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The Three-Dimensional Weak Form of the Conjugate 
Gradient FFT Method for Solving Scattering 

Problems 
Peter Zwamborn and Peter M. van den Berg 

Abstract-The problem of electromagnetic scattering by a 
three-dimensional dielectric object can be formulated in terms 
of a hypersingular integral equation, in which a grad-div op- 
erator acts on a vector potential. The vector potential is a spa- 
tial convolution of the free space Green’s function and the con- 
trast source over the domain of interest. A weak form of the 
integral equation for the relevant unknown quantity is obtained 
by testing it with appropriate testing functions. As next step, 
the vector potential is expanded in a sequence of the appropri- 
ate expansion functions and the grad-div operator is integrated 
analytically over the scattering object domain only. A weak 
form of the singular Green’s function has been used by intro- 
ducing its spherical mean. As a result, the spatial convolution 
can be carried out numerically using a trapezoidal integration 
rule. This method shows excellent numerical performance. 

I. INTRODUCTION 
URING the past several years considerable effort has D been put into the development of computational 

techniques for handling the scattering and diffraction of 
electromagnetic waves by an object. We can distinguish 
between global techniques (e.g., the use of wave function 
expansions and integral equations) and local techniques 
(finite-difference and finite-elements methods). One of the 
extensively utilized and most versatile global methods is 
the domain-integral-equation technique. It takes into ac- 
count that the irradiated object is present in free space and 
that it manifests itself through the presence of secondary 
sources of contrast currents. Numerous methods have been 
developed, and it is not our objective to survey them all. 
Instead we concentrate on the k-space methods. It is our 
opinion that methods of this type are applicable for three- 
dimensional electromagnetic scattering problems owing 
to their storage and computational efficiency. 

The problem of the electromagnetic scattering by an in- 
homogeneous dielectric object is formulated in terms of 
an integral equation for the electric field over the domain 
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of the object. The first method for solving the electric- 
field integral equation over the domain of a dielectric ob- 
ject was developed by Richmond for the two-dimensional 
TM case [ l ] ,  and for the two-dimensional TE case [2]. 
Here the method of moments has been used with pulse 
expansion functions and point matching. The method of 
moments requires the inversion of a (large) matrix, lim- 
iting the application of this method. This problem has been 
circumvented by using a conjugate gradient iterative tech- 
nique [3], [4]. Bojarski has introduced the k-space 
method, obtaining an iterative approach that reduces the 
storage and the computation time by using a Fast Fourier 
Transform algorithm for the computation of the spatial 
convolution that occurs in the integral equation. A com- 
prehensive review of Bojarski’s work, together with the 
appropriate references to his k-space frequency domain 
method, can be found in his 1982 k-space time domain 
paper [5]. Subsequently, the conjugate gradient method 
combined with the Fast Fourier Transform has been de- 
veloped for various configurations [6]-[ 161. For the three- 
dimensional problems and the two-dimensional case of TE 
polarization, applicability of this conjugate gradient FFT 
method using pulse expansion functions casts some seri- 
ous doubts [ 171-[ 191. The operator involved consists of a 
grad-div operator that acts on a vector potential. The vec- 
tor potential is an integral of the product of a Green’s 
function and the electric contrast current density inside 
the scattering object. The vector potential is a spatial con- 
volution. In the spectral Fourier domain this convolution 
is algebraic: a simple product. Recently, the weak for- 
mulation of the conjugate gradient FFT method has proved 
to be an efficient and accurate scheme for solving two- 
dimensional TE scattering by strongly inhomogeneous 
lossy dielectric objects [20]. Therefore, in this present pa- 
per, we present a weak formulation of the domain-integral 
equation for the modeling of fu l l  vectorial, three-dimen- 
sional, electromagnetic scattering problems. The domain- 
integral equation that is obtained in its strong form is 
weakened by testing it with appropriate testing functions. 
This weak form is the operator equation to be solved by 
a CGFFT method. The advantages of this procedure are, 
firstly, that the grad-div operator acting on the vector po- 
tential is integrated analytically over the domain of the 
dielectric object only and, secondly, that we have main- 
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tained the simple scalar form of the convolution structure 
of the vector potential (in fact three scalar convolutions). 
The integral equation is formulated in terms of the un- 
known electric flux density rather than in terms of the 
electric field strength. The continuity of the normal com- 
ponent of the electric flux density yields a correct imple- 
mentation of the boundary condition of the normal com- 
ponent of the electric field at the interfaces of (strong) 
discontinuity. As a consequence, the present scheme is 
much simpler than the one of Joachimowizc and Pichot 
[21]. No surface integrals that are directly related to sur- 
face charges have to be introduced. Further, it should be 
mentioned that expanding the electric-contrast vector po- 
tential directly, as opposed to other schemes where only 
the current density is expanded such as the CGM-FFT 
scheme of Catedra er al. [16], leads to a weaker singular- 
ity in the Green's function. The latter aspect gives rise to 
a more accurate numerical evaluation of the (convolution 
type) integral operators involved. In contrast to the weak 
formulation of the two-dimensional TE-case [20], the 
three-dimensional formulation is presented for different 
mesh-sizes in the three Cartesian coordinates. 

Finally, it is noted that the continuous convolution of 
the Green's function with the contrast current density is 
replaced by a discrete cyclic convolution that can be eval- 
uated with a period in the FFT as small as possible. The 
Green's function is the point source solution of a scalar 
wave equation. Instead of using this strong form, we em- 
ploy its spherical mean, being the normalized integrated 
value over some small spherical region. The radius of this 
spherical region is directly related to the mesh size of the 
discretized configuration. 

We present some numerical results for three-dimen- 
sional problems. Numerical computations have been car- 
ried out for a strongly inhomogeneous, lossy radially lay- 
ered sphere. These numerical results are compared with 
existing analytical solutions (Mie series) and it is directly 
observed that the weak form of the conjugate gradient FFT 
method yields excellent results. As second test case, the 
bistatic radar cross section of a conducting thin slab is 
compared with the bistatic radar cross section of a per- 
fectly conducting plate. It is demonstrated that for both 
configurations comparable results have been obtained. 
Further, the numerical far-field results for some cubical 
configurations are compared with results recently pub- 
lished in the literature. 

These test cases demonstrate that the present weak for- 
mulation of the conjugate gradient FFT method can be 
considered to be a comparitively simple and efficient tool 
for solving scattering problems pertaining to (strongly) 
inhomogeneous lossy dielectric objects. 

11. THE DOMAIN-INTEGRAL EQUATION 

The vectorial position in the three-dimensional space is 
denoted by x = (xI, x2, x3). The unit vectors in the x,-, 
x2-, and x,-directions are given by i,, i2 and i,. The time 
factor exp ( -  iwt) has been used for the field quantities in 

the frequency-domain. We consider the problem of scat- 
tering by a lossy inhomogeneous dielectric object with 
complex permittivity 

where E, denotes the relative permittivity of the object with 
respect to the lossless and homogeneous embedding with 
permittivity eo, and where cr denotes the electric conduc- 
tivity of the object. The incident electric field is denoted 
as E' = (E',, E ; ,  E; ) .  In this paper, we formulate the 
scattering problem as a domain-integral equation for the 
unknown electric flux density D = (D,, D2, D,) over the 
object domain ,I as 

( k t  + grad div)A(x), x E Ds. (2) 

where k ,  = w ( ~ ~ p , , ) ' / ~  and the vector potential A = ( A l ,  
A?,  A, )  is given by 

A(x) = - G(x - x')x(x ' )D(x ' )  dx' (3) 

in which the normalized contrast function x is defined as 

Eo  X ' E  s 

(4) 

Further, the three-dimensional Green's function G is given 
by 

111. TESTING AND EXPANSION PROCEDURE 
We first introduce a discretization in the spatial domain 

x = (x,, x2, x3). We use a uniform mesh with grid widths 
of Ax,, Ax2 and Ax3 in the x , ,  x2 and x3 directions, re- 
spectively. For our convenience the discrete values of x 
are given by 

XM,N.P = { ( M  - Ax,,  ( N  - AXZ, ( P  -  AX^}, 

(6) 

denoting the centerpoints of the volumetric subdomains. 
The upper-case Latin subscript are bounded, viz. M E [ 1,  
B,], N E [ 1, B2] and P E [ 1, B , ] .  The scatterer domain is 
completely embedded in the rectangular block with di- 
mension B ,  Ax, x B2 Ax2 x B, Ax3. The boundary of 
the discretized object now consists of surfaces parallel to 
the xI- ,  x2-, or x3-axis. We assume that the discretized 
boundary a L  of the scattering domain I lies completely 
in the embedding where x = 0. This is always possible, 
since we can extend the definition of the scattering do- 
main 3'' by extending it with a zero contrast function x .  
In each volumetric subdomain with center x ~ , ~ , ~  and di- 
mension Ax, x Ax2 x Ax3, we assume the complex per- 
mittivity to be constant with values E ~ , ~ , ~ .  Note that 
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jumps in the (complex) permittivity function may occur 
at x l  = M A x l ,  x2  = N Ax2 and x 3  = P A x 3 .  

In order to cope with the grad-div operator in (2), we 
test the strong form of (2) by multiplying both sides of 
the equality sign by a vectorial testing function 
W&)N,~(X) ,  p = 1, 2, 3, and integrate the result over the 
domain x E D’. The testing function ~ @ ’ , , ~ ( x )  = 

IJ&)N,~(X) ip is a suitably chosen vectorial function that 
will be defined later. We then obtain 

f o r p  = 1, 2, 3, and where we have used Gauss’ theorem 
on each subdomain where ap$&)N,P(x) div A(x)  is contin- 
uously differentiable and by using the continuity of the 
normal components of this function through the interfaces 
between these subdomains. In view of the derivation of 
(7), it is mentioned that for the testing functions 
$ !$,)N. (x), the partial derivative a, $ (x) must be 
piecewise continuous on the domain : ’. At the surfaces 
(with normal v) where this property fails, we then require 
that v * w!$,)~,~(x)  must be continuous. Further, v * 

y ~ ! $ ) N , ~ ( x )  must vanish for x L ’. We expand the gen- 
eralized electric flux density, the electric-contrast vector 
potential and the incident electric field in a sequence of 
vectorial expansion functions IC/~:],~(X) = $ j p j , K ( ~ ) i q ,  q = 
1, 2, 3 as follows 

D,(x) = € 0  C ~ijqJ,~$j9).K(x) f o r x  E ’, (8) 

A,(x) = C ~ j q j , K $ j q ] , K ( ~ )  f o r x  E r ’, (9) 

E ~ ( x )  = C ~>,$:i+jq].~(~) f o r x  E ’. (10) 

1. J ,  K 

1.J K 

1. J .  K 

Substitution of (8)-(10) in (7), carrying out the diver- 
gence and interchanging the order of summation and in- 
tegration, we obtain the following weak form of the do- 
main-integral equation 

3 

for p = 1, 2, 3 and where 6 p , q  denotes the Kronecker 
symbol. 

In view of the partial derivatives in (15), the volumetric 
rooftop functions [23] are chosen as testing and expansion 
functions, viz. 

$ ( I )  
M . N . P ( x )  = A(xI - x I ; M , N , P  + $ 2 

X A(x3 - x 3 : M , N , p  + i A x 3 ;  2  AX^), (18) 

in which A = A( y ;  2 A x )  is the one-dimensional piece- 
wise linear and continuous function, viz. the triangle 
function with support 2 A x ,  and IJ = 11( y ;  A x )  is the 
one-dimensional piecewise constant function, viz. the 
pulse function with support A x .  

Using these functions of (16)-(18) in (12)-(15), we ob- 
tain the following weak formulation of the domain-inte- 
gral equation: 

; , ( I )  
3 

+ cjl)A(l) 
M i I - 2 .  N .  PI ~ M , N , P  = I =  I [ b j ’ ) d $ ) + 1 - 2 , ~ . ~  

2 2  

2 2  

2 2  

2 2  
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2 2  

2 2  

+ t ! , ) J A $ ! N + J - l , P + K - 2  
J =  1 K =  I  

3 
. [ ~ ‘ . ( 3 )  + [ b $ ) d z ! N , P + K - 2  + , $ j A ( 3 )  M ,  N .  P + K - 21 9 M . N . P +  I + 4EL!%,p + EL!%,p- 11. (29) 

With our particular choice of expansion functions, the 
K =  1 

(21) quantities A g i , p  and M , N , p  follow from 

EO 

E M , N - I .  .P  

+ 2EO 
E M . N -  I , P  

EO 

E M ~ N . P  

*), € M ,  N ,  P 

+*), E M ,  N ,  P 

p = 1, 2, 3. (32) 

The electric-contrast vector potential A,,, is related to the 
electric flux density D via ( 3 ) .  Note that with this proce- 
dure we have enforced the equality sign of (30)-(32) ex- 
actly in a single point. Again, this is a strong form and 
we will weaken this form by taking the spherical mean. 
The computation of the electric contrast vector potential 
is discussed in next paragraph. 

Let us define the spherical mean (weak form) of the 
electric-constant vector potential as 

A(x + X I ’ )  dx” 
I x ” ]  < ( I / 2 ) A x  

, (33) 
s 

F dx” 
[AI (x )  = 

c ( ~ )  = A x ,  Ax2 Ax3 JIx’, < ( l / 2 j A x  

where A x  = min [ A x , ,  A x 2 ,  A x , ] .  Substitution of (3) in 
(33) and interchanging the order of integrations, we ob- 

. [ -: (:) + 
(I:)], (25) tain 

[A] (x) = 5 [GI (x  - x’  )x (x ’  )D(x’  ) dx’ ,  (34) 
€ 0  X ’ E D S  

in which while the coefficients of the matrix t ( P ’  follow from 

t (P’  = A x p  (-’ ’). 
1 - 1  

The values of eh!$.p follow from EL!$,p as 

i,(l)  AX^ A x 2  A X ,  Taking the spherical mean of the electric-contrast vector 
potential, the integral of (35) can be determined analyti- 
cally . Using spherical coordinates together with the ad- 
dition theorem of the modified spherical Bessel functions, 

6 ~ M . N . P  = 

. [E‘ (1 )  ( (1) k’4 + I ,  N ,  P + 4Eh:;. P f E.& - I ,  N. P I ,  (27) 
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it is easily verified that 

- i iko Ax) exp (i ik, Ax) - 1 
if 1x1 = 0, 

w k i ( A ~ ) ~  

1 .  

Note that, for the limiting case Ax -+ 0, the weak form 
of the Green's function [GI (x), 1x1 > Ax, tends to the 
strong form of the Green's function G(x). 

As next step, the continuous convolution integral of 
(34) has to be replaced by a discrete one. Using a trape- 
zoidal integration rule, we arrive at 

A!$L,p = Ax, Ax2 Axj c 
M ' ,  N ' ,  P' 

( P l  ( P )  GM- M', N - N'. P - P' x M ' .  N ' ,  P' d ~ , .  N ' .  P!, (37) 

in which p = 1,  2, 3 ;  the discrete values of the normalized 
contrast function follow from 

The discrete values of the weakened Green's function are 
given by 

GM,N,P = [GI(M Ax19 N AX?, P Ax,). (41) 

Using the convolution theorem of discrete Fourier trans- 
form (DFT), (37) is evaluated numerically by 

A 2 k . p  = Ax1 Ax2 Ax3 DFT-' {DFT {[ G]M,,N, ,P ' )  

. DFT {X!$)N.Pd~P)N,PIl. (42) 

Note that the subscripts M ' ,  N', and P'  of [GIMf N 8 , P ,  in 
(42) are dictated by (6) and the spatial periodicity of the 
discrete Fourier transform. 

of the object lies 
completely inside a block 

Let us assume that the domain L 

(Mmm - 1) AXI 

("in - 1) Ax2 < x2 < ("ax + 1) AX?, 

(Pmm - 1) Ax3 < x3 < (Pmax + 1) Ax,. 

< X I  < (Mmax  + 1) Ax,, (43) 

(44) 

(45) 
In this volumetric domain we have MD5 = M,,, - M,,, 
+ 1 meshpoints in the xl-direction, NDs = N,,, - N,,, 
+ 1 meshpoints in the x2-direction and P,s = P,,, - P,,, 
+ 1 meshpoints in the x,-direction. Based on the ideas of 
Barkeshili and Volakis [24], it is easily shown [25] that 
(37) is equivalent to (42) inside the object domain L if 
the relevant DFT's are defined inside a block with MDFT 
meshpoints in the XI-direction, NDFT meshpoints in the 
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(36) 

x2-direction and P D F T  meshpoints in the x3-direction, such 
that 

MDFT L ~ ( M O S  4- I ) ,  NDFT 2 ~ ( N D s  + I), 
P D F T  1 2(PDS + 1). (46) 

Finally, the quantity E;;IIg.p is given in case the incident 
field is taken to be a uniform plane wave. Then, E' fol- 
lows from 

E' (x) = E exp (iko 8 x), (47) 

in which E denotes the amplitude of the plane wave and 8 
denotes the unit vector of the direction of propagation. 
The spherical mean (weak form) of the uniform plane 
wave incident field is now defined as 

E ' ( x  + XI') dx" 
1x"I < (1/2)Ax 

. (48) 
s 

dx " s I x " /  < ( I / 2 ) A r  

[E'l(x) = 

The weak form of the incident uniform plane wave is ob- 
tained by substitution of (47) in (48) as follows 

12 
[E'] (x) = G exp (iko8 - x) ~ 

(ko 

(49) 

The latter weak form gives the representations for the 
quantity EL($p as 

EL!$3p = [ E ; ] ( X ~ , ~ , ~  - Axpi,,). (50) 

Note that, for the limiting case Ax -+ 0 the strong form 
of the incident uniform plane wave is obtained (cf. (47)). 

Collecting all the results, the weak form of the domain- 
integral equation is given by (19)-(29), (42) and (50). 
This domain integral equation is symbolically written as 

e' = U. (51) 

The latter operator equation is solved numerically by ap- 
plying a conjugate gradient iterative scheme, where the 
DFT's are computed efficiently using fast Fourier trans- 
form (FFT) algorithms. 
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TABLE I 
COMPUTATION TIME A N D  STORAGE OF VAX 3 100176 WORKSTATION 

~ ~ ~ 

Computer Number of CPU-time 
Mnr X NO5 X PDs MDrT x NDFT x Pi,,, Unknowns of One Iteration Storage 

7 x 7 x 7  16 x 16 x 16 1176 8 sec 3 Mb 
15 x 1.5 x 15 32 x 32 x 32 10800 0.5.5 min 5 Mb 
31 x 31 x 31 64 x 64 x 64 92256 5 min 18 Mb 

IV. NUMERICAL RESULTS 
The numerical convergence is measured by the nor- 

malized root-mean-square error Err: 

(52) 

in which Ilr(n) 11 denotes the norm of the residual error in  
the satisfaction of the operator equation of (51) over the 
domain L of the dielectric object in the n th iteration. All 

station in double precision arithmetics. The DFT’s are ef- by a ]“homogeneous sphere; , 72, 
ficiently computed using fast Fourier transform (FFT) al- 
gorithms in single precision only. The iteration process is 

II dn)  II 
l l r ( O ’  II ’ Err = ~ 

0 50 100 150 200 250 300 350 400 
number of iterations 

computations were carried Out On a 3100’76 work- 
Flg 1 The numerical convergence ratio rate obtained for the scattering 

= 0 9 s / m  and kc la ,  = 0 163, 
t, = 7.5, U? = 0 05 S / m  and k,az  = 0 314 

stopped when the normalized root-mean-square error falls 
below lo-’. For the two-dimensional TE scattering prob- 
lems, Zwambom and van den Berg [20] have demon- 
strated that this strong error criterion has to be imposed. 
Unless explicitly specified, the incident field is taken to 
be a uniform plane wave with (cf. (49)) 

€ 1  = l V / m ,  € 2  = 0,  €3 = 0, (53) 

1 3 ~  = 0,  e2 = 0, e’ = -1. (54) 

In all cases we have taken a zero initial estimate. The 
bistatic radar cross section follows from [26] 

BiRCS (4, 0) = 10 log ( ~ ~ ( 4 ,  13) 

- 10 log ( h i )  dB, ( 5 5 )  

in which 

and where E s  (4, 19) and E ‘ ( $ ,  0) denote the scattered far- 
field and incident far-field vectors, respectively. In Table 
I, the computation time needed to evaluate one iteration 
on the VAX 3100/76 workstation and the number of un- 
knowns in the scattering problem havc been presented. It 
is noted that the VAX Fortran computer code pertaining 
to these values is, however, not optimized. Examining 
this table reveals that the computation time of each iter- 
ation is proportional to ( M D F T  X N D F T  x P D F T )  [ l  + logz 

We firstly consider a radially layered lossy dielectric 
spherical object to be present with its origin at x = {a ,  a ,  
a},  where a denotes the outer radius of the sphere. It is 
noted that for this special test case, analytical results are 
obtained with the Mie series [27]. The relative permittiv- 
ities and conductivities are E , :  = 72, U,  = 0.9 S/m,  and 

(MDFT N D F T  pDFT)l .  

e , ,2  = 7.5,  u2 = 0.05 S/m,  respectively. The dimensions 
are given by koa l  = 0.163 and koa2 = 0.314. It is noted 
that a l  denotes the radius of the inner sphere and a2  de- 
notes the radius of the outer sphere. The frequency of op- 
eration is taken to be 100 MHz. Note that Joachimowicz 
and Pichot have discussed the two-dimensional counter- 
part of this configuration in [21]. The computations are 
performed for different mesh sizes of MD5 = N D s  = PD\ 
= 15 ( M D F T  = N D F T  = P D F T  = 32) and MDc = ‘ D s  - 
P,s = 29 ( M D F T  = N D F ,  = P D F T  = 64), respectively. The 
numerical convergence rate of the iterative scheme is pre- 
sented in Fig. 1 ,  while the magnitudes of the components 
of the total electric field are presented in Fig. 2. 

In order to investigate the discrepancies of the numer- 
ical results and the analytical results, we have taken the 
discretized sphere of the case MD7 = N D s  = P D r  = 15 as 
new object. As next step, this new object has been sub- 
divided with MDx = NDi = P,s = 30. The number of 
iterations to obtain an error less than 0.1 percent is 325. 
From Fig. 3 it is observed that refining the mesh in the 
interior of the object hardly yields any improvement. The 
same discrepancies between the numerical results and the 
analytical results are observed. The latter reveals that the 
differences between the analytical and numerical results 
are caused by the block approximation of the spherical 
boundary. In order to obtain a better approximation of the 
spherical boundaries, the discretization of the sphere has 
to be improved. 

As second test case we consider a thin slab to be present 
with its origin at x = {a, a ,  b}, where the side length of 
the slab is equal to 2a = 2X0 (koa = 27r) and the thickness 
of the slab is 2b. Note that ho denotes the wavelength in 
free space. The frequency of operation is taken to be 100 
MHz. The slab is subdivided with MDs = N D s  = 31 and 
P D 5  = 1 and mesh sizes A x l  = Ax2 = Ax3 = (2h0/31). 

- 
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1 - -1 -0.5 0 0.5 

! % - 1  

-1 -0.5 0 0.5 1 

Fig. 2. The magnitude of the components of the total electric field inside 
a lossy inhomogeneous sphere; c y ,  I = 72, u I  = 0.9  S / m  and k,,a, = 0.163, 

= 7.5, u2 = 0.05 S / m  and koa, = 0.314. The numerical results per- 
taining to a mesh size of 15 X 15 x 15 are presented by the symbols x 
and the numerical results pertaining to a mesh size of 31 x 31 x 31 are 
presented by the symbols *.  The analytical solution of the inhomogeneous 
sphere is presented by the solid line. 

It is noted that the height of the slab is 2b = (2x0/31). 
The conductivity is taken to be 1000 S / m .  It is expected 
that the scattering from this latter object is very similar to 
the scattering by a perfectly conducting, infinitly thin 
plate. Therefore we will compare the bistatic radar cross 
section obtained for the slab with the bistatic radar cross 
section obtained for the perfectly conducting plate using 
the computer code of Zwambom and van den Berg [14]. 
The number of iterations to obtain an error less than 0.1 
percent amounts to 79 iterations for the plate configura- 
tion and 91 iterations for the slab configuration. In Fig. 4 
we present the bistatic radar cross section for the perfectly 
conducting plate and the lossy slab in the plane 8 = 90 
(90 I 4 I 270). It is observed that comparable results 
have been obtained for both configurations, as expected. 

As third test case we consider a lossless dielectric cube 
to be present with its origin at x = { a ,  a ,  a } ,  where the 
side length of the cube is equal to 2a = 0.2ho (koa = 
0 . 2 ~ ) .  The relative permittivity is taken to be e r  = 9.  The 
frequency of operation is taken to be 100 MHz. In this 
test case only, the incident field is taken to be a uniform 

0.6 I 

I 
0.5 1 

0 . 0 5 U  0 -1 -0.5 0 0.5 - 1 

3 - 1  

Fig. 3 .  The magnitude of the components of the total electric field inside 
a 15 x 15 X 15 discretized lossy inhomogeneous sphere; e r , ,  = 72, u I  = 
0 . 9 S / m a n d k O a ,  = 0 . 1 6 3 , t , , z = 7 . 5 , u z = 0 . 0 5 S / m a n d k n a z = 0 . 3 1 4 .  
The numerical results pertaining to a mesh size of 15 X 15 X 15 are pre- 
sented by the symbols X .  The discretized object is refined with a mesh size 
of 30 X 30 x 30 and the numerical results are presented by the symbols 
0 ,  The analytical solution of the inhomogeneous sphere is presented by the 
solid line. 

BiRCS 

(dB' 1 

Fig. 4. The bistatic radar cross section computed for the 2X0 X 2Xn per- 
fectly conducting plate is presented by the solid line and the bistatic radar 
cross section computed for the 2Xo X 2X0 X (2Xn/31) slab with conduc- 
tivity 1000 S / m  is presented by the symbols *.  The frequency of operation 
is 100 MHz. 

plane wave with the electric field vector parallel to the 
x,-axis and propagating along the positive x3-axis, hence 
in (49) we have 

E ,  = lV/m, € 2  = 0, €3 = 0, (57) 

T T -  
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BiRCS 15 
(dB) 1 o,d Q = 90 

7 X 7 X l  

l5 
. of Penno e t  01 

of Catedra e t  a1 
30 

The cube is subdivided with MDs = NDs = PDs = 7. The 
number of iterations to obtain an error less than 0.1 per- 
cent is 38.  In Fig. 5 we present the far-field for the di- 
electric cube. The solid curve is obtained using the pres- 
ent method, while the symbol 0 represents the “triangle- 
patch” surface formulation developed by Rao (cf. [28] )  
and the symbol X represents the “pulse expansion point 
matching” volume formulation given by Sarkar er al.  
[28] .  The far-fields are presented on a logarithmic vertical 

5 it is observed that the far-fields that are computed using 

8 

15 scale and all curves are normalized for 8 = 0. From Fig. + = 0  

C 

the present method agrees with the far-fields that are com- 
puted using the “triangle-patch’ ’ surface formulation, 
while the “pulse expansion point matching” volume for- 
mulation shows some discrepancies. As indicated by Sar- 
kar er al.  [ 2 8 ] ,  the “pulse expansion point matching” 
volume formulation gives rise to spurious charge distri- 
butions influencing the accuracy of the near-field. As a 
consequence, the far-field shows some discrepancies. It is 
demonstrated that the weak formulation of the domain- 
integral equation does not suffer from this inaccuracy. 

As fourth test case we consider a lossy dielectric cube 
to be present with its origin at x = { a ,  a ,  a } ,  where the 
side length of the cube is equal to 2a = 0.75X0 (koa = 
2.3562). The conductivity is taken to be 1000 S / m  and 
the frequency of operation is taken to be 100 MHz. The 
cube is subdivided with MDs = NDs = PDs = 7 and M D S  
= NDs = PDs = 15, respectively. The number of itera- 
tions to obtain an error less than 0.1 percent amounts to 
68 and 189 for the 7 X 7 X 7 subdivision and the 15 x 
15 X 15 subdivision, respectively. In Fig. 6 we present 
the bistatic radar cross section for the lossy dielectric 
cube. The dashed line represents the bistatic RCS results 
obtained for a subdivision of 7 X 7 X 7, the solid line 
represents the bistatic RCS results obtained for a subdi- 
vision of 15 X 15 X 15. The symbols 0 represent the 
measured data given by Penno er al.  [22] and the symbols 
* represent the CGM-FFT results of Catedra et al.  [23] .  
It has been observed that the BiRCS obtained using the 
present method and the measured BiRCS results given by 
Penno et al.  [22] agree very well, while Fig. 6 demon- 
strates that the weak formulation of the conjugate gradient 
FFT method produces more accurate results than the 
CGM-FFT implementation of Catedra er al .  [23] .  

Finally, as fifth test case we consider a lossless dielec- 
tric cube to be present with its origin at x = { a ,  a ,  a } ,  
where the side length of the cube is equal to 2a = 0.25X0 
(koa = 0.7854). The relative permittivity is taken to be 
E,. = 4. The frequency of operation is taken to be 100 
MHz. The cube is subdivided with M,s = N,s = PDs = 
15. The number of iterations to obtain an error less than 
0.1 percent is 19. In Fig. 7 we present the bistatic radar 
cross section in the E-plane (4 = 0) and the bistatic radar 

45 90 135 180 

-15 1.x Volume formulation1 

-20 
of Sarkar e t  al. 

0 45 90 135 180 
6 

Fig. 5. The far fields as a function of 0 computed for a lossless dielectric 
cube with E ,  = 9,  U = 0 S/m and koa = 0.628319. The solid lines rep- 
resent the results obtained using the present method, the symbols 0 repre- 
sent the results obtained using the surface formulation and the symbols X 

represent the results obtained using the volume formulation of Sarkar et a / .  
Wl. 

-40 1 

-75 

8 

cross section in the H-plane (4 = 90). The solid and 
dashed curves are obtained using the present method, 
while the symbols * and -t represent the results presented 
by Moheb and Shafai [29] for the E-plane and H-plane, 

Fig. 7. The bistatic radar cross section as a function of 0 computed for a 
lossless dielectric cube with t, = 4, U = 0 s / m  and koa = 0.7854. Th* 
results with a mesh size of 15 x 15 x 15 are presented by the solid line 
and the approximated results given by Moheb and Shafai [291 obtained 
using the = I Muller formulation is presented by the symbols *.  
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respectively. Moheb and Shafai have obtained their re- 
sults using the first order Muller formulation (n  = 1) and 
state that this approximation for the bistatic radar cross 
section is satisfactory. As observed from Fig. 7 their ap- 
proximation of the bistatic radar cross section shows some 
(large) discrepancies. 

V .  CONCLUSIONS 
In this paper we have presented a three-dimensional 

weak formulation of the conjugate gradient FFT method 
for dielectric scatterers. It is observed that the present 
weak formulation yields excellent agreement with the an- 
alytical results for the radially layered lossy dielectric 
sphere. Modeling the curved boundaries using a cubical 
mesh seems to be feasible and the discretization errors 
tend to vanish for increasingly finer discretizations. Com- 
parison of the numerical results obtained using the weak 
formulation of the conjugate gradient FFT method with 
the numerical results obtained using other methods dem- 
onstrates that the present scheme produces accurate re- 
sults. 

Since we have maintained the simple scalar convolu- 
tion structure of the vector potential, the computation time 
of our present method is even less than the computation 
time of the conjugate gradient FFT methods discussed in 
the Introduction. Further, it is noted that in contrast with 
the weak formulation of the two-dimensional TE scatter- 
ing problems presented in [20], the present formulation 
allows the use of different mesh sizes in each Cartesian 
coordinate. The latter enhances the applicability of the 
weak formulation to complex, strongly inhomogeneous 
structures. Finally, it is mentioned that the extension of 
the present formulation to anisotropic objects is rather 
straightforward (see [25]) .  
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