2
1 |Aum(t)|

2)

[
1

n
1 1
nl1

K1+k1
2+1 1

nl1

22 K2

+
2ck2

1

(na2
1)

4 a4
1

(a2
0l

−1
1 +a

2
1)

4 51 1
nl1

22 K1

2
+
k1

nl1

6 (21)

From (20) and (21) we conclude:

a2
0 ||um(t)||

2+a2
1 |Aum(t)|

2 [ k2(t) (22)

for all t > 0, where k2(t) enjoys the following properties:

(i) k2(t) is finite for all t > 0.

(ii) k2(t) is independent of m.

(iii) If u in ¥ V, but u in ¨ D(A), then k2(t) depends on n, f, a0 and a1.

Moreover, in this case limt Q 0
+ k2(t)=..

(iv) lim supt Q. k2(t)=R2
2 <..

Returning to (19) and integrating over the interval (t, t+y), for t > 0
and y \ 0 and using (22) we get

F t+y

t
(a2

0 |Aum(s)|
2+a2

1 |A
3/2um(s)|

2) ds [ k̄3(t, y) (23)
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where k̄3(t, y) as a function of t satisfies properties (i)–(iii) as k2(t) above.
Also, there exists T1 large enough, depends on (a

2
0 |u

in|2+a2
1 ||u

in||2), but
independent of m, such that

1

t
F t

0
(a2

0 |Aum(s)|
2+a2

1 |A
3/2um(s)|

2) ds [ 2R2
2 for all t > T1

H3-Estimate (via the vorticity)

Let us denote vm=a0um+a1Aum and qm=N×vm. The Galerkin system

(15) is equivalent to

dvm

dt
+nAvm−Pm(um×qm)=Pmf

Let us take Curl of the above equation, keeping in mind that we have

periodic boundary conditions, to obtain

dqm

dt
+nAqm−N×(Pm(um×qm))=N×Pmf

Notice that N · qm=0 and that Pmqm=qm. Let us take the inner product of

the above equation with qm

1

2

d

dt
|qm |

2+n ||qm ||
2−(N×(Pm(um×qm)), qm)=(N×Pmf, qm)

We use the identity

F
W

(N×f) ·k dx=F
W

f · (N×k) dx (24)

to reach

1

2

d

dt
|qm |

2+n ||qm ||
2−(Pm(um×qm), N×qm)=(Pmf, N×qm)

Notice that Pm(N×qm)=N×qm, therefore

1

2

d

dt
|qm |

2+n ||qm ||
2=(um×qm, N×qm)+(f, N×qm)

14 Foias, Holm, and Titi



and upon applying (24)

1

2

d

dt
|qm |

2+n ||qm ||
2=(N×(um×qm), qm)+(f, N×qm)

For every divergence-free function f, and for every k we have the

identity

N×(f×k)=−(f ·N) k+(k ·N) f

As a result, we have

1

2

d

dt
|qm |

2+n ||qm ||
2=−((um ·N) qm, qm)+(qm ·Num, qm)+(f, N×qm)

Thanks to the identity (3) we have ((um ·N) qm, qm)=0. Now, we estimate
the right hand side of the above to get:

1

2

d

dt
|qm |

2+n ||qm ||
2 [ c ||qm ||L4 ||um ||+|f| ||qm ||

We use the Sobolev inequality (6a) and Young’s inequality to find

1

2

d

dt
|qm |

2+n ||qm ||
2 [ c ||qm ||

3/4 |qm |
1/4 ||um ||+

1

n
|f|2+

n

4
||qm ||

2

and we use Young’s inequality again to obtain

1

2

d

dt
|qm |

2+
n

2
||qm ||

2 [
c

n3
|qm |

2 ||um ||
4+
1

n
|f|2

Let us denote zm(t)=n
2l1/2

1 +|qm(t)|
2, then

dzm

dt
[ zm(t) 1c ||um(t)||

4

n3
+
|f|2

n3l1/2
1

2
We use (17) to obtain

zm(t) [ zm(s) e
>

t

0 ((ck
2
1/n

3
a

4
1)+(|f|

2
/n

3
l

1/2
1 )) dy

for every 0 [ s [ t. From the definition of zm we observe

zm(s) [ c(a
2
0 |Aum(s)|

2+a2
1 |A

3/2um(s)|
2+n2l1/2

1 )

The Three Dimensional Viscous Camassa–Holm Equations 15



Now, we integrate with respect to s over (t
2 , t) and use (23) to get

zm(t) [ 52t k̄3
1 t
2
,
t

2
2+n2l1/2

1
6 e >t

0 ((ck
2
1/n

3
a

4
1)+(|f|

3
/n

3
l

1/2
1 )) dy=: k3(t) (25)

Here again k3(t) enjoys the properties (i)–(iii) of k2(t), mentioned above. i

Remark 1. Notice that by establishing the estimate (25) for |qm | one
indeed is providing an upper bound for the H3-norm of um. Similar esti-

mates for the H3-norm of um can be also obtained by considering first the

Galerkin system (15)

dvm

dt
+nAvm+PmB̃(um, vm)=Pmf

taking the inner product with Avm, and then following a sequence of

inequalities and estimates to achieve an upper bound for ||vm ||.
Let us now summarize our estimates. For any T > 0 we have

(i) From (17):

||um ||
2
L
.

([0, T]; V) [
k1

a2
1

or ||vm ||
2
L
.

([0, T]; VŒ) [ k1

(ii) From (18) we have

||um ||
2
L

2
([0, T]; D(A)) [

k̄2(T)

na2
1

or ||vm ||
2
L

2
([0, T], H)

k̄2(T)

n

(iii) From (22)

||um ||
2
L
.

([y, T]; D(A)) [
k̃2(y)

a2
1

or ||vm ||
2
L
.

([y, T]; H) [ k̃2(y)

for any y ¥ (0, T], where k̃2(y)Q. as yQ 0+.

Next, we establish uniform estimates, in m, for dum

dt and
dvm

dt .

Recall (15)

d

dt
vm(t)=−PmB̃(um, vm)− nAvm+Pmf

16 Foias, Holm, and Titi



From the above estimates and part (v) of Lemma 1 we have

||Avm ||
2
L

2
([0, T], D(A)Œ) [

ck̄2(T)

n

and

||PmB̃(um, vm)||D(A)Œ [ c |um |
1/2 ||um ||

1/2 |vm |+
c

l1/4
1

|vm | ||um ||

Consequently

||PmB̃(um, vm)||
2
L

2
([0, T], D(A)Œ) [

ck1k̄2(T)

nl1/2
1 a

2
1

Therefore

>dvm

dt
>2

L
2
([0, T]; D(A)Œ)

[ k̃(T)

and in particular

>dum

dt
>2

L
2
([0, T], H)

[
k̃(T)

a2
1

where k̃(T) is a constant which depends on n, l1, f, a0, a1 and T.
By Aubin’s Compactness Theorem (see, e.g., [13] or [31]) we

conclude that there is a subsequence umŒ(t) such that

umŒ Q u(t) weakly in L2([0, T], D(A))

umŒ Q u(t) strongly in L2([0, T], V), and

umŒ Q u in C([0, T], H)

or equivalently

vmŒ Q v weakly in L2([0, T], H)

vmŒ Q v strongly in L2([0, T], VŒ), and

vmŒ Q v in C([0, T], D(A)Œ)

where v is given in (9).

The Three Dimensional Viscous Camassa–Holm Equations 17



Let us relabel umŒ and vmŒ by um and vm respectively. Let w ¥ D(A), then
from (15) we have

(vm(t), w)+n F
t

t0

(vm(s), Aw) ds+F t

t0

(B̃(um(s), vm(s), Pmw) ds

=(vm(t0), w)+(f, Pmw)(t−t0)

for all t0, t ¥ [0, T]. Since vm Q v weakly in L2([0, T]; H) then vm(s)Q v(s)
weakly in H, for every s ¥ [0, T]0E, where |E|=0. In particular, there is a
subsequence of vm, which we will also denote vm, such that vm(s)Q v(s)
strongly in VŒ and D(A)Œ for every s ¨ E.

Now, it is clear that

lim
m Q.

F t

t0

(vm(s), Aw) ds=F t

t0

(v(s), Aw) ds

also that limm Q. |PmAw−Aw|=limm Q. |w−wm |=0. On the other hand

:F t

t0

(B̃(um(s), vm(s)), Pmw)−OB̃(u(s), v(s), w(s)PD(A)Œ ds : [ I (1)
m +I

(2)
m +I

(3)
m

I (1)
m =:F t

t0

OB̃(um(s), vm(s)), Pmw(s)−w(s)PD(A)Œ ds :
by part (v) of Lemma 1 we have

I (1)
m [

c

l1/4
1

F t

t0

(||um(s)|| |vm(s)| |PmAw−Aw|) ds

applying Cauchy–Schwarz inequality

I (1)
m [

c

l1/4
1

1FT

0
||um(s)||

2 ds21/2 1FT

0
||vm(s)||

2 ds21/2

|PmAw−Aw|

and hence limm Q. I
(1)
m =0.

I (2)
m =:F t

t0

OB̃(um(s)−um(s), vm(s), wPD(A)Œ ds :

18 Foias, Holm, and Titi



Again thanks to part (v) of Lemma 1

I (2)
m [

c

l1/4
1

F t

t0

||um(s)−u(s)|| |vm(s)| |Aw| ds

and by Cauchy–Schwarz

I (2)
m [

c

l1/4
1

1FT

0
||um(s)−u(s)||

2 ds21/2 1FT

0
|vm(s)|

2 ds21/2

|Aw|

Since vm bounded in L2([0, T]; H) and um Q u in L2([0, T], V) we
conclude that

lim
m Q.

I (2)
m =0

Finally,

I (3)
m =:F t

t0

OB̃(u, v−vm), wPVŒ ds :
by virtue of part (v) in Lemma 1, and since vm Q v weakly in L2([0, T]; H),
we obtain

lim
m Q.

I (3)
m =0

As a result of the above we have for every t0, t ¥ [0, T]0E

(v(t), w)+n F t

t0

(v(s), Aw) ds+F t

t0

OB̃(u(s), v(s), wPD(A)Œ ds

=(v(t0), w)+(f, w)(t− t0) (26)

for every w ¥ D(A). Notice that since ||vm(t)||L.([0, T], VŒ) [ k1, and since

vm(t)Q v(t) strongly in VŒ for every t ¥ [0, T]0E, we have ||v(t)||L.([0, T], VŒ)

[ k1. Moreover, because D(A) is dense in VŒ, (26) implies that v(t) ¥
C([0, T]; VŒ) or equivalently u(t) ¥ C([0, T], V).

In particular, from (26) we conclude the existence of a regular solution

for the system (8).

Uniqueness of Regular Solutions

Next we will show the continuous dependence of regular solutions

on the initial data and, in particular, we show the uniqueness of regular

solutions.
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Let u and ū be any two solutions of Eq. (8) on the interval [0, T], with
initial values u(0)=u in and ū(0)=ū in respectively. Let us denote v=
(a2

0u+a
2
1Au), v̄=(a2

0 ū+a
2
1Aū), du=u−ū, and by dv=v−v̄. Then from

Eq. (8) we get:

d

dt
v+nAv+B̃(du, v)+B̃(ū, dv)=0

The above equation holds in L2([0, T], D(A)Œ), since du belongs to
L2([0, T], D(A)), the dual space of L2([0, T], D(A)Œ), we use Lemma 1 to
obtain

7 d
dt
v, du8

D(A)Œ

+n(a2
0 ||du||

2+a2
1 |A du|

2)+OB̃(ū, dv), duPD(A)Œ=0

Notice that Odv
dt , duPD(A)Œ=

1
2

d
dt (a

2
0 |du|

2+a2
1 ||du||

2), (see, e.g., [35], Chap. III,
Lemma 1.2). As a result we have:

1

2

d

dt
(a2

0 |du|
2+a2

1 ||du||
2)+n(a2

0 ||du||
2+a2

1 |A du|
2)+OB̃(ū, dv), duPD(A)Œ=0

Now we use part (vi) of Lemma 1 to get

1

2

d

dt
(a2

0 |du|
2+a2

1 ||du||
2)+n(a2

0 ||du||
2+a2

1 |A du|
2)

[ c(||ū||1/2 |Aū|1/2 |dv| ||du||+|Aū| |dv| |du|1/2 ||du||1/2)

and by Young’s inequality we have:

1

2

d

dt
(a2

0 |du|
2+a2

1 ||du||
2)+n(a2

0 ||du||
2+a2

1 |A du|
2)

[
c

n
(||ū|| |Aū| ||du||2+|Aū|2 |du| ||du||)+

n

2
(a2

0 ||du||
2+a2

1 |A du|
2)

[
c

2na2
1l

1/2
1

|Aū|2 (a2
0 |du|

2+a2
1 ||du||

2)+
n

2
(a2

0 ||du||
2+a2

1 |A du|
2)

Hence,

(a2
0 |du(t)|

2+a2
1 ||du(t)||

2) [ (a2
0 |du(0)|

2+a2
1 ||du(0)||

2) exp 1F t

0

c |Aū(s)|2

na2
1l

1/2
1

ds2
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Since ū ¥ L2([0, T], D(A)) we conclude the continuous dependence of the
solutions of (8) on the initial data on any bounded interval [0, T]. In par-
ticular, we conclude the uniqueness of regular solutions.

Remark 2. Following the techniques introduced in [22] (see also

[19] and [29]) we can easily show that if the forcing term, f, in Eq. (8)
belongs to a certain Gevrey class of regularity then the solutions of (8) will

instantaneously belong to a similar Gevrey class of regularity. Specifically,

in this situation the solution will become analytic in space and time. In

particular, one can also provide uniform lower bounds for the radii of

analyticity (in space and in time) for the solutions that lie in the global

attractor (see Section 4 for the existence of a compact finite dimensional

global attractor.) As a result of this Gevrey regularity one can also show

that the Galerkin approximating solutions, introduced earlier, converge

exponentially fast in the wave number m, as mQ. (see, e.g., [15], [23],
and [28]). Furthermore, one can use this Gevrey result to establish

rigorous estimates for the dissipative small scales in Eq. (8) (see, e.g., [16]).

4. ESTIMATING THE DIMENSION OF THE GLOBAL ATTRACTOR

Let S(t) denote the semi-group of the solution operator to Eq. (8), i.e.,
u(t)=S(t) u in. It can be easily shown, from the proof of Theorem 3 and

Rellich’s Lemma (see [1]), that S(t) is a compact semi-group. Let us recall
(see (13)) that the ball B1={u ¥ V : ||u|| [ R0

a1
} is an absorbing ball, in the

space V. Consequently, the Eq. (8) has a nonempty compact global attractor

A=3
s > 0

10
t \ s

S(t) B1
2

(see, e.g., [2], [13], [24] and [36]).

In this section we employ the trace formula (see, e.g., [12], [13], and

[36]) to estimate the Hausdorff and fractal (box counting) dimensions of

the global attractor A in terms of the physical parameters of the Eq. (1).

First, let us recall the Lieb–Thirring inequality

Lemma 4 (The Lieb–Thirring inequality). Let {kj}
N
j=1 be an ortho-

normal set of functions in (H)k=H À · · · ÀHz
k-times

. Then there exists a constant

CLT, which depends on k, but independent of N such that

F
W

1 CN
j=1

kj(x) ·kj(x)25/3

dx [ CLT C
N

j=1

F
W

(Nkj(x): Nkj(x)) dx (27)
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Next we will present a new technical lemma which we will use in esti-

mating the dimension of the global attractor.

Lemma 5. Let {jj}
N
j=1 … V be an orthonormal set with respect to the

inner product [ · , · ] which is defined in (2), i.e.,

[ji, jj]=a
2
0(ji, jj)+a

2
1((ji, jj))=dij

Let kj(x)=(a0jj(x), a1
“

“x1
jj(x), a1

“

“x2
jj(x), a1

“

“x3
jj(x))

T, and j2(x)=
;N

j=1 (jj(x) ·jj(x)) it . Then, there exists a constant CF, which is indepen-

dent of N, such that

||j(x)||2L. [
CF

a2
1

1 CN
j=1

F
W

(Nkj(x): Nkj(x)) dx21/2

(28)

Proof. Let tj ¥ R, j=1,..., N, to be chosen later. By Agmon’s

inequality (7) we have

a2
0
: CN
j=1

tj(A
−1/2jj)(x) :2+a2

1
: CN
j=1

tjjj(x) :2

[ ca2
0
: CN
j=1

tjjj
: > CN

j=1

tjjj
>+ca2

1
> CN

j=1

tjjj
> : CN

j=1

tjAjj
:

and by Cauchy–Schwarz

a2
0
: CN
j=1

tj(A
−1/2jj)(x) :2+a2

1
: CN
j=1

tjjj(x) :2

[ c 1a2
0
: CN
j=1

tjjj
:2+a2

1
> CN

j=1

tjjj
>221/2 1a2

0
> CN

j=1

tjjj
>2+a2

1
: CN
j=1

tjAjj
:221/2

[ c 5CN
j=1

tjjj, C
N

j=1

tjjj
61/2 1 CN

j=1

t2
j
21/2 1a2

0 C
N

j=1

||tj ||
2+a2

1 C
N

j=1

|Ajj |
221/2

Since [ji, jj]=dij we have

a2
0
: CN
j=1

tj(A
−1/2jj)(x) :2+a2

1
: CN
j=1

tjjj(x) :2

[ c 1 CN
j=1

t2
j
2 1a2

0 C
N

j=1

||jj ||
2+a2

1 C
N

j=1

|Ajj |
221/2

[ c 1 CN
j=1

t2
j
2 1 CN

j=1

F
W

(Nkj : Nkj) dx21/2
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Let i ¥ {1, 2, 3} be fixed, we choose tj=jji(x), from the above we have

a2
1
1 CN

j=1

j2
ji(x)22 [ c 1 CN

j=1

j2
ji(x)2 1 CN

j=1

F
W

(Nkj(x) : Nkj(x)) dx21/2

Now we sum over i, i=1, 2, 3, to reach

a2
1j

2(x) [ 1 CN
j=1

F
W

(Nkj(x) : Nkj(x)) dx21/2

which concludes our proof. i

Theorem 6. The Hausdorff and fractal dimensions of the global attrac-

tor of the viscous Camassa–Holm (NS-a) equations, dH(A) and DF(A),
respectively, satisfy:

dH(A) [ dF(A) [ c max 3G4/3 1 1
ca2

1l1

22/3

, G3/2 1 1

a4
0c

2l1a
2
1

23/84

where G= |f|

n
2
l

3/4
1

is the Grashoff number and, as before, 1
c=min {

1

a
2
0

, 1

a
2
1l1

4 .
Proof. The linearized equation (8) about a regular solution u(t) takes

the form

d

dt
dv+nA dv+B̃(du, v)+B̃(u, dv)=0 (29)

where v(t)=a2
0u+a

2
1Au and dv=a

2
0du+a

2
1A du. Notice that du evolves

according to the equation

d

dt
du+nA du+(a2

0I+a
2
1A)

−1 [B̃(du, a2
0u+a

2
1Au)+B̃(u, a

2
0 du+a

2
1A du)=0

(30)

which we write symbolically as

d

dt
du+T(t) du=0
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Let duj(0), for j=1,..., N, be a set of linearly independent vectors
in V, and let duj(t) be the corresponding solutions of (30) with initial value
duj(0), for j=1,..., N. We denote

TN(t)=Trace(PN(t) T(t)|PN(t) V) (31)

where PN(t) V=R dv1(t)+R dv2(t)+· · ·+R dvN(t), and PN(t) is the

orthogonal projector of V onto PN(t) V with respect to the inner product
[ · , · ] given in (2).

Let {jj(t)}
N
j=1 be an orthonormal basis, with respect to inner product

[ · , · ] of the space PNV, i.e., [ji, jj]=dij, i, j=1,..., N. We set

kj=1a0jj, a1

“
“x1

jj, a1

“
“x2

jj, a1

“
“x3

jj
2T

Notice that (kj, kk)=djk, j, k=1,..., N. We set

k2(x, t)=C
N

j=1

(kj(x, t) ·kj(x, t))

=a2
0 C

N

j=1

jj(x, t) ·jj(x, t)+a
2
1 C

N

j=1

(Njj(x, t) : Njj(x, t))

Notice that by the Lieb–Thirring inequality (27)

F
W

(k(x, t))10/3 dx [ CLTQN(t)

where QN(t) :=;N
j=1 >W (Nkj(x, t) : Nkj(x, t)) dx.

Let us denote hj(x, t)=a
2
0jj(x, t)+a

2
1Ajj(x, t), for j=1,..., N. From

(31) we have

TN(t)=C
N

j=1

[T(t) jj( · , t), jj( · , t)]

=n C
N

j=1

[Ajj, jj]+C
N

j=1

(B̃(jj, v), jj)+C
N

j=1

(B̃(u, hj), jj)

and by virtue of (4) we have

Tn(t)=n C
N

j=1

[Ajj, jj]+C
N

j=1

(B̃(u, hj), jj)
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Observe that

C
N

j=1

[Ajj, jj]=a
2
0 C

N

j=1

(Ajj, jj)+a
2
1 C

N

j=1

(Ajj, Ajj)

=C
N

j=1

F
W

(Nkj(x, t) : Nkj(x, t)) dx=QN(t)

Thus

TN(t)=nQN(t)+IN(t) (32)

where IN(t) :=;N
j=1 (B̃(u, hj), jj). Let us now estimate IN(t). Using (4)

and (3) we have

IN(t)=C
N

j=1

[((u ·N) hj, jj)+((jj ·N) u, hj)]

=C
N

j=1

[−((u ·N) jj, hj)+((jj ·N) u, hj)]

again by (3)

IN(t)=C
N

j=1

[−a2
1((u ·N) jj, Ajj)+a

2
0((jj ·N) u, jj)+a

2
1((jj ·N) u, Ajj)

integrating by parts and using (3)

IN(t)=C
N

j=1

C
3

k=1

a2
1
11 “
“xk

u ·N2 jj,
“
“xk

jj
2+a2

0 C
N

j=1

((jj ·N) u, jj)

−a2
1 C

N

j=1

C
3

k=1

11 “
“xk

u ·N2 u, “
“xk

jj
2

−a2
1 C

N

j=1

C
3

k=1

1 (jj ·N)
“
“xk

u,
“
“xk

jj
2

Therefore,

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+ca2
1 F
W

51 C3
i, k=1

1 “2u

“xi “xk

(x, t)222 j2(x, t)

×1 CN
j=1

(Njj(x, t) : Njj(x, t))261/2

dx
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where j2(x, t)=;N
j=1 (jj(x, t) ·jj(x, t)). As a result we have

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+a1 F
W

k(x, t) j(x, t) 1 C3
k, i=1

1 “2

“xi “xk

u(x, t)2221/2

dx

Thanks to (28) we have

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+C1/2
F Q1/4

N (t) F
W

1 C3
k, i=1

1 “2

“xi “xk

u(x, t)2221/2

k(x, t) dx (33)

and by the Hölder inequality we get

|In(t)| [ c ||Nu||L5/2 1F
W

(k(x, t))10/3 dx23/5

+cQ1/4
N (t) |Au|1F

W

k2(x, t) dx21/2

Since [ji, jj]=dij we have >W k2(x, t) dx=N. Therefore, the above gives

|IN(t)| [ c ||Nu||L5/2 1F
W

(k(x, t))10/3 dx23/5

+cQ1/4
N (t) |Au| N1/2

Applying the Lieb–Thirring inequality (27) we obtain

|IN(t)| [ ccLT ||Nu||L5/2 1 CN
j=1

F
W

(Nkj(x, t) : Nkj(x, t)) dx23/5

+cQ1/4
N (t) |Au| N1/2

that is

|IN(t)| [ c ||Nu||L5/2 Q3/5
N (t)+cQ1/4

N (t) |Au| N1/2

Applying Young’s inequality

|IN(t)| [
c

n3/2
||Nu||5/2

L
5/2+
n

2
QN(t)+c |Au|

4/3 1N2

n
21/3
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then using Hölder’s inequality

|IN(t)| [
c

n3/2
||Nu||7/4

L
2 ||Nu||3/4

L
6 +
n

2
QN(t)+c |Au|

4/3 1N2

n
21/3

and by virtue of the Sobolev inequality (6c) we obtain

|IN(t)| [
c

n3/2
||u||1/2 ||u||5/4 |Au|3/4+

n

2
QN(t)+c |Au|

4/3 1N2

n
21/3

using Young’s inequality again we reach

|IN(t)| [
c

n3/2

||u||1/2

a5/4
0 a

3/4
1

(a2
0 ||u||

2+a2
1 |Au|

2)+
n

2
QN(t)+c |Au|

4/3 1N2

n
21/3

Substituting in (32) we get:

TN(t) [
n

2
QN(t)−

c

n3/2

||u||1/2

a5/4
0 a

3/4
1

(a2
0 ||u||

2+a2
1 |Au|

2)−c |Au|4/3 1N2

n
21/3

Now, we require N to be large enough such that

lim inf
T Q.

1

T
FT

0
TN(s) ds > 0 (34)

According to the trace formula (see [12], [13] or [36]) such an N will be
an upper bound for the fractal and Hausdorff dimensions of the global

attractor. Observe that from the asymptotic behavior of the eigenvalues of

the operator A there is a constant c0 such that

lj \ c0l1 j
2/3 for j=1, 2,...

Therefore, since QN(t) is the trace of the operator A restricted to some
subspace of dimension N, we have

QN(t) \ C
N

j=1

lj \ cl1N
5/3 (35)

Let us require N to be large enough so that

nl1N
5/3 \ c lim sup

T Q.

1 1
T
FT

0
|Au(s)|4/3 ds21N2

n
21/3
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and

nl1N
5/3 \

c

n3/2a5/4
0 a

3/4
1

lim sup
T Q.

1

T
FT

0
||u(s)||1/2 (a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds

For such an N the inequality (34) is satisfied, and thus N provides an upper
bound for the fractal and Hausdorff dimensions of the global attractor.

By Hölder’s inequality we have

lim sup
T Q.

1

T
FT

0
|Au(s)|4/3 ds [ lim sup

T Q.

1 1
T
FT

0
|Au(s)|222/3

and thanks to (14) we get

lim sup
T Q.

1

T
FT

0
|Au(s)|4/3 ds [ 1G2n2l1/2

1

ca2
1

22/3

Therefore, from the above, (13) and (14) we have

dH(A) [ dF(A) [ c max 3G4/3 1 1
ca2

1l1

22/3

, G3/2 1 1

a2
0c

2l1a
2
1

23/84
which concludes our proof. i

5. NUMBERS OF DEGREES OF FREEDOM IN TURBULENT

FLOWS

An argument from the classical theory of turbulence [30] suggests

that there are finitely many degrees of freedom in turbulent flows. Heuristic

physical arguments are used to justify this assertion and to provide an

estimate for this number of degrees of freedom by dividing a typical length

scale of the flow, L, by the Kolmogorov dissipation length scale and taking
the third power in 3D. The resulting formula is usually expressed explicitly

in terms of the mean rate of dissipation of energy and the kinematic visco-

sity. In analogy with this heuristic approach we will derive here an estimate

for the ‘‘dissipation’’ length scale (i.e., what would correspond to the

Kolmogorov length scale) for the viscous Camassa–Holm (NS-a) equations

in terms of the mean rate of dissipation of ‘‘energy’’ and the kinematic vis-

cosity. We will also show that the corresponding number of degrees of

freedom is proportional to the dimension of the global attractor. This, in

a sense, suggests that in the absence of boundary effects (e.g., in the case
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of periodic boundary conditions) the viscous Camassa–Holm equations

represent, very well, the averaged equation of motion of turbulent flows.

Hence, one is tempted to use the viscous Camassa–Holm equations as a

closure model for the Reynolds equations, which represent the ensemble-

averaged Navier–Stokes equations. Indeed, this idea motivated our studies

in [5], [6] and [7], and it also led to a physical derivation in [26] (see also

[6]) of the viscous Camassa–Holm (NS-a) equations, in the inviscid case,

as averaged equations.

As before, we denote v=a2
0u+a

2
1Au, hence Eq. (8) and Eq. (10) take

the form

dv

dt
+nAv+B̃(u, v)=f

u(0)=u in

(36)

In analogy with Kolmogorov’s mean rate of dissipation of energy in tur-

bulent flow [30] we define

E(u in)=l3/2
1 n 5lim sup

T Q.

1

T
FT

0
(a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds6 (37)

the mean rate of dissipation of ‘‘energy,’’ and

Ē= sup
u

in
¥A

E(u in)

the maximal mean rate of dissipation of energy on the attractor. From

equation (33), and since > k2(x, t) dx=N, we have:

|IN(t)| [ c F
W

(Nu(x, t) : Nu(x, t))1/2 k2(x, t) dx

+cC1/2
F Q1/4

N (t) |Au| N1/2

and by Hölder’s inequality we have

|IN(t)| [ c ||Nu||L6 ||k2||L6/5+cQ1/4
N (t) |Au| N1/2

Again by Hölder’s inequality and (6) we get

|IN(t)| [ c |Au(t)| 1F
W

k2(x, t) dx27/12 1F
W

(k2(x, t))5/3 dx21/4

+cQ1/4
N (t) |Au(t)| N1/2
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Using the Lieb–Thirring inequality (27) and > k2(x, t) dx=N we obtain

|IN(t)| [ c |Au(t)| N
7/12Q1/4

N (t)+cQ1/4
n (t) |Au(t)| N1/2

and hence

|IN(t)| [ c |Au(t)| N
7/12Q1/4

N (t)

After applying Young’s inequality to the above and substituting in Eq. (32)

we obtain

TN(t) \
n

2
QN(t)−cn

−1/3N7/9 |Au(t)|4/3

Therefore, in order to satisfy (34), and based on the above, it suffices to

choose N large enough so that for every trajectory u(t) on the global
attractorA we have

lim inf
T Q.

1

T
FT

0

5n
2
QN(t)−cn

−1/3N7/9 |Au(t)|4/36 dt > 0
Therefore, such a large N is an upper bound for the dimension of the

global attractor. Based on (35) it suffices to require

n4/3l1N
5/3 ·N−7/9 > c lim sup

T Q.

1

T
FT

0
|Au(s)|4/3 ds

for every solution u in ¥A, i.e.,

n4/3l1N
8/9 > c sup

u
in
¥A

1 lim sup
T Q.

1

T
FT

0
|Au(s)|4/3 ds2

On the other hand, using Hölder’s inequality and (37) we have

sup
u

in
¥A

1 lim sup
T Q.

1

T
FT

0
|Au(s)|4/3 ds2

[ sup
u

in
¥A

1 lim sup
T Q.

1

T
FT

0
|Au(s)|2 ds22/3

[ sup
u

in
¥A

1 lim sup
T Q.

1

Ta2
1

FT

0
(a2

0 ||u(s)||
2+a2

1 |Au(s)|
2) ds22/3

[ sup
u

in
¥A

1 E(u in)

nl1/2
1 (a2

1l1)
22/3

[ 1 Ē

nl1/2
1 (a2

1l1)
22/3
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Therefore, every N large enough such that

N \ c 1 Ē

n3l2
1(a

2
1l1)
23/4

(38)

is an upper bound for the fractal dimension of the global attractor, and

hence is an upper bound for the number of degrees of freedom in turbulent

flows.

We set the dissipation length scale, in analogy with the Kolmogorov

dissipation length scale in the classical theory of turbulence, to be

aE=1n3

Ē
21/4

Then Eq. (38) leads to the following

Theorem 7. The Hausdorff and fractal dimensions of the global

attractor of the viscous Camassa–Holm (NS-a) equations, dH(A) and

dF(A), respectively, satisfy:

dH(A) [ dF(A) [
c

(a2
1l1)

3/4
1 1

aEl1/2
1

23

This estimate for the number of degrees of freedom is consistent with

the conventional estimate a la Kolmogorov–Landau–Lifshitz [30]. In par-

ticular, the number of degrees of freedom scales as the cube of the ratio of

the domain size divided by the Kolmogorov dissipation length scale (times

a factor involving the fixed a1).

6. CONVERGENCE TO THE NAVIER–STOKES EQUATIONS

We observed earlier that the system (8) reduces to the Navier–Stokes

for a0=1 and a1=0. In this section we will fix a0=1 and investigate the
convergence of the solutions of the system (8) as a1 Q 0+, and relate the

limit to the Navier–Stokes equations. We will be studying further the rela-

tion between solutions of the system (8) and the 3D Navier–Stokes equa-

tion in a subsequent work. In particular, we will investigate the conver-

gence (in a suitable sense) of the global attractor of the system (8) to the

global attractor of the 3D Navier–Stokes equations, as it was defined by

Sell in [34], and to the ‘‘universal attracting’’ set introduced in [21].
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Theorem 8. Let f ¥H, u in ¥ V and a0=1. Let ua1 and va1=ua1+a
2
1Aua1,

denote the solution of the initial-value problem (8) (or equivalently (36)).

Then there are subsequences uaj
1
, vaj

1
, and a function u such that as a j

1 Q 0+

we have:

(i) uaj
1
Q u, strongly in L2

loc([0,.); H);

(ii) uaj
1
Q u, weakly in L2

loc([0,.); V);

(iii) for every T ¥ (0,.) and every w ¥H we have (uaj
1
(t), w)Q

(u(t), w) uniformly on [0, T];

(iv) vaj
1
Q u weakly in L2

loc([0,.); H) and strongly in L2
loc([0,.); VŒ).

Furthermore, u is a weak solution of the 3D Navier–Stokes equations with the

initial data u(0)=u in (for the definition of weak solutions to the 3D Navier–

Stokes equations see [13] and [35].)

Proof. Let T > 0 be fixed. From the proof of Theorem 3 and by

passing to the limit one can show that the estimates (17) and (18) also hold

for the exact solution of the system (8). That is

|ua1(t)|
2+a2

1 ||ua1(t)||
2 [ k1

and

n FT

0
(||ua1(s)||

2+a2
1 |Aua1(s)|

2) ds [ k̄2(T)

This implies that there are subsequences {uaj
1
} and {vaj

1
}, and correspond-

ing functions u and v such that:

{uaj
1
}Q u weakly in L2([0, T]; V)

and

{vaj
1
}Q v weakly in L2([0, T]; H)

as a j
1 Q 0+.

Next we will use the above estimates and Eq. (8) to show that

FT

0

:A−1
dua1(t)

dt
:2 dt=FT

0

>dua1(t)
dt
>2

D(A)Œ

dt [K(T) (39)
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for some constant K which depends on T, but is independent of a1. Indeed,

from Eq. (8) (or equivalently (36)) we have

dua1
dt
+nAua1+(I+a

2
1A)

−1 B̃(ua1, va1)=(I+a2
1A)

−1 f

Thus

:A−1
dua1(t)

dt
: [ n |ua1 |+|A−1(I+a2

1A)
−1 B̃(ua1, va1)|+|A

−1f|

In order to prove (39) we only need to find the proper estimate for

|A−1(I+a2
1A)

−1 B̃(ua1, va1)| [ |A
−1B̃(ua1, va1)|

Applying part (v) of Lemma 1 we obtain

|A−1B̃(ua1, va1)| [ c(|ua1 |
1/2 ||ua1 ||

1/2 |va1 |+l
−1/4
1 |va1 | ||ua1 ||)

[ 2cl−1/4
1 |va1 | ||ua1 ||

[ 2cl−1/4
1 ||ua1 ||(|ua1 |+a

2
1 |Aua1 |)

As a result of the above estimates we have

|A−1B̃(ua1, va1)|
2 [ 8c2l−1/2

1 (||ua1 ||
2 |ua1 |

2+(a2
1 ||ua1 ||

2)(a2
1 |Aua1 |

2))

[ 8c2l−1/2
1 k1(||ua1 ||

2+a2
1 |Aua1 |

2)

and by integrating the above estimate over the interval [0, T] we have

FT

0
|A−1B̃(ua1(t), va1(t))|

2 dt [
k̄2(T)

n
8c2l−1/2

1 k1

From all the above we conclude (39).

By virtue of the above estimates and Aubin’s compactness Theorem

(see, e.g., [13], [31], or [35]) there exists a subsequence, which will also be

labeled by {uaj
1
}, that converges to u strongly in L2([0, T]; H). Further-

more, since

FT

0
|A−1/2(vaj

1
(t)−uaj

1
(t))|2 dt=(a j

1)
2 FT

0
||uaj

1
(t)||2 dt [ (a j

1)
2
k̄2(T)

n

we have that vaj
1
Q u strongly in L2([0, T]; VŒ), as a j

1 Q 0+; and that v(t)=
u(t) a.e. in [0, T].
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As a result of these estimates one can extract subsequences, which will

be also labeled by {uaj
1
} and {vaj

1
}, respectively, and show that as a j

1 Q 0+

B̃(uaj
1
, vaj

1
)Q B̃(u, u)=B(u, u) weakly in L2([0, T]; D(A)Œ)

by following an approach similar to that used in the proof of Theorem 3.

This finishes the proof of the theorem. i
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